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1 Abstract
Alice and Betty are going into the final round of Jeopardy. Alice knows

how much money both she and Betty have and her and Betty’s probabilities of
getting the question right. Betty knows how much money both she and Alice
have and her and Alice’s probabilities of getting the question right. How much
should the two players wager? This depend on their goals. Prior work defined
the player’s payoffs as their probability of winning the game. We find strategies
using payoffs of (a) the expected amount of money that the player takes home
that day, and (b) the expected about of money that the player takes home overall
(since if a player wins they play again). We employ a maximin strategy in order
to determine the optimal wager. We give mathematical results to question (a)
and use assumptions based on historical Jeopardy data to determine optimal
wagers for (b).

2 Introduction
Consider a final round of Jeopardy! with players Alice and Betty 1. We

assume that going into this round Alice has the highest monetary total. The
procedure is as follows:
1. The players hear the category of the final question.
2. The players place wagers.
3. The host gives them the clue in the form of an answer and the players attempt
to come up with the correct response in the form of a question.
4. The correct response is revealed.
5. If a player responds correctly, she adds the amount she wagers to her total.
If she responds incorrectly, she loses that amount from her total.
6. The player with the most money takes home her total and is invited back to
play another game the next day. In Jeopardy! the second-place player ends the

1While Jeopardy! always begins with three participants, in some cases one of these players
has a non-positive sum of money and therefore cannot participate in Final Jeopardy! Fur-
thermore, using a two-player model is a useful and common simplification when considering
Final Jeopardy!, as we discuss in the Previous Work section. Rarely does this simplification
impact results.
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game with 2000 dollars. However, for the purposes of this paper we will treat
the losing player’s payoff as 0 dollars, since this payoff is usually tiny compared
to the first place players’ winnings. As the average Jeopardy! winner leaves the
game with about 20,000 dollars, winning overwhelmingly yields more money [1].
7. If there is a tie, the players answer tie-breaking questions (without wagering)
until exactly one of the players responds correctly. This player wins the game
and takes home her money. The other player finishes in second place and leaves
with 2000 dollars. But for the reasons stated above we will treat this player’s
winnings as 0 dollars.

For the purposes of this paper, Alice will always be defined as the player
with the most money. Betty will always trail Alice going into the final round.
Throughout the entire paper we assume that Alice and Betty each know (a)
how much money she and the other has, and (b) her probability of responding
to the final question correctly.

The breakdown of our paper is as follows: in Section 3 we review previous
work. In Sections 4-12, this payoff is strictly defined as the expected amount
of money that the player will bring home on that day. Here we do not consider
that she may win money when she comes back the next day. We will refer to
our exploration of this payoff as our single-day analysis. In Sections 4-7 we
establish notation and a useful diagram. In Section 8 we present Alice’s optimal
strategy, assuming she knows Betty’s probability of responding correctly. In
Section 9 we do the same for Betty. In Sections 10 and 11 we provide cheat
sheets that Alice and Betty can actually use while playing Jeopardy!. In Section
12 we discuss how to apply the cheat sheets if a player does not know the other
player’s probability of responding correctly, using historical Jeopardy! data.

Our maximin strategies and solutions for this single-day scenario may be
generalized to other simultaneous single-action wagering games. However, in
Jeopardy!, the winning player goes on to play in later games. In Section 13 we
consider a scenario in which each player’s payoff includes the expected amount of
money she would win on following days, given that she triumphs in the current
game.

3 Previous Work
Gilbert and Hatcher [2] defined the structure of the two-player payoff matrix

which we utilize in this paper. In their paper, they define the game’s payoff as
the players’ probabilities of winning and identify equilibrium points and mixed
strategies based on this payoff. Ferguson and Melolidakis [3] utilized this same
payoff matrix in their 1997 paper to identify minimax points, which are wagers
that one player can make which minimizes the maximum possible playoff for
the other player regardless of their wager. In a zero-sum game this is equivalent
to maximizing the minimum possible payoff for oneself regardless of the other
player’s wager.

