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1 Numerics

We have shown that there do not exist m n-sided die with all sums equally likely. The main
question now is: how close can we get to having equal sums?

First we need a concrete measurement of being close to “equally likely”. Perhaps the
most natural metric is the variance of our sums. Let &k = mn — m + 1. If the probabilities
of the sums occuring are z1, ..., x;, the sums are close to equally likely when the variance
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is close to 0.
Another natural metric is the sum of squares of differences. That is, the smaller
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is, the more equally likely the sums are. Since x1 + - -+ + x, = 1, we have
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Therefore, minimizing the variance or sum of squares of differences is equivalent to min-

imizing the sum of squares x? + - - - + x2 metric. Therefore, we focus on minimizing the sum

of squares.



Using mathematica, we have computed the dice which minimize the sum of squares of
sums for small pairs of m and n ((m,n) = (2,2),(2,3),(2,4),(3,2),(4,2)). We have also
approximately computed the dice for bigger pairs of m and n using java programming, and
then extrapolated the fractions from the decimals. Our data strongly supports the following
conjecture.

Conjecture 1.1. The set of m n-sided dice with the minimum variance (or sum of squares)
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Therefore, the sum of squares for these dice is

general, the probability of rolling a sum of in +m — ¢ is
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Let 4 = ——— be the mean. The coefficient of variance is
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For fixed m, we can see that the coefficient of variance is decreasing in terms of n and
that when n goes to oo, the coefficient of variance approaches
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Note that this is positive for any m > 2 and is 0 when m = 2. We can also see that for
fixed n, the coefficient of variance is increasing in m and approaches co as m — oo (although
rather slowly). Therefore, for bigger m or n, the sums become less equally likely. Also, we
can only get equally likely sums when m = 1 or when m = 2 and n — oco. Our computations

for the coefficient of variance for a few pairs of m and n support our observations:

Coefficient of Variance Data

m number
of dice

n sides 3 4 5 6
2 0.3536 0.5000 0.6060 0.6903 0.7610
3 0.2673 0.4395 0.5590 0.6517 0.7281
4 0.2236 0.4146 0.5409 0.6374 0.7161
5 0.1961 0.4009 0.5313 0.6299 0.7099
6 0.1768 0.3922 0.5254 0.6253 0.7061
7 0.1622 0.3863 0.5213 0.6222 0.7035
8 0.1508 0.3819 0.5184 0.6199 0.7017
9 0.1414 0.3785 0.5162 0.6182 0.7003
10 0.1336 0.3759 0.5144 0.6169 0.6992
100 0.0410 0.3557 0.5013 0.6070 0.6912
1000 0.0129 0.3538 0.5001 0.6061 0.6904
Limit 0 0.3536 0.5000 0.6060 0.6903

Another way to measure how equally likely the sums are is to minimize the range of our

sums. That is, the smaller max;<;<;< |2; — ;| is, the closer the sums are to uniformly likely.
Again, we were able to find the dice which minimize the range for small pairs of m and n
with mathematica, and we were able to use java programming to approximately verify this

for bigger values of m and n. Our data strongly supports the following conjecture.

Conjecture 1.2. The set of m n-sided dice with the minimum range is
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The minitmum range for a set of m n-sided dice is
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T P () It is not hard to see that the range of these sums is
m—1 m+1
(ot )m = [#57)
2m=1 (2|2 | + m(n —2))
For visual comparison of the distribution of sums for our dice for minimum variance and

minimum range, see the graphs below.
| | | | | | |

0.15 8

L |

234567 8 9101112
08 Min Variance Il Unloaded l0 Min Max Diff

2d6
0.2 r 2l o o
0.15 | A
0.1 y
" Ll s
\HHH\ T T T T T T \HHH\
4 5 6 7 8 9 10 11 12
4d3 UoMin Variance I Unloaded lI Min Max Diff




4d4

5-1072

1072 | !

0.15 | | 2

AR

456 78 910111213141516

0B Min Variance Il Unloaded l0 Min Max Diff

0.2 | 1

0.15 | )

0.1} 2

5 6 7 8 9 10 11 12 13 14 15

0B Min Variance Il Unloaded l0Min Max Diff

0.15 ]

56 78 91011121314151617181920

0B Min Variance Il Unloaded l0Min Max Diff




2 Proof of two sides case of conjecture

First we prove the n = 2 special case of Conjecture 1.1.

