REU-CAAR: You’re Here!
Credit where Credit is Due

Origin of this talk

Bill G modified this boring handbook into a fascinating ∼380-slide talk!

Auguste: Why are you telling them all that?
Bill: In academia it's very important to credit past work!
Credit where Credit is Due

Origin of this talk

- In 2010 a Univ of MD Cybersecurity REU produced a 20-page document:

 Cybersecurity Scholars Handbook.
Origin of this talk

- In 2010 a Univ of MD Cybersecurity REU produced a 20-page document:
 Cybersecurity Scholars Handbook.

- Bill G modified this boring handbook into a fascinating ~ 380-slide talk!
Credit where Credit is Due

Origin of this talk

- In 2010 a Univ of MD Cybersecurity REU produced a 20-page document:
 Cybersecurity Scholars Handbook.
- Bill G modified this boring handbook into a fascinating ∼ 380-slide talk!

Auguste: Why are you telling them all that?
Credit where Credit is Due

Origin of this talk
▶ In 2010 a Univ of MD Cybersecurity REU produced a 20-page document:
 Cybersecurity Scholars Handbook.
▶ Bill G modified this **boring** handbook into a **fascinating**
 ~ 380-slide talk!

Auguste: Why are you telling them all that?
Bill: In academia its very important to credit past work!
Purpose of This Talk

1. Who are the mentors?
2. What are the projects?
3. What is expected of you?
4. What should you expect of us?
5. Nuts and bolts of how the program works.
6. Advice on how to get the most out of this summer!
Purpose of This Talk

1. Who are the mentors?
Purpose of This Talk

1. Who are the mentors?
2. What are the projects?
Purpose of This Talk

1. Who are the mentors?
2. What are the projects?
3. What is expected of you?

4. What should you expect of us?
5. Nuts and bolts of how the program works.
6. Advice on how to get the most out of this summer!
Purpose of This Talk

1. Who are the mentors?
2. What are the projects?
3. What is expected of you?
4. What should you expect of us?
Purpose of This Talk

1. Who are the mentors?
2. What are the projects?
3. What is expected of you?
4. What should you expect of us?
5. Nuts and bolts of how the program works.
Purpose of This Talk

1. Who are the mentors?
2. What are the projects?
3. What is expected of you?
4. What should you expect of us?
5. Nuts and bolts of how the program works.
6. Advice on how to get the most out of this summer!
Back in 2013 Samir and Bill wrote an REU grant with the theme *Applying Theory to Practice.*
Back in 2013 Samir and Bill wrote an REU grant with the theme
Applying Theory to Practice.

The grant has changed to:
Back in 2013 Samir and Bill wrote an REU grant with the theme *Applying Theory to Practice.*

The grant has changed to:

REU: Research Experience for Undergraduates.
Back in 2013 Samir and Bill wrote an REU grant with the theme
Applying Theory to Practice.
The grant has changed to:
REU: Research Experience for Undergradutes.
CAAR: Combinatorics, Algorithms, and AI for Real Problems.

Discuss
Find a topic within CS that this title
does not cover?
Systems, HCI, Software Engineering, anything else?
Back in 2013 Samir and Bill wrote an REU grant with the theme **Applying Theory to Practice.**

The grant has changed to:

REU: Research Experience for Undergraduates.

CAAR: Combinatorics, Algorithms, and AI for Real Problems.

Discuss Find a topic within CS that this title does not cover?
Back in 2013 Samir and Bill wrote an REU grant with the theme *Applying Theory to Practice.*
The grant has changed to:

REU: Research Experience for Undergraduates.
CAAR: Combinatorics, Algorithms, and AI for Real Problems.

Discuss Find a topic within CS that this title does not cover?

Systems, HCI, Software Engineering, anything else?
REU-CAAR: TEAM!
Projects and Mentors: Algorithms Projects

Parallel Algorithms for Nearest Neighbor Search
Mentored by Laxman and Tobias.
Laxman: mentored for us in 2023

2023:
Parallel Algorithms for High Dimensional Clustering
He seems to like Parallelism.

Tobias: first-timer, but has helped out REU-BRIDGE.

Exploring the Hilbert Geometry
Auguste and Dave.

2022:
Exploring the Hilbert Geometry

2023:
Exploring the Hilbert Geometry
He seems to like Hilbert Geometry.

Dave helped design projects but Auguste is the one on the ground.
Parallel Algorithms for Nearest Neighbor Search.
Mentored by Laxman and Tobias.
Projects and Mentors: Algorithms Projects

Parallel Algorithms for Nearest Neighbor Search.
Mentored by Laxman and Tobias.
Laxman: mentored for us in 2023
Projects and Mentors: Algorithms Projects

Parallel Algorithms for Nearest Neighbor Search.
Mentored by Laxman and Tobias.
Laxman: mentored for us in 2023

2023: Parallel Algorithms for High Dimensional Clustering

He seems to like Parallelism.
Tobias: first-timer, but has helped out REU-BRIDGE.
Dave helped design projects but Auguste is the one on the ground.
Projects and Mentors: Algorithms Projects

Parallel Algorithms for Nearest Neighbor Search.
Mentored by Laxman and Tobias.
Laxman: mentored for us in 2023

2023: Parallel Algorithms for High Dimensional Clustering
He seems to like Parallelism.
Projects and Mentors: Algorithms Projects

Parallel Algorithms for Nearest Neighbor Search.
Mentored by Laxman and Tobias.
Laxman: mentored for us in 2023
2023: Parallel Algorithms for High Dimensional Clustering
He seems to like Parallelism.
Tobias: first-timer, but has helped out REU-BRIDGE.
Projects and Mentors: Algorithms Projects

Parallel Algorithms for Nearest Neighbor Search.
Mentored by Laxman and Tobias.
Laxman: mentored for us in 2023
2023: Parallel Algorithms for High Dimensional Clustering
He seems to like Parallelism.
Tobias: first-timer, but has helped out REU-BRIDGE.

Exploring the Hilbert Geometry: Auguste and Dave.
Projects and Mentors: Algorithms Projects

Parallel Algorithms for Nearest Neighbor Search.
Mentored by Laxman and Tobias.
Laxman: mentored for us in 2023

2023: **Parallel Algorithms for High Dimensional Clustering**
He seems to like Parallelism.

Tobias: first-timer, but has helped out REU-BRIDGE.

Exploring the Hilbert Geometry: Auguste and Dave.
Projects and Mentors: Algorithms Projects

Parallel Algorithms for Nearest Neighbor Search.
Mentored by Laxman and Tobias.
Laxman: mentored for us in 2023

2023: Parallel Algorithms for High Dimensional Clustering
He seems to like Parallelism.

Tobias: first-timer, but has helped out REU-BRIDGE.

Exploring the Hilbert Geometry: Auguste and Dave.

2022: Exploring the Hilbert Geometry
Projects and Mentors: Algorithms Projects

Laxman: mentored for us in 2023
2023: Parallel Algorithms for High Dimensional Clustering
He seems to like Parallelism.
Tobias: first-timer, but has helped out REU-BRIDGE.

Exploring the Hilbert Geometry: Auguste and Dave.
2022: Exploring the Hilbert Geometry
2023: Exploring the Hilbert Geometry
Projects and Mentors: Algorithms Projects

Parallel Algorithms for Nearest Neighbor Search.
Mentored by Laxman and Tobias.
Laxman: mentored for us in 2023
2023: **Parallel Algorithms for High Dimensional Clustering**
He seems to like Parallelism.
Tobias: first-timer, but has helped out REU-BRIDGE.

Exploring the Hilbert Geometry: Auguste and Dave.
2022: **Exploring the Hilbert Geometry**
2023: **Exploring the Hilbert Geometry**
He seems to like Hilbert Geometry.
Projects and Mentors: Algorithms Projects

Parallel Algorithms for Nearest Neighbor Search.
Mentored by Laxman and Tobias.
Laxman: mentored for us in 2023
2023: **Parallel Algorithms for High Dimensional Clustering**
He seems to like Parallelism.
Tobias: first-timer, but has helped out REU-BRIDGE.

Exploring the Hilbert Geometry: Auguste and Dave.
2022: **Exploring the Hilbert Geometry**
2023: **Exploring the Hilbert Geometry**
He seems to like Hilbert Geometry.
Dave helped design projects but Auguste is the one on the ground.
Projects and Mentors: AI Projects

What Makes Multimodal Question Answering Difficult
Mentored by Jordan and Tasnim
What Makes Multimodal Question Answering Difficult
Mentored by Jordan and Tasnim
Jordan: first-timer, but has mentored many ugrad projects.
Projects and Mentors: AI Projects

What Makes Multimodal Question Answering Difficult
Mentored by Jordan and Tasnim
Jordan: first-timer, but has mentored many ugrad projects.
Tasnim: first-timer.
What Makes Multimodal Question Answering Difficult
Mentored by Jordan and Tasnim
Jordan: first-timer, but has mentored many ugrad projects.
Tasnim: first-timer.
I had a zoom session with the first timers on mentoring.
Projects and Mentors: AI Projects

What Makes Multimodal Question Answering Difficult
Mentored by Jordan and Tasnim
Jordan: first-timer, but has mentored many ugrad projects.
Tasnim: first-timer.
I had a zoom session with the first timers on mentoring.

Crop Planning Decision Support with Multi-Agent Reinforcement Learning
Mentored by Aviva.
Projects and Mentors: AI Projects

What Makes Multimodal Question Answering Difficult
Mentored by Jordan and Tasnim
Jordan: first-timer, but has mentored many ugrad projects.
Tasnim: first-timer.
I had a zoom session with the first timers on mentoring.

Crop Planning Decision Support with Multi-Agent Reinforcement Learning
Mentored by Aviva.
Projects and Mentors: AI Projects

What Makes Multimodal Question Answering Difficult
Mentored by Jordan and Tasnim
Jordan: first-timer, but has mentored many ugrad projects.
Tasnim: first-timer.
I had a zoom session with the first timers on mentoring.

Crop Planning Decision Support with Multi-Agent Reinforcement Learning
Mentored by Aviva.
Projects and Mentors: AI Projects

What Makes Multimodal Question Answering Difficult
Mentored by Jordan and Tasnim
Jordan: first-timer, but has mentored many ugrad projects.
Tasnim: first-timer.
I had a zoom session with the first timers on mentoring.

Crop Planning Decision Support with Multi-Agent Reinforcement Learning
Mentored by Aviva.
She really wants to use math to help people.
Projects and Mentors: AI Projects

What Makes Multimodal Question Answering Difficult
Mentored by Jordan and Tasnim
Jordan: first-timer, but has mentored many ugrad projects.
Tasnim: first-timer.
I had a zoom session with the first timers on mentoring.

Crop Planning Decision Support with Multi-Agent Reinforcement Learning
Mentored by Aviva.
She really wants to use math to help people.
Only project that is Applying Theory to Practice
AVIVA: I want to mentor a project for REU-CAAR. What are the projects usually like?

BILL: I did one on Ramsey Theory. Auguste did Comp Geom. We have a few quantum.

AVIVA: I want to use Math to help farmers in India.

BILL: So you want to help people?

AVIVA: Yes!

BILL: What's that like? I mean, what is wanting to help people like?
AVIVA: I want to mentor a project for REU-CAAR. What are the projects usually like?
AVIVA: I want to mentor a project for REU-CAAR. What are the projects usually like?

BILL: I did one on Ramsey Theory. Auguste did Comp Geom. We have a few quantum.
AVIVA: I want to mentor a project for REU-CAAR. What are the projects usually like?
BILL: I did one on Ramsey Theory. Auguste did Comp Geom. We have a few quantum.
AVIVA: I want to use Math to help farmers in India.
AVIVA: I want to mentor a project for REU-CAAR. What are the projects usually like?

BILL: I did one on Ramsey Theory. Auguste did Comp Geom. We have a few quantum.

AVIVA: I want to use Math to help farmers in India.

BILL: So you want to help people?
AVIVA: I want to mentor a project for REU-CAAR. What are the projects usually like?
BILL: I did one on Ramsey Theory. Auguste did Comp Geom. We have a few quantum.
AVIVA: I want to use Math to help farmers in India.
BILL: So you want to help people?
AVIVA: Yes!
AVIVA: I want to mentor a project for REU-CAAR. What are the projects usually like?
BILL: I did one on Ramsey Theory. Auguste did Comp Geom. We have a few quantum.
AVIVA: I want to use Math to help farmers in India.
BILL: So you want to help people?
AVIVA: Yes!
BILL: What's that like?
AVIVA: I want to mentor a project for REU-CAAR. What are the projects usually like?
BILL: I did one on Ramsey Theory. Auguste did Comp Geom. We have a few quantum.
AVIVA: I want to use Math to help farmers in India.
BILL: So you want to help people?
AVIVA: Yes!
BILL: What's that like?
I mean, what is wanting to help people like?
Projects and Mentors: Quantum Projects

Classical and Quantum Error Correction
Mentored by Victor and Nat.

2023: Classical and Quantum Error Correction
He must be error-prone to need that much correction.
Nat is a first-timer.

Quantum Graph Games
Mentored by Seyed and Jon
Seyed: first-timer but mentored a HS students on QC!
Jon is a first-timer.
Projects and Mentors: Quantum Projects

Classical and Quantum Error Correction
Mentored by Victor and Nat.

Projects and Mentors: Quantum Projects

Classical and Quantum Error Correction
Mentored by Victor and Nat.

2023: **Classical and Quantum Error Correction**
Projects and Mentors: Quantum Projects

Classical and Quantum Error Correction
Mentored by Victor and Nat.

2023: **Classical and Quantum Error Correction**
He must be error-prone to need that much correction.
Projects and Mentors: Quantum Projects

Classical and Quantum Error Correction
Mentored by Victor and Nat.

2023: **Classical and Quantum Error Correction**
He must be error-prone to need that much correction.

Nat is a first-timer.
Projects and Mentors: Quantum Projects

Classical and Quantum Error Correction
Mentored by Victor and Nat.
2023: Classical and Quantum Error Correction
He must be error-prone to need that much correction.
Nat is a first-timer.

