The Forehead Game

Exposition by William Gasarch

July 25, 2022

Alice is A, Bob is B, Carol is C.

1. A, B, and C have a string of length n on their foreheads.

- 1. A, B, and C have a string of length n on their foreheads.
- 2. Foreheads: A's has a; B's has b; C's has c.

- 1. A, B, and C have a string of length n on their foreheads.
- 2. Foreheads: A's has a; B's has b; C's has c.
- 3. A knows b, c; B knows a, c; C knows a, b.

- 1. A, B, and C have a string of length n on their foreheads.
- 2. Foreheads: A's has a; B's has b; C's has c.
- 3. A knows b, c; B knows a, c; C knows a, b.
- **4**. They want to know if $a + b + c = 2^{n+1} 1$.

- 1. A, B, and C have a string of length n on their foreheads.
- 2. Foreheads: A's has a; B's has b; C's has c.
- 3. A knows b, c; B knows a, c; C knows a, b.
- **4**. They want to know if $a + b + c = 2^{n+1} 1$.
- 5. **Solution** A says b, B then computes a + b + c and then says YES if $a + b + c = 2^{n+1} 1$, NO if not.

- 1. A, B, and C have a string of length n on their foreheads.
- 2. Foreheads: A's has a; B's has b; C's has c.
- 3. A knows b, c; B knows a, c; C knows a, b.
- **4**. They want to know if $a + b + c = 2^{n+1} 1$.
- 5. **Solution** A says b, B then computes a + b + c and then says YES if $a + b + c = 2^{n+1} 1$, NO if not.
- **6.** Solution uses n+1 bits of comm. Can do better?

1. Any protocol requires n + 1 bits, hence the one given that takes n + 1 is the best you can do.

- 1. Any protocol requires n + 1 bits, hence the one given that takes n + 1 is the best you can do.
- 2. There is a protocol that takes αn bits for some $\alpha < 1$ but any protocol requires $\Omega(n)$ bits.

- 1. Any protocol requires n + 1 bits, hence the one given that takes n + 1 is the best you can do.
- 2. There is a protocol that takes αn bits for some $\alpha < 1$ but any protocol requires $\Omega(n)$ bits.
- 3. There is a protocol that takes $\ll n$ bits.

- 1. Any protocol requires n + 1 bits, hence the one given that takes n + 1 is the best you can do.
- 2. There is a protocol that takes αn bits for some $\alpha < 1$ but any protocol requires $\Omega(n)$ bits.
- 3. There is a protocol that takes $\ll n$ bits.

STUDENTS WORK IN GROUPS TO BEAT n+1 OR SHOW YOU CAN"T

1. A: $a_0 \cdots a_{n-1}$,

 $B:b_0\cdots b_{n-1}, C:c_0\cdots c_{n-1}.$

- 1. $A: a_0 \cdots a_{n-1}$, $B: b_0 \cdots b_{n-1}$, $C: c_0 \cdots c_{n-1}$.
- 2. A says: $c_0 \oplus b_{n/2}, \cdots, c_{n/2-1} \oplus b_{n-1}$. n/2 bits.

- 1. $A: a_0 \cdots a_{n-1}$, $B: b_0 \cdots b_{n-1}$, $C: c_0 \cdots c_{n-1}$.
- 2. A says: $c_0 \oplus b_{n/2}, \cdots, c_{n/2-1} \oplus b_{n-1}.$ n/2 bits.
- 3. Bob knows c_i 's so he now knows $b_{n/2}, \ldots, b_{n-1}$.

