

REU-CAAR: Research Experience for Undergraduates in Combinatorics and AI for Applied Research

William Gasarch-Director
Laxman Dhulipala-Co Director
Mentors!
Students!

Nuts and Bolts of REU-CAAR

Time and Money

1. June 1- August 14 (10 weeks) (Move in and welcome dinner on May 31).
2. \$7000 stipend.
3. Housing and some Meal Money.
4. Excellent student-to-teacher ratio.
5. For more info

<https://www.cs.umd.edu/projects/reuhaar/>
and of course this talk!

Activities (Short Version)

1. Research, Talks, and Research Talks.

Activities (Short Version)

1. Research, Talks, and Research Talks.
2. Lunch, Activities, and Lunchtime Activities.

Activities (Short Version)

1. Research, Talks, and Research Talks.
2. Lunch, Activities, and Lunchtime Activities.
3. Research

Activities (Short Version)

1. Research, Talks, and Research Talks.
2. Lunch, Activities, and Lunchtime Activities.
3. Research
4. Sight Seeing in Washington DC (weekend)

Activities (Short Version)

1. Research, Talks, and Research Talks.
2. Lunch, Activities, and Lunchtime Activities.
3. Research
4. Sight Seeing in Washington DC (weekend)
5. Research

Activities (Short Version)

1. Research, Talks, and Research Talks.
2. Lunch, Activities, and Lunchtime Activities.
3. Research
4. Sight Seeing in Washington DC (weekend)
5. Research
6. Making friends for life!

Activities (Short Version)

1. Research, Talks, and Research Talks.
2. Lunch, Activities, and Lunchtime Activities.
3. Research
4. Sight Seeing in Washington DC (weekend)
5. Research
6. Making friends for life!

Keep in touch with that new thing called Facebook!

Activities (Short Version)

1. Research, Talks, and Research Talks.
2. Lunch, Activities, and Lunchtime Activities.
3. Research
4. Sight Seeing in Washington DC (weekend)
5. Research
6. Making friends for life!
Keep in touch with that new thing called Facebook!
In the first year of program — 2013—Facebook was new.

Descriptions The Projects

The Research

The Research

1. At the website is a tab to click for descriptions of the Projects.

The Research

1. At the website is a tab to click for descriptions of the Projects.
2. Next slides describe **THE PROJECTS!**

The Research

1. At the website is a tab to click for descriptions of the Projects.
2. Next slides describe **THE PROJECTS!**
3. The projects range from THEORY to PRACTICE.

I-O Efficient Parallel Algorithms: Theory & Practice

Mentor Laxman Dhulipala

I-O Efficient Parallel Algorithms: Theory & Practice

Mentor Laxman Dhulipala

Prereq Data Structures and Algorithms. Programming Skills in C.

I-O Efficient Parallel Algorithms: Theory & Practice

Mentor Laxman Dhulipala

Prereq Data Structures and Algorithms. Programming Skills in C.

Description

In theory parallel machines work faster than sequential ones.

I-O Efficient Parallel Algorithms: Theory & Practice

Mentor Laxman Dhulipala

Prereq Data Structures and Algorithms. Programming Skills in C.

Description

In theory parallel machines work faster than sequential ones.

One bottleneck is if the algorithm uses a lot of I-O.

I-O Efficient Parallel Algorithms: Theory & Practice

Mentor Laxman Dhulipala

Prereq Data Structures and Algorithms. Programming Skills in C.

Description

In theory parallel machines work faster than sequential ones.

One bottleneck is if the algorithm uses a lot of I-O.

In this project we explore theoretical and practical parallel algorithms that have provably low I-O complexity.

I-O Efficient Parallel Algorithms: Theory & Practice

Mentor Laxman Dhulipala

Prereq Data Structures and Algorithms. Programming Skills in C.

Description

In theory parallel machines work faster than sequential ones.

One bottleneck is if the algorithm uses a lot of I-O.

In this project we explore theoretical and practical parallel algorithms that have provably low I-O complexity.

Bill Note People in the real world actually care about this stuff!

I-O Efficient Parallel Algorithms: Theory & Practice

Mentor Laxman Dhulipala

Prereq Data Structures and Algorithms. Programming Skills in C.

Description

In theory parallel machines work faster than sequential ones.

One bottleneck is if the algorithm uses a lot of I-O.

In this project we explore theoretical and practical parallel algorithms that have provably low I-O complexity.

Bill Note People in the real world actually care about this stuff!