Quantum Graph Games
Mentored by Seyed and Jon
Projects and Mentors: Quantum Projects

Classical and Quantum Error Correction
Mentored by Victor and Nat.
2023: **Classical and Quantum Error Correction**
He must be error-prone to need that much correction.
Nat is a first-timer.

Quantum Graph Games
Mentored by Seyed and Jon
Seyed: first-timer but mentored a HS students on QC!
Projects and Mentors: Quantum Projects

Classical and Quantum Error Correction
Mentored by Victor and Nat.
2023: **Classical and Quantum Error Correction**
He must be error-prone to need that much correction.
Nat is a first-timer.

Quantum Graph Games
Mentored by Seyed and Jon
Seyed: first-timer but mentored a HS students on QC!
Jon is a first-timer.
Computing Error Bounds for Quantum Simulation Algorithms
Mentored by Andrew and James.
Computing Error Bounds for Quantum Simulation Algorithms
Mentored by Andrew and James.
Andrew: mentored for us before
Projects and Mentors: Quantum Projects (cont)

Computing Error Bounds for Quantum Simulation Algorithms
Mentored by Andrew and James.
Andrew: mentored for us before
2022: **Verification of Quantum Simulation**
Computing Error Bounds for Quantum Simulation Algorithms
Mentored by Andrew and James.
Andrew: mentored for us before
2022: Verification of Quantum Simulation
2021: Fast Routing Using Teleportation Primitives
Computing Error Bounds for Quantum Simulation Algorithms
Mentored by Andrew and James.

Andrew: mentored for us before

2022: Verification of Quantum Simulation
2021: Fast Routing Using Teleportation Primitives
2020: Sorting by Reversals
Projects and Mentors: Quantum Projects (cont)

Computing Error Bounds for Quantum Simulation Algorithms
Mentored by Andrew and James.
Andrew: mentored for us before
2022: Verification of Quantum Simulation
2021: Fast Routing Using Teleportation Primitives
2020: Sorting by Reversals
2019: QC: Practical Synthesis of Q Signal Processing Circuits
Computing Error Bounds for Quantum Simulation Algorithms
Mentored by Andrew and James.
Andrew: mentored for us before
2022: Verification of Quantum Simulation
2021: Fast Routing Using Teleportation Primitives
2020: Sorting by Reversals
2019: QC: Practical Synthesis of Q Signal Processing Circuits
2017: Quantum Computing
Computing Error Bounds for Quantum Simulation Algorithms
Mentored by Andrew and James.
Andrew: mentored for us before
2022: Verification of Quantum Simulation
2021: Fast Routing Using Teleportation Primitives
2020: Sorting by Reversals
2019: QC: Practical Synthesis of Q Signal Processing Circuits
2017: Quantum Computing
Five times mentoring is a lot!
Computing Error Bounds for Quantum Simulation Algorithms
Mentored by Andrew and James.
Andrew: mentored for us before
2022: Verification of Quantum Simulation
2021: Fast Routing Using Teleportation Primitives
2020: Sorting by Reversals
2019: QC: Practical Synthesis of Q Signal Processing Circuits
2017: Quantum Computing
Five times mentoring is a lot!
James is a first-timer.
Why 3 Q-Projects? Why no QML?

1) Oct 1: I emailed every quantum person Mentor REU-CAAR?

2) Oct 10: Victor emailed Maybe which I thought was No.

3) Oct 15: I ask Seyed Mentor REU-CAAR?. He said Yes!

4) Oct 20: Murphy responds to Oct 1 email with Yes for QML.

5) Victor says Yes but only wants to take one student. Okay.

6) Feb 1: Murphy announced she is leaving UMCP in May. Says she can still mentor, but by zoom. I agree. I email her about important things I need to know. She never responds to my emails. I cancelled her project.

7) My Thoughts Three Quantum Projects was too many anyway, though I really need to get Aviva funded to have enough projects.

8) Next page for the exciting conclusion.
Why 3 Q-Projects? Why no QML?

1) Oct 1: I emailed every quantum person Mentor REU-CAAR?
2) Oct 10: Victor emailed Maybe which I thought was No
Why 3 Q-Projects? Why no QML?

1) Oct 1: I emailed every quantum person Mentor REU-CAAR?
2) Oct 10: Victor emailed Maybe which I thought was No
3) Oct 15: I ask Seyed Mentor REU-CAAR? He said Yes!
Why 3 Q-Projects? Why no QML?

1) Oct 1: I emailed every quantum person Mentor REU-CAAR?
2) Oct 10: Victor emailed Maybe which I thought was No
3) Oct 15: I ask Seyed Mentor REU-CAAR?. He said Yes!
4) Oct 20: Murphy responds to Oct 1 email with Yes for QML.
Why 3 Q-Projects? Why no QML?

1) Oct 1: I emailed every quantum person Mentor REU-CAAR?
2) Oct 10: Victor emailed Maybe which I thought was No
3) Oct 15: I ask Seyed Mentor REU-CAAR?. He said Yes!
4) Oct 20: Murphy responds to Oct 1 email with Yes for QML.
5) Victor says Yes but only wants to take one student. Okay.
Why 3 Q-Projects? Why no QML?

1) Oct 1: I emailed every quantum person Mentor REU-CAAR?
2) Oct 10: Victor emailed Maybe which I thought was No
3) Oct 15: I ask Seyed Mentor REU-CAAR?. He said Yes!
4) Oct 20: Murphy responds to Oct 1 email with Yes for QML.
5) Victor says Yes but only wants to take one student. Okay.
6) Feb 1: Murphy announced she is leaving UMCP in May.
Why 3 Q-Projects? Why no QML?

1) Oct 1: I emailed every quantum person Mentor REU-CAAR?
2) Oct 10: Victor emailed Maybe which I thought was No
3) Oct 15: I ask Seyed Mentor REU-CAAR?. He said Yes!
4) Oct 20: Murphy responds to Oct 1 email with Yes for QML.
5) Victor says Yes but only wants to take one student. Okay.
6) Feb 1: Murphy announced she is leaving UMCP in May. Says she can still mentor, but by zoom. I agree.
Why 3 Q-Projects? Why no QML?

1) Oct 1: I emailed every quantum person Mentor REU-CAAR?
2) Oct 10: Victor emailed Maybe which I thought was No
3) Oct 15: I ask Seyed Mentor REU-CAAR?. He said Yes!
4) Oct 20: Murphy responds to Oct 1 email with Yes for QML.
5) Victor says Yes but only wants to take one student. Okay.
6) Feb 1: Murphy announced she is leaving UMCP in May. Says she can still mentor, but by zoom. I agree. I email her about important things I need to know.
Why 3 Q-Projects? Why no QML?

1) Oct 1: I emailed every quantum person Mentor REU-CAAR?
2) Oct 10: Victor emailed Maybe which I thought was No
3) Oct 15: I ask Seyed Mentor REU-CAAR?. He said Yes!
4) Oct 20: Murphy responds to Oct 1 email with Yes for QML.
5) Victor says Yes but only wants to take one student. Okay.
6) Feb 1: Murphy announced she is leaving UMCP in May. Says she can still mentor, but by zoom. I agree. I email her about important things I need to know. She never responds to my emails. I cancelled her project.
Why 3 Q-Projects? Why no QML?

1) Oct 1: I emailed every quantum person Mentor REU-CAAR?
2) Oct 10: Victor emailed Maybe which I thought was No
3) Oct 15: I ask Seyed Mentor REU-CAAR?. He said Yes!
4) Oct 20: Murphy responds to Oct 1 email with Yes for QML.
5) Victor says Yes but only wants to take one student. Okay.
6) Feb 1: Murphy announced she is leaving UMCP in May. Says she can still mentor, but by zoom. I agree. I email her about important things I need to know. She never responds to my emails. I cancelled her project.
7) My Thoughts Three Quantum Projects was too many anyway, though I really need to get Aviva funded to have enough projects.
Why 3 Q-Projects? Why no QML?

1) Oct 1: I emailed every quantum person Mentor REU-CAAR?
2) Oct 10: Victor emailed Maybe which I thought was No
3) Oct 15: I ask Seyed Mentor REU-CAAR?. He said Yes!
4) Oct 20: Murphy responds to Oct 1 email with Yes for QML.
5) Victor says Yes but only wants to take one student. Okay.
6) Feb 1: Murphy announced she is leaving UMCP in May. Says she can still mentor, but by zoom. I agree. I email her about important things I need to know. She never responds to my emails. I cancelled her project.

7) **My Thoughts** Three Quantum Projects was too many anyway, though I really need to get Aviva funded to have enough projects.
8) Next page for the exciting conclusion.
9) Aviva gets funded. Yeah! Do not need 3rd Q-Project.
9) Aviva gets funded. Yeah! Do not need 3rd Q-Project.
10) **Andrew in Mid April** Can I lead a quantum project? I have money for two students and already have one student working with me who is local so won’t need housing.
9) Aviva gets funded. Yeah! Do not need 3rd Q-Project.

10) **Andrew in Mid April** Can I lead a quantum project? I have money for two students and already have one student working with me who is local so won’t need housing.

Bill Thinking to Himself He tells me this NOW. Gee, would have been good to know this in October. This is just nuts. And I don’t need a THIRD quantum project.
9) Aviva gets funded. Yeah! Do not need 3rd Q-Project.

10) **Andrew in Mid April** Can I lead a quantum project? I have money for two students and already have one student working with me who is local so won’t need housing.

Bill Thinking to Himself He tells me this NOW. Gee, would have been good to know this in October. This is just nuts. And I don’t need a THIRD quantum project. Oh- did he say he had $$$$$$$? He did!
9) Aviva gets funded. Yeah! Do not need 3rd Q-Project.

10)

Andrew in Mid April Can I lead a quantum project? I have money for two students and already have one student working with me who is local so won’t need housing.

Bill Thinking to Himself He tells me this NOW. Gee, would have been good to know this in October. This is just nuts. And I don’t need a THIRD quantum project. Oh- did he say he had $$$$$$$? He did!

Bill Out Loud That’s a great idea!
9) Aviva gets funded. Yeah! Do not need 3rd Q-Project.

10) **Andrew in Mid April** Can I lead a quantum project? I have money for two students and already have one student working with me who is local so won’t need housing.

Bill Thinking to Himself He tells me this NOW. Gee, would have been good to know this in October. This is just nuts. And I don’t need a THIRD quantum project. Oh- did he say he had $$$$$$$? He did!

Bill Out Loud Thats a great idea!

Point: The set of Quantum Projects is a wave function.
Admin

- **REU-CAAR Director:** William Gasarch.

- **Housing:** Allison Panila

- **Your Salary:** Jodie Grey

- **Lots of Stuff:** Sharron McElroy

- **Arrange REU Lunches:** Sharron McElroy

- **Lots of other Stuff:** Auguste Gezalyan

- **Airport, Amtrak Pickups:** Clyde, Darling, Auguste, Emily

- **Help with Final Presentations:** Clyde
Admin

- **REU-CAAR Director:** William Gasarch.
 Wrote the grant,
Admin

- **REU-CAAR Director:** William Gasarch.
 Wrote the grant, finds the mentors,

- Housing: Allison Panila

- Your Salary: Jodie Grey

- Lots of Stuff: Sharron McElroy

- Arrange REU Lunches: Sharron McElroy

- Lots of other Stuff: Auguste Gezalyan

- Airport, Amtrak Pickups: Clyde, Darling, Auguste, Emily

- Help with Final Presentations: Clyde
Admin

- **REU-CAAR Director:** William Gasarch.
 Wrote the grant, finds the mentors, does admissions,
Admin

► **REU-CAAR Director:** William Gasarch. Wrote the grant, finds the mentors, does admissions, manages the REU-CAAR website,
Admin

- **REU-CAAR Director:** William Gasarch.
 Wrote the grant, finds the mentors, does admissions, manages the REU-CAAR website, makes decisions on housing,

- **Housing:** Allison Panila

- **Your Salary:** Jodie Grey

- **Lots of Stuff:** Sharron McElroy

- **Arrange REU Lunches:** Sharron McElroy

- **Lots of other Stuff:** Auguste Gezalyan

- **Airport, Amtrak Pickups:** Clyde, Darling, Auguste, Emily

- **Help with Final Presentations:** Clyde
Admin

- **REU-CAAR Director**: William Gasarch.
 Wrote the grant, finds the mentors, does admissions, manages the REU-CAAR website, makes decisions on housing, lunch activities,
Admin

- **REU-CAAR Director:** William Gasarch.
 Wrote the grant, finds the mentors, does admissions, manages the REU-CAAR website, makes decisions on housing, lunch activities, speakers,
Modern Admin

- **REU-CAAR Director:** William Gasarch.
 Wrote the grant, finds the mentors, does admissions, manages the REU-CAAR website, makes decisions on housing, lunch activities, speakers, arranges Amtrak and airport pickups
Admin

- **REU-CAAR Director:** William Gasarch.
 Wrote the grant, finds the mentors, does admissions, manages the REU-CAAR website, makes decisions on housing, lunch activities, speakers, arranges Amtrak and airport pickups.
 Gives this talk,

- Housing: Allison Panila
- Your Salary: Jodie Grey.
- Lots of Stuff: Sharron McElroy.
- Arrange REU Lunches: Sharron McElroy.
- Lots of other Stuff: Auguste Gezalyan.
- Airport, Amtrak Pickups: Clyde, Darling, Auguste, Emily.
- Help with Final Presentations: Clyde.
Admin

▶ **REU-CAAR Director:** William Gasarch. Wrote the grant, finds the mentors, does admissions, manages the REU-CAAR website, makes decisions on housing, lunch activities, speakers, arranges Amtrak and airport pickups gives this talk, and deals with whatever else may arise.
Admin

- **REU-CAAR Director:** William Gasarch. Wrote the grant, finds the mentors, does admissions, manages the REU-CAAR website, makes decisions on housing, lunch activities, speakers, arranges Amtrak and airport pickups gives this talk, and deals with whatever else may arise.

The people below help to implement some of those decisions.
Admin

- **REU-CAAR Director:** William Gasarch.
 Wrote the grant, finds the mentors, does admissions, manages the REU-CAAR website, makes decisions on housing, lunch activities, speakers, arranges Amtrak and airport pickups gives this talk, and deals with whatever else may arise.