Both these papers define the payoff as a player’s probability of winning the
game. In this paper, payoff will be defined as the expected amount of money the
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player will win. As a result, our payoff matrix is continuous and discontinuous
in the same areas as previous matrices, but the payoffs themselves are different.
Our paper will more closely follow Ferguson and Melolidakis’s minimax strategy
than Gilbert and Hatcher’s equalibrium strategy. However, unlike in Ferguson
and Melolidakis’s paper, our payoffs are not zero-sum, since an increase in one
player’s payoff does not always correlate with a decrease of equal magnitude in
the other player’s payoff. Therefore we utilize a maximin strategy instead of a
minimax strategy.

Our distinct payoff definition leads to significant strategical differences be-
tween our work and both previous papers. For example, when Alice has more
than twice the amount of money that Betty has, she can always wager 0 dol-
lars to ensure herself a win. A strategy focused on win probability will always
recommend this wager, possibly along with other wagers small enough to guar-
antee Alice a win. This recommendation holds in the equilibrium and minimax
strategies when defining payoffs only according to chances of winning the cur-
rent game. However, according to our payoff definition, in which Alice wants to
maximize her expected monetary winnings, there are cases in which she should
wager all her money instead.

The Gilbert and Hatcher paper and the Ferguson and Melolidakis paper have
both excluded a third player from their calculations, and we follow this model.
While Jeopardy! is always played with three players, Ferguson and Melolidakis
note that given their primary analysis of a three-player strategy, adding a third
player with the least money is unlikely to significantly alter the strategy. We
similarly make this simplification. However, some of our maximin proofs can be
extended to a three-player game, as will be noted.

4 Variables

Table 1: Variables

MA Alice’s money coming into the final question
MB Betty’s money coming into the final question
PA Alice’s probability of responding to the final question correctly
PB Betty’s probability of responding to the final question correctly
WA The amount of money Alice wagers
WB The amount of money Betty wagers
PAT

Alice’s probability of winning a tiebreaker
PBT

Betty’s probability of winning a tiebreaker
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5 The Maximin Strategy
In order to find optimal strategies for players, we consider what a player can

wager to maximize her minimum payoff. The wager which accomplishes this
is her maximin wager, and the smallest possible payoff given that wager is her
maximin.

The maximin strategy is a common game theoretical approach for simultane-
ous single-action games, as it provides a worst-case payoff guarantee regardless
of other players’ actions. This strategy simulates a scenario in which players
have no knowledge of others’ wagers and do not have multiple rounds of wagering
to reach an equilibrium point.

In the first part of our single-day analysis, we will examine when a dominant
strategy wager exists for the leading player Alice. A wager that is a dominant
strategy must be a maximin wager, because by definition a dominant strategy is
a strategy that is optimal in every case no matter what the other player wagers.
Therefore the scenario resulting in the dominant wager’s lowest possible payoff
results in at least as low payoffs for all other wagers. If a dominant strategy
exists, then, this is the maximin wager.

When no dominant strategy exists, we find maximins by utilizing our struc-
tural knowledge of the two-player payoff matrix.

6 The Payoff Matrix
The optimal strategies for the players can be determined using a payoff

matrix. The matrix represents all possible combinations of wagers for Alice and
Betty, where the row represents Alice’s wager and the column represents Betty’s
wager. This general payoff matrix has a predictable structure.

This matrix has distinct regions defined by their own payoff equations and
are discontinuous from region to region. These different regions relate to the
four possible outcomes of the players responding to the final question: both
players respond correctly (CC), neither player responds correctly (II), only Alice
responds correctly (CI), or only Betty responds correctly (IC). Whether the
outcome is a win, loss, or a tie for a player in each case depends on how much
each player wagers. Each region of the matrix represents combinations of wagers
that have the same winner for each outcome.

The general shape of the payoff matrix, based off the payoff matrix developed
by Gilbert and Hatcher [2], can be seen in Figure 1 with the winner in each of
the four Final Jeopardy! outcomes (CC, II, IC, and CI, respectively) listed
along with each region. ‘A’ indicates that Alice wins, ‘B’ indicates that Betty
wins, ‘T’ that there is a tie, and ‘L’ that, as they both end with 0 dollars, both
players lose. For example, region 6 is labeled ABBA because Alice ends the
game with the most money in the CC and CI case and Betty does otherwise.
The diagonal regions 1, 3 and 5 are "tying lines," places in which some outcome
results in a tie. Regions 2 and 4 are intersections of tying lines where more than
one outcome results in a tie. These regions each exist only for a single wager
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combination. The shape of the payoff matrix changes depending on the ratio
between MA and MB , but the regions below remain relatively consistent when
MB < MA < 2MB .

