Side-Channel Attacks on BTree

Dana Dachman-Soled Stuart Nevans Locke Shir Maimon
Robert Metzger Aria Shahverdi
Laura B. Sullivan-Russett

December 6, 2017

Abstract

An increasing need for parallelism have pushed the CPU designers to let
different processes running at the same time on a shared hardware resource. This
can be both beneficial in terms of doing more computation in fixed amount of
time but can potentially introduce new challenges which has not been considered
before. Another increasing service offered today is cloud computing. Similar to
the idea of parallelism, a hardware is shared with different users allowing them
to run their process independently. There has been efforts to secure each process
in software space, however the possible leakages in micro-architecture has been
ignored. Since processes basically share same resource, one process can act a spy
process and track the usage of the shared resource and gain some information
about the other process which we call it victim process. One example of this
shared resource is a cache. Two processes run on a same core share L1/1.2/L3
cache while two processes running on different core share 1.3 cache.

Caches were identified as a possible source of leakage as early as 2005 in a
work by Percival [1]. This is one of the preliminary works in the area which
mentioned that the caches are possible source of side-channel attacks in a pro-
cessor. Zhang et al. [?] showed an attack which could retrieve cryptographic key
by an attacker which is running on separate VM from victim. In another work
Yarom and Falkner [3] showed Flush and Reload attack on L3 cache. In this
work the attacker and victim are using shared library which gives an ability to
attacker to flush a line which is being used by victim. Aciigmez [?] showed for
the first time that instruction cache can also be a source of leakage and attacked
OpenSSL’s RSA implementation.

There is a timing difference between cache hit and cache miss.

As it can be seen in Figure 1 the blue distribution is for the case when the
accessed data is loaded from memory, hence slow access, and the red distribution
is for the case where data is loaded from cache, hence fast access. In other word,
based on the location of data the amount of time it takes to load the data varies.
The attack scenario works as following. Two process will share a cache. Attacker
monitors one line of the shared cache. Based on the time it takes for the attacker



Figure 1: Time ot takes to access a data when it is loaded from Cache vs. when
it is loaded from Memory

to access that line of the cache, it can decide whether the victim has accessed
that line or not.

Most of the work in this area has been focused on the applications related
to cryptography [2, 3, ?]. In this work, we extend this line of work to non-
cryptographic applications, namely database.

1 BTree

We attacked BTree which is a self-balancing tree data structure that keeps data
sorted and allows searches. The specific implementation we targeted has tree
structure and also all the node in leaves are connected via a pointer. In this work
we are interested in the range queries which returns all the value between a and
b. The search for correct entries is done by first traversing from the root down
to the first value which is equal to a. One at the leaf level, using the linked list,
the traverse will continue to find the first element which is greater than b. The
intuition for our attack is that by finding the number of traversal happening at
the leaf level we know the volume of response. Using prior work [4], a database
can be reconstructed purely by knowing the distribution of the volume of range
queries and the probability of any particular range query being called and it
requires at least O(N*log V) range queries. It means that if we can retrieve the
size of enough random range queries, i.e. O(N*log N), we can reconstruct the
database. That is, we can know exactly which keys are in the database which
is not good if even membership of an entry should be private.

2 Prime and Probe

In order to find the number of accessed entries at the leave level we performed
prime and probe attack which introduced by Osvik et al. [2]. The attack works
as following,



Figure 2: Heatmap of Instruction cache when Specific function is called

1. Attacker primes cache by filling it with own data

2. Victim process runs

3. Attacker probes cache and records timings

4. If victim process accessed cache sets, the time to probe sets will increase

The attack was done on intel i7-5600U (should be double checked) processor
running Ubuntu 16.04. We scheduled attacker and victim on the same core so
it means that they share all the level of the cache. We targeted L1 Instruction
cache to count number of times a function executed by tracking the cache set it
accessed. The function calls tell us exactly how many records are returned in a
range query.

Figure 2 shows a snapshot of Heatmap for the instruction cache activities
when our target function is being called. Each row represents one cache set (64
for L1 instruction cache) and the column represents time. As it can be seen we
could detect 4 function calls in couple of sets. By aggregating over all the sets
we were able to reduce the noise. The result is presented in Figure 3, where
each group of 3 peaks show one range queries.

3 Future Work

As for the future work we will target SQLite as a real example of database and
we are going to extend our attack to that case.



Figure 3: Reduced Noise Measurement

References

[1] Colin Percival. Cache missing for fun and profit.

[2] Dag Arne Osvik, Adi Shamir, and Eran Tromer. Cache attacks and counter-
measures: the case of aes. In Cryptographers Track at the RSA Conference,
pages 1-20. Springer, 2006.

[3] Yuval Yarom and Katrina Falkner. Flush+reload: A high resolution, low
noise, 13 cache side-channel attack. In 23rd USENIX Security Symposium
(USENIX Security 14), pages 719-732, San Diego, CA, 2014. USENIX As-
sociation.

[4] Georgios Kellaris, George Kollios, Kobbi Nissim, and Adam O’Neill. Generic
attacks on secure outsourced databases. In Proceedings of the 2016 ACM
SIGSAC Conference on Computer and Communications Security, CCS ’16,
pages 1329-1340, New York, NY, USA, 2016. ACM.



