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Gameplay and Decisions 
 

 
The Can’t Stop Game is 2-4 player game designed by Sid Sackson and 
played on a board like the left [1]. 

 
Goal: Reach the top of 3 columns. 

 
 
 
 
 

1. At the beginning of each turn a player is given 3 neutral 
(white) placeholders.  
 
Then the player rolls 4 dice, divides them into 2 pairs and 
adds up these pairs to obtain 2 sums.  

 
For example, on the right (3,7), (4,6) and (5,5) are the valid 
sums. 

 
 
 

2. If the neutral placeholders are not on the board, they are put on the board according to the pair of 
sums that the player has chosen. 
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3. If the placeholders are already on the board, they are advanced one or two points (depending on the 
sums). 

 
 
4. After each roll the player is given a choice to roll or to stop. Once a player decides to stop, their 
neutral placeholders are exchanged with their permanent ones meaning that they have secured the 
progress they made during that turn. Once a player stops, their opponents’ turns start. 

 
5. If a player’s neutral placeholder gets on the top of an opponent’s permanent tile, they must roll until 
they get off the tile. 
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6. Once they get off the tile, they can choose to roll or stop again. 

 
 
7. If a player rolls 4 dice such that they cannot make any progress on any column that their placeholders 
are currently on, their turn ends and they lose all progress made that turn. 

 
 
 
8. If a player can make a move after rolling, they must make it.  
 
9. Both of the sums in the pair may not be used.  

For example, if a player is on columns 2,3,4 and they roll 1,1,5,6, they will just make progress on 
the 2-column and discard the sum of 11.  
Similarly, if they roll 1,1,2,2, they can choose which column they will make progress on. 

 
10. If a player reaches the top of a column, and stops, they capture that column, and no player can make 
any moves on that column any more. 
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Pairing Up The Dice 
One of the two important decisions made in the game 
is pairing up the 4 dice to obtain 2 sums. The factors 
that need to be considered while deciding on a pair or 
sum depend both on probability and the current game 
situation. 
 
 
 
 

Deciding to Stop 
 
The other important decision the player needs to make 
is deciding on when to stop rolling. 

 
This decision depends on the expected progress on 
columns as well as the game dynamics. 
 
For example, a player could decide to be more liberal if 
they are behind or vice versa. 
 
 
 

 
 

Computer Approaches 

The Mathematical Model: 
For this model, the computer makes its decisions based on probabilities and expected progress. 

Deciding on stopping or rolling again: 
For this problem, several different formulas were used, each building upon the previous ones. 

Considering total progress on columns together 
Assume a player is on 3 columns and define the following as:  
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p1 = probability of making 1 unit progress on any of the 3 columns  
p2 = probability of making 2 units of progress on any of the 3 columns 
c = total units of progress made on the 3 columns this turn  

 
Then the expected progress of the player for the current turn after rolling one more time 
can be defined as 

p1 * (c + 1) + p2 * (c + 2) + (1 - (p1 + p2)) * 0 
 

Having calculated the expected progress, the player can be instructed to only stop if its 
current progress is greater than or equal to its expected progress after the next roll. So the 
decision to roll again is the boolean result of the inequality 

p1 * (c + 1)  +  p2 * (c + 2)  > c 
 

Note: Given 3 columns, it is possible to find the maximum value of c that would satisfy this 
inequality, yielding the total progress value required per turn to stop. 

p1 + 2  p2*
(1 −p1 − p2)   c>   

Considering total progress on columns individually 
Doing more careful probability analysis, the formula in the previous section can be 
extended into the following form. Assuming, again, that a player is on 3 columns, define 
the following as: 

pi = probability of making 1 unit progress on only the ith column 
pii= probability of making 2 units of progress on the ith column 
pij = probability of making 1 unit progress on both the ith and jth columns 
ci = total units of progress made on the the ith column this turn 

 
Then we can express the expected progress for the current turn with 

p1 * ((c1 + 1) + c2+ c3) +  
p2 * (c1 + (c2 + 1) + c3) + 
p3 * (c1 + c2 + (c3 + 1)) +  

p12 * ((c1 + 1) + (c2 + 1) + c3) +  
p13 * ((c1 + 1) + c2 + (c3 + 1)) +  
p23 * (c1 + (c2 + 1) + (c3 + 1)) +  

p11 * ((c1 + 2) + c2 +  c3) +  
p22 * (c1 + (c2 + 2) + c3) +  
p33 * (c1 + c2 + (c3 + 2)) + 

(1 - (p1 + ... +p33)) * 0  
 

Also, we can express the total progress made on this turn with 
c1+ c2 + c3 

and we can compare these expressions to come to a decision of rolling or stopping. 

