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1 Numerics

We have shown that there do not exist m n-sided die with all sums equally likely. The main
question now is: how close can we get to having equal sums?

First we need a concrete measurement of being close to “equally likely”. Perhaps the
most natural metric is the variance of our sums. Let k = mn −m + 1. If the probabilities
of the sums occuring are x1, . . . , xk, the sums are close to equally likely when the variance(

x1 − 1
k

)2
+ · · ·+

(
xk − 1

k

)2
k

is close to 0.
Another natural metric is the sum of squares of differences. That is, the smaller∑

1≤i<j≤k

(xi − xj)2

is, the more equally likely the sums are. Since x1 + · · ·+ xk = 1, we have

(
x1 − 1

k

)2
+ · · ·+

(
xk − 1

k

)2
k

=
x21 − 2x1

k
+ 1

k2
+ · · ·+ x2k −

2xk
k

+ 1
k2

k

=
x21 + · · ·+ x2k − 2

k
(x1 + · · ·+ xk) + k

k2

k

=
x21 + · · ·+ x2k − 2

k
(1) + 1

k

k

=
x21 + · · ·+ x2k

k
− 1

k2

and

∑
1≤i<j≤k

(xi − xj)2 =
∑

1≤i<j≤k

(x2i − 2xixj + x2j)

= (k − 1)(x21 + · · ·+ x2k)− 2
∑

1≤i 6<j≤k

xixj

= (k − 1)(x21 + · · ·+ x2k)−
[
(x1 + · · ·+ xk)

2 − (x21 + · · ·+ x2k)
]

= k(x21 + · · ·+ x2k)− 1.

Therefore, minimizing the variance or sum of squares of differences is equivalent to min-
imizing the sum of squares x21 + · · ·+ x2k metric. Therefore, we focus on minimizing the sum
of squares.
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Using mathematica, we have computed the dice which minimize the sum of squares of
sums for small pairs of m and n ((m,n) = (2, 2), (2, 3), (2, 4), (3, 2), (4, 2)). We have also
approximately computed the dice for bigger pairs of m and n using java programming, and
then extrapolated the fractions from the decimals. Our data strongly supports the following
conjecture.

Conjecture 1.1. The set of m n-sided dice with the minimum variance (or sum of squares)
is

P (1) P (2) · · · P (n− 1) P (n)
dice 1 m

m·(2n−2)−n+2
2m−1

m·(2n−2)−n+2
· · · 2m−1

m·(2n−2)−n+2
m

m·(2n−2)−n+2

dice 2 1
2

0 · · · 0 1
2

dice 3 1
2

0 · · · 0 1
2

... · · ·
dice m− 1 1

2
0 · · · 0 1

2

dice m 1
2

0 · · · 0 1
2

The minimum sum of squares for a set of m n-sided dice is (2m−1)!
22m−2((m−1)!)2(2m+(n−2)(2m−1))

(achieved by the above dice).

For these dice, the probability of rolling a sum of m is m
2m−1(2m+(n−2)(2m−1)) . The proba-

bility of rolling a sum of m+ 1, . . . , n+m− 3, or n+m− 2 is each (2m−1)
2m−1(2m+(n−2)(2m−1)) . In

general, the probability of rolling a sum of in+m− i is
(m

i )m
2m−1(2m+(n−2)(2m−1) and the proba-

bility of rolling a sum of in+m− i+ 1, . . . , (i+ 1)n+m− i− 2 is each
(m−1

i )(2m−1)
2m−1(2m+(n−2)(2m−1)) .

Therefore, the sum of squares for these dice is

m2 +
(
m
1

)
m

2
+ · · ·+

(
m
m

)
m

2
+ (n− 2)(2m− 1)2 + (n− 2)

(
m−1
1

)2
(2m− 1)2 + · · ·+ (n− 2)

(
m−1
m−1

)2
(2m− 1)2

22m−2(2m+ (n− 2)(2m− 1))2

=
m2
((

m
0

)2
+ · · ·+

(
m
m

)2)
+ (n− 2)(2m− 1)2

((
m−1
0

)2
+ · · ·+

(
m−1
m−1

)2)
22m−2(2m+ (n− 2)(2m− 1))2

=
m2
(
2m
m

)
+ (n− 2)(2m− 1)2 2m−2

m−1

22m−2(2m+ (n− 2)(2m− 1))2

=
m2 (2m)!