Bill Note Laxman has worked on parallelism in industry.

Phylogenies Errors, and Algorithms, Oh My!

Mentor Erin Molloy.

Phylogenies Errors, and Algorithms, Oh My!

Mentor Erin Molloy.

Prereq Discrete Math, Algorithms, Probability, Machine learning, Python or C, Unix.

Phylogenies Errors, and Algorithms, Oh My!

Mentor Erin Molloy.

Prereq Discrete Math, Algorithms, Probability, Machine learning, Python or C, Unix.

Description

Evolutionary Relationships (e.g., among or between species) are important for many biological studies. However, much of this cannot be observed and must be inferred.

Phylogenies Errors, and Algorithms, Oh My!

Mentor Erin Molloy.

Prereq Discrete Math, Algorithms, Probability, Machine learning, Python or C, Unix.

Description

Evolutionary Relationships (e.g., among or between species) are important for many biological studies. However, much of this cannot be observed and must be inferred.

Hence we must reconstruct trees from the information we do have.

Phylogenies Errors, and Algorithms, Oh My!

Mentor Erin Molloy.

Prereq Discrete Math, Algorithms, Probability, Machine learning, Python or C, Unix.

Description

Evolutionary Relationships (e.g., among or between species) are important for many biological studies. However, much of this cannot be observed and must be inferred.

Hence we must reconstruct trees from the information we do have.

This leads to many algorithmic problems of interest.

Phylogenies Errors, and Algorithms, Oh My!

Mentor Erin Molloy.

Prereq Discrete Math, Algorithms, Probability, Machine learning, Python or C, Unix.

Description

Evolutionary Relationships (e.g., among or between species) are important for many biological studies. However, much of this cannot be observed and must be inferred.

Hence we must reconstruct trees from the information we do have.

This leads to many algorithmic problems of interest.

One of them is error propagation (we're against it!) and that is what we will mostly focus on.

Phylogenies Errors, and Algorithms, Oh My!

Mentor Erin Molloy.

Prereq Discrete Math, Algorithms, Probability, Machine learning, Python or C, Unix.

Description

Evolutionary Relationships (e.g., among or between species) are important for many biological studies. However, much of this cannot be observed and must be inferred.

Hence we must reconstruct trees from the information we do have.

This leads to many algorithmic problems of interest.

One of them is error propagation (we're against it!) and that is what we will mostly focus on.

Bill Comment People in Biology care about this stuff!

ML or Self Driving Cars: Theory and Practice

Mentor Ming Lin

ML or Self Driving Cars: Theory and Practice

Mentor Ming Lin

Prereq ML and Neural Networks. Experience with Game Engines preferred but not required.

ML or Self Driving Cars: Theory and Practice

Mentor Ming Lin

Prereq ML and Neural Networks. Experience with Game Engines preferred but not required.

Description

The biggest problem with self driving cars is **safety**.

ML or Self Driving Cars: Theory and Practice

Mentor Ming Lin

Prereq ML and Neural Networks. Experience with Game Engines preferred but not required.

Description

The biggest problem with self driving cars is **safety**.

Currently there are (some) self driving cars on the same roads as humans. This is problematic since humans are unpredictable and Self Driving cars are to rigid.

ML or Self Driving Cars: Theory and Practice

Mentor Ming Lin

Prereq ML and Neural Networks. Experience with Game Engines preferred but not required.

Description

The biggest problem with self driving cars is **safety**.

Currently there are (some) self driving cars on the same roads as humans. This is problematic since humans are unpredictable and Self Driving cars are to rigid.

In this project we use ML to teach self driving cars how crazy humans are which will increase vehicle safety.

ML or Self Driving Cars: Theory and Practice

Mentor Ming Lin

Prereq ML and Neural Networks. Experience with Game Engines preferred but not required.

Description

The biggest problem with self driving cars is **safety**.

Currently there are (some) self driving cars on the same roads as humans. This is problematic since humans are unpredictable and Self Driving cars are to rigid.

In this project we use ML to teach self driving cars how crazy humans are which will increase vehicle safety.

Bill Comment This is important but tough. However,

ML or Self Driving Cars: Theory and Practice

Mentor Ming Lin

Prereq ML and Neural Networks. Experience with Game Engines preferred but not required.

Description

The biggest problem with self driving cars is **safety**.

Currently there are (some) self driving cars on the same roads as humans. This is problematic since humans are unpredictable and Self Driving cars are to rigid.