Figure 1: General Structure of the Payoff Matrix

The following table identifies the payoff equations for Alice within each re-
gion.
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Table 2: Payoff Equations by Matrix Region

Region Alice’s Payoff

1 PA(MA +WA) + PAT
∗ (1− PA)(1− PB)(MA −WA)

2 PAT
∗ (1− PA)(MA −WA) + PA(MA +WA)

3 PA(MA +WA) + (1− PA)((1− PB)(MA −WA) + PAT
(PB)(MA − x))

4 (1− PB)(PA(MA +WA) + (1− PA)(MA −WA))+

PAT
PB((PA)(MA +WA) + (1− PA)(MA −WA))

5 PAT
PAPB(MA +WA) + (1− PA)(1− PB)(MA −WA) + PA(1− PB)(MA +WA)

6 PA(MA +WA)

7 PA(MA +WA) + (1− PA)(1− PB)(MA −WA)

8 PA(MA +WA) + (1− PA)(MA −WA)

9 (1− PB)(PA)(MA +WA) + (1− PB)(1− PA)(MA −WA)

10 PA(MA +WA)

7 Payoff Matrix Maximin Strategy
The final payoff from the payoff matrix is determined by both Alice and

Betty’s wagers. Alice can only impact her own wager, and has no control over
Betty’s choice. Thus, she can choose which row of probabilities from the ma-
trix to accept, but cannot control which value within that row will represent
her actual payoff. Similarly, Betty can choose the column of the wager combi-
nation, but not the row. The maximin strategy accounts for this uncertainty,
maximizing the lowest possible payoff for a player.

As the expected amount of money a player gains depends not only on the
cases in which the player wins but how much money the players wagers, payoffs
are not constant within each region. However, the payoffs are still defined by
continuous equations in each region. Furthermore the payoff equations for a
player never include the other player’s wager as a variable. Therefore given a
particular wager by Alice, her payoff is impacted only by which region Betty
makes the wager combination fall in, not what specific value Betty wagers. To
illustrate this concept, let us refer to Table 2. If Alice wagers 3 dollars, Betty
could cause the wager combination to fall into region 2 or 7. When Betty wagers
more than 0 dollars, Alice’s payoff will be in region 7. Regardless of Betty’s
specific wager, Alice’s payoff will be 4.4 dollars. Similarly, if Betty wagers 0
dollars, Alice can cause the wager combination to fall into region 8, 2, or 6. If
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Alice wagers more than 3 dollars, the wager combination will fall into region 6
and Betty’s payoff will be 2.8 dollars regardless of Alice’s specific wager.

The number of payoff possibilities for a player that could result given a single
wager is therefore equal to the number of distinct regions which exist in the row
or column that she wagers.

Given a player’s single wager, W , PA, PB , MA, and MB are all constant.
Therefore, the payoff equations that this wager could fall into can be compared
directly. In order to find the lowest possible payoff for a player’s single wager, we
can determine the least favorable payoff equation. As the players win, lose or tie
in different combinations in each region, it is often clear which payoff equation is
inferior. For example, region 6’s winner results are ABBA, while region 7’s are
AABA. Alice wins in a case in region 7 where she loses in region 6. Therefore,
given a certain wager by Alice, if these are the two potential payoff equations,
region 6 would certainly offer her the lower payoff.

Once lowest payoff(s) for each of the players’ potential wagers are found, the
next step is to maximize them. Within the wagers which share the same min
region of 6, for example, the best choice is the wager where the payoff in region
6 is the highest. Region 6’s payoff equation is optimized when Alice wagers MA.
Therefore if the maximin is in region 6, it will be when Alice goes all in.

In this way, the number of potential maximins can be reduced down to at
most a handful. From there, it may be necessary to directly compare payoff
equations to determine the maximin and therefore the maximin wagering strat-
egy.