 The people below help to implement some of those decisions.

- **Housing:** Allison Panila
REU-CAAR Director: William Gasarch. Wrote the grant, finds the mentors, does admissions, manages the REU-CAAR website, makes decisions on housing, lunch activities, speakers, arranges Amtrak and airport pickups gives this talk, and deals with whatever else may arise.

The people below help to implement some of those decisions.

- **Housing:** Allison Panila
- **Your Salary:** Jodie Grey.
Admin

- **REU-CAAR Director:** William Gasarch.
 Wrote the grant, finds the mentors, does admissions, manages the REU-CAAR website, makes decisions on housing, lunch activities, speakers, arranges Amtrak and airport pickups gives this talk, and deals with whatever else may arise.

The people below help to implement some of those decisions.

- **Housing:** Allison Panila
- **Your Salary:** Jodie Grey.
- **Lots of Stuff:** Sharron McElroy.
REU-CAAR Director: William Gasarch. Wrote the grant, finds the mentors, does admissions, manages the REU-CAAR website, makes decisions on housing, lunch activities, speakers, arranges Amtrak and airport pickups gives this talk, and deals with whatever else may arise.

The people below help to implement some of those decisions.

Housing: Allison Panila
Your Salary: Jodie Grey.
Lots of Stuff: Sharron McElroy.
Arrange REU Lunches: Sharron McElroy.
REU-CAAR Director: William Gasarch.
Wrote the grant, finds the mentors, does admissions, manages the REU-CAAR website, makes decisions on housing, lunch activities, speakers, arranges Amtrak and airport pickups gives this talk, and deals with whatever else may arise.

The people below help to implement some of those decisions.

Housing: Allison Panila
Your Salary: Jodie Grey.
Lots of Stuff: Sharron McElroy.
Arrange REU Lunches: Sharron McElroy.
Lots of other Stuff: Auguste Gezalyan.
Admin

- **REU-CAAR Director:** William Gasarch. Wrote the grant, finds the mentors, does admissions, manages the REU-CAAR website, makes decisions on housing, lunch activities, speakers, arranges Amtrak and airport pickups gives this talk, and deals with whatever else may arise.

The people below help to implement some of those decisions.

- **Housing:** Allison Panila
- **Your Salary:** Jodie Grey.
- **Lots of Stuff:** Sharron McElroy.
- **Arrange REU Lunches:** Sharron McElroy.
- **Lots of other Stuff:** Auguste Gezalyan.
- **Airport, Amtrak Pickups:** Clyde, Darling, Auguste, Emily,
Admin

- **REU-CAAR Director:** William Gasarch.
 Wrote the grant, finds the mentors, does admissions, manages the REU-CAAR website, makes decisions on housing, lunch activities, speakers, arranges Amtrak and airport pickups, gives this talk, and deals with whatever else may arise.

The people below help to implement some of those decisions.

- **Housing:** Allison Panila
- **Your Salary:** Jodie Grey.
- **Lots of Stuff:** Sharron McElroy.
- **Arrange REU Lunches:** Sharron McElroy.
- **Lots of other Stuff:** Auguste Gezalyan.
- **Airport, Amtrak Pickups:** Clyde, Darling, Auguste, Emily,
- **Help with Final Presentations:** Clyde.
REU-CAAR: Very Brief History
The Original Grant

In 2013 Samir K. and Bill G. applied to the National Science Foundation (NSF) for an REU grant titled
The Original Grant

In 2013 Samir K. and Bill G. applied to the National Science Foundation (NSF) for an REU grant titled

Combinatorics and Algorithms for Real Problems
In 2013 **Samir K.** and **Bill G.** applied to the **National Science Foundation (NSF)** for an REU grant titled **Combinatorics and Algorithms for Real Problems**.

The theme was to work on problem where
The Original Grant

In 2013 Samir K. and Bill G. applied to the National Science Foundation (NSF) for an REU grant titled

Combinatorics and Algorithms for Real Problems

The theme was to work on problem where Theory
In 2013 Samir K. and Bill G. applied to the National Science Foundation (NSF) for an REU grant titled "Combinatorics and Algorithms for Real Problems." The theme was to work on problems where theory is used on...
The Original Grant

In 2013 Samir K. and Bill G. applied to the National Science Foundation (NSF) for an REU grant titled

Combinatorics and Algorithms for Real Problems

The theme was to work on problem where Theory is used on Real Problems.
From 2013-2016 we had projects in

- Crypto and Security
- Data Science
- Ramsey Theory
- Applied Algorithmic Graph Theory
- Algorithmic Game Theory
From 2013-2016 we had projects in
- Crypto and Security
2013-2016

From 2013-2016 we had projects in

- Crypto and Security
- Data Science
From 2013-2016 we had projects in
- Crypto and Security
- Data Science
- Ramsey Theory
From 2013-2016 we had projects in

- Crypto and Security
- Data Science
- Ramsey Theory
- Applied Algorithmic Graph Theory (e.g., Scheduling)
2013-2016

From 2013-2016 we had projects in

- Crypto and Security
- Data Science
- Ramsey Theory
- Applied Algorithmic Graph Theory (e.g., Scheduling)
- Algorithmic Game Theory
Big change. Projects in the fields above but also

Quantum Computing
AI-fair allocation (e.g., Kidney Exchange)
AI-NLP
AI-Image Processings

The AI projects all had a mathematical component.

We changed the name to:

Combinatorics, Algorithms, and AI for Real Problems.
2017-2022

Big change. Projects in the fields above but also

- Quantum Computing
Big change. Projects in the fields above but also

- Quantum Computing
- AI-fair allocation (e.g., Kidney Exchange)
2017-2022

Big change. Projects in the fields above but also
- Quantum Computing
- AI-fair allocation (e.g., Kidney Exchange)
- AI-NLP
Big change. Projects in the fields above but also
- Quantum Computing
- AI-fair allocation (e.g., Kidney Exchange)
- AI-NLP
- AI-Image Processings
Big change. Projects in the fields above but also
- Quantum Computing
- AI-fair allocation (e.g., Kidney Exchange)
- AI-NLP
- AI-Image Processings

The AI projects all had a mathematical component.
Big change. Projects in the fields above but also
- Quantum Computing
- AI-fair allocation (e.g., Kidney Exchange)
- AI-NLP
- AI-Image Processings

The AI projects all had a mathematical component.
We changed the name to:
2017-2022

Big change. Projects in the fields above but also
- Quantum Computing
- AI-fair allocation (e.g., Kidney Exchange)
- AI-NLP
- AI-Image Processings

The AI projects all had a mathematical component.

We changed the name to:

Combinatorics, Algorithms, and AI for Real Problems.
The REU-CAAR Grant

2. Bill has been the PI (Principle Investigator) 2013-2024.

3. Samir was co-PI (co-Principle Investigator). 2013-2019

5. For 2022-23-24 we got additional money for a helper. In 2022 Auguste is that helper. He will (1) co-mentor a group, and (2) help Bill with a lot of stuff.
1. Grants are for 3 years. Original grant was 2013-14-15.
The REU-CAAR Grant

The REU-CAAR Grant

1. Grants are for 3 years. Original grant was 2013-14-15. Grant was renewed: 2016-17-18, 2019-20-21, 2022-23-24. **Bill** has been the PI (Principle Investigator) 2013-2024.

2. **Samir** was co-PI (co-Principle Investigator). 2013-2019

3. **Samir** left UMCP, became chair at NW in Spring 2020. I had no co-PI 2020-2024.

4. For 2022-23-24 we got additional money for a helper. In 2022 **Auguste** is that helper. He will (1) co-mentor a group, and (2) help **Bill** with a lot of stuff.
The REU-CAAR Grant

1. Grants are for 3 years. Original grant was 2013-14-15. Grant was renewed: 2016-17-18, 2019-20-21, 2022-23-24. **Bill** has been the PI (Principle Investigator) 2013-2024.

2. **Samir** was coPI (co-Principle Investigator). 2013-2019

3. **Samir** left UMCP, became chair at NW in Spring 2020. I had no co-PI 2020-2024.

4. For 2022-23-24 we got additional money for a helper. In 2022 **Auguste** is that helper. He will (1) co-mentor a group, and (2) help **Bill** with a lot of stuff.
The REU-CAAR Grant

1. Grants are for 3 years. Original grant was 2013-14-15. Grant was renewed: 2016-17-18, 2019-20-21, 2022-23-24. Bill has been the PI (Principle Investigator) 2013-2024.

2. Samir was coPI (co-Principle Investigator). 2013-2019

The REU-CAAR Grant

1. Grants are for 3 years. Original grant was 2013-14-15. Grant was renewed: 2016-17-18, 2019-20-21, 2022-23-24. Bill has been the PI (Principle Investigator) 2013-2024.

2. Samir was coPI (co-Principle Investigator). 2013-2019

4. For 2022-23-24 we got additional money for a helper. In 2022 Auguste is that helper. He will (1) co-mentor a group, and (2) help Bill with a lot of stuff.
1. Grants are for 3 years. Original grant was 2013-14-15. Grant was renewed: 2016-17-18, 2019-20-21, 2022-23-24. **Bill** has been the PI (Principle Investigator) 2013-2024.

2. **Samir** was coPI (co-Principle Investigator). 2013-2019

3. **Samir** left UMCP, became chair at NW in Spring 2020. I had no co-PI 2020-2024.

4. For 2022-23-24 we got additional money for a helper.
The REU-CAAR Grant

1. Grants are for 3 years. Original grant was 2013-14-15. Grant was renewed: 2016-17-18, 2019-20-21, 2022-23-24. Bill has been the PI (Principle Investigator) 2013-2024.

2. Samir was coPI (co-Principle Investigator). 2013-2019

4. For 2022-23-24 we got additional money for a helper. In 2022 Auguste is that helper. He will
The REU-CAAR Grant

1. Grants are for 3 years. Original grant was 2013-14-15. Grant was renewed: 2016-17-18, 2019-20-21, 2022-23-24. Bill has been the PI (Principle Investigator) 2013-2024.
2. Samir was coPI (co-Principle Investigator). 2013-2019
4. For 2022-23-24 we got additional money for a helper. In 2022 Auguste is that helper. He will (1) co-mentor a group, and
1. Grants are for 3 years. Original grant was 2013-14-15. Grant was renewed: 2016-17-18, 2019-20-21, 2022-23-24. **Bill** has been the PI (Principle Investigator) 2013-2024.

2. **Samir** was coPI (co-Principle Investigator). 2013-2019

3. **Samir** left UMCP, became chair at NW in Spring 2020. **I had no co-PI** 2020-2024.

4. For 2022-23-24 we got additional money for a helper. In 2022 **Auguste** is that helper. He will (1) co-mentor a group, and (2) help **Bill** with a lot of stuff.
Other REU Programs We Will Interact With

1. Mihai Pop is running REU-BRIDGE: Bioinformatics Research in Data science for Economics for 2022-23-24. Housing lists this as BIRD. B is for biocomp. This REU program is at Univ of MD at College Park.

2. Wojciech Czaja is running REU-MATH: Modern Topics in Applied and Pure Mathematics for 2023-24-25. Housing lists this as PAM-Pure and Applied Math. This REU program is at Univ of MD at College Park.

4. We will share some activities with these REU programs.
Other REU Programs We Will Interact With

1. Mihai Pop is running REU-BRIDGE:

 - Bioinformatics Research in Data science for Genomics for 2022-23-24. Housing lists this as BIRD. B is for biocomp.
 - This REU program is at Univ of MD at College Park.

2. Wojciech Czaja is running REU-MATH:

 - This REU program is at Univ of MD at College Park.

 - This REU program is at Salisbury University.

4. We will share some activities with these REU programs.
Other REU Programs We Will Interact With

1. **Mihai Pop** is running **REU-BRIDGE**: Bioinformatics Research In Data science for GEnomics
Other REU Programs We Will Interact With

1. **Mihai Pop** is running **REU-BRIDGE**: Bioinformatics Research In Data science for GEnomics for 2022-23-24.
Other REU Programs We Will Interact With

1. **Mihai Pop** is running **REU-BRIDGE**: Bioinformatics Research In Data science for GEnomics for 2022-23-24. Housing lists this as BIRD. B is for biocomp.
Other REU Programs We Will Interact With

1. **Mihai Pop** is running **REU-BRIDGE**: Bioinformatics Research In Data science for GEnomics for 2022-23-24. Housing lists this as BIRD. B is for biocomp. This REU program is at Univ of MD at College Park.
Other REU Programs We Will Interact With

1. **Mihai Pop** is running **REU-BRIDGE**: Bioinformatics Research In Data science for GEnomics for 2022-23-24. Housing lists this as BIRD. B is for biocomp. This REU program is at Univ of MD at College Park.

2. **Wojciech Czaja** is running **REU-MATH**:
Other REU Programs We Will Interact With

1. **Mihai Pop** is running **REU-BRIDGE**: Biinformatics Research In Data science for GEnomics for 2022-23-24. Housing lists this as BIRD. B is for biocomp. This REU program is at Univ of MD at College Park.

2. **Wojciech Czaja** is running **REU-MATH**: Modern Topics in Applied and Pure Math
Other REU Programs We Will Interact With

1. **Mihai Pop** is running **REU-BRIDGE**: Biinformatics Research In Data science for GEnomics for 2022-23-24. Housing lists this as BIRD. B is for biocomp. This REU program is at Univ of MD at College Park.

2. **Wojciech Czaja** is running **REU-MATH**: Modern Topics in Applied and Pure Math for 2023-24-25.
Other REU Programs We Will Interact With

1. **Mihai Pop** is running **REU-BRIDGE**: Biinformatics Research In Data science for GEnomics for 2022-23-24. Housing lists this as BIRD. B is for biocomp. This REU program is at Univ of MD at College Park.

2. **Wojciech Czaja** is running **REU-MATH**: Modern Topics in Applied and Pure Math for 2023-24-25. Housing lists this as PAM-Pure and Applied Math.
Other REU Programs We Will Interact With

1. **Mihai Pop** is running **REU-BRIDGE**: Bioinformatics Research In Data science for GEnomics for 2022-23-24. Housing lists this as BIRD. B is for biocomp. This REU program is at Univ of MD at College Park.