In this project we use ML to teach self driving cars how crazy humans are which will increase vehicle safety.

Bill Comment This is important but tough. However,
When the going gets tough

ML or Self Driving Cars: Theory and Practice

Mentor Ming Lin

Prereq ML and Neural Networks. Experience with Game Engines preferred but not required.

Description

The biggest problem with self driving cars is **safety**.

Currently there are (some) self driving cars on the same roads as humans. This is problematic since humans are unpredictable and Self Driving cars are to rigid.

In this project we use ML to teach self driving cars how crazy humans are which will increase vehicle safety.

Bill Comment This is important but tough. However,

When the going gets tough

The tough get going!

Making a Multimedia Quiz Show that Stumps AI

Making a Multimedia Quiz Show that Stumps AI

Mentor Jordan Boyd-Graber

Making a Multimedia Quiz Show that Stumps AI

Mentor Jordan Boyd-Graber

Prereq Knowledge & interest in

Making a Multimedia Quiz Show that Stumps AI

Mentor Jordan Boyd-Graber

Prereq Knowledge & interest in

(a) human question-answering, (b) PyTorch,

Making a Multimedia Quiz Show that Stumps AI

Mentor Jordan Boyd-Graber

Prereq Knowledge & interest in

- (a) human question-answering, (b) PyTorch,
- (c) audio/visual data processing, (d) building web interfaces,

Making a Multimedia Quiz Show that Stumps AI

Mentor Jordan Boyd-Graber

Prereq Knowledge & interest in

- (a) human question-answering, (b) PyTorch,
- (c) audio/visual data processing, (d) building web interfaces,
- (e) web scraping. (Subset of these five items is fine.)

Making a Multimedia Quiz Show that Stumps AI

Mentor Jordan Boyd-Graber

Prereq Knowledge & interest in

- (a) human question-answering, (b) PyTorch,
- (c) audio/visual data processing, (d) building web interfaces,
- (e) web scraping. (Subset of these five items is fine.)

Description We have done work in finding questions that are hard for a computer-answering system.

Making a Multimedia Quiz Show that Stumps AI

Mentor Jordan Boyd-Graber

Prereq Knowledge & interest in

- (a) human question-answering, (b) PyTorch,
- (c) audio/visual data processing, (d) building web interfaces,
- (e) web scraping. (Subset of these five items is fine.)

Description We have done work in finding questions that are hard for a computer-answering system.

In these cases the questions are presented as text.

Making a Multimedia Quiz Show that Stumps AI

Mentor Jordan Boyd-Graber

Prereq Knowledge & interest in

- (a) human question-answering, (b) PyTorch,
- (c) audio/visual data processing, (d) building web interfaces,
- (e) web scraping. (Subset of these five items is fine.)

Description We have done work in finding questions that are hard for a computer-answering system.

In these cases the questions are presented as text.

What if the question is presenting by sound or visually?

Making a Multimedia Quiz Show that Stumps AI

Mentor Jordan Boyd-Graber

Prereq Knowledge & interest in

- (a) human question-answering, (b) PyTorch,
- (c) audio/visual data processing, (d) building web interfaces,
- (e) web scraping. (Subset of these five items is fine.)

Description We have done work in finding questions that are hard for a computer-answering system.

In these cases the questions are presented as text.

What if the question is presenting by sound or visually?

We study what happens.

Making a Multimedia Quiz Show that Stumps AI

Mentor Jordan Boyd-Graber

Prereq Knowledge & interest in

- (a) human question-answering, (b) PyTorch,
- (c) audio/visual data processing, (d) building web interfaces,
- (e) web scraping. (Subset of these five items is fine.)

Description We have done work in finding questions that are hard for a computer-answering system.

In these cases the questions are presented as text.

What if the question is presenting by sound or visually?

We study what happens.

Bill Comment Jordan was on Jeopardy.

Making a Multimedia Quiz Show that Stumps AI

Mentor Jordan Boyd-Graber

Prereq Knowledge & interest in

- (a) human question-answering, (b) PyTorch,
- (c) audio/visual data processing, (d) building web interfaces,
- (e) web scraping. (Subset of these five items is fine.)

Description We have done work in finding questions that are hard for a computer-answering system.

In these cases the questions are presented as text.

What if the question is presenting by sound or visually?

We study what happens.

Bill Comment Jordan was on Jeopardy. He lost.