(m!)2 + (n− 2)(2m− 1)2 (2m−2)!
((m−1)!)2

22m−2(2m+ (n− 2)(2m− 1))2

=
(2m+ (n− 2)(2m− 1)) (2m−1)!

((m−1)!)2

22m−2(2m+ (n− 2)(2m− 1))2

=
(2m− 1)!

22m−2((m− 1)!)2(2m+ (n− 2)(2m− 1))

Let µ = 1
mn−m+1

be the mean. The coefficient of variance is

√
x2
1+···+x2

k

k − 1
k2

µ
=

√
µ · (2m−1)!

22m−2((m−1)!)2(2m+(n−2)(2m−1)) − µ2

µ
=

√
(2m− 1)!(mn−m+ 1)

22m−2((m− 1)!)2(2m+ (n− 2)(2m− 1))
− 1.
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For fixed m, we can see that the coefficient of variance is decreasing in terms of n and
that when n goes to ∞, the coefficient of variance approaches√

−1 +
m

22m−2

(
2m− 2

m− 1

)
.

Note that this is positive for any m > 2 and is 0 when m = 2. We can also see that for
fixed n, the coefficient of variance is increasing in m and approaches∞ as m→∞ (although
rather slowly). Therefore, for bigger m or n, the sums become less equally likely. Also, we
can only get equally likely sums when m = 1 or when m = 2 and n→∞. Our computations
for the coefficient of variance for a few pairs of m and n support our observations:

Coefficient of Variance Data
m number

of dice
n sides 2 3 4 5 6

2 0.3536 0.5000 0.6060 0.6903 0.7610
3 0.2673 0.4395 0.5590 0.6517 0.7281
4 0.2236 0.4146 0.5409 0.6374 0.7161
5 0.1961 0.4009 0.5313 0.6299 0.7099
6 0.1768 0.3922 0.5254 0.6253 0.7061
7 0.1622 0.3863 0.5213 0.6222 0.7035
8 0.1508 0.3819 0.5184 0.6199 0.7017
9 0.1414 0.3785 0.5162 0.6182 0.7003
10 0.1336 0.3759 0.5144 0.6169 0.6992
100 0.0410 0.3557 0.5013 0.6070 0.6912
1000 0.0129 0.3538 0.5001 0.6061 0.6904
Limit 0 0.3536 0.5000 0.6060 0.6903

Another way to measure how equally likely the sums are is to minimize the range of our
sums. That is, the smaller max1≤i<j≤k |xi−xj| is, the closer the sums are to uniformly likely.
Again, we were able to find the dice which minimize the range for small pairs of m and n
with mathematica, and we were able to use java programming to approximately verify this
for bigger values of m and n. Our data strongly supports the following conjecture.

Conjecture 1.2. The set of m n-sided dice with the minimum range is

P (1) P (2) · · · P (n− 1) P (n)

dice 1
bm+1

2
c

2bm+1
2
c+m(n−2)

m
2bm+1

2
c+m(n−2) · · · m

2bm+1
2
c+m(n−2)

bm+1
2
c

2bm+1
2
c+m(n−2)

dice 2 1
2

0 · · · 0 1
2

dice 3 1
2

0 · · · 0 1
2

... · · ·
dice m− 1 1

2
0 · · · 0 1

2

dice m 1
2

0 · · · 0 1
2
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The minimum range for a set of m n-sided dice is(
m−1
bm−1

2
c

)
m− bm+1

2
c

2m−1
(
2bm+1

2
c+m(n− 2)