Theorem 2.1. The following m two-sided dice (the n =2 case of Conjecture 1.1)

P(1) P(2)
dice 1 % %
dice 2 % %
dice m % %

minimizes the sum of squares (or variance).

Proof. Let our m dice be py(z) = a1 + (1 — a1)z, ..., pm(z) = am + (1 — ap)z. It suffices to
show that a1 = --- = a,, = % is the global minimum for the sum of squares S. Note that
the sum of squares S can be represented by
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We will first show that a; =--- = a,, = % is the only critical point of S. Note that
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and that
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Note that the integrand is positive when 6 = 7. Since the integrand is continuous and

nonnegative, the integral is strictly positive. Therefore, 8751 # 0 unless a; = % Thus a; = %
for all ¢ is the only critical point.



Now we are ready to prove our theorem by induction. The base case of m = 1 is trivial.
Suppose our theorem is true for some m — 1 > 1. For m dice, since a; = % for all 7 is the
only critical point, we know that the global minimum occurs when a; = 0 or a; = 1 for some
i (the boundary) or when a; = % for all 7. By our inductive hypothesis, our first case is
minimized when a; = 0, a; = % for all j # i. As we computed earlier, the sum of squares for
our first case is
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and the sum of squares for our second case is
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we see that the global minimum for the m dice two sides case is a; = % for all 5. Our
induction is complete. O

3 Local Minimum Proof for two dice

Next we partially prove a different special case of Conjecture 1.1. Specifically, we prove that
the m = 2 case given in Conjecture 1.1 is a local minimizer for the sum of squares.

Theorem 3.1. The following two n-sided dice (which is the m = 2 case of Conjecture 1.1)

P(1) P(2) e P(n—1) P(n)
dice 1 s _ .. = Z
dice 2 % 0 e 0 %

are a local minima for the sum of squares (and variance).

Proof. Our two dice are p; +paz+- -+ pp,x™ t and ¢ + gz + - - - + @™ ! and we will show
that p1 = p, = 3n—2_2,p2 = =ppo1 = %,ql =qn = %,QQ = -+ = @1 = 0 are local
minimizers of
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q1,92,---,qn = 0.
First note that
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and we have the Lagrangian

L= S+Apit- - Apn—D+p(ait 4= +M(=p)+ - A (=pn) Ha(=q)+ - +pin(—an)

where A\ and p are Lagrange multipliers and Ay, ..., Ay, 1 > 0,..., u, > 0 are Karush-

Kuhn-Tucker multipliers. We will first show that p; = p, = ﬁ,pg = = Dp1 =
2 2

Bl = = g2 = = G = 0.A = —5hs = = (525) B+ (5) (0 -2),
M==X=0, 01 =pp =00 ="+ = i1 = (3n§2)2 is a solution of the Karush Kuhn
Tucker equations
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—p1<0,...,—pp, <0
-1 <0,...,—¢q, <0.

First observe that
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Thus we have shown that our conjectured dice satisfy the Karush-Kuhn-Tucker condtions,
which means that it is a critical point. Now we use the Hessian to show that it is indeed a
strict local minimizer.

Since the constraint equations and constraint inequalities are all linear, we have Hess(L) =
Hess(S). We consider y = (y; - - - y2,)7 such that

grad(py +p2+ -+ +p, — L)y =0,
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grad(g1 + @+ + ¢, — 1y =0

and

grad(—g¢;)y =0

for j = 2,...,n — 1 because pg,...,tn—1 > 0. These equations imply y,1o = --- =
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where the last equality follows from the fact y,.0 = -+ = 99,1 = 0. We have
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The matrix < a;?;égm) is positive definite by checking principle minors.
We can also check that
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Finally,
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Recall that ( 8?:5@) is positive definite. Thus, if y,,1 # 0, we have y’Hess(L)y >

2 2 .
2 (3n2_2) [(%) (n—2)+ 1} y2.4 > 0. If y, 1 = 0, then since y,11 + Y2, = 0 and

(Y1 Y Yns1, 0+ - 0,92,)7 # 0, we have o, = 0 and thus (y; - --y,)7 # 0. Therefore, we

have yTHess(L)y = y” < a?:g%) y > 0. Thus we have proved that our conjectured dice are

indeed a strict local minimizer. O
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