Overall, this technique for finding the maximin for a player involves finding
the region with the worst payoff equation for each of her wagers, maximizing
the payoffs within those least desirable regions, then comparing those payoffs to
find the one that affords the largest value, which is the maximin. We use this
payoff matrix technique when using dominant strategies is not a possibility.

8 Alice’s Strategy
Before utilizing the payoff matrix maximin strategy, we will examine when

general dominant strategies can be found.

8.1 When PA ≥ 1
2

When Alice’s chance of answering the question correctly is greater than
50%, there is always a dominant strategy for her regardless of how much money
each player has or the other players’ probabilities of winning. We will find her
maximin wager by finding this dominant strategy.

We can upper bound Alice’s payoffs for all wagers with the assumption that
she wins the game in all Final Jeopardy! outcomes. This is expressed by the
equation:

EWA
≤ PA(MA +WA) + (1− PA)(MA −WA)
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= MA +WA(2PA − 1)

When Alice wagersMA dollars, and thereforeWA = MA, she will always lose
if she responds to the question incorrectly and always win when she responds
correctly, so her payoff is

PA(MA + ZA) + (1− PA) ∗ 0

= PA(MA +MA)

We will choose to rewrite this as

MA + 2PAMA −MA

= MA +MA(2PA − 1)

As WA = MA, this equation is exactly equal to the equation

MA +WA(2PA − 1)

We would like to prove that a wager of MA for Alice yields a greater payoff
than any other wager does. We have determined an upper bound for all ZA:
MA +WA(2PA − 1). In order to prove that MA is optimal, we will prove that
the payoff is always larger than this upper bound.

There is a linear relationship between WA and EWA
, expressed by the equa-

tion EWA
= MA +WA(2PA − 1).

When PA ≥ 1
2 , 2PA − 1 ≥ 0, so we can maximize the payoff by maximizing

WA to MA. As wager MA yields a higher payoff than the upper bounds of all
other wagers when PA ≥ 1

2 , this wager is a dominant strategy. Therefore

Alice’s maximin wager is MA.

Note that as long as Alice remains the leading player, this proof extends to
the three-player case without loss of generality.

8.2 When PA < 1
2

When PA < 1
2 , Alice’s optimal wager has multiple cases:

8.2.1 When MA > 2MB

When the leading player Alice has more than twice Betty’s money, we can
again find a dominant strategy. Alice will always win the game when wagering
0 dollars. Therefore when WA = 0 her payoff is MA. This value can again be
expressed by the equation

MA +WA(2PA − 1)
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In this case, therefore, a wager of 0 is exactly equal to the upper bound equation
of all wagers.
We would like to prove that a wager of 0 for Alice yields a greater payoff than
any other wager does. Again, we know an upper bound for all ZA: MA +
WA(2PA− 1). In order to prove that a wager of 0 is optimal, we will prove that
the payoff is always larger than this upper bound.

There is a linear relationship between WA and EWA
, expressed by the equa-

tion EWA
= MA + WA(2PA − 1). When PA ≤ 1

2 , 2PA − 1 ≤ 0, so we can
maximize EWA

by minimizing WA to 0. As wagering 0 yields a higher pay-
off than the upper bounds of all other wagers when PA ≤ 1

2 , this wager is a
dominant strategy. Therefore

Alice’s maximin wager is 0

.
Note that as long as Alice has at least twice as much money as all other

players, this proof extends to the three-player case without loss of generality.

8.2.2 When 3
2MB < MA < 2MB

For the remaining cases, there are no clear dominant strategies for Alice in a
three-player game. Therefore we will find Alice’s maximins utilizing the payoff
matrix maximin strategy. The matrix’s structure changes depending on the
relationship between MA and MB , and in the case where 3

2MB < MA < 2MB ,
the bottom of region 9 is at least one row above the top or region 6.

Given this relationship between MA and MB , Alice has three potential max-
imin wagers.

If she wagers less than 2MB − MA, Alice’s worst region is region 9. As
PA < 1

2 , this equation is maximized when WA = 0. This will yield a minimum
payoff of (1− PB)MA when wagering 0.