) .
We can see that the probability of rolling a sum of m + in − i is

(m
i )b

m+1
2
c

2m−1(2bm+1
2
c+m(n−2))

and the probability of rolling a sum of m + in − i + 1, . . . ,m + (i + 1)n − i − 2 is each
(m−1

i )m
2m−1(2bm+1

2
c+m(n−2))

. It is not hard to see that the range of these sums is(
m−1
bm−1

2
c

)
m− bm+1

2
c

2m−1
(
2bm+1

2
c+m(n− 2)

) .
For visual comparison of the distribution of sums for our dice for minimum variance and

minimum range, see the graphs below.
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2 Proof of two sides case of conjecture

First we prove the n = 2 special case of Conjecture 1.1.

Theorem 2.1. The following m two-sided dice (the n = 2 case of Conjecture 1.1)

P (1) P (2)
dice 1 1

2
1
2

dice 2 1
2

1
2

...
...

...
dice m 1

2
1
2

minimizes the sum of squares (or variance).

Proof. Let our m dice be p1(x) = a1 + (1− a1)x, . . . , pm(x) = am + (1− am)x. It suffices to
show that a1 = · · · = am = 1

2
is the global minimum for the sum of squares S. Note that

the sum of squares S can be represented by

S =
1

2πi

∫
|x|=1

(a1 + (1− a1)x) · · · (an + (1− am)x)(a1 + 1−a1
x

) · · · (an + 1−am
x

)

x
dx.

We will first show that a1 = · · · = am = 1
2

is the only critical point of S. Note that

∂S

∂a1
=

1

2πi

∫
|x|=1

[
4a1 − 2 + (1− 2a1)

(
1
x

+ x
)]∏n

j=2

[
(aj + (1− aj)x)(aj +

1−aj
x

)
]

x
dx

=
2a1 − 1

2πi

∫
|x|=1

(2− 1
x
− x)

∏n
j=2

[
(aj + (1− aj)x)(aj +

1−aj
x

)
]

x
dx

This partial vanishes when a1 = 1
2
. Similarly ∂S

∂aj
vanishes when aj = 1

2
. Therefore,

a1 = · · · = am = 1
2

is a critical point.
Now we show that there are no other critical points. We show that ∂S

∂a1
6= 0 when a1 6= 1

2
.

Note that

1

2πi

∫
|x|=1

∏n
j=2

[
(aj + (1− aj)x)(aj +

1−aj
x

)
]

x
dx =

1

2πi

∫
|x|=1

∏n
j=2 [(aj + (1− aj)x)(aj + (1− aj)x)]

x
dx

=
1

2πi

∫
|x|=1

∏n
j=2 |(aj + (1− aj)x)|2

x
dx

=
1

2π

∫ 2π

0

∏n
j=2

∣∣(aj + (1− aj)eiθ)
∣∣2

eiθ
ieiθdθ

=
1

2π

∫ 2π

0

n∏
j=2

∣∣(aj + (1− aj)eiθ)
∣∣2 dθ,
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and that

1

2πi

∫
|x|=1

∏n
j=2

[
(aj + (1− aj)x)(aj +

1−aj
x

)
]

x2
dx,

1

2πi

∫
|x|=1

n∏
j=2

[
(aj + (1− aj)x)(aj +

1− aj
x

)

]
dx

are the linear and constant coefficients of
∏n

j=2

[
(aj + (1− aj)x)(aj +

1−aj
x

)
]
. Therefore

both are real. Thus we have

1

2πi

∫
|x|=1

∏n
j=2

[
(aj + (1− aj)x)(aj +

1−aj
x

)
]

x2
dx = Re

 1

2πi

∫
|x|=1

∏n
j=2

[
(aj + (1− aj)x)(aj +

1−aj
x

)
]

x2
dx


= Re

 1

2π

∫ 2π

0

∣∣∣∏n
j=2(aj + (1− aj)eiθ)

∣∣∣2
eiθ

dθ


=

1

2π

∫ 2π

0

∣∣∣∣∣
n∏
j=2

(aj + (1− aj)eiθ)