2. **Wojciech Czaja** is running **REU-MATH**: Modern Topics in Applied and Pure Math for 2023-24-25. Housing lists this as PAM-Pure and Applied Math. This REU program is at Univ of MD at College Park.
Other REU Programs We Will Interact With

1. **Mihai Pop** is running **REU-BRIDGE**: Bioinformatics Research In Data science for GEnomics for 2022-23-24. Housing lists this as BIRD. B is for biocomp. This REU program is at Univ of MD at College Park.

2. **Wojciech Czaja** is running **REU-MATH**: Modern Topics in Applied and Pure Math for 2023-24-25. Housing lists this as PAM-Pure and Applied Math. This REU program is at Univ of MD at College Park.

3. **Enyue ‘Annie’ Lu** is running **REU-EXERCISE**
Other REU Programs We Will Interact With

1. **Mihai Pop** is running **REU-BRIDGE:** Biinformatics Research In Data science for GEnomics for 2022-23-24. Housing lists this as BIRD. B is for biocomp. This REU program is at Univ of MD at College Park.

2. **Wojciech Czaja** is running **REU-MATH:** Modern Topics in Applied and Pure Math for 2023-24-25. Housing lists this as PAM-Pure and Applied Math. This REU program is at Univ of MD at College Park.

3. **Enyue ‘Annie’ Lu** is running **REU-EXERCISE** (EXlore Emerging Computing in Science and Engineering)
Other REU Programs We Will Interact With

1. **Mihai Pop** is running **REU-BRIDGE**: Biinformatics Research In Data science for GEnomics for 2022-23-24. Housing lists this as BIRD. B is for biocomp. This REU program is at Univ of MD at College Park.

2. **Wojciech Czaja** is running **REU-MATH**: Modern Topics in Applied and Pure Math for 2023-24-25. Housing lists this as PAM-Pure and Applied Math. This REU program is at Univ of MD at College Park.

Other REU Programs We Will Interact With

1. **Mihai Pop** is running **REU-BRIDGE**: Bioinformatics Research In Data science for GEnomics for 2022-23-24. Housing lists this as BIRD. B is for biocomp. This REU program is at Univ of MD at College Park.

2. **Wojciech Czaja** is running **REU-MATH**: Modern Topics in Applied and Pure Math for 2023-24-25. Housing lists this as PAM-Pure and Applied Math. This REU program is at Univ of MD at College Park.

1. **Mihai Pop** is running **REU-BRIDGE**: Bioinformatics Research In Data science for GEnomics for 2022-23-24. Housing lists this as BIRD. B is for biocomp. This REU program is at Univ of MD at College Park.

2. **Wojciech Czaja** is running **REU-MATH**: Modern Topics in Applied and Pure Math for 2023-24-25. Housing lists this as PAM-Pure and Applied Math. This REU program is at Univ of MD at College Park.

4. We will share some activities with these REU programs
Non-REU Programs We Will Interact With

1. Darren Cambridge and Hal Duame are running TRAILS

This is the program's first year. This program only has 5 people. They will join most of our lunches.

2. Bill Gasarch is running a Ramsey Gang. Every Tuesday June 17-July 30 Bill will be meeting with ∼12 students: mostly HS, some ugrads, and an obnoxious third grader. He (Bill, not the third grader) will talk about Ramsey Theory and toss out mini-projects. They will meet in our room, IRB 2207. You are free to join us.
Non-REU Programs We Will Interact With

1. Darren Cambridge and Hal Duame are running TRAILS TRustworthy AI in Law and Society
1. Darren Cambridge and Hal Duame are running TRAILS TRustworthy AI in Law and Society
 This is the program’s first year.
Non-REU Programs We Will Interact With

1. Darren Cambridge and Hal Duame are running **TRAILS** TRustworthy AI in Law and Society
 This is the program’s first year.
 This program only has 5 people. They will join most of our lunches.
Non-REU Programs We Will Interact With

1. Darren Cambridge and Hal Duame are running TRAILS
 TRustworthy AI in Law and Society
 This is the program’s first year.
 This program only has 5 people. They will join most of our lunches.

2. Bill Gasarch is running a Ramsey Gang.
Non-REU Programs We Will Interact With

1. Darren Cambridge and Hal Duame are running TRAILS TRustworthy AI in Law and Society
 This is the program’s first year.
 This program only has 5 people. They will join most of our lunches.

2. Bill Gasarch is running a Ramsey Gang.
 Every Tuesday June 17-July 30 Bill will be meeting with \(~12\) students: mostly HS, some ugrads, and an obnoxious third grader.
Non-REU Programs We Will Interact With

1. Darren Cambridge and Hal Duame are running TRAILS TRustworthy AI in Law and Society
 This is the program’s first year.
 This program only has 5 people. They will join most of our lunches.

2. Bill Gasarch is running a Ramsey Gang.
 Every Tuesday June 17-July 30 Bill will be meeting with ~12 students: mostly HS, some ugrads, and an obnoxious third grader.
 He (Bill, not the third grader) will talk about Ramsey Theory and toss out mini-projects.
Non-REU Programs We Will Interact With

1. Darren Cambridge and Hal Duame are running TRAILS TRustworthy AI in Law and Society
 This is the program’s first year.
 This program only has 5 people. They will join most of our lunches.

2. Bill Gasarch is running a Ramsey Gang.
 Every Tuesday June 17-July 30 Bill will be meeting with ~ 12 students: mostly HS, some ugrads, and an obnoxious third grader.
 He (Bill, not the third grader) will talk about Ramsey Theory and toss out mini-projects.
 They will meet in our room, IRB 2207. You are free to join us.
Program Goals and Expectations
Program Goals

1. **Research!** What is Research? Discuss!

 - Work on problems where the answers are not already known.
 - Expose you to a variety of career paths: Grad School, Industry, Government, Writer for the Simpsons, Hobo, Other.
 - Build skills: Team Work, Communication, Project Management.
 - Build a network with faculty and students. Useful for the future!
Program Goals

1. **Research!** What is Research? Discuss!
 Work on problems where the answers are **not** already known.
Program Goals

1. **Research!** What is Research? Discuss!
 Work on problems where the answers are **not** already known.
2. **Expose you to a variety of career paths.** Discuss!
Program Goals

1. **Research!** What is Research? Discuss!
 Work on problems where the answers are not already known.

2. **Expose you to a variety of career paths.** Discuss!
 Grad School,
 Industry,
 Government,
 Writer for the Simpsons,
 Hobo,
 Other.
Program Goals

1. **Research!** What is Research? Discuss!
 Work on problems where the answers are **not** already known.

2. **Expose you to a variety of career paths.** Discuss!
 Grad School, Industry,
Program Goals

1. **Research!** What is Research? Discuss!
 Work on problems where the answers are **not** already known.

2. **Expose you to a variety of career paths.** Discuss!
 Grad School, Industry, Government,
Program Goals

1. **Research!** What is Research? Discuss!
 Work on problems where the answers are not already known.

2. **Expose you to a variety of career paths.** Discuss!
 Grad School, Industry, Government, Writer for the Simpsons,
Program Goals

1. **Research!** What is Research? Discuss!
 Work on problems where the answers are not already known.

2. **Expose you to a variety of career paths.** Discuss!
 Grad School, Industry, Government, Writer for the Simpsons, Hobo,
Program Goals

1. **Research!** What is Research? Discuss!
 Work on problems where the answers are **not** already known.

2. **Expose you to a variety of career paths.** Discuss!
Program Goals

1. **Research!** What is Research? Discuss!
 Work on problems where the answers are **not** already known.

2. **Expose you to a variety of career paths.** Discuss!

3. **Build skills**
1. **Research!** What is Research? Discuss!
 Work on problems where the answers are **not** already known.

2. **Expose you to a variety of career paths.** Discuss!

3. **Build skills**
 Team Work,
Program Goals

1. **Research!** What is Research? Discuss!
 Work on problems where the answers are **not** already known.

2. **Expose you to a variety of career paths.** Discuss!

3. **Build skills**
 Team Work, Communication,
Program Goals

1. **Research!** What is Research? Discuss!
 Work on problems where the answers are not already known.

2. **Expose you to a variety of career paths.** Discuss!

3. **Build skills**
 Team Work, Communication, Project Management.
Program Goals

1. **Research!** What is Research? Discuss!
 Work on problems where the answers are **not** already known.

2. **Expose you to a variety of career paths.** Discuss!

3. **Build skills**
 Team Work, Communication, Project Management.

4. **Build a network** with faculty and students.
Program Goals

1. **Research!** What is Research? Discuss!
 Work on problems where the answers are **not** already known.

2. **Expose you to a variety of career paths.** Discuss!

3. **Build skills**
 Team Work, Communication, Project Management.

4. **Build a network** with faculty and students.
 Useful for the future!
What the Program Expects of You

1. Show up every weekday.
What the Program Expects of You

1. Show up every weekday. 10:00AM-4:00PM
What the Program Expects of You

1. Show up every weekday. 10:00AM-4:00PM

This is the Wrong Way To Look at the program
What the Program Expects of You

1. Show up every weekday. 10:00AM-4:00PM

This is the Wrong Way To Look at the program

I Invite you to talk about jobs you’ve had. I’ll go first.
What the Program Expects of You

1. Show up every weekday. 10:00AM-4:00PM

This is the Wrong Way To Look at the program

I Invite you to talk about jobs you’ve had. I’ll go first.

Upshot
What the Program Expects of You

1. Show up every weekday. 10:00AM-4:00PM

This is the Wrong Way To Look at the program

I Invite you to talk about jobs you’ve had. I’ll go first.

Upshot

1. This program should not be seen as a job where you put in your 8 hours a day and then you’re free to to what you want.
What the Program Expects of You

1. Show up every weekday. 10:00AM-4:00PM

This is the Wrong Way To Look at the program

I Invite you to talk about jobs you’ve had. I’ll go first.

Upshot

1. This program should not be seen as a job where you put in your 8 hours a day and then you’re free to to what you want.
2. You are here because you care about Algorithms or AI or Quantum.
What the Program Expects of You

1. Show up every weekday. 10:00AM-4:00PM

This is the Wrong Way To Look at the program

I Invite you to talk about jobs you’ve had. I’ll go first.

Upshot

1. This program should not be seen as a job where you put in your 8 hours a day and then you’re free to do what you want.
2. You are here because you care about Algorithms or AI or Quantum.
3. So you should want to keep working on your projects, perhaps on a lower level, after you go back to the dorms.
What the Program Expects of You

1. Show up every weekday. 10:00AM-4:00PM

This is the Wrong Way To Look at the program

I Invite you to talk about jobs you’ve had. I’ll go first.

Upshot

1. This program should not be seen as a job where you put in your 8 hours a day and then you’re free to to what you want.

2. You are here because you care about Algorithms or AI or Quantum.

3. So you should want to keep working on your projects, perhaps on a lower level, after you go back to the dorms.

4. Talk to each other in the dorms about your projects!
What the Program Expects of You: Restart

1. **Show up every weekday.**
What the Program Expects of You: Restart

1. **Show** up every weekday. On time AND sober.
What the Program Expects of You: Restart

1. **Show up every weekday.** On time AND sober. 10AM-4PM.
What the Program Expects of You: Restart

1. **Show up** every weekday. On time AND sober. 10AM-4PM. You should want to work longer, but prob back in the dorms.
What the Program Expects of You: Restart

1. **S**how up every weekday. On time AND sober. 10AM-4PM.
 You should want to work longer, but prob back in the dorms.

2. **P**articipate in assessments such as surveys.
What the Program Expects of You: Restart

1. **S**how up every weekday. On time AND sober. 10AM-4PM. You should want to work longer, but prob back in the dorms.
2. **P**articipate in assessments such as surveys.
3. **A**ctively contribute to your research project and your team.
4. **C**heck e-mail. Reminders, notices, requests will be emailed.

(I hyphenated email? Why? The original handbook did this and I wanted you to see an interesting piece of history. X-ray and T-shirt kept the hyphen but email did not. Why?)

5. **E**nthusiasm!
6. **A**ttend lunches, talks, and other activities.
7. **G**ive talks: Last week you will give a talk about your project. (Joint with REU-BRIDGE, REU-MATH, TRAILS.)
8. **E**njoy yourselves!

First letters spell **S**PACE **A**GE. Better for an astronomy REU.
What the Program Expects of You: Restart

1. Show up every weekday. On time AND sober. 10AM-4PM. You should want to work longer, but prob back in the dorms.
2. Participate in assessments such as surveys.
3. Actively contribute to your research project and your team.
4. Check e-mail. Reminders, notices, requests will be emailed.
5. Enthusiasm!
6. Attend lunches, talks, and other activities.
7. Give talks: Last week you will give a talk about your project. (Joint with REU-BRIDGE, REU-MATH, TRAILS.)
8. Enjoy yourselves!

First letters spell SPACE AGE. Better for an astronomy REU.
What the Program Expects of You: Restart

1. **S**how up every weekday. On time AND sober. 10AM-4PM. You should want to work longer, but prob back in the dorms.

2. **P**articipate in assessments such as surveys.

3. **A**ctively contribute to your research project and your team.

4. **C**heck e-mail. Reminders, notices, requests will be emailed. (I hyphenated email? Why? The original handbook did this and I wanted you to see an interesting piece of history. X-ray and T-shirt kept the hyphen but email did not. Why?)

5. **E**nthusiasm!

6. **A**ttend lunches, talks, and other activities.

7. **G**ive talks: Last week you will give a talk about your project. (Joint with REU-BRIDGE, REU-MATH, TRAILS.)

8. **E**njoy yourselves!

First letters spell **SP**ACE **A**GE. Better for an astronomy REU.
What the Program Expects of You: Restart

1. **S**how up every weekday. On time AND sober. 10AM-4PM. You should want to work longer, but prob back in the dorms.

2. **P**articipate in assessments such as surveys.

3. **A**ctively contribute to your research project and your team.

4. **C**heck e-mail. Reminders, notices, requests will be emailed. (I hyphenated **email**? Why? The original handbook did this and I wanted you to see an interesting piece of history. X-ray and T-shirt kept the hyphen but email did not. Why?)