If Alice wagers exactly 2MB −MA dollars, her worst region is region 5.
If Alice wagers exactly MA − MB dollars, her worst region may be either

region 2 or region 7.
If Alice wagers more than MA −MB , her worst region is region 6. This is

maximized when Alice wagers MA dollars, yielding a min payoff of 2PAMA.
Finally, if Alice wagers such that 2MB −MA < WA < MA −MB , her worst

region is region 7. We refer to these rows in which region 7 is the minimum
payoff for Alice as min-7. As seen in Table 3, region 7’s payoff equation is

PA(MA +WA) + (1− PA)(1− PB)(MA −WA)

When PA > (1 − PA)(1 − PB), this equation is optimized by maximizing WA

within min-7, and otherwise it is optimized by minimizingWA within min-7. We
must determine which of the potential maximin wagers discussed above yield
the highest payoff. We will define two different cases given the two optimiza-
tions of region 7.
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Figure 2: Structure of the Payoff Matrix when 3
2MB < MA < 2MB

Case 1: PA > (1− PA)(1− PB)
Here, the higher that WA is in region 7’s payoff equation, the greater the payoff
is. However, to stay in min-7 Alice can only wager as much as MA −MB − 1.
This means one potential maximin wager for Alice is MA −MB − 1.

However, this payoff is always lower than that of going all in. As mentioned
previously, the minimum payoff equation for Alice when going all in is

PA(MA +WA)

When WA = MA, this can be written as

PA(MA +WA) + (1− PA)(1− PB)(MA −WA)

as MA −WA = MA −MA = 0. This is the payoff equation in region 7.
Therefore we can consider Alice wagering MA as a continuation of region

7. As Alice wants to maximize ZA given region 7’s payoff equation, she would
rather wager MA than any other value. Therefore the potential maximin when
wagering MA always has a higher payoff than wagering the most in min-7.

Wagering MA −MB is also inferior to going all in for Alice. When region 2
has a higher payoff than region 7, it is not even the minimum in its row. When
it has a lower payoff, it is inferior to some payoff equation in region 7, which we
have shown is itself inferior to going all in.

Wagering MA is also superior to wagering 2MB −MA to have a minimum
in region 5, using similar logic.
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Finally, wagering MA is also a better strategy than wagering nothing. As in
this case PA > (1− PB)(1− PA) and 1− PA > 1

2 :

PA > (1− PB) ∗
1

2

Which by algebra, is equivalent to:

2PAMA > (1− PB)MA

The value on the left is Alice’s minimum payoff when wagering MB and the
value on the right is her minimum payoff when wagering 0.

Therefore when PA > (1−PA)(1−PB) and PA < 1
2 , Alice’s minimum payoff

given a wager ofMA is higher than the minimum payoffs for all her other wagers.

Alice’s maximin wager is MA

.

Case 2: PA < (1− PA)(1− PB)
In this case, we would like to minimize WA in min-7 to 2MB −MA + 1. We

can again consider the maximin when going all in as a continuation of region
7’s payoff equation, and therefore when region 7 should be minimized, going all
in is clearly inferior to any wager in region 7 itself.

Region 2 is never a maximin in this case, for similar reasons as in the former
case.

Therefore we must compare three payoffs for Alice: wagering 2MB −MA+1
in region 7, 2MB −MA in region 5, or 0 in region 9. Without making further
assumptions,

Alice’s maximin wager could be 2MB −MA + 1, 2MB −MA or 0

See section 8 for the specific equation comparisons.
Determining the optimal wager is therefore trivial, as Alice can calculate the

values of these three equations using her specific values of MA, MB , PA and PB

and wager according to the equation with the highest value.
We note that only in cases with both extremely high values of PAT

and
extremely low values of PA, PB and MB is it possible for region 5 to be the
maximin. For example, when PA = .16, PB = .1, MB = 1700, and PAT

= .99,
it is best to wager in region 5. For practical purposes players may be better off
disregarding this option.

8.2.3 When 3
2MB > MA

In this case, any wager from Alice could result in at least one of region 6 or
region 9, as the regions overlap vertically. These are the two potential maximin
regions in the matrix. As we have previously shown, the payoff equation for
region 9 is maximized to (1 − PB)MA when WA = 0. The payoff equation for
region 6 is maximized when WA = MA, so the payoff is 2PAMA.
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Figure 3: Structure of the Payoff Matrix when 3
2MB > MA

These two payoffs represent potential maximin payoffs for Alice.