- 1. A: $a_0 \cdots a_{n-1}$, B: $b_0 \cdots b_{n-1}$, C: $c_0 \cdots c_{n-1}$.
- 2. A says: $c_0 \oplus b_{n/2}, \cdots, c_{n/2-1} \oplus b_{n-1}.$ n/2 bits.
- 3. Bob knows c_i 's so he now knows $b_{n/2}, \ldots, b_{n-1}$. Bob knows a_i 's and c_i 's so he can compute $a_{n/2} \cdots a_{n-1} + b_{n/2} \cdots b_{n-1} + c_{n/2} \cdots c_{n-1} = s + \text{carry } z$

- 1. A: $a_0 \cdots a_{n-1}$, B: $b_0 \cdots b_{n-1}$, C: $c_0 \cdots c_{n-1}$.
- 2. A says: $c_0 \oplus b_{n/2}, \cdots, c_{n/2-1} \oplus b_{n-1}.$ n/2 bits.
- 3. Bob knows c_i 's so he now knows $b_{n/2}, \ldots, b_{n-1}$. Bob knows a_i 's and c_i 's so he can compute $a_{n/2} \cdots a_{n-1} + b_{n/2} \cdots b_{n-1} + c_{n/2} \cdots c_{n-1} = s + \text{carry } z$ $s = 1^{n/2}$: Bob says (MAYBE,z). $s \neq 1^{n/2}$: Bob says NO.

- 1. A: $a_0 \cdots a_{n-1}$, B: $b_0 \cdots b_{n-1}$, C: $c_0 \cdots c_{n-1}$.
- 2. A says: $c_0 \oplus b_{n/2}, \cdots, c_{n/2-1} \oplus b_{n-1}.$ n/2 bits.
- 3. Bob knows c_i 's so he now knows $b_{n/2},\ldots,b_{n-1}$. Bob knows a_i 's and c_i 's so he can compute $a_{n/2}\cdots a_{n-1}+b_{n/2}\cdots b_{n-1}+c_{n/2}\cdots c_{n-1}=s+\text{carry }z$ $s=1^{n/2}$: Bob says (MAYBE,z). $s\neq 1^{n/2}$: Bob says NO.
- **4**. Carol knows b_i 's so she now knows $c_0, \ldots, c_{n/2-1}$.

- 1. A: $a_0 \cdots a_{n-1}$, B: $b_0 \cdots b_{n-1}$, C: $c_0 \cdots c_{n-1}$.
- 2. A says: $c_0 \oplus b_{n/2}, \cdots, c_{n/2-1} \oplus b_{n-1}$. n/2 bits.
- 3. Bob knows c_i 's so he now knows $b_{n/2}, \ldots, b_{n-1}$. Bob knows a_i 's and c_i 's so he can compute $a_{n/2} \cdots a_{n-1} + b_{n/2} \cdots b_{n-1} + c_{n/2} \cdots c_{n-1} = s + \text{carry } z$ $s = 1^{n/2}$: Bob says (MAYBE,z). $s \neq 1^{n/2}$: Bob says NO.
- 4. Carol knows b_i 's so she now knows $c_0, \ldots, c_{n/2-1}$. Carol knows the carry bit z so she can compute $a_0 \cdots a_{n/2} + b_0 \cdots b_{n/2} + c_0 \cdots c_{n/2} + z = t$

- 1. A: $a_0 \cdots a_{n-1}$, B: $b_0 \cdots b_{n-1}$, C: $c_0 \cdots c_{n-1}$.
- 2. A says: $c_0 \oplus b_{n/2}, \cdots, c_{n/2-1} \oplus b_{n-1}.$ n/2 bits.
- 3. Bob knows c_i 's so he now knows $b_{n/2}, \ldots, b_{n-1}$. Bob knows a_i 's and c_i 's so he can compute $a_{n/2} \cdots a_{n-1} + b_{n/2} \cdots b_{n-1} + c_{n/2} \cdots c_{n-1} = s + \text{carry } z$ $s = 1^{n/2}$: Bob says (MAYBE,z). $s \neq 1^{n/2}$: Bob says NO.
- 4. Carol knows b_i 's so she now knows $c_0, \ldots, c_{n/2-1}$. Carol knows the carry bit z so she can compute $a_0 \cdots a_{n/2} + b_0 \cdots b_{n/2} + c_0 \cdots c_{n/2} + z = t$ $t = 1^{n/2}$: Carol says YES. $t \neq 1^{n/2}$: Carol says NO.