5. **E**nthusiasm!

First letters spell **SPACE AGE**. Better for an astronomy REU.
What the Program Expects of You: Restart

1. **S**how up every weekday. On time AND sober. 10AM-4PM. You should want to work longer, but prob back in the dorms.
2. **P**articipate in assessments such as surveys.
3. **A**ctively contribute to your research project and your team.
4. **C**heck e-mail. Reminders, notices, requests will be emailed. (I hyphenated email? Why? The original handbook did this and I wanted you to see an interesting piece of history. X-ray and T-shirt kept the hyphen but email did not. Why?)
5. **E**nthusiasm!
6. **A**ttend lunches, talks, and other activities.
What the Program Expects of You: Restart

1. **S**how up every weekday. On time AND sober. 10AM-4PM. You should want to work longer, but prob back in the dorms.
2. **P**articipate in assessments such as surveys.
3. **A**ctively contribute to your research project and your team.
4. **C**heck e-mail. Reminders, notices, requests will be emailed. (I hyphenated email? Why? The original handbook did this and I wanted you to see an interesting piece of history. X-ray and T-shirt kept the hyphen but email did not. Why?)
5. **E**nthusiasm!
6. **A**ttend lunches, talks, and other activities.
7. **G**ive talks: Last week you will give a talk about your project.
What the Program Expects of You: Restart

1. **S**how up every weekday. On time AND sober. 10AM-4PM. You should want to work longer, but prob back in the dorms.

2. **P**articipate in assessments such as surveys.

3. **A**ctively contribute to your research project and your team.

4. **C**heck e-mail. Reminders, notices, requests will be emailed. (I hyphenated email? Why? The original handbook did this and I wanted you to see an interesting piece of history. X-ray and T-shirt kept the hyphen but email did not. Why?)

5. **E**nthusiasm!

6. **A**ttend lunches, talks, and other activities.

7. **G**ive talks: Last week you will give a talk about your project. (Joint with REU-BRIDGE, REU-MATH, TRAILS.)

Enjoy yourselves! First letters spell SPACE AGE. Better for an astronomy REU.
What the Program Expects of You: Restart

1. **S**how up every weekday. On time AND sober. 10AM-4PM. You should want to work longer, but prob back in the dorms.

2. **P**articipate in assessments such as surveys.

3. **A**ctively contribute to your research project and your team.

4. **C**heck e-mail. Reminders, notices, requests will be emailed. (I hyphenated email? Why? The original handbook did this and I wanted you to see an interesting piece of history. X-ray and T-shirt kept the hyphen but email did not. Why?)

5. **E**nthusiasm!

6. **A**ttend lunches, talks, and other activities.

7. **G**ive talks: Last week you will give a talk about your project. (Joint with REU-BRIDGE, REU-MATH, TRAILS.)

8. **E**njoy yourselves!
What the Program Expects of You: Restart

1. **Show** up every weekday. On time AND sober. 10AM-4PM. You should want to work longer, but prob back in the dorms.

2. **Participate** in assessments such as surveys.

3. **Actively** contribute to your research project and your team.

4. **Check** e-mail. Reminders, notices, requests will be emailed. (I hyphenated *email*? Why? The original handbook did this and I wanted you to see an interesting piece of history. X-ray and T-shirt kept the hyphen but email did not. Why?)

5. **Enthusiasm**!

6. **Attend** lunches, talks, and other activities.

7. **Give** talks: Last week you will give a talk about your project. (Joint with REU-BRIDGE, REU-MATH, TRAILS.)

8. **Enjoy** yourselves!

First letters spell **SPACE AGE**.
What the Program Expects of You: Restart

1. **S**how up every weekday. On time AND sober. 10AM-4PM. You should want to work longer, but prob back in the dorms.
2. **P**articipate in assessments such as surveys.
3. **A**ctively contribute to your research project and your team.
4. **C**heck e-mail. Reminders, notices, requests will be emailed. (I hyphenated email? Why? The original handbook did this and I wanted you to see an interesting piece of history. X-ray and T-shirt kept the hyphen but email did not. Why?)
5. **E**nthusiasm!
6. **A**ttend lunches, talks, and other activities.
7. **G**ive talks: Last week you will give a talk about your project. (Joint with REU-BRIDGE, REU-MATH, TRAILS.)
8. **E**njoy yourselves!

First letters spell **SPACE AGE**. Better for an astronomy REU.
Your Mentor’s Role

1. **Role modeling**: Their experiences offer clues for your own professional success story.
1. **Role modeling:** Their experiences offer clues for your own professional success story.

2. **Communication:** Explain the project, answer questions, listen to your concerns and ideas, etc.
Your Mentor’s Role

1. **Role modeling:** Their experiences offer clues for your own professional success story.

2. **Communication:** Explain the project, answer questions, listen to your concerns and ideas, etc.

3. **Background:** Explain **why** the research is important! How it fits into other things!
Your Mentor’s Role

1. **Role modeling:** Their experiences offer clues for your own professional success story.

2. **Communication:** Explain the project, answer questions, listen to your concerns and ideas, etc.

3. **Background:** Explain *why* the research is important! How it fits into other things!

4. **Connection:** Help connect you to their colleagues, graduate assistants, others.
What Faculty Mentors Expect from You

1. **Communication:**
 - Be clear in verbal & written comm.
 - Seek clarification, ask questions, provide suggestions.

2. **Assertiveness:**
 - Think for yourself and support your own ideas.

3. **Maturity:**
 - Be reliable for what your mentor asks you to do.

4. **Enthusiasm:**
 - Be interested in the project, field, and topic.

5. **Responsible:**
 - Tell your team changes that affect your participation.

6. **Adaptability:**
 - Be flexible and open-minded.

First letters spell out **CAMERA**.

Better for a Vision REU.

Credit Auguste thought of making the first letters spell words.
What Faculty Mentors Expect from You

1. **Communication**: Be clear in verbal & written comm.
What Faculty Mentors Expect from You

1. **Communication**: Be clear in verbal & written comm. Seek clarification, ask questions, provide suggestions.
What Faculty Mentors Expect from You

1. **Communication:** Be clear in verbal & written comm.
 Seek clarification, ask questions, provide suggestions.
2. **Assertiveness:**

First letters spell out **CAMERA**.
Better for a Vision REU.
Credit Auguste thought of making the first letters spell words.
What Faculty Mentors Expect from You

1. **Communication:** Be clear in verbal & written comm. Seek clarification, ask questions, provide suggestions.
2. **Assertiveness:** Think for yourself and support your own ideas.
What Faculty Mentors Expect from You

1. **Communication:** Be clear in verbal & written comm. Seek clarification, ask questions, provide suggestions.
2. **Assertiveness:** Think for yourself and support your own ideas.
3. **Maturity:**
What Faculty Mentors Expect from You

1. **Communication**: Be clear in verbal & written comm. Seek clarification, ask questions, provide suggestions.
2. **Assertiveness**: Think for yourself and support your own ideas.
3. **Maturity**: Be reliable for what your mentor asks you do do.
What Faculty Mentors Expect from You

1. **Communication:** Be clear in verbal & written comm. Seek clarification, ask questions, provide suggestions.

2. **Assertiveness:** Think for yourself and support your own ideas.

3. **Maturity:** Be reliable for what your mentor asks you to do.

4. **Enthusiasm:**

 Better for a Vision REU. Credit Auguste thought of making the first letters spell words.
What Faculty Mentors Expect from You

1. **Communication**: Be clear in verbal & written comm. Seek clarification, ask questions, provide suggestions.

2. **Assertiveness**: Think for yourself and support your own ideas.

3. **Maturity**: Be reliable for what your mentor asks you to do.

4. **Enthusiasm**: Be interested in the project, field, and topic.
What Faculty Mentors Expect from You

1. **Communication:** Be clear in verbal & written comm. Seek clarification, ask questions, provide suggestions.
2. **Assertiveness:** Think for yourself and support your own ideas.
3. **Maturity:** Be reliable for what your mentor asks you to do.
4. **Enthusiasm:** Be interested in the project, field, and topic.
5. **Responsible:**
What Faculty Mentors Expect from You

1. **Communication**: Be clear in verbal & written comm. Seek clarification, ask questions, provide suggestions.
2. **Assertiveness**: Think for yourself and support your own ideas.
3. **Maturity**: Be reliable for what your mentor asks you to do.
4. **Enthusiasm**: Be interested in the project, field, and topic.
5. **Responsible**: Tell your team changes that affect your participation.

First letters spell out **CAMERA**. Better for a Vision REU. Credit Auguste thought of making the first letters spell words.
What Faculty Mentors Expect from You

1. **Communication:** Be clear in verbal & written comm. Seek clarification, ask questions, provide suggestions.
2. **Assertiveness:** Think for yourself and support your own ideas.
3. **Maturity:** Be reliable for what your mentor asks you to do.
4. **Enthusiasm:** Be interested in the project, field, and topic.
5. **Responsible:** Tell your team changes that affect your participation.
6. **Adaptability:**
What Faculty Mentors Expect from You

1. Communication: Be clear in verbal & written comm. Seek clarification, ask questions, provide suggestions.
2. Assertiveness: Think for yourself and support your own ideas.
3. Maturity: Be reliable for what your mentor asks you do do.
4. Enthusiasm: Be interested in the project, field, and topic.
5. Responsible: Tell your team changes that affect your participation.
6. Adaptability: Be flexible and open minded.
What Faculty Mentors Expect from You

1. **Communication**: Be clear in verbal & written comm. Seek clarification, ask questions, provide suggestions.
2. **Assertiveness**: Think for yourself and support your own ideas.
3. **Maturity**: Be reliable for what your mentor asks you do do.
4. **Enthusiasm**: Be interested in the project, field, and topic.
5. **Responsible**: Tell your team changes that affect your participation.
6. **Adaptability**: Be flexible and open minded.

First letters spell out **CAMERA**.
What Faculty Mentors Expect from You

1. **Communication**: Be clear in verbal & written comm. Seek clarification, ask questions, provide suggestions.
2. **Assertiveness**: Think for yourself and support your own ideas.
3. **Maturity**: Be reliable for what your mentor asks you to do.
4. **Enthusiasm**: Be interested in the project, field, and topic.
5. **Responsible**: Tell your team changes that affect your participation.
6. **Adaptability**: Be flexible and open minded.

First letters spell out **CAMERA**. Better for a Vision REU.
What Faculty Mentors Expect from You

1. **Communication**: Be clear in verbal & written comm. Seek clarification, ask questions, provide suggestions.
2. **Assertiveness**: Think for yourself and support your own ideas.
3. **Maturity**: Be reliable for what your mentor asks you to do.
4. **Enthusiasm**: Be interested in the project, field, and topic.
5. **Responsible**: Tell your team changes that affect your participation.
6. **Adaptability**: Be flexible and open minded.

First letters spell out **CAMERA**. Better for a Vision REU. **Credit Auguste** thought of making the first letters spell words.
Issues that Probably Won’t Arise But Need to be Discussed
Sexual Harassment and Discrimination

1. If you feel uncomfortable, seek advice and guidance from others. Bill, Auguste, or Aviva can offer assistance and direct you to campus resources for help. Note that in the United States there is Mandatory Reporting: if a mentor or director hears about a case of sexual harassment, they must report it.

2. While this slide is about Sexual Harassment and Discrimination, feel free to talk to Bill, Auguste, or Aviva about any issue, even if it is uncomfortable.
1. If you feel uncomfortable, seek advice and guidance from others.
Sexual Harassment and Discrimination

1. If you feel uncomfortable, seek advice and guidance from others.
 Bill, Auguste, or **Aviva** can offer assistance and direct you to campus resources for help.
1. If you feel uncomfortable, seek advice and guidance from others. Bill, Auguste, or Aviva can offer assistance and direct you to campus resources for help. Note that in the United State there is Mandatory Reporting: if a mentor or director hears about a case of sexual harassment, they must report it.
Sexual Harassment and Discrimination

1. If you feel uncomfortable, seek advice and guidance from others.
 Bill, Auguste, or Aviva can offer assistance and direct you to campus resources for help.
 Note that in the United State there is Mandatory Reporting: if a mentor or director hears about a case of sexual harassment, they must report it.

2. While this slide is about Sexual Harassment and Discrimination, feel free to talk to Bill, Auguste, or Aviva about any issue, even if it is uncomfortable.
Good News That You Know:
1. You get a stipend.
2. You get free room and some meal money.

If you do not do your part, you could be asked to leave, which will mean you get less of your stipend. This is RARE! (once in 2014 and once in 2016).

What is 'your part':
SPACE AGE and CAMERA
My Least Favorite Topic

Good News That You Know:

1. You get a stipend.
My Least Favorite Topic

Good News That You Know:

1. You get a stipend.
2. You get free room and some meal money.
My Least Favorite Topic

Good News That You Know:

1. You get a stipend.
2. You get free room and some meal money.

If you do not do your part
My Least Favorite Topic

Good News That You Know:

1. You get a stipend.
2. You get free room and some meal money.

If you do not do your part
You could be asked to leave, which will mean you get less of your stipend. This is RARE! (once in 2014 and once in 2016).
My Least Favorite Topic

Good News That You Know:

1. You get a stipend.
2. You get free room and some meal money.

If you do not do your part
You could be asked to leave, which will mean you get less of your stipend. This is RARE! (once in 2014 and once in 2016).

What is ‘your part’:
Good News That You Know:

1. You get a stipend.
2. You get free room and some meal money.

If you do not do your part
You could be asked to leave, which will mean you get less of your stipend. This is RARE! (once in 2014 and once in 2016).

What is ‘your part’:
SPACE AGE and CAMERA
Complain SOONER Rather than Later

Better to get a problem resolved EARLY, whatever they are.
Complain SOONER Rather than Later

Better to get a problem resolved EARLY, whatever they are.

Key to a good relationship:
Complain SOONER Rather than Later

Better to get a problem resolved EARLY, whatever they are.

Key to a good relationship:

In any problem or dispute that arises the important thing is
Better to get a problem resolved EARLY, whatever they are.