Making a Multimedia Quiz Show that Stumps AI

Mentor Jordan Boyd-Graber

Prereq Knowledge & interest in

- (a) human question-answering, (b) PyTorch,
- (c) audio/visual data processing, (d) building web interfaces,
- (e) web scraping. (Subset of these five items is fine.)

Description We have done work in finding questions that are hard for a computer-answering system.

In these cases the questions are presented as text.

What if the question is presenting by sound or visually?

We study what happens.

Bill Comment Jordan was on Jeopardy. He lost. Oh well.

NN for Games, Puzzles, & the Physical World

Mentor Sarah Miller

NN for Games, Puzzles, & the Physical World

Mentor Sarah Miller

Prereq ML, Discrete Math, Algorithms, Programming. Lean and/or quantum computing helpful but not required.

NN for Games, Puzzles, & the Physical World

Mentor Sarah Miller

Prereq ML, Discrete Math, Algorithms, Programming. Lean and/or quantum computing helpful but not required.

Description We will train Neural Net to play (and win!) combinatorial games.

NN for Games, Puzzles, & the Physical World

Mentor Sarah Miller

Prereq ML, Discrete Math, Algorithms, Programming. Lean and/or quantum computing helpful but not required.

Description We will train Neural Net to play (and win!) combinatorial games.

We will then expand to other domains,

NN for Games, Puzzles, & the Physical World

Mentor Sarah Miller

Prereq ML, Discrete Math, Algorithms, Programming. Lean and/or quantum computing helpful but not required.

Description We will train Neural Net to play (and win!) combinatorial games.

We will then expand to other domains,
possibly proof assistants

NN for Games, Puzzles, & the Physical World

Mentor Sarah Miller

Prereq ML, Discrete Math, Algorithms, Programming. Lean and/or quantum computing helpful but not required.

Description We will train Neural Net to play (and win!) combinatorial games.

We will then expand to other domains, possibly proof assistants possibly quantum computing.

NN for Games, Puzzles, & the Physical World

Mentor Sarah Miller

Prereq ML, Discrete Math, Algorithms, Programming. Lean and/or quantum computing helpful but not required.

Description We will train Neural Net to play (and win!) combinatorial games.

We will then expand to other domains, possibly proof assistants possibly quantum computing.

Bill's Comment Proof Assistants!

NN for Games, Puzzles, & the Physical World

Mentor Sarah Miller

Prereq ML, Discrete Math, Algorithms, Programming. Lean and/or quantum computing helpful but not required.

Description We will train Neural Net to play (and win!) combinatorial games.

We will then expand to other domains, possibly proof assistants possibly quantum computing.

Bill's Comment Proof Assistants! Quantum computing!

NN for Games, Puzzles, & the Physical World

Mentor Sarah Miller

Prereq ML, Discrete Math, Algorithms, Programming. Lean and/or quantum computing helpful but not required.

Description We will train Neural Net to play (and win!) combinatorial games.

We will then expand to other domains, possibly proof assistants possibly quantum computing.

Bill's Comment Proof Assistants! Quantum computing! Is there anything Neural Nets can't do?

Pedagogical Ramsey Theory

Mentor William Gasarch

Pedagogical Ramsey Theory

Mentor William Gasarch

Prereq Discrete Math, Intro programming, and lots of Math Maturity. No knowledge of Ramsey Theory is required. (There may be two tiers of students.)

Pedagogical Ramsey Theory

Mentor William Gasarch

Prereq Discrete Math, Intro programming, and lots of Math Maturity. No knowledge of Ramsey Theory is required. (There may be two tiers of students.)

Description You will LEARN lots of Ramsey Theory and

Pedagogical Ramsey Theory

Mentor William Gasarch

Prereq Discrete Math, Intro programming, and lots of Math Maturity. No knowledge of Ramsey Theory is required. (There may be two tiers of students.)

Description You will LEARN lots of Ramsey Theory and
(a) do some empirical studies associated to the theorems, and

Pedagogical Ramsey Theory

Mentor William Gasarch

Prereq Discrete Math, Intro programming, and lots of Math Maturity. No knowledge of Ramsey Theory is required. (There may be two tiers of students.)

Description You will LEARN lots of Ramsey Theory and

- (a) do some empirical studies associated to the theorems, and
- (b) produce good writeups of results that only have bad writeups (there are many).

Pedagogical Ramsey Theory

Mentor William Gasarch

Prereq Discrete Math, Intro programming, and lots of Math Maturity. No knowledge of Ramsey Theory is required. (There may be two tiers of students.)