Alice is A, Bob is B, Carol is C, Donna is D.

1. A, B, C, D have a string of length n on their foreheads.

- 1. A, B, C, D have a string of length n on their foreheads.
- 2. A's forehead has a, B's forehead has b,

- 1. A, B, C, D have a string of length n on their foreheads.
- 2. A's forehead has a, B's forehead has b,
- 3. They want to know if $a + b + c + d = 2^{n+1} 1$.

- 1. A, B, C, D have a string of length n on their foreheads.
- 2. A's forehead has a, B's forehead has b,
- 3. They want to know if $a + b + c + d = 2^{n+1} 1$.
- **4. Obvious Solution** uses n+1 bits of comm. Can do better?

Alice is A, Bob is B, Carol is C, Donna is D.

- 1. A, B, C, D have a string of length n on their foreheads.
- 2. A's forehead has a, B's forehead has b,
- 3. They want to know if $a + b + c + d = 2^{n+1} 1$.
- **4. Obvious Solution** uses n + 1 bits of comm. Can do better?

STUDENTS WORK IN GROUPS TO EITHER DO BETTER THAN n+1 OR SHOW YOU CAN"T

1. A:
$$a_0 \cdots a_{n-1}$$
, B: $b_0 \cdots b_{n-1}$, C: $c_0 \cdots c_{n-1}$, D: $d_0 \cdots d_{n-1}$.

- 1. A: $a_0 \cdots a_{n-1}$, B: $b_0 \cdots b_{n-1}$, C: $c_0 \cdots c_{n-1}$, D: $d_0 \cdots d_{n-1}$.
- 2. A says: $c_0 \oplus b_{n/3-1} \oplus d_{2n/3-1}, \cdots, c_{n/3-1} \oplus b_{2n/3-1} \oplus d_{n-1}$.

- 1. A: $a_0 \cdots a_{n-1}$, B: $b_0 \cdots b_{n-1}$, C: $c_0 \cdots c_{n-1}$, D: $d_0 \cdots d_{n-1}$.
- 2. A says: $c_0 \oplus b_{n/3-1} \oplus d_{2n/3-1}, \cdots, c_{n/3-1} \oplus b_{2n/3-1} \oplus d_{n-1}$.
- 3. Carol can add first 1/3 of the bits, sees if its $1^{n/3}$, if its not say NO, if it is say MAYBE and the carry bit.

- 1. A: $a_0 \cdots a_{n-1}$, B: $b_0 \cdots b_{n-1}$, C: $c_0 \cdots c_{n-1}$, D: $d_0 \cdots d_{n-1}$.
- 2. A says: $c_0 \oplus b_{n/3-1} \oplus d_{2n/3-1}, \cdots, c_{n/3-1} \oplus b_{2n/3-1} \oplus d_{n-1}$.
- 3. Carol can add first 1/3 of the bits, sees if its $1^{n/3}$, if its not say NO, if it is say MAYBE and the carry bit.
- 4. Bob can add second 1/3 of the bits along with the carry bit, sees if its $1^{n/3}$, if its not say NO, if it is say MAYBE and the carry bit.

- 1. A: $a_0 \cdots a_{n-1}$, B: $b_0 \cdots b_{n-1}$, C: $c_0 \cdots c_{n-1}$, D: $d_0 \cdots d_{n-1}$.
- 2. A says: $c_0 \oplus b_{n/3-1} \oplus d_{2n/3-1}, \cdots, c_{n/3-1} \oplus b_{2n/3-1} \oplus d_{n-1}$.
- 3. Carol can add first 1/3 of the bits, sees if its $1^{n/3}$, if its not say NO, if it is say MAYBE and the carry bit.
- 4. Bob can add second 1/3 of the bits along with the carry bit, sees if its $1^{n/3}$, if its not say NO, if it is say MAYBE and the carry bit.
- 5. Donna can add third 1/3 of the bits along with the carry bit, sees if its $1^{n/3}$, if its not say NO, if it is say YES.

k People

People are A_1, \ldots, A_k .

k People

People are A_1, \ldots, A_k .