∣∣∣∣∣
2

cos θdθ

and

1

2πi

∫
|x|=1

n∏
j=2

[
(aj + (1− aj)x)(aj +

1− aj
x

)

]
dx = Re

(
1

2πi

∫
|x|=1

n∏
j=2

[
(aj + (1− aj)x)(aj +

1− aj
x

)

]
dx

)

= Re

 1

2π

∫ 2π

0

∣∣∣∣∣
n∏
j=2

(aj + (1− aj)eiθ)

∣∣∣∣∣
2

eiθdθ


=

1

2π

∫ 2π

0

∣∣∣∣∣
n∏
j=2

(aj + (1− aj)eiθ)

∣∣∣∣∣
2

cos θdθ.

Thus,

∂S

∂a1
= (2a1 − 1)

1

2πi

∫
|x|=1

(2− 1
x
− x)

∏n
j=2

[
(aj + (1− aj)x)(aj +

1−aj
x

)
]

x
dx

= 2(2a1 − 1)
1

2π

∫ 2π

0

∣∣∣∣∣
n∏
j=2

(aj + (1− aj)eiθ)

∣∣∣∣∣
2

(1− cos θ)dθ

Note that the integrand is positive when θ = π
2
. Since the integrand is continuous and

nonnegative, the integral is strictly positive. Therefore, ∂S
∂a1
6= 0 unless a1 = 1

2
. Thus ai = 1

2

for all i is the only critical point.
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Now we are ready to prove our theorem by induction. The base case of m = 1 is trivial.
Suppose our theorem is true for some m − 1 ≥ 1. For m dice, since ai = 1

2
for all i is the

only critical point, we know that the global minimum occurs when ai = 0 or ai = 1 for some
i (the boundary) or when ai = 1

2
for all i. By our inductive hypothesis, our first case is

minimized when ai = 0, aj = 1
2

for all j 6= i. As we computed earlier, the sum of squares for
our first case is

(2m− 3)!

22m−4((m− 2)!)2((2m− 2)

and the sum of squares for our second case is

(2m− 1)!

22m−2((m− 1)!)2(2m)
.

Since

(2m−1)!
22m−2((m−1)!)2(2m)

(2m−3)!
22m−4((m−2)!)2((2m−2)

=
(2m− 1)(2m− 2)

22(m− 1)2
(

2m
2m−2

) =
2m− 1

2m
< 1

we see that the global minimum for the m dice two sides case is aj = 1
2

for all j. Our
induction is complete.

3 Local Minimum Proof for two dice

Next we partially prove a different special case of Conjecture 1.1. Specifically, we prove that
the m = 2 case given in Conjecture 1.1 is a local minimizer for the sum of squares.

Theorem 3.1. The following two n-sided dice (which is the m = 2 case of Conjecture 1.1)

P (1) P (2) · · · P (n− 1) P (n)
dice 1 2

3n−2
3

3n−2 · · · 3
3n−2

2
3n−2

dice 2 1
2

0 · · · 0 1
2

are a local minima for the sum of squares (and variance).

Proof. Our two dice are p1 + p2x+ · · ·+ pnx
n−1 and q1 + q2x+ · · ·+ qnx

n−1 and we will show
that p1 = pn = 2

3n−2 , p2 = · · · = pn−1 = 3
3n−2 , q1 = qn = 1

2
, q2 = · · · = qn−1 = 0 are local

minimizers of

S = (p1q1)
2 + (p1q2 + p2q1)

2 + · · ·+ (pnqn)2

subject to the constraints

p1 + · · ·+ pn = 1

q1 + · · ·+ qn = 1

p1, p2, . . . , pn ≥ 0
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q1, q2, . . . , qn ≥ 0.