Description You will LEARN lots of Ramsey Theory and

- (a) do some empirical studies associated to the theorems, and
- (b) produce good writeups of results that only have bad writeups (there are many).

Sample Theorem

Pedagogical Ramsey Theory

Mentor William Gasarch

Prereq Discrete Math, Intro programming, and lots of Math Maturity. No knowledge of Ramsey Theory is required. (There may be two tiers of students.)

Description You will LEARN lots of Ramsey Theory and

- (a) do some empirical studies associated to the theorems, and
- (b) produce good writeups of results that only have bad writeups (there are many).

Sample Theorem For all 19-colorings of $\{1, 2, 3, \dots\}$ there exists x, y, z such that $x + y = z$ and x, y, z are all the same color.

Pedagogical Ramsey Theory

Mentor William Gasarch

Prereq Discrete Math, Intro programming, and lots of Math Maturity. No knowledge of Ramsey Theory is required. (There may be two tiers of students.)

Description You will LEARN lots of Ramsey Theory and

- (a) do some empirical studies associated to the theorems, and
- (b) produce good writeups of results that only have bad writeups (there are many).

Sample Theorem For all 19-colorings of $\{1, 2, 3, \dots\}$ there exists x, y, z such that $x + y = z$ and x, y, z are all the same color.

Bill's Comment My Favorite Project!

How to Apply to REU-CAAR

Activities. Long Version

Activities The First Week

Activities The First Week

1. Sunday May 31: Move into the dorms and welcome dinner!

Activities The First Week

1. Sunday May 31: Move into the dorms and welcome dinner!
2. First week- Red Tape fun! Getting ID cards! Getting keys!

Activities The First Week

1. Sunday May 31: Move into the dorms and welcome dinner!
2. First week- Red Tape fun! Getting ID cards! Getting keys!
3. First week- BEGIN your projects PRONTO!

Activities The First Week

1. Sunday May 31: Move into the dorms and welcome dinner!
2. First week- Red Tape fun! Getting ID cards! Getting keys!
3. First week- BEGIN your projects PRONTO!
4. First and Second week and maybe later—Talks from some of the mentors on their projects.

Weekly Activities

Weekly Activities

1. Every Monday—REU lunch. Discussion topics:

Weekly Activities

1. Every Monday—REU lunch. Discussion topics:
 - 1) Work on Math problems together!

Weekly Activities

1. Every Monday—REU lunch. Discussion topics:
 - 1) Work on Math problems together!
 - 2) A long lunch where we discuss grad school including a grad student panel.

Weekly Activities

1. Every Monday—REU lunch. Discussion topics:
 - 1) Work on Math problems together!
 - 2) A long lunch where we discuss grad school including a grad student panel.
 - 3) Some talks from people in Industry.

Weekly Activities

1. Every Monday—REU lunch. Discussion topics:
 - 1) Work on Math problems together!
 - 2) A long lunch where we discuss grad school including a grad student panel.
 - 3) Some talks from people in Industry.
2. Every Wednesday—

Weekly Activities

1. Every Monday—REU lunch. Discussion topics:
 - 1) Work on Math problems together!
 - 2) A long lunch where we discuss grad school including a grad student panel.
 - 3) Some talks from people in Industry.
2. Every Wednesday—
 - 1) Talks on Research slightly outside our topics. Good for broadening!

Weekly Activities

1. Every Monday—REU lunch. Discussion topics:
 - 1) Work on Math problems together!
 - 2) A long lunch where we discuss grad school including a grad student panel.
 - 3) Some talks from people in Industry.
2. Every Wednesday—
 - 1) Talks on Research slightly outside our topics. Good for broadening!
 - 2) A talk on Ethics of Research: **How to do bad science**

Misc Activities

Misc Activities

1. (Tentative) Workshop on the real world— resume writing, interviewing, etc.

Misc Activities

1. (Tentative) Workshop on the real world— resume writing, interviewing, etc.
2. (Tentative) Poster Session on your research.

Misc Activities

1. (Tentative) Workshop on the real world— resume writing, interviewing, etc.
2. (Tentative) Poster Session on your research.
3. (Up to you) Sight seeing in Washington DC on weekends.

Misc Activities

1. (Tentative) Workshop on the real world— resume writing, interviewing, etc.
2. (Tentative) Poster Session on your research.
3. (Up to you) Sight seeing in Washington DC on weekends.
4. Game Nights with Pizza.