Alice’s maximin wager is 0 when (1− PB)/2 > PA

And

Alice’s maximin wager is MA when (1− PB)/2 < PA

. If the two equations are equal, these wagers are equally optimal payoffs for
Alice.

9 Betty’s Strategy
Let us consider the optimal strategies for Betty, the trailing player.

9.1 When MA > 2MB

In this scenario, when Alice wagers 0 dollars, she can guarantee that the
result is in region 8. Therefore all wagers for Betty lead to the same maximin
of 0 dollars, so

Betty’s wager does not matter.

9.2 When MA < 2MB

If Betty wagers less than 2MB−MA, then her maximin is certainly in region
8, which leads to a payoff of 0. For any wagers greater than this, her worst
payoff equation is region 7. Therefore Betty’s maximin is in region 7. Thus,
Betty would like to maximize her payoff in region 7. The payoff equation in this
region is

(1− PA)(PB)(MB +WB)
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Maximizing WB to MB will maximize this equation to (1− PA)(2PBMB).

Betty’s maximin wager is MB.

10 Cheat Sheet for Alice
We will now restate the theorem for Alice’s optimal wager.

10.1 PA ≥ 1
2

Alice’s maximin wager is MA.

10.2 PA < 1
2

10.2.1 MA > 2MB

Alice’s maximin wager is 0.

10.2.2 3
2MB < MA < 2MB

Case 1: PA > (1− PA)(1− PB)
Alice’s maximin wager is MA.

Case 2: PA < (1− PA)(1− PB)
Consider three equations:

Equation 1:
MA(1− PB)

Equation 2:

PA(2MB + 1) + (1− PA)(1− PB)(2MA + 2MB + 1)

Equation 3:

PAT
(2MB) + (1− PA)(1− PB)(2MA + 2MB) + PA(1− PB)(2MB)

If Equation 1 yields the largest value, Alice’s maximin wager is 0. If Equation
2 yields the largest value, Alice’s maximin wager is 2MB −MA+1. If Equation
3 yeilds the largest value, Alice’s maximin wager is 2MB −MA.

10.2.3 3
2MB > MA

Alice’s maximin wager is 0 when (1−PB)
2 > PA and MA otherwise.
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11 Cheat Sheet for Betty

11.1 MA > 2MB

Betty’s wager does not matter, as she always has a maximin of zero dollars.

11.2 MA < 2MB

Betty’s maximin wager is MB .

12 Taking a Realistic Perspective
What if Alice Does Not Know PB? What if Betty Does Not Know PA?

In Sections 8-11 we assumed that each player knew the other’s probability of
responding to the question correctly. We assume Alice knows how likely she is to
respond to the final question correctly based on her knowledge of the category
of the final question. However, she likely does not know how knowledgeable
Betty is on the topic of the final question, so this secondary assumption may
not be realistic.

Historical Jeopardy data shows that in the last 10 seasons the average correct
response rate on the final question is about 49.6% with a standard deviation of
about 3.6% [1]. Without knowing anything about Betty’s knowledge of the topic
of the final question, Alice’s best assumption is that Betty has the same chance
as the average player of responding correctly. Hence, it would be reasonable for
Alice (Betty) to use the cheat sheet assuming PB = 1

2 (PA = 1
2 ). Note that this

does not reduce the number of possible cases.

13 Maximizing Overall Winnings: A Jeopardy!-
Specific Scenario

In Jeopardy!, players who win a game come back to play the next day. Thus,
if a player aims to maximize her payoff from Jeopardy! as a whole, not just on
one specific day, she should consider her expected future winnings. We define
"win benefit" to be the amount of money a player expects to win in future
Jeopardy! games should she win the game on the current day. In the following
section, we consider a realistic perspective of a leading player going into Final
Jeopardy! who hopes to take home the most possible money from all the games
she participates in.

13.1 Simplifications and Statistical Assumptions
In order to realistically model the perspective of Alice, a leading player about

to wager in Final Jeopardy!, we assume PB = 1
2 for the remainder of the paper.