First note that

S =
1

2πi

∫
|x|=1

P (x)Q(x)P ( 1
x
)Q( 1

x
)

x
dx

and we have the Lagrangian

L = S+λ(p1+· · ·+pn−1)+µ(q1+· · ·+qn−1)+λ1(−p1)+· · ·+λn(−pn)+µ1(−q1)+· · ·+µn(−qn)

where λ and µ are Lagrange multipliers and λ1, . . . , λn, µ1 ≥ 0, . . . , µn ≥ 0 are Karush-
Kuhn-Tucker multipliers. We will first show that p1 = pn = 2

3n−2 , p2 = · · · = pn−1 =
3

3n−2 , q1 = qn = 1
2
, q2 = · · · = qn−1 = 0, λ = − 3

3n−2 , µ = −
(

2
3n−2

)2
[3 +

(
3
2

)2
(n − 2)],

λ1 = · · · = λn = 0, µ1 = µn = 0, µ2 = · · · = µn−1 = 3
(3n−2)2 is a solution of the Karush Kuhn

Tucker equations

∂S

∂p`
+ λ− λ` = 0

∂S

∂q`
+ µ− µ` = 0

λ1(−p1) + · · ·+ λn(−pn) + µ1(−q1) + · · ·+ µn(−qn) = 0

p1 + p2 + · · ·+ pn − 1 = 0

q1 + q2 + · · ·+ qn − 1 = 0

−p1 ≤ 0, . . . ,−pn ≤ 0

−q1 ≤ 0, . . . ,−qn ≤ 0.

First observe that

∂S

∂p`
=

1

2πi

∫
|x|=1

[
P

(
1

x

)
Q(x)Q

(
1

x

)
x`−2 + P (x)Q(x)Q

(
1

x

)
1

x`

]
dx

=
1

4

(
6

3n− 2

)
+

1

4

(
6

3n− 2

)
=

3

3n− 2
= λ` − λ

and that
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∂S

∂q1
=

1

2πi

∫
|x|=1

[
P (x)P

(
1

x

)
Q

(
1

x

)
1

x
+ P (x)P

(
1

x

)
Q(x)

1

x

]
dx

=

(
2

3n− 2

)2
[

12 +

(
3

2

)2

(n− 2) + 12

]
+

(
2

3n− 2

)2(
1 + 1

2

)

=

(
2

3n− 2

)2
[

3 +

(
3

2

)2

(n− 2)

]
= −µ,

∂S

∂q1
=

1

2πi

∫
|x|=1

[
P (x)P

(
1

x

)
Q

(
1

x

)
xn−2 + P (x)P

(
1

x

)
Q(x)

1

xn

]
dx

=

(
2

3n− 2

)2
[

12 +

(
3

2

)2

(n− 2) + 12

]
+

(
2

3n− 2

)2(
1 + 1

2

)

=

(
2

3n− 2

)2
[

3 +

(
3

2

)2

(n− 2)

]
= −µ,

and

∂S

∂q`
=

1

2πi

∫
|x|=1

[
P (x)P

(
1

x

)
Q

(
1

x

)
x`−1 + P (x)P

(
1

x

)
Q(x)

1

x`

]
dx

=

(
2

3n− 2

)2
[

3

2
+

(
3

2

)2

(n− 3) +
3

2

]
+

(
2

3n− 2

)2(
3

2
+

3

2

)

=

(
2

3n− 2

)2
[

6 +

(
3

2

)2

(n− 3)

]

=

(
2

3n− 2

)2
[

3 +

(
3

2

)2

(n− 2) +
3

4

]
= −µ+ µ`.

Thus we have shown that our conjectured dice satisfy the Karush-Kuhn-Tucker condtions,
which means that it is a critical point. Now we use the Hessian to show that it is indeed a
strict local minimizer.