Misc Activities

1. (Tentative) Workshop on the real world— resume writing, interviewing, etc.
2. (Tentative) Poster Session on your research.
3. (Up to you) Sight seeing in Washington DC on weekends.
4. Game Nights with Pizza.
5. Final presentations the last week.

Applying to to REU-CAAR

Qualifications

1. Discrete Math (or good math background). Algorithms a plus.
2. Knowing how to program.
3. See website for prerequisites for some projects.
4. US Citizenship for NSF funding. But see next point.
5. We may be able to take non-citizens and give them housing but not stipend.

How to apply

How to apply

How to apply: Goto the website!

Will need:

How to apply

How to apply: Goto the website!

Will need:

1. Transcript (including Fall 2025)

How to apply

How to apply: Goto the website!

Will need:

1. Transcript (including Fall 2025)
2. Statement of Purpose (say which ≥ 2 projects you want to work on, Why you are **interested** and why you are **qualified**)

How to apply

How to apply: Goto the website!

Will need:

1. Transcript (including Fall 2025)
2. Statement of Purpose (say which ≥ 2 projects you want to work on, Why you are **interested** and why you are **qualified**)
3. Letters of rec. (Letter writers will submit those)

How to apply

How to apply: Goto the website!

Will need:

1. Transcript (including Fall 2025)
2. Statement of Purpose (say which ≥ 2 projects you want to work on, Why you are **interested** and why you are **qualified**)
3. Letters of rec. (Letter writers will submit those)
4. Other stuff that is on form

Logistics

Logistics

1. **YOU** apply by March 1. Apply **early** as we will begin accepting students earlier.

Logistics

1. **YOU** apply by March 1. Apply **early** as we will begin accepting students earlier.
2. **WE accept** or **reject** you. Final decisions made by the middle of April (or sooner).

Logistics

1. **YOU** apply by March 1. Apply **early** as we will begin accepting students earlier.
2. **WE accept** or **reject** you. Final decisions made by the middle of April (or sooner).
3. If we **reject** you then... Oh well. (Apply to several programs.)

Logistics

1. **YOU** apply by March 1. Apply **early** as we will begin accepting students earlier.
2. **WE accept** or **reject** you. Final decisions made by the middle of April (or sooner).
3. If we **reject** you then... Oh well. (Apply to several programs.)
4. If we **accept** then you can

Logistics

1. **YOU** apply by March 1. Apply **early** as we will begin accepting students earlier.
2. **WE accept** or **reject** you. Final decisions made by the middle of April (or sooner).
3. If we **reject** you then... Oh well. (Apply to several programs.)
4. If we **accept** then you can
 - 1) **Reject** us! This is perfectly fine.

Logistics

1. **YOU** apply by March 1. Apply **early** as we will begin accepting students earlier.
2. **WE accept** or **reject** you. Final decisions made by the middle of April (or sooner).
3. If we **reject** you then... Oh well. (Apply to several programs.)
4. If we **accept** then you can
 - 1) **Reject** us! This is perfectly fine.
 - 2) **Accept** us! And come!

Logistics

1. **YOU** apply by March 1. Apply **early** as we will begin accepting students earlier.
2. **WE accept** or **reject** you. Final decisions made by the middle of April (or sooner).
3. If we **reject** you then... Oh well. (Apply to several programs.)
4. If we **accept** then you can
 - 1) **Reject** us! This is perfectly fine.
 - 2) **Accept** us! And come!
 - 3) **Accept** and then **NOT** come. DO NOT DO THIS!

Logistics

1. **YOU** apply by March 1. Apply **early** as we will begin accepting students earlier.
2. **WE accept** or **reject** you. Final decisions made by the middle of April (or sooner).
3. If we **reject** you then... Oh well. (Apply to several programs.)
4. If we **accept** then you can
 - 1) **Reject** us! This is perfectly fine.
 - 2) **Accept** us! And come!
 - 3) **Accept** and then **NOT** come. DO NOT DO THIS!
If you **ACCEPT** then we look forward to seeing you in June!

Advice for ANY REU application

Advice for ANY REU application

1. Apply Early.

Advice for ANY REU application

1. Apply Early.
2. Get your personal statement done ASAP.

Advice for ANY REU application

1. Apply Early.
2. Get your personal statement done ASAP.
3. Personal Statement should elaborate on what you want to work on, why you are qualified, and why you're interested.