1. A_i has a string of length n on their foreheads.

- 1. A_i has a string of length n on their foreheads.
- 2. A_i 's forehead has a_i

- 1. A_i has a string of length n on their foreheads.
- 2. A_i 's forehead has a_i
- 3. They want to know if $a_1 + \cdots + a_k = 2^{n+1} 1$.

- 1. A_i has a string of length n on their foreheads.
- 2. Ai's forehead has ai
- 3. They want to know if $a_1 + \cdots + a_k = 2^{n+1} 1$.
- 4. Can do in $\frac{n}{k-1} + O(1)$ bits, similar to the k = 3, 4 cases.

- 1. A_i has a string of length n on their foreheads.
- 2. A_i 's forehead has a_i
- 3. They want to know if $a_1 + \cdots + a_k = 2^{n+1} 1$.
- 4. Can do in $\frac{n}{k-1} + O(1)$ bits, similar to the k = 3, 4 cases.
- 5. Caveat: The O(1) term is really O(k) which matters if k is a function of n.

Lets go back to 3 people. We know we can do $\frac{n}{2} + O(1)$.

1. $\frac{n}{2} + O(1)$ is roughly optimal.

- 1. $\frac{n}{2} + O(1)$ is roughly optimal.
- 2. There is an $O(\frac{n}{\log n})$ protocol and it is roughly optimal.

- 1. $\frac{n}{2} + O(1)$ is roughly optimal.
- 2. There is an $O(\frac{n}{\log n})$ protocol and it is roughly optimal.
- 3. There is an $O(\frac{n}{\log n})$ protocol, optimal UNKNOWN.

- 1. $\frac{n}{2} + O(1)$ is roughly optimal.
- 2. There is an $O(\frac{n}{\log n})$ protocol and it is roughly optimal.
- 3. There is an $O(\frac{n}{\log n})$ protocol, optimal UNKNOWN.
- 4. There exists an $O(n^{1/2})$ protocol and it is roughly optimal.

- 1. $\frac{n}{2} + O(1)$ is roughly optimal.
- 2. There is an $O(\frac{n}{\log n})$ protocol and it is roughly optimal.
- 3. There is an $O(\frac{n}{\log n})$ protocol, optimal UNKNOWN.
- 4. There exists an $O(n^{1/2})$ protocol and it is roughly optimal.
- 5. There exists an $O(n^{1/2})$ protocol, optimal UNKNOWN.

Lets go back to 3 people. We know we can do $\frac{n}{2} + O(1)$.

- 1. $\frac{n}{2} + O(1)$ is roughly optimal.
- 2. There is an $O(\frac{n}{\log n})$ protocol and it is roughly optimal.
- 3. There is an $O(\frac{n}{\log n})$ protocol, optimal UNKNOWN.
- 4. There exists an $O(n^{1/2})$ protocol and it is roughly optimal.
- 5. There exists an $O(n^{1/2})$ protocol, optimal UNKNOWN.

VOTE!

3 people:

► Chandra-Furst-Lipton (CFL) (1983): $O(n^{1/2})$ protocol. https:

```
//www.cs.umd.edu/~gasarch/TOPICS/ramsey/mpp.pdf,
https://www.cs.umd.edu/~gasarch/TOPICS/ramsey/
expositionofCFG.pdf
```

- ► Chandra-Furst-Lipton (CFL) (1983): $O(n^{1/2})$ protocol. https:
 - //www.cs.umd.edu/~gasarch/TOPICS/ramsey/mpp.pdf,
 https://www.cs.umd.edu/~gasarch/TOPICS/ramsey/
 expositionofCFG.pdf
- ► They needed this lemma to get lower bounds in computer science. Better lower bounds were later proven using easier techniques. However, by then The Forehead Problem had taken on a life of its own.