Refer to section 12 for justification.
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In the previous sections, making this assumption could be useful for de-
termining which case and corresponding optimal wager applies, but does not
reduce the total number of cases. Therefore it was not necessary to make this
assumption in the case calculations themselves. However, when considering the
win benefit, assuming PB

1
2 does reduce the number of cases to a reasonable

number and allows us to give advice to Alice which could be applied to a real
game of Jeopardy!

We also use historical Jeopardy! data to quantify the win benefit. The
average winnings on Jeopardy! are about 20,000 dollars per game. Furthermore,
the returning champion wins Jeopardy! in about 46.26% of games [4]. Thus,
using a

1−r , where a = 0.4626 and r = 0.4626, the equation for the sum of an
infinite geometric series, a player can expect to win Jeopardy! about 0.86 more
times after winning the first game. Thus, we multiply these values together to
estimate that a player can expect to win about 17,000 dollars in future Jeopardy!
games if she wins a current game. We use 17,000 dollars as the win benefit for
the remainder of this paper.

We consider the cases in which Alice has between 0 and 50,000 dollars going
into Final Jeopardy! The largest one-day winnings in Jeopardy! history is 77,000
dollars from a game in which the winning player entered Final Jeopardy! with
47,000 dollars [5]. Thus we assume Alice is unlikely to enter Final Jeopardy!
with more than 50,000 dollars and provide advice to Alice accordingly.

We will not consider tying lines in this section. As we have shown in the
previous section, these ties rarely impact a player’s optimal strategy.

13.2 Strategy
When considering the payoff with the win benefit, the first two steps for

finding the maximin for a player using the payoff matrix strategy do not change.
These steps are finding the region with the worst payoff equation for each of her
wagers and maximizing the payoffs within those least desirable regions. This is
because the payoff equation for each region when a win benefit is added in can
be expressed as:

expected winnings that day+ (probability of winning that day) ∗ (win benefit)

We previously compared the payoffs of different regions given a single wager
by comparing the outcomes in which the regions afforded each player a win.
The expectation of the win benefit also scales by the number of cases in which
a player wins.

In all cases where we determined that one region was strictly worse than
another in a given row or column, it was because this region afforded the player
in question equal or worse win/tie/loss results for every outcome. Therefore
these regions also have lower win probabilities and thus their payoffs are still
lower given a single wager.

However, adding in the win benefit can impact the final step, which is com-
paring the potential maximin values. In determining in which cases each min-
imum payoff is optimal, we utilized a combination of algebra and the Desmos
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online graphing calculator. As many of these comparisons are trivial but tedious,
some of our inequalities have been solved only graphically.

13.3 MA > 2MB

Figure 4: Maximin Wagers for Alice when MA > 2MB

Given this relationship between MA and MB , the three potential maximins
for Alice are region 8’s top row, region 8 in the lowest row which contains only
region 8, and region 6 in the bottom row. The shaded areas indicate when each
payoff is the greatest. Given our assumptions about PB and the win benefit,
this depends only on MB and PA.

The intuition for why Alice’s maximin in this scenario is influenced by MB

and not MA is as follows: Alice’s min payoff when wagering MA is affected only
by the value of MA, while her payoff when wagering MA−2MB−1 is affected by
the relationship between MA and MB . As MA increases, both payoffs increase
and the relationship between the mins stays the same. When MB increases,
however, wagering MA − 2MB − 1 becomes worse and wagering MA has the
same payoff.

13.4 3
2
MB < MA < 2MB

Given this relationship between MA and MB , the three potential maximins
for Alice are the top row of region 9, the bottom row of min-7 (the lowest row
containing only region 7), and the bottom row of region 6. The shaded areas
indicate when each payoff is the greatest. Given our assumptions about PB and
the win benefit, this depends only on MA and PA.
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Figure 5: Maximin Wagers for Alice when 3
2MB < MA < 2MB

13.5 MA < 3
2
MB

Figure 6: Maximin Wagers for Alice when MA < 3
2MB

Given this relationship between MA and MB , the two potential maximins
for Alice are the top row of region 9 and the bottom row of region 6. The shaded
areas indicate when each payoff is the greatest. Given our assumptions about
PB and the win benefit, this depends only on MA and PA.
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