Advice for ANY REU application

1. Apply Early.
2. Get your personal statement done ASAP.
3. Personal Statement should elaborate on what you want to work on, why you are qualified, and why you're interested.
4. Apply to many places (REU programs— Google NSF REU to find more programs).

Advice for ANY REU application

1. Apply Early.
2. Get your personal statement done ASAP.
3. Personal Statement should elaborate on what you want to work on, why you are qualified, and why you're interested.
4. Apply to many places (REU programs— Google NSF REU to find more programs).
5. Another program to consider, from Univ of MD:

Advice for ANY REU application

1. Apply Early.
2. Get your personal statement done ASAP.
3. Personal Statement should elaborate on what you want to work on, why you are qualified, and why you're interested.
4. Apply to many places (REU programs— Google NSF REU to find more programs).
5. Another program to consider, from Univ of MD:
RQS-UR (Robust Quantum Simulation—Undergraduate Research)

Advice for ANY REU application

1. Apply Early.
2. Get your personal statement done ASAP.
3. Personal Statement should elaborate on what you want to work on, why you are qualified, and why you're interested.
4. Apply to many places (REU programs— Google NSF REU to find more programs).
5. Another program to consider, from Univ of MD:
RQS-UR (Robust Quantum Simulation—Undergraduate Research)

[https:](https://rqs.umd.edu/education-workforce/undergraduate)

[//rqs.umd.edu/education-workforce/undergraduate](https://rqs.umd.edu/education-workforce/undergraduate)

Misc and Summary

Quotes from Former Students

Andrew Brady (Mentored by Laxman Dhulipala)

REU-CAAR was a great program! My project, mentored by Professor Laxman Dhulipala, was on "parallel algorithms for high dimensional clustering." It was cool to read lots of papers about many ways researchers have improved the k-means method;

Quotes from Former Students

Andrew Brady (Mentored by Laxman Dhulipala)

REU-CAAR was a great program! My project, mentored by Professor Laxman Dhulipala, was on "parallel algorithms for high dimensional clustering." It was cool to read lots of papers about many ways researchers have improved the k-means method;

I had no idea there was so much research behind k-means until this project. I also got the chance to improve my C++, which will come in handy in the future.

Quotes from Former Students

Andrew Brady (Mentored by Laxman Dhulipala)

REU-CAAR was a great program! My project, mentored by Professor Laxman Dhulipala, was on "parallel algorithms for high dimensional clustering." It was cool to read lots of papers about many ways researchers have improved the k-means method;

I had no idea there was so much research behind k-means until this project. I also got the chance to improve my C++, which will come in handy in the future.

On Game Nights I learned some new board games which was cool. cool. The other students were fun to be around and enhanced my experience.

Quotes from Former Students

Andrew Brady (Mentored by Laxman Dhulipala)

REU-CAAR was a great program! My project, mentored by Professor Laxman Dhulipala, was on "parallel algorithms for high dimensional clustering." It was cool to read lots of papers about many ways researchers have improved the k-means method;

I had no idea there was so much research behind k-means until this project. I also got the chance to improve my C++, which will come in handy in the future.

On Game Nights I learned some new board games which was cool. cool. The other students were fun to be around and enhanced my experience.

Bill Comment He should combine his interests and write parallel algorithms to play games.

Quotes from Former Students

Quotes from Former Students

I had an **incredible experience** working with my team, and we formed a close bond that made collaboration and learning truly enjoyable. I loved getting to know everyone else in the program and we are all still in contact with each other.

Quotes from Former Students

I had an **incredible experience** working with my team, and we formed a close bond that made collaboration and learning truly enjoyable. I loved getting to know everyone else in the program and we are all still in contact with each other.

I had an **incredible experience** working with my team, and we formed Bill will always have time for you and be willing to help you in every way he can. Auguste and Bill bring in so much energy to the program. Their enthusiasm made the program truly special.

Quotes from Former Students

I had an **incredible experience** working with my team, and we formed a close bond that made collaboration and learning truly enjoyable. I loved getting to know everyone else in the program and we are all still in contact with each other.

I had an **incredible experience** working with my team, and we formed Bill will always have time for you and be willing to help you in every way he can. Auguste and Bill bring in so much energy to the program. Their enthusiasm made the program truly special.

Continued on Next Slides

Quotes from Former Students Cont.

Quotes from Former Students Cont.

I had an **incredible experience** working with my team, and we formed Living in the same dorms with everyone was a highlight. It allowed us to spend a lot of time together outside of work— make plenty of trips to dc, going on hikes, playing badminton, watching movies, cooking meals, doing karaoke and having endless discussions about our projects.