Key to a good relationship:

In any problem or dispute that arises the important thing is

not fixing it and making things work out
Complain SOONER Rather than Later

Better to get a problem resolved EARLY, whatever they are.

Key to a good relationship:

In any problem or dispute that arises the important thing is not fixing it and making things work out

its finding whose to Blame :-)

Most Common Complaints

1. Most common complaint from students: My Advisor is Ghosting Me

2. Most common complaint from mentors: My Students are Ghosting Me

Upshot: Communication!
Most Common Complaints

1. Most common complaint from students:

 My Advisor is Ghosting Me

2. Most common complaint from mentors:

 My Students are Ghosting Me

Upshot

Communication!
Most Common Complaints

1. Most common complaint from students: My Advisor is Ghosting Me
Most Common Complaints

1. Most common complaint from students: **My Advisor is Ghosting Me**
2. Most common complaint from mentors:
Most Common Complaints

1. Most common complaint from students:
 My Advisor is Ghosting Me

2. Most common complaint from mentors:
 My Students are Ghosting Me
Most Common Complaints

1. Most common complaint from students:
 My Advisor is Ghosting Me

2. Most common complaint from mentors:
 My Students are Ghosting Me

Upshot Communication!
Schedule and Activities
First Week++ Talks

You should all know about each others projects:
First Week++ Talks

You should all know about each others projects:

For all projects p
First Week++ Talks

You should all know about each others projects:

For all projects p

there exists a mentor m for project p and a day d such that
First Week++ Talks

You should all know about each others projects:

For all projects p

there exists a mentor m for project p and a day d such that

mentor m gives a talk on project p on day d.
First Week++ Talks

You should all know about each others projects:

For all projects p
there exists a mentor m for project p and a day d such that
mentor m gives a talk on project p on day d.

In symbols

$$(\forall p)(\exists m, d)[\text{MENTOR}(p, m) \land \text{TALK}(p, m, d)].$$
First Week - Lunch

1. Monday 12:00-1:30 lunch in IRB.
2. This lunch you will play telepictionary!
3. Tu, We, Th, Fr - Lunch in the union or IRB from your meal card.
4. Bill will join you for lunch some of the first week.
First Week - Lunch

1. Monday 12:00-1:30 lunch in IRB.
First Week - Lunch

1. Monday 12:00-1:30 lunch in IRB.
2. This lunch you will play telepictionary!
First Week - Lunch

1. Monday 12:00-1:30 lunch in IRB.
2. This lunch you will play telepictionary!
3. Tu,We,Th,Fr- Lunch in the union or IRB from your meal card.
First Week - Lunch

1. Monday 12:00-1:30 lunch in IRB.
2. This lunch you will play telepictionary!
3. Tu,We,Th,Fr- Lunch in the union or IRB from your meal card.
4. Bill will join you for lunch some of the first week.
First Week

1. Red Tape stuff (hopefully ends Tues).
2. Every day of the first week, at 4:00, a talk by a mentor on their project.
3. Research—Every day.
First Week

1. **Red** Tape stuff (hopefully ends Tues).
First Week

1. **Red** Tape stuff (hopefully ends Tues).
2. Every day of the first week, at 4:00, a talk by a mentor on their project.
First Week

1. **Red** Tape stuff (hopefully ends Tues).
2. Every day of the first week, at 4:00, a talk by a mentor on their project.
3. Research—Every day.
Most Weeks

1. Get here by 10:00AM go to your projects room.
2. Research 10:00-12:00 (approx)
3. Lunch 12:00-1:30 (approx). MONDAY lunch IRB
4. Research 1:30-4:00.
5. Talks on Wednesday afternoons at 4:00.
6. Every other Friday you get your paycheck! Don't blow it all on supercomputer time!
7. At night talk about Applying Quantum error correction, ML, and Geometry to Crop Decisions
8. Weekends— Explore Washington DC! or College Park! (Check the metro website—lots of trains are not running at times.)
9. Some of these items may change (e.g., lunches, talks may be a diff day).
Most Weeks

1. Get here by 10:00AM go to your projects room.
Most Weeks

1. Get here by 10:00AM go to your projects room.
2. Research 10:00-12:00 (approx)

Note: Some of these items may change (e.g., lunches, talks may be a different day).
Most Weeks

1. Get here by 10:00AM go to your projects room.
2. Research 10:00-12:00 (approx)
3. Lunch 12:00-1:30 (approx). MONDAY lunch IRB
4. Research 1:30-4:00.
5. Talks on Wednesday afternoons at 4:00.
6. Every other Friday you get your paycheck! Don’t blow it all on supercomputer time!
7. At night talk about Applying Quantum error correction, ML, and Geometry to Crop Decisions
8. Weekends—Explore Washington DC! or College Park! (Check the metro website—lots of trains are not running at times.)
9. Some of these items may change (e.g., lunches, talks may be a different day).
Most Weeks

1. Get here by 10:00AM go to your projects room.
2. Research 10:00-12:00 (approx)
3. Lunch 12:00-1:30 (approx). MONDAY lunch IRB
4. Research 1:30-4:00.
Most Weeks

1. Get here by 10:00AM go to your projects room.
2. Research 10:00-12:00 (approx)
3. Lunch 12:00-1:30 (approx). MONDAY lunch IRB
4. Research 1:30-4:00.
5. Talks on Wednesday afternoons at 4:00.

6. Every other Friday you get your paycheck! Don’t blow it all on supercomputer time!
7. At night talk about Applying Quantum error correction, ML, and Geometry to Crop Decisions
8. Weekends— Explore Washington DC! or College Park! (Check the metro website—lots of trains are not running at times.)
9. Some of these items may change (e.g., lunches, talks may be a diff day).
Most Weeks

1. Get here by 10:00AM go to your projects room.
2. Research 10:00-12:00 (approx)
3. Lunch 12:00-1:30 (approx). MONDAY lunch IRB
4. Research 1:30-4:00.
5. Talks on Wednesday afternoons at 4:00.
6. Every other Friday you get your paycheck! Don’t blow it all on supercomputer time!

7. At night talk about Applying Quantum error correction, ML, and Geometry to Crop Decisions
8. Weekends— Explore Washington DC! or College Park! (Check the metro website—lots of trains are not running at times.)
9. Some of these items may change (e.g., lunches, talks may be a diff day).
Most Weeks

1. Get here by 10:00AM go to your projects room.
2. Research 10:00-12:00 (approx)
3. Lunch 12:00-1:30 (approx). MONDAY lunch IRB
4. Research 1:30-4:00.
5. Talks on Wednesday afternoons at 4:00.
6. Every other Friday you get your paycheck! Don’t blow it all on supercomputer time!
7. At night talk about Applying Quantum error correction, ML, and Geometry to Crop Decisions

Weekends— Explore Washington DC! or College Park! (Check the metro website—lots of trains are not running at times.)
Some of these items may change (e.g., lunches, talks may be a diff day).
Most Weeks

1. Get here by 10:00AM go to your projects room.
2. Research 10:00-12:00 (approx)
3. Lunch 12:00-1:30 (approx). MONDAY lunch IRB
4. Research 1:30-4:00.
5. Talks on Wednesday afternoons at 4:00.
6. Every other Friday you get your paycheck! Don’t blow it all on supercomputer time!
7. At night talk about **Applying Quantum error correction, ML, and Geometry to Crop Decisions**
8. Weekends— Explore Washington DC! or College Park! (Check the metro website—lots of trains are not running at times.)
Most Weeks

1. Get here by 10:00AM go to your projects room.
2. Research 10:00-12:00 (approx)
3. Lunch 12:00-1:30 (approx). MONDAY lunch IRB
4. Research 1:30-4:00.
5. Talks on Wednesday afternoons at 4:00.
6. Every other Friday you get your paycheck! Don’t blow it all on supercomputer time!
7. At night talk about Applying Quantum error correction, ML, and Geometry to Crop Decisions
8. Weekends— Explore Washington DC! or College Park! (Check the metro website—lots of trains are not running at times.)
9. Some of these items may change (e.g., lunches, talks may be a diff day).
Explore Washington DC On Your Own AND

1. Those of you that are locals please help the out-of-towners.
Explore Washington DC On Your Own AND

1. Those of you that are locals please help the out-of-towners. Sergey Brin was a UMCP undergrad, so use Google maps.
Explore Washington DC On Your Own AND

1. Those of you that are locals please help the out-of-towners. Sergey Brin was a UMCP undergrad, so use Google maps.
2. Weekends: visit Washington DC.
Explore Washington DC On Your Own AND

1. Those of you that are locals please help the out-of-towners. Sergey Brin was a UMCP undergrad, so use Google maps.
2. Weekends: visit Washington DC.
3. Go to the Whitehouse and say hello to President Biden. He increased the NSF funding!
Explore Washington DC On Your Own AND

1. Those of you that are locals please help the out-of-towners. Sergey Brin was a UMCP undergrad, so use Google maps.
2. Weekends: visit Washington DC.
3. Go to the Whitehouse and say hello to President Biden. He increased the NSF funding!
 U. of Del ugrad Joe Biden did his honors thesis on
1. Those of you that are locals please help the out-of-towners. Sergey Brin was a UMCP undergrad, so use Google maps.

2. Weekends: visit Washington DC.

3. Go to the Whitehouse and say hello to President Biden. He increased the NSF funding!

U. of Del ugrad Joe Biden did his honors thesis on Parallel Algorithms for Nearest Neighbor Search
There is a Metro Stop in College Park.
College Park Metro Station

There is a Metro Stop in College Park.

Check: There are websites that have metro information- check them before any excursion.
Other Things We Will Do

1. Discussion of Ethics of Research.
2. Discussion of graduate school (with other programs).
3. Game Nights with Pizza!
4. Final presentation the last week (with other programs).
5. Unexpected things will happen! Always expect the unexpected! (Is that a paradox? A project for Summer 2025 REU.)
Other Things We Will Do

1. Discussion of **Ethics of Research.**
Other Things We Will Do

1. Discussion of **Ethics of Research.**
2. Discussion of **graduate school** (with other programs).
Other Things We Will Do

1. Discussion of **Ethics of Research**.
2. Discussion of **graduate school** (with other programs).
3. **Game Nights** with Pizza!

4. **Final presentation** the last week (with other programs).
5. **Unexpected things** will happen! Always expect the unexpected! (Is that a paradox? A project for Summer 2025 REU.)
Other Things We Will Do

1. Discussion of **Ethics of Research**.
2. Discussion of **graduate school** (with other programs).
3. **Game Nights** with Pizza!
4. **Final presentation** the last week (with other programs).
Other Things We Will Do

1. Discussion of **Ethics of Research**.
2. Discussion of **graduate school** (with other programs).
3. **Game Nights** with Pizza!
4. **Final presentation** the last week (with other programs).
5. **Unexpected things** will happen! Always expect the unexpected!
Other Things We Will Do

1. Discussion of **Ethics of Research.**
2. Discussion of **graduate school** (with other programs).
3. **Game Nights** with Pizza!
4. **Final presentation** the last week (with other programs).
5. **Unexpected things** will happen! Always expect the unexpected!
 (Is that a paradox? A project for Summer 2025 REU.)
Summary of Projects and People
Parallelism for Nearest Neighbor Search

Elevator Pitch

Design a Data structure for a large set of points in $A \subseteq \mathbb{R}^n$ such that the following query can be answered quickly:

Given a point $p \in \mathbb{R}^n$ find the point in A that is closest to p.

Main concern is usually that we want the DS to use a small amount of space.

We change the problem in two ways at the same time:

1. We will settle for Approximate NN
2. The algorithm to find the NN is parallel.

Mentors

Laxman and Tobias

Students

Arushi, Atharva, Dinesh, Pranav.
Elevator Pitch

Parallelism for Nearest Neighbor Search

Design a data structure for a large set of points in \(A \subseteq \mathbb{R}^n \) such that the following query can be answered quickly:

Given a point \(p \in \mathbb{R}^n \) find the point in \(A \) that is closest to \(p \).

Main concern is usually that we want the data structure to use a small amount of space.

We change the problem in two ways at the same time:

1. We will settle for approximate nearest neighbor.
2. The algorithm to find the nearest neighbor is parallel.

Mentors: Laxman and Tobias

Students: Arushi, Atharva, Dinesh, Pranav.
Elevator Pitch NN Design a Data structure for a large set of points in $A \subseteq \mathbb{R}^n$ such that the following query can be answered quickly:
Parallelism for Nearest Neighbor Search

Elevator Pitch NN Design a Data structure for a large set of points in $A \subseteq \mathbb{R}^n$ such that the following query can be answered quickly:

Given a point $p \in \mathbb{R}^n$ find the point in A that is closest to p.
Elevator Pitch NN Design a Data structure for a large set of points in $A \subseteq \mathbb{R}^n$ such that the following query can be answered quickly:

Given a point $p \in \mathbb{R}^n$ **find the point in** A **that is closest to** p. Main concern is usually that we want the DS to use a small amount of space.
Parallelism for Nearest Neighbor Search

Elevator Pitch NN Design a Data structure for a large set of points in \(A \subseteq \mathbb{R}^n \) such that the following query can be answered quickly:

Given a point \(p \in \mathbb{R}^n \) find the point in \(A \) that is closest to \(p \).

Main concern is usually that we want the DS to use a small amount of space.

We change the problem in two ways at the same time:
Elevator Pitch NN Design a Data structure for a large set of points in $A \subseteq \mathbb{R}^n$ such that the following query can be answered quickly:

Given a point $p \in \mathbb{R}^n$ **find the point in** A **that is closest to** p.

Main concern is usually that we want the DS to use a small amount of space.

We change the problem in two ways at the same time:

1. We will settle for Approximate NN
Elevator Pitch NN Design a Data structure for a large set of points in $A \subseteq \mathbb{R}^n$ such that the following query can be answered quickly:

Given a point $p \in \mathbb{R}^n$ find the point in A that is closest to p.

Main concern is usually that we want the DS to use a small amount of space.

We change the problem in two ways at the same time:

1. We will settle for Approximate NN
2. The algorithm to find the NN is parallel.
Elevator Pitch NN Design a Data structure for a large set of points in $A \subseteq \mathbb{R}^n$ such that the following query can be answered quickly:

Given a point $p \in \mathbb{R}^n$ **find the point in** A **that is closest to** p.