- ► Chandra-Furst-Lipton (CFL) (1983): $O(n^{1/2})$ protocol. https:
 - //www.cs.umd.edu/~gasarch/TOPICS/ramsey/mpp.pdf,
 https://www.cs.umd.edu/~gasarch/TOPICS/ramsey/
 expositionofCFG.pdf
- ▶ They needed this lemma to get lower bounds in computer science. Better lower bounds were later proven using easier techniques. However, by then **The Forehead Problem** had taken on a life of its own.
- ▶ CFL: constructive and did not have the constants. Linial and Shraibman: explicitly protocol that uses $n^{1/2} + o(n^{1/2})$ bits. See https://arxiv.org/pdf/2102.00421.pdf

- ► Chandra-Furst-Lipton (CFL) (1983): $O(n^{1/2})$ protocol. https:
 - //www.cs.umd.edu/~gasarch/TOPICS/ramsey/mpp.pdf,
 https://www.cs.umd.edu/~gasarch/TOPICS/ramsey/
 expositionofCFG.pdf
- ▶ They needed this lemma to get lower bounds in computer science. Better lower bounds were later proven using easier techniques. However, by then **The Forehead Problem** had taken on a life of its own.
- ▶ CFL: constructive and did not have the constants. Linial and Shraibman: explicitly protocol that uses $n^{1/2} + o(n^{1/2})$ bits. See https://arxiv.org/pdf/2102.00421.pdf
- ▶ CFL showed lower bound $\Omega(1)$.

- ► Chandra-Furst-Lipton (CFL) (1983): $O(n^{1/2})$ protocol. https:
 - //www.cs.umd.edu/~gasarch/TOPICS/ramsey/mpp.pdf,
 https://www.cs.umd.edu/~gasarch/TOPICS/ramsey/
 expositionofCFG.pdf
- ▶ They needed this lemma to get lower bounds in computer science. Better lower bounds were later proven using easier techniques. However, by then **The Forehead Problem** had taken on a life of its own.
- ▶ CFL: constructive and did not have the constants. Linial and Shraibman: explicitly protocol that uses $n^{1/2} + o(n^{1/2})$ bits. See https://arxiv.org/pdf/2102.00421.pdf
- ▶ CFL showed lower bound $\Omega(1)$.
- ▶ Gasarch (2006): Lower Bound $\Omega(\log \log n)$.

► Gasarch 2006: there is an $O(n^{1/(\log_2(k-1)}))$ protocol. (A more careful analysis of CFL protocol.)

- ► Gasarch 2006: there is an $O(n^{1/(\log_2(k-1)}))$ protocol. (A more careful analysis of CFL protocol.)
- ▶ CFL lower bound $\Omega(1)$.

- ► Gasarch 2006: there is an $O(n^{1/(\log_2(k-1)}))$ protocol. (A more careful analysis of CFL protocol.)
- ▶ CFL lower bound $\Omega(1)$.
- ► Nothing else is known.

For 3 people we have:

For 3 people we have:

1. Elementary proof: Protocol $\frac{n}{2} + O(1)$.

For 3 people we have:

- 1. Elementary proof: Protocol $\frac{n}{2} + O(1)$.
- 2. Hard proof: Protocol $O(n^{1/2})$.

For 3 people we have:

- 1. Elementary proof: Protocol $\frac{n}{2} + O(1)$.
- 2. Hard proof: Protocol $O(n^{1/2})$.

Open Find an elementary proof for a protocol, $< \frac{n}{2} + O(1)$.

For 3 people we have:

- 1. Elementary proof: Protocol $\frac{n}{2} + O(1)$.
- 2. Hard proof: Protocol $O(n^{1/2})$.

Open Find an elementary proof for a protocol, $< \frac{n}{2} + O(1)$.

Open Similar questions for 4 people, 5 people, etc.