Quotes from Former Students Cont.

I had an **incredible experience** working with my team, and we formed Living in the same dorms with everyone was a highlight. It allowed us to spend a lot of time together outside of work— make plenty of trips to dc, going on hikes, playing badminton, watching movies, cooking meals, doing karaoke and having endless discussions about our projects.

I had an **incredible experience** working with my team, and we formed My mentor, Aviva Prins, was an invaluable resource, especially when it came to exploring and applying for graduate schools. She provided not only guidance on our projects but also offered insightful advice that will benefit me long after the program.

Quotes from Former Students Cont.

I had an **incredible experience** working with my team, and we formed Living in the same dorms with everyone was a highlight. It allowed us to spend a lot of time together outside of work— make plenty of trips to dc, going on hikes, playing badminton, watching movies, cooking meals, doing karaoke and having endless discussions about our projects.

I had an **incredible experience** working with my team, and we formed My mentor, Aviva Prins, was an invaluable resource, especially when it came to exploring and applying for graduate schools. She provided not only guidance on our projects but also offered insightful advice that will benefit me long after the program.

Bill Comment Reading the letter is an **incredible experience**

Quotes from Former Students

Nathan Hurtig (Mentored by William Gasarch)

Spending the summer at REU-CAAR was a valuable experience for me. I was given the independence to work on a real research problem, but my mentor (Dr. Gasarch) was readily available for guidance and made sure I had the tools I needed to succeed.

Quotes from Former Students

Nathan Hurtig (Mentored by William Gasarch)

Spending the summer at REU-CAAR was a valuable experience for me. I was given the independence to work on a real research problem, but my mentor (Dr. Gasarch) was readily available for guidance and made sure I had the tools I needed to succeed.

The program was very well-organized; we had multiple activities a week that taught us more about research/grad school and exposed us to topics in computer science and math outside of our research areas.

Quotes from Former Students

Nathan Hurtig (Mentored by William Gasarch)

Spending the summer at REU-CAAR was a valuable experience for me. I was given the independence to work on a real research problem, but my mentor (Dr. Gasarch) was readily available for guidance and made sure I had the tools I needed to succeed.

The program was very well-organized; we had multiple activities a week that taught us more about research/grad school and exposed us to topics in computer science and math outside of our research areas.

Over the summer, I've met and presented my work to many grad students and professors and I'm now writing a paper over it. It's a great experience and I highly recommend applying and attending.

Quotes from Former Students

Nathan Hurtig (Mentored by William Gasarch)

Spending the summer at REU-CAAR was a valuable experience for me. I was given the independence to work on a real research problem, but my mentor (Dr. Gasarch) was readily available for guidance and made sure I had the tools I needed to succeed.

The program was very well-organized; we had multiple activities a week that taught us more about research/grad school and exposed us to topics in computer science and math outside of our research areas.

Over the summer, I've met and presented my work to many grad students and professors and I'm now writing a paper over it. It's a great experience and I highly recommend applying and attending.

Bill Comment I agree with everything he wrote.

Summary

If you want to

1. Get a research experience
2. Bond with fellow students
3. Get a taste of graduate school
4. Have a great time!

then **APPLY** for REU-CAAR!

Summary

If you want to

1. Get a research experience
2. Bond with fellow students
3. Get a taste of graduate school
4. Have a great time!

then **APPLY** for REU-CAAR!

Oh Thats not quite right. **Applying** won't do any of that.

Summary

If you want to

1. Get a research experience
2. Bond with fellow students
3. Get a taste of graduate school
4. Have a great time!

then **APPLY** for REU-CAAR!

Oh Thats not quite right. **Applying** won't do any of that.
Getting in and coming to the program will!

Summary

If you want to

1. Get a research experience
2. Bond with fellow students
3. Get a taste of graduate school
4. Have a great time!

then **APPLY** for REU-CAAR!

Oh Thats not quite right. **Applying** won't do any of that.
Getting in and coming to the program will!

Final Takeaway Apply to REU programs that spark your interest.

Summary

If you want to

1. Get a research experience
2. Bond with fellow students
3. Get a taste of graduate school
4. Have a great time!

then **APPLY** for REU-CAAR!

Oh Thats not quite right. **Applying** won't do any of that.
Getting in and coming to the program will!

Final Takeaway Apply to REU programs that spark your interest.

Questions!