Main concern is usually that we want the DS to use a small amount of space.

We change the problem in two ways at the same time:

1. We will settle for Approximate NN
2. The algorithm to find the NN is parallel.

Mentors Laxman and Tobias
Elevator Pitch NN Design a Data structure for a large set of points in $A \subseteq \mathbb{R}^n$ such that the following query can be answered quickly:

Given a point $p \in \mathbb{R}^n$ find the point in A that is closest to p.

Main concern is usually that we want the DS to use a small amount of space.

We change the problem in two ways at the same time:

1. We will settle for Approximate NN
2. The algorithm to find the NN is parallel.

Mentors Laxman and Tobias
Students Arushi, Atharva, Dinesh, Pranav.
Exploring Hilbert Geometry

Elevator Pitch
Computational Geom asks comp questions about subsets of \(\mathbb{R}^n \).

One topic is to look at \(\{ (p_1, \ldots, p_n) : 0 \leq p_i \leq 1 \land \sum_{i=1}^{n} p_i = 1 \} \) which is called the probability simplex.

What if you are in another space? A curved space? What can you do?
You can do This project!

Mentors Auguste and Dave.
Students Carmen, Hridhaan, Lucy, Megan, Nithin, Olga, Megan, Sarah
Exploring Hilbert Geometry

Elevator Pitch

Computational Geom asks comp questions about subsets of \mathbb{R}^n. One topic is to look at \{ (p_1, \ldots, p_n) : $0 \leq p_i \leq 1$ \land $\sum_{i=1}^{n} p_i = 1$ \} which is called the probability simplex. What if you are in another space? A curved space? What can you do? You can do this project!

Mentors: Auguste and Dave.

Students: Carmen, Hridhaan, Lucy, Megan, Nithin, Olga, Megan, Sarah
Exploring Hilbert Geometry

Elevator Pitch
Computational Geom asks comp questions about subsets of \mathbb{R}^n.

Mentors
Auguste and Dave.

Students
Carmen, Hridhaan, Lucy, Megan, Nithin, Olga, Megan, Sarah
Exploring Hilbert Geometry

Elevator Pitch
Computational Geom asks comp questions about subsets of \mathbb{R}^n. One topic is to look at

$$\{(p_1, \ldots, p_n) : 0 \leq p_i \leq 1 \land \sum_{i=1}^{n} p_i = 1\}$$

which is called the probability simplex.
Exploring Hilbert Geometry

Elevator Pitch
Computational Geom asks comp questions about subsets of \mathbb{R}^n. One topic is to look at

$$\{(p_1, \ldots, p_n) : 0 \leq p_i \leq 1 \land \sum_{i=1}^{n} p_i = 1\}$$

which is called the probability simplex.
What if you are in another space? A curved space? What can you do?
Exploring Hilbert Geometry

Elevator Pitch
Computational Geom asks comp questions about subsets of \mathbb{R}^n. One topic is to look at

$$\{(p_1, \ldots, p_n) : 0 \leq p_i \leq 1 \land \sum_{i=1}^{n} p_i = 1\}$$

which is called the probability simplex. What if you are in another space? A curved space? What can you do? You can do **This project!**
Exploring Hilbert Geometry

Elevator Pitch
Computational Geom asks comp questions about subsets of \mathbb{R}^n. One topic is to look at

$$\{(p_1, \ldots, p_n) : 0 \leq p_i \leq 1 \land \sum_{i=1}^{n} p_i = 1\}$$

which is called the probability simplex.
What if you are in another space? A curved space? What can you do? You can do This project!

Mentors Auguste and Dave.
Exploring Hilbert Geometry

Elevator Pitch
Computational Geom asks comp questions about subsets of \mathbb{R}^n. One topic is to look at

$$\{(p_1, \ldots, p_n) : 0 \leq p_i \leq 1 \land \sum_{i=1}^{n} p_i = 1\}$$

which is called the probability simplex. What if you are in another space? A curved space? What can you do? You can do This project!

Mentors Auguste and Dave.

Students Carmen, Hridhaan, Lucy, Megan, Nithin, Olga, Megan, Sarah
Crop Planning Decisions Support With Multi-Agent Reinforcement Learning
Crop Planning Decisions Support With Multi-Agent Reinforcement Learning

Elevator Pitch

Farmers in India need your help!

Small changes in climate ⇒ big changes in planning crops.

They need to predict the weather AND make plans.

But if they all do the same thing, that's bad also.

Game Theory!

Mentor: Aviva

Students: Anubah, Daniel, Ethan, Shreya
Elevator Pitch Farmers in India need your help!
Crop Planning Decisions Support With Multi-Agent Reinforcement Learning

Elevator Pitch Farmers in India need your help!
Small changes in climate \Rightarrow big changes in planning crops.
Elevator Pitch Farmers in India need your help!
Small changes in climate \Rightarrow big changes in planning crops.
They need to predict the weather AND make plans.
Crop Planning Decisions Support With Multi-Agent Reinforcement Learning

Elevator Pitch Farmers in India need your help! Small changes in climate \implies big changes in planning crops. They need to predict the weather AND make plans. But if they all do the same thing, thats bad also.
Elevator Pitch Farmers in India need your help!
Small changes in climate \implies big changes in planning crops.
They need to predict the weather AND make plans.
But if they all do the same thing, thats bad also.
Game Theory!
Crop Planning Decisions Support With Multi-Agent Reinforcement Learning

Elevator Pitch Farmers in India need your help! Small changes in climate \implies big changes in planning crops. They need to predict the weather AND make plans. But if they all do the same thing, thats bad also. Game Theory!

Mentor Aviva
Crop Planning Decisions Support With Multi-Agent Reinforcement Learning

Elevator Pitch Farmers in India need your help!
Small changes in climate \Rightarrow big changes in planning crops.
They need to predict the weather AND make plans.
But if they all do the same thing, thats bad also.
Game Theory!

Mentor Aviva
Students Anubah, Daniel, Ethan, Shreya
What Makes Multimodal Question Answering Difficult?

Elevator Pitch

AI is good at answering questions from text.

Yeah!

AI is bad at answering questions from sound or images.

Why?

Bad Models?
Bad Data?
Bad Researchers?
Not anymore, now that REU-CAAR is on it!

Mentor
Jordan

Students
Ahmed, Dmytro, Liam
What Makes Multimodal Question Answering Difficult?

Elevator Pitch
What Makes Multimodal Question Answering Difficult?

Elevator Pitch

AI is good at answering questions from text.
What Makes Multimodal Question Answering Difficult?

Elevator Pitch

AI is good at answering questions from text. Yeah!
What Makes Multimodal Question Answering Difficult?

Elevator Pitch
AI is good at answering questions from text. Yeah!
AI is bad at answering questions from sound or images.
What Makes Multimodal Question Answering Difficult?

Elevator Pitch

AI is good at answering questions from text. Yeah!
AI is bad at answering questions from sound or images. Why?
What Makes Multimodal Question Answering Difficult?

Elevator Pitch

AI is good at answering questions from text. Yeah!
AI is bad at answering questions from sound or images. Why?
Bad Models?
What Makes Multimodal Question Answering Difficult?

Elevator Pitch
Al is good at answering questions from text. Yeah!
Al is bad at answering questions from sound or images. Why?
Bad Models? Bad Data?
What Makes Multimodal Question Answering Difficult?

Elevator Pitch
Al is good at answering questions from text. Yeah!
Al is bad at answering questions from sound or images. Why?
Bad Models? Bad Data? Bad Researchers?
What Makes Multimodal Question Answering Difficult?

Elevator Pitch

Al is good at answering questions from text. Yeah!
Al is bad at answering questions from sound or images. Why?
Bad Models? Bad Data? Bad Researchers?
Bad Researchers?
What Makes Multimodal Question Answering Difficult?

Elevator Pitch

AI is good at answering questions from text. Yeah!
AI is bad at answering questions from sound or images. Why?
Bad Models? Bad Data? Bad Researchers?
Bad Researchers? Not anymore, now that REU-CAAR is on it!
What Makes Multimodal Question Answering Difficult?

Elevator Pitch
AI is good at answering questions from text. Yeah!
AI is bad at answering questions from sound or images. Why?
Bad Models? Bad Data? Bad Researchers?
Bad Researchers? Not anymore, now that REU-CAAR is on it!

Mentor Jordan
What Makes Multimodal Question Answering Difficult?

Elevator Pitch
AI is good at answering questions from text. Yeah!
AI is bad at answering questions from sound or images. Why?
Bad Models? Bad Data? Bad Researchers?
Bad Researchers? Not anymore, now that REU-CAAR is on it!

Mentor Jordan
Students Ahmed, Dmytro, Liam
Classical and Quantum Error Correcting Codes

Elevator Pitch

Alice wants to send Bob \(x \in \{0, 1\}^n \), but the channel is noisy! Can send \(x \) so that some errors will be detected and corrected, e.g., to send \(xxx \).

There are better ways CLASSICALLY.

What if you had QUANTUM methods! Can you do better?

Those who are doing this project will find out!

Mentor

Victor and Nat.

Student

Alexander
Elevator Pitch

Alice wants to send Bob $x \in \{0, 1\}^n$, but channel is noisy! Can send x so that some errors will be detected and corrected, e.g., to send xxx. There are better ways CLASSICALLY. What if you had QUANTUM methods! Can you do better? Those who are doing this project will find out! Mentor Victor and Nat. Student Alexander
Elevator Pitch

Alice wants to send Bob $x \in \{0, 1\}^n$, but channel is noisy!

There are better ways CLASSICALLY.

What if you had QUANTUM methods! Can you do better?

Those who are doing this project will find out!

Mentor
Victor and Nat.

Student
Alexander
Elevator Pitch

Alice wants to send Bob $x \in \{0, 1\}^n$, but channel is noisy! Can send x so that some errors will be detected and corrected, e.g., to send x send xxx.
Elevator Pitch

Alice wants to send Bob $x \in \{0, 1\}^n$, but channel is noisy!
Can send x so that some errors will be detected and corrected, e.g., to send x send xxx.
There are better ways CLASSICALLY.
Elevator Pitch
Alice wants to send Bob $x \in \{0, 1\}^n$, but channel is noisy!
Can send x so that some errors will be detected and corrected, e.g., to send x send xxx.
There are better ways CLASSICALLY.
What if you had QUANTUM methods! Can you do better?
Elevator Pitch

Alice wants to send Bob $x \in \{0, 1\}^n$, but channel is noisy!
Can send x so that some errors will be detected and corrected, e.g., to send x send xxx.
There are better ways CLASSICALLY.
What if you had QUANTUM methods! Can you do better?
Those who are doing this project will find out!
Elevator Pitch
Alice wants to send Bob $x \in \{0, 1\}^n$, but channel is noisy!
Can send x so that some errors will be detected and corrected, e.g., to send x send xxx.
There are better ways CLASSICALLY.
What if you had QUANTUM methods! Can you do better?
Those who are doing this project will find out!

Mentor Victor and Nat.
Elevator Pitch

Alice wants to send Bob $x \in \{0, 1\}^n$, but channel is noisy! Can send x so that some errors will be detected and corrected, e.g., to send x send xxx. There are better ways CLASSICALLY. What if you had QUANTUM methods! Can you do better? Those who are doing this project will find out!

Mentor Victor and Nat.

Student Alexander
Quantum Games

Elevator Pitch
Consider the following game. Alice and Bob are cooperating. There are two graphs G and H that Alice and Bob can both see. Alice is given a vertex v_a in G at random. Bob is given a vertex v_b in G at random. They don't see each others vertices. Alice then picks w_a in H, and Bob picks w_b in H. They win if (v_a, v_b) and (w_a, w_b) are either both edges or both non-edges. Known Alice and Bob can win iff there is a homomorphism between G and H.

If you thought that was fun, wait until you see the quantum version! Alice and Bob share an entangled quantum state!

Mentor Seyed and Jon
Students Bushra (Bea) and Jakin.
Quantum Games

Elevator Pitch Consider the following game. Alice and Bob are cooperating. There are two graphs G and H that Alice and Bob can both see.
Quantum Games

Elevator Pitch Consider the following game. Alice and Bob are cooperating. There are two graphs G and H that Alice and Bob can both see. Alice is given a vertex v_a in G at random. Bob is given a vertex v_b in G at random. They don’t see each others vertices.
Quantum Games

Elevator Pitch Consider the following game. Alice and Bob are cooperating. There are two graphs G and H that Alice and Bob can both see. Alice is given a vertex v_a in G at random. Bob is given a vertex v_b in G at random. They don’t see each others vertices. Alice then picks w_a in H, and Bob picks w_b in H. They win if (v_a, v_b) and (w_a, w_b) are either both edges or both non-edges. Known Alice and Bob can win iff there is a homomorphism between G and H. If you thought that was fun, wait until you see the quantum version! Alice and Bob share an entangled quantum state! Mentor Seyed and Jon Students Bushra (Bea) and Jakin.
Quantum Games

Elevator Pitch Consider the following game. Alice and Bob are cooperating. There are two graphs G and H that Alice and Bob can both see. Alice is given a vertex v_a in G at random. Bob is given a vertex v_b in G at random. They don’t see each others vertices. Alice then picks w_a in H, and Bob picks w_b in H. They win if (v_a, v_b) and (w_a, w_b) are either both edges or both non-edges.
Elevator Pitch Consider the following game. Alice and Bob are cooperating. There are two graphs G and H that Alice and Bob can both see. Alice is given a vertex v_a in G at random. Bob is given a vertex v_b in G at random. They don’t see each others vertices. Alice then picks w_a in H, and Bob picks w_b in H. They win if (v_a, v_b) and (w_a, w_b) are either both edges or both non-edges.

Known Alice and Bob can win iff there is a homomorphism between G and H.
Quantum Games

Elevator Pitch Consider the following game. Alice and Bob are cooperating. There are two graphs G and H that Alice and Bob can both see. Alice is given a vertex v_a in G at random. Bob is given a vertex v_b in G at random. They don’t see each others vertices. Alice then picks w_a in H, and Bob picks w_b in H. They **win** if (v_a, v_b) and (w_a, w_b) are either both edges or both non-edges.