5 



 

Considering total progress on columns individually considering weights 
Since the columns on the game board have different lengths, one unit progress on a 
column has different value for each column. For example, advancing one unit on the 
2-column is ⅓ of the way to capture the column whereas you need to make 13 unit 
progress on the 7-column in order to capture it. 
 
In this probabilistic model, each column is given a weight value. This value is defined as  

wi = 1/pi  
where pi = the possibility of getting a sum of i after rolling 4 dice 

 
Now we can extend the previous expression for the expected progress with 

p1 * (w1 * (c1 + 1) + w2 * c2 + w3* c3) +  
p2 * (w1 * c1 + w2 * (c2 + 1) + w3 * c3) + 
p3 * (w1 * c1 + w2 * c2 + w3 * (c3 + 1)) +  

p12 * (w1 * (c1 + 1) + w2 * (c2 + 1) + w3 * c3) +  
p13 * (w1 * (c1 + 1) + w2 * c2 + w3 * (c3 + 1)) +  
p23 * (w1 * c1 + w2 * (c2 + 1) + w3 * (c3 + 1)) +  

p11 * (w1 * (c1 + 2) + w2 * c2 + w3 * c3) +  
p22 * (w1 * c1 + w2 * (c2 + 2) + w3 * c3) +  
p33 * (w1 * c1 + w2 * c2 + w3 * (c3 + 2)) + 

(1 - (p1 +...+p23))*0 
and the current progress as 

w1.c1+ w2.c2 + w3.c3 
 
We can, again, compare the values of these expressions to decide whether to roll or stop. 
 
After comparing this version with the previous ones, we came to the conclusion that this 
one makes decisions that coincide with our intuition the most and decided to do work with 
it for our mathematical approach. 

Comparing the mathematical model with exhaustive search 
In order to get an idea of how well the rolling/stopping approach worked, the following 
simulation was performed. 
 
Considering the 6,7,8-columns, define the following 

l7: limit of unit progress made on the 7-column 
l68: limit of unit progress made on the 6,8-columns 
c7: unit progress made on the 7-column 
c68: unit progress made on the 6,8-columns 
w7,w68: relative weights of the columns 

and assume a program keeps on rolling until 
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w7.c7 + w68.c68 >= w7.l7 + w68.l68 
and calculate the weighted total progress this program makes over 1000000 turns. 
 
Now, letting l7 go from 1 to 13, look for the value of l68 (which is between 1-22) that yields 
the maximum weighted total progress. 
 
Doing this we get  
 

l7 ideal l68
* total c7 total c68 total weighted 

progress 

1 15 1524905 4732089 3238416.5 

2 14 1520130 4736400 3238495.9 

3 13 1512206 4739533 3236479.4 

4 12 1516493 4740706 3239102.6 

5 12 1519482 4738609 3239374.3 

6 10 1526175 4733003 3239496.3 

7 10 1525346 4727844 3236353.9 

8 8 1529201 4733986 3241430.8 

9 8 1525945 4734284 3240073.6 

10 7 1522858 4747752 3245831.5 

11 7 1517469 4743007 3240786.5 

12 6 1513820 4738304 3236574.4 

13 4 1515006 4737573 3236736.2 

   Mean 3239165.5 

 
(* +- 1 as observed from different runs) 
 
The mathematical model we used also stops rolling around the given limits. More 
importantly, over 1000000 turns the mathematical model makes the following progress. 
 

total c7 total c68 total weighted progress 

1526867 4724978 3235531.0 
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As seen, the progress values that the mathematical method produces match to the ones 
obtained by brute-force search. 

Deciding on how to pair the dice 
Given 4 rolls, deciding on how to pair the dice is a relatively harder problem and it is more difficult 
to come up with a robust formula that models the game situation as before. Some important 
factors to consider are 

➔ closeness to finishing a column 
➔ avoiding getting stuck on an opponent’s tile (and losing the chance to stop) 
➔ the likelihood of winning the column (e.g. not ideal to start the 7-column if the opponent is 

very close to winning it) 
 
To solve this problem, a few different pair deciding algorithms were implemented. 

Deciding based on relative final progress (m1) 
1. Given two different choices of columns to advance on, compare the relative total 

progress that will have been made on the columns if they are chosen. To do this, 
use 

= length of  i 
total unit progress on i relative total progress on i 

length of  the longest column  

Deciding based on relative progress and considering getting stuck (m2) 
1. While considering a column i, calculate the rough expected progress that would be 

made on i at the end of the turn. (This is done using the first (simple) formula 
mentioned in the previous section and the weights of the current columns.) 

2. Add this expected progress value to the current progress made on i and see if any 
opponent tiles are there. 

a. If there are, set p to the probability of getting off the opponent tiles on i. 
(Use the probability of rolling a sum of i for this.) 

b. If not set p to 1. 
3. Calculate p.(relative total progress on i) and use this value to compare between 

columns. 