Since the constraint equations and constraint inequalities are all linear, we have Hess(L) =
Hess(S). We consider y = (y1 · · · y2n)T such that

grad(p1 + p2 + · · ·+ pn − 1)y = 0,
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grad(q1 + q2 + · · ·+ qn − 1)y = 0

and

grad(−qj)y = 0

for j = 2, . . . , n − 1 because µ2, . . . , µn−1 > 0. These equations imply yn+2 = · · · =
y2n−1 = 0, y1 + · · ·+ yn = 0, and yn+1 + y2n = 0.

yT (Hess(L))y

= yT (Hess(S))y

=
n∑

k,`=1

∂2S

∂pk∂p`
yky` +

n∑
k,`=1

∂2S

∂pk∂q`
ykyn+` +

n∑
k,`=1

∂2S

∂qk∂q`
yn+kyn+`

=
n∑

k,`=1

∂2S

∂pk∂p`
yky` +

n∑
k=1

∂2S

∂pk∂q1
ykyn+1 +

n∑
k=1

∂2S

∂pk∂qn
yky2n +

∂2S

∂q21
y2n+1 + 2

∂2S

∂q1∂qn
yn+1y2n +

∂2S

∂q2n
y2n

where the last equality follows from the fact yn+2 = · · · = y2n−1 = 0. We have

∂2S

∂pk∂p`
=

1

2πi

∫
|x|=1

[
Q(x)Q

(
1

x

)
xk−`−1 +Q(x)Q

(
1

x

)
x`−1−k

]
dx

=
1

2πi

∫
|x|=1

1

4

(
2 + xn−1 +

1

xn−1

)(
xk−`−1 + x`−1−k

)
dx

=


1 if k = `
1
2

if k = n, ` = 1
1
2

if k = 1, ` = n

0 otherwise

The matrix
(

∂2S
∂pk∂p`

)
is positive definite by checking principle minors.

We can also check that

∂2S

∂pk∂q1
=

∂2S

∂pk∂qn

at p1 = 2
3n−2 , p2 = · · · = pn−1 = 3

3n−2 , pn = 2
3n−2 , q1 = 1

2
, q2 = · · · = qn−1 = 0, qn = 1

2
.

Hence,

yTHess(L)y =
n∑

k,`=1

∂2S

∂pk∂p`
yky` +

∂2S

∂q21
y2n+1 + 2

∂2S

∂q1∂qn
yn+1y2n +

∂2S

∂q2n
y22n.

We also have
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∂2S

∂q21
=

1

2πi

∫
|x|=1

[
P (x)P

(
1

x

)
+ P (x)P

(
1

x

)]
1

x
dx = 2

(
2

3n− 2

)2
[

12 +

(
3

2

)2

(n− 2) + 12

]
,

∂2S

∂q2n
=

1

2πi

∫
|x|=1

[
P (x)P

(
1

x

)
xn−2

xn−1
+ P (x)P

(
1

x

)
xn−1

xn

]
dx = 2

(
2

3n− 2

)2
[

12 +

(
3

2

)2

(n− 2) + 12

]
,

∂2S

∂q1∂qn
=

1

2πi

∫
|x|=1

(
P (x)P

(
1

x

)
1

xn
+ P (x)P

(
1

x

)
xn−2

)
dx =

(
2

3n− 2

)2

[1 + 1] .

Finally,

yTHess(L)y = [y1 · · · yn]

(
∂2S

∂qk∂q`

)y1...
yn

+

(
2
∂2S

∂q21
− 2

∂2S

∂q1∂qn

)
y2n+1

= [y1 · · · yn]

(
∂2S

∂qk∂q`

)y1...
yn

+ 2

(
2

3n− 2

)2
[(

3

2

)2

(n− 2) + 1

]
y2n+1.

Recall that
(

∂2S
∂qk∂q`

)
is positive definite. Thus, if yn+1 6= 0, we have yTHess(L)y ≥

2
(

2
3n−2

)2 [(3
2

)2
(n− 2) + 1

]
y2n+1 > 0. If yn+1 = 0, then since yn+1 + y2n = 0 and

(y1 · · · yn, yn+1, 0 · · · 0, y2n)T 6= ~0, we have y2n = 0 and thus (y1 · · · yn)T 6= 0. Therefore, we

have yTHess(L)y = yT
(

∂2S
∂qk∂q`

)
y > 0. Thus we have proved that our conjectured dice are

indeed a strict local minimizer.
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