Known Alice and Bob can win iff there is a homomorphism between G and H.

If you thought that was fun, wait until you see the quantum version! Alice and Bob share an entangled quantum state!
Elevator Pitch Consider the following game. Alice and Bob are cooperating. There are two graphs G and H that Alice and Bob can both see. Alice is given a vertex v_a in G at random. Bob is given a vertex v_b in G at random. They don’t see each others vertices. Alice then picks w_a in H, and Bob picks w_b in H. They win if (v_a, v_b) and (w_a, w_b) are either both edges or both non-edges.

Known Alice and Bob can win iff there is a homomorphism between G and H.

If you thought that was fun, wait until you see the quantum version! Alice and Bob share an entangled quantum state!

Mentor Seyed and Jon
Elevator Pitch Consider the following game. Alice and Bob are cooperating. There are two graphs G and H that Alice and Bob can both see.

Alice is given a vertex v_a in G at random. Bob is given a vertex v_b in G at random. They don’t see each others vertices.

Alice then picks w_a in H, and Bob picks w_b in H.

They **win** if (v_a, v_b) and (w_a, w_b) are either both edges or both non-edges.

Known Alice and Bob can win iff there is a homomorphism between G and H.

If you thought that was fun, wait until you see the quantum version! Alice and Bob share an entangled quantum state!

Mentor Seyed and Jon

Students Bushra (Bea) and Jakin.
Quantum Simulation

One of the motivations for QC is that a QC can simulate QM. There has been some success here but how can we tell? We need to compute error bounds on the simulation to see how well it is doing.
One of the motivations for QC is that a QC can simulate QM. There has been some success here but... how can we tell? We need to compute error bounds on the simulation to see how well it is doing.
Elevator Pitch One of the motivations for QC is that a QC can simulate QM.
Quantum Simulation

Elevator Pitch One of the motivations for QC is that a QC can simulate QM.
There has been some success here but . . . how can we tell?
Elevator Pitch One of the motivations for QC is that a QC can simulate QM. There has been some success here but ... how can we tell? We need to compute error bounds on the simulation to see how well it is doing.
Quantum Simulation

Elevator Pitch One of the motivations for QC is that a QC can simulate QM. There has been some success here but . . . how can we tell? We need to compute error bounds on the simulation to see how well it is doing.

Mentors Andrew and John
Quantum Simulation

Elevator Pitch One of the motivations for QC is that a QC can simulate QM. There has been some success here but . . . how can we tell? We need to compute error bounds on the simulation to see how well it is doing.

Mentors Andrew and John

Students Andrew (diff Andrew) and David (diff David)
Funding
Who is Funding This?

1. National Science Foundation (NSF).
Who is Funding This?

1. National Science Foundation (NSF). Great!

2. Google/An Zhu (An Zhu was an undergrad at UMCP who worked in Theory). Great!

4. Other Schools mini-grants pay stipends. Great!

5. The UMCP CS dept kicks in some money. Great!

6. Some unpaid local students. Great!

7. The Winkler Foundation. Who?
Who is Funding This?

1. National Science Foundation (NSF). Great!
2. Google/An Zhu (An Zhu was an undergrad at UMCP who worked in Theory).
Who is Funding This?

1. National Science Foundation (NSF). Great!

2. Google/An Zhu (An Zhu was an undergrad at UMCP who worked in Theory). Great!

4. Other Schools mini-grants pay stipends. Great!

5. The UMCP CS dept kicks in some money. Great!

6. Some unpaid local students. Great!

7. The Winkler Foundation. Who?
Who is Funding This?

1. National Science Foundation (NSF). **Great!**
2. Google/An Zhu (An Zhu was an undergrad at UMCP who worked in Theory). **Great!**
Who is Funding This?

1. National Science Foundation (NSF). **Great!**
2. Google/An Zhu (An Zhu was an undergrad at UMCP who worked in Theory). **Great!**
Who is Funding This?

1. National Science Foundation (NSF). Great!
2. Google/An Zhu (An Zhu was an undergrad at UMCP who worked in Theory). Great!
4. Other Schools mini-grants pay stipends.
Who is Funding This?

1. National Science Foundation (NSF). Great!
2. Google/An Zhu (An Zhu was an undergrad at UMCP who worked in Theory). Great!
4. Other Schools mini-grants pay stipends. Great!
Who is Funding This?

1. National Science Foundation (NSF). Great!
2. Google/An Zhu (An Zhu was an undergrad at UMCP who worked in Theory). Great!
4. Other Schools mini-grants pay stipends. Great!
5. The UMCP CS dept kicks in some money
Who is Funding This?

1. National Science Foundation (NSF). **Great!**
2. Google/An Zhu (An Zhu was an undergrad at UMCP who worked in Theory). **Great!**
4. Other Schools mini-grants pay stipends. **Great!**
5. The UMCP CS dept kicks in some money **Great!**
Who is Funding This?

1. National Science Foundation (NSF). **Great!**
2. Google/An Zhu (An Zhu was an undergrad at UMCP who worked in Theory). **Great!**
4. Other Schools mini-grants pay stipends. **Great!**
5. The UMCP CS dept kicks in some money **Great!**
6. Some unpaid local students
Who is Funding This?

1. National Science Foundation (NSF). Great!
2. Google/An Zhu (An Zhu was an undergrad at UMCP who worked in Theory). Great!
4. Other Schools mini-grants pay stipends. Great!
5. The UMCP CS dept kicks in some money Great!
6. Some unpaid local students Great!
Who is Funding This?

1. National Science Foundation (NSF). Great!
2. Google/An Zhu (An Zhu was an undergrad at UMCP who worked in Theory). Great!
4. Other Schools mini-grants pay stipends. Great!
5. The UMCP CS dept kicks in some money Great!
6. Some unpaid local students Great!
7. The Winkler Foundation.
Who is Funding This?

1. National Science Foundation (NSF). Great!
2. Google/An Zhu (An Zhu was an undergrad at UMCP who worked in Theory). Great!
4. Other Schools mini-grants pay stipends. Great!
5. The UMCP CS dept kicks in some money Great!
6. Some unpaid local students Great!
7. The Winkler Foundation. Who?
Irwin Winkler

Bill Gasarch’s Mother is Pearl (Nee Winkler) Gasarch

1. Produced over 50 movies
2. Directed 7 movies
3. David Selznick Lifetime achievement award for producing
4. Produced *Rocky*, *Goodfellas*, *Creed 1,2,3*
5. For more about him: https://www.imdb.com/name/nm0005563/?ref_=fn_al_nm_1

Why am I telling you this?
Bill Gasarch’s Mother is Pearl (Nee Winkler) Gasarch

Pearl Gasarch’s Brother is Irwin Winkler
Irwin Winkler

Bill Gasarch’s Mother is Pearl (Nee Winkler) Gasarch

Pearl Gasarch’s Brother is Irwin Winkler

Irwin Winkler is a producer in Hollywood.
Irwin Winkler

Bill Gasarch’s Mother is Pearl (Nee Winkler) Gasarch

Pearl Gasarch’s Brother is Irwin Winkler

Irwin Winkler is a producer in Hollywood.

1. Produced over 50 movies
2. Directed 7 movies
3. David Selznick Lifetime achievement award for producing
4. Produced *Rocky 1, 2, 3, Goodfellows, Creed 1, 2, 3*

Why am I telling you this?
Irwin Winkler

Bill Gasarch’s Mother is Pearl (Nee Winkler) Gasarch

Pearl Gasarch’s Brother is Irwin Winkler

Irwin Winkler is a producer in Hollywood.

1. Produced over 50 movies
2. Directed 7 movies
3. David Selznick Lifetime achievement award for producing
4. Produced *Rocky*1,….6, *Goodfellows*, *Creed* 1,2,3
5. For more about him:
 https://www.imdb.com/name/nm0005563/?ref_=fn_al_nm_1
Bill Gasarch’s Mother is Pearl (Nee Winkler) Gasarch

Pearl Gasarch’s Brother is Irwin Winkler

Irwin Winkler is a producer in Hollywood.

1. Produced over 50 movies
2. Directed 7 movies
3. David Selznick Lifetime achievement award for producing
4. Produced **Rocky 1, ..., 6, Goodfellows, Creed 1, 2, 3**
5. For more about him: https://www.imdb.com/name/nm0005563/?ref_=fn_al_nm_1

Why am I telling you this?
Irwin Winkler has established a charitable foundation that gives money to
Irwin Winkler has established a charitable foundation that gives money to (a) many worth causes and
Irwin Winkler has established a charitable foundation that gives money to (a) many worth causes and (b) our REU!
Adam Winkler is Irwin’s son who administers the foundation.

Adam Winkler is a law professor so he understands academia. (The other sons: Charles—a director; David—a screenwriter.)

Adam has written two books: *Gunfight: The Battle over the Right to Bear Arms in America* and *We the Corporations: How American Businesses won their civil rights*. The last book got this review: “It is deeply shocking that *We the Corporations* is not boring. Also, the last book was a nominee for the National Book Award.”
Adam Winkler

Adam Winkler is Irwin’s son who administers the foundation. He’s a law professor so he understands academia.
Adam Winkler

Adam Winkler is Irwin’s son who administers the foundation. He’s a law professor so he **understands** academia.
(The other sons: Charles—a director; David—a screenwriter.)
Adam Winkler

Adam Winkler is Irwin’s son who administers the foundation. He’s a law professor so he understands academia. (The other sons: Charles—a director; David—a screenwriter.) Adam has written two books:

Gunfight: The Battle over the Right to Bear Arms in America

We the Corporations: How American Businesses won their civil rights

The last book got this review: It is deeply shocking that We the Corporations is not boring. Also, the last book was a nominee for the National Book Award.
Adam Winkler

Adam Winkler is Irwin’s son who administers the foundation. He’s a law professor so he understands academia. (The other sons: Charles—a director; David—a screenwriter.) Adam has written two books:

Gunfight: The Battle over the Right to Bear Arms in America
Adam Winkler is Irwin’s son who administers the foundation. He’s a law professor so he understands academia.
(The other sons: Charles—a director; David—a screenwriter.)
Adam has written two books:
Gunfight: The Battle over the Right to Bear Arms in America
We the Corporations: How American Businesses won their civil rights
Adam Winkler is Irwin’s son who administers the foundation. He’s a law professor so he understands academia. (The other sons: Charles—a director; David—a screenwriter.) Adam has written two books:

Gunfight: The Battle over the Right to Bear Arms in America

We the Corporations: How American Businesses won their civil rights

The last book got this review

It is deeply shocking that We the Corporations is not boring.
Also, the last book was a nominee for the National Book Award.
Adam Winkler is Irwin’s son who administers the foundation. He’s a law professor so he understands academia. (The other sons: Charles—a director; David—a screenwriter.) Adam has written two books:
Gunfight: The Battle over the Right to Bear Arms in America
We the Corporations: How American Businesses won their civil rights
The last book got this review
It is deeply shocking that We the Corporations is not boring.
Adam Winkler is Irwin’s son who administers the foundation. He’s a law professor so he understands academia. (The other sons: Charles—a director; David—a screenwriter.)

Adam has written two books:

Gunfight: The Battle over the Right to Bear Arms in America

We the Corporations: How American Businesses won their civil rights

The last book got this review

It is deeply shocking that We the Corporations is not boring.

Also, the last book was a nominee for the National Book Award.
Show me the Money!

Where Does the Winkler Money Go?
Things the NSF won’t pay for:

▶ Money for housing for non-citizens.
▶ The REU Lunches.
▶ Misc.
Show me the Money!

Where Does the Winkler Money Go?
Things the NSF won’t pay for:

▶ Money for housing for non-citizens.
Show me the Money!

Where Does the Winkler Money Go?
Things the NSF won’t pay for:

▶ Money for housing for non-citizens.
▶ The REU Lunches.
Show me the Money!

Where Does the Winkler Money Go?

Things the NSF won’t pay for:

➤ Money for housing for non-citizens.
➤ The REU Lunches.
➤ Misc.
Does Where You Got Your Funding Matter? NO

1. Some of you are NSF funded.
2. Some of you are Iribe funded.
3. Some of you are Google/Zhu funded.
4. Some of you are funded by your own school/Winkler/UMCP.
5. Some of you are not funded.

The first draft of the Declaration of Independence had the following:

All REU students are created equal.

None of this will matter except:

1. Google/Zhu & Iribe students will write letters of thanks.
2. Unpaid students: less forms to fill out.
3. Non-citizens can't get ID cards.
Does Where You Got Your Funding Matter? NO

1. Some of you are NSF funded.
2. Some of you are Iribe funded.
3. Some of you are Google/Zhu funded.
4. Some of you are funded by your own school/Winkler/UMCP.
5. Some of you are not funded.

The first draft of the Declaration of Independence had the following:

 All REU students are created equal.
1. Some of you are NSF funded.
2. Some of you are Iribe funded.
3. Some of you are Google/Zhu funded.
4. Some of you are funded by your own school/Winkler/UMCP.
5. Some of you are not funded.

The first draft of the Declaration of Independence had the following:

All REU students are created equal.

None of this will matter except:

1. Google/Zhu & Iribe students will write letters of thanks.
2. Unpaid students: less forms to fill out.
3. Non-citizens can’t get ID cards.
My Wife Says that if I Lie to You I Must Tell You

Joe Biden's Senior Thesis was not on Parallel Algorithms for Nearest Neighbor Search. It was on Classical and Quantum Error Correction.
My Wife Says that if I Lie to You I Must Tell You

Joe Biden’s Senior Thesis was not on
Parallel Algorithms for Nearest Neighbor Search
My Wife Says that if I Lie to You I Must Tell You

Joe Biden’s Senior Thesis **was not** on

Parallel Algorithms for Nearest Neighbor Search

It **was on**
My Wife Says that if I Lie to You I Must Tell You

Joe Biden’s Senior Thesis **was not** on
Parallel Algorithms for Nearest Neighbor Search
It **was on**
Classical and Quantum Error Correction.
Questions from You?

I welcome questions now and anytime!