Deciding based on progress, getting stuck and likelihood of winning (m3) 
1. Use the above method to calculate p.(relative total progress on i). 
2. Get the likelihood of winning a column by calculating

.5 0 +  length of  the column
(the player s progress once the column is chosen) − (opponent s progress) ′ ′  

3. Multiply the values in (1) and (2) and use them for comparison. 
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Comparison of m1, m2, m3 
It is possible to simulate games where these methods play against one another, so we 
made them play each other 1000 times. Below is a list of results. 
 

m1 & m2 (m1 goes first) m1 (559) m2 (441) 

m1 & m2 (m2 first) m2 (602) m1 (398) 

m1 & m3 (m1 first) m1 (543) m3 (457) 

m1 & m3 (m3 first) m3 (579) m1 (421) 

m2 & m3 (m2 first) m2 (593) m3 (407) 

m2 & m3 (m3 first) m3 (537) m2 (463) 

 
Since there was no significant difference between how well different methods played, we 
decided to use m1 while doing rollouts as m1 is simpler and significantly faster than the 
other methods. (1000 games using m1 takes half as much as 1000 games using m2.) 

Rollouts 
The second computer approach we implemented was the rollout technique. Before making a decision, for 
each option, the computer plays thousands of games against itself starting from the game state after 
having chosen that option, counting the number of wins along the way. Against its opponent, after these 
simulations, the computer picks the option that wins the most games. This technique produces decent 
choices because if two players of equal ability play the same game state with each other a sufficient 
number of times (this number decreases as player ability increases), the correct decision will win more 
games. The rollout method is used and has shown success in computer programs that play backgammon 
[2]. 

 
The rollout games are played by the computer using the mathematical model.  

For roll/stop decisions: We use the last formula that considers columns individually with 
weights. For simplification and better performance, the implementation of this formula 

stops if any column is won 
rolls if any placeholder is available 
uses the formula in all other cases 

For pairing up the dice: We use the method that makes decisions only based on relative 
progress. 
 

We use rollouts while making both of the game decisions. In our implementation, for each option, the 
computer plays 60,000 games. Playing a set of 60,000 games takes ~3 seconds so depending on the 
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number of options the computer has, which ranges from 2 to 6, the computer takes from 6 to 18 seconds 
while making a decision . 1

Opponent Error 
Some of the optimal game decisions change depending on how the opponent is playing. For 
example, if the computer’s opponent is a conservative player who often stops earlier than they 
should, then the computer can also afford to play safer than usual, in fact, this could work out 
better.  
 
In the formula we defined for making the roll/stop decisions, we compare the expected progress to 
the current progress of the player and stop if the expected progress is less than or equal to the 
current progress. We alter this formula to include an error value as follows. 

expected progress) (current progress) (current progress).error  ( >  +    
 
The error-values we test for the opponent range between 0 and 1.5, with 0.05 increments.  
 
For each test, starting from the game state where the opponent stopped, 1500 games are played 
each for the decision of stopping and rolling at that state, between an errorless computer program 
and and a program with error equal to the test value. The error of the opponent is set to the 
smallest test value that results in the opponent’s stopping decision to be justified according to the 
rollout. 
 
The error of the opponent is recalculated after their every stop decision, and an average value is 
kept. 
 
After the error of the opponent is calculated, the computer does the 60,000-game rollouts for the 
game decisions playing against a version with error rather than itself. This results in the computer 
playing relatively more conservative if the opponent’s error is high.  

Using Neural Networks 
While looking for other computer approaches to implement, we considered looking into techniques that 
are used in programs playing Backgammon, since we thought Backgammon and The Can’t Stop Game 
were alike in terms of incorporating both luck and strategy. One technique we found interesting was using 
self-teaching neural networks like TDGammon, which is a very successful Backgammon program [2]. 
 
For this we implemented a program to 

1. Play a game between two players using the mathematical model, recording the board information 
and decision after every move. 

2. Record the game result. 

1 using an IntelR Core™  i7-6500U CPU @ 2.50 GHz and 8GB of RAM. 
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3. Encode the board (for deciding on pairs) and the board & roll/stop combination (for deciding on 
rolling/stopping) and feed them into two different networks as training data with output as the 
corresponding game result (win, lose). 

4. Repeat this process 
 
The input encodings were 448-bit representations of the game board (449 in the case of including the roll 
decision). The output was a 1-bit value representing win or loss. 
 
Although we found this method promising, it required considerably more time than we had left to show 
desirable results (the training period). Therefore, we eventually decided to go back to the rollout approach 
and try to speed up/optimize our program. 

Result 
We found that the rollout approach resulted in a computer program that plays the game very well and wins most 
of the time.  
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