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Abstract

In this paper, we discuss the existence of monochromatic solutions to linear equations in different
colorings of the natural numbers. We improve the upper bounds for the least number of colors
needed to construct colorings with no monochromatic solution to equations represented by some
non-regular sequences.

1 Introduction

We first introduce the notion of a regular sequence defined by Richard Rado in [1].

Definition 1. Given a sequence of non-zero integers a = (ai)
n
i=1, a is regular if for every c ∈ N, every

c-coloring of N has a monochromatic solution to

a1x1 + · · ·+ anxn = 0

For a non-regular sequence a = (ai)
n
i=1, we define an integer ca such that there exists a ca-coloring

of N with no monochromatic solution to a1x1 + · · ·+ anxn = 0, while every (ca − 1)-coloring of N has
a monochromatic solution. In other words, ca is the minimum number of colors needed to construct a
coloring of N that has no monochromatic solutions to the equation represented by a.

For a proof of the existence of an upper bound on ca, consult the book by Gasarch, Kruskal, and
Parrish.[2] The proof shows that ca can be upper bounded by the smallest prime number p where
p >

∑n
i=0 |ai| . This bound has a complexity of Ω(

∑n
i=0 |ai|). In this paper, we improve the bound for

non-regular sequences of length less than 4.
This paper is organized as follows. In Section 2, we present some assumptions we can make on

non-regular sequences based on theorems that are proved in the past. In Section 3, we prove that ca = 2
for every non-regular sequence a of length 2. In Section 4, we prove a constant upper bound for a
special family of sequences of length 3: (1, 1,−k), where k ∈ N. In Section 5, we extend the technique
we use in Section 4 to prove a logarithmic bound for generic non-regular sequences of length 3 under
some conditions.

2 Preliminaries

In this section, we introduce some existing theorems and notations that we use throughout this paper.

Theorem 1. (Rado’s theorem). Given a sequence of nonzero integers a = (ai)
n
i=1, the following are

equivalent:

• a is regular

• there exists a subset of a that sums to 0

Corollary 1. A sequence of nonzero integers a = (ai)
n
i=1 is non-regular if and only if none of the

subsets of a sums to 0.
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Definition 2. A sequence of nonzero integers a = (ai)
n
i=1 is trivial if there is no positive integer solution

to
a1x1 + · · ·+ anxn = 0

Since every coloring of natural numbers for a trivial sequence has no monochromatic solution, we
only focus on colorings of nontrivial sequences in this paper.

We also assume that the solutions to any linear equation are unordered solutions, that is, if (x1, ..., xn)
is a solution to a1x1 + · · · + anxn = 0, then every permutation of (x1, ..., xn) is a solution to the same
equation.

3 Sequences of Length 2

We want to show that for every non-regular sequence a = (a1, a2), ca = 2. Before we prove this, we first
need to prove a lemma that allows us to use some assumptions on the non-regular sequences of length
2.

Lemma 1. For every non-regular sequence of a = (a1, a2), there exist co-prime integers b1, b2, where
b1 > b2 > 0, such that the solutions to a1x1 + a2x2 = 0 are the same as the solutions to b1x1 = b2x2.

Proof. Since we assume that a is nontrivial, a1 and a2 must have different signs so that a1x1 +a2x2 = 0
has solutions. Therefore, a1x1 + a2x2 = 0 has the same solutions as

|a1|x = |a2|y

By symmetry of this equation, we can assume that |a1| > |a2| without loss of loss of generality.

Let d be the great common divisor of |a1| and |a2|. we make b1 = |a1|
d , b2 = a2

d . b1 and b2 are
co-prime and b1 > b2 > 0.

Theorem 2. For all a, b ∈ N, if a and b are co-prime and a > b, there exists a 2-coloring of N] where
ax = by has no monochromatic solution.

Proof. We propose the following 2-coloring:

COL(aer) = e mod 2

where e is the largest integer exponent possible.
Suppose for the sake of contradiction that there exists a monochromatic solution (x1, x2) that satisfies

ax = by.
Let x = ae1

r1 , y = ae2
r2 .

Now we can rewrite ax = by as the following:

a1 · ae1r1 = b · ae2r2

We do a case analysis on the relationship between e1 and e2.
Case 1: e1 + 1 > e2:
Since a, e2 > 0 we can divide both sides by ae2 . Now we get

ae1+1−e2r1 = br2

r2 is not divisible by a because e2 is the largest integer exponent. a2 is co-prime with a, so a2r2 is not
divisible by a, which contradicts with the left hand side of this equality.

Case 2: e1 + 1 < e2:
Since a, e1 + 1 > 0 divide both sides by ae1+1, now we get

r1 = bae2−e1−1r2
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Since r1 is not divisible by a, the left hand side is not divisible by a, which contradicts with right hand
side of this equality.

Case 3: e1 + 1 = e2:
Since e1 ≡ e2 mod 2, this is a contradiction.
Therefore, our proposed coloring gives no monochromatic solution to ax = by.

Corollary 2. For every non-regular sequence a = (a1, a2), ca = 2.

4 Special Sequences of Length 3

In this section, we investigate a special family of non-regular sequences of Length 3: (1, 1 − k), where
k ≥ 4.

4.1 2-coloring N for (1, 1,−k)
4.1.1 An Upper Bound

We prove that for every integer k ≥ 4, c(1,1,−k) ≥ 2 by deriving an upper bound on how many numbers
we need to color to guarantee that every 2-coloring has monochromatic solution.

Theorem 3. For every k ≥ 4, k ∈ Z, every 2-coloring of [k3 − 4k2 + 5k] has monochromatic solution
to x+ y − kz = 0.

Proof. Suppose for the sake of contradiction that there is a 2-coloring of [k3−4k2+5k], which we denote
as COL, where there is no monochromatic solution to [k3 − 4k2 + 5k].

First we want to show that if there is no monochromatic solution, then COL(k) = COL(k3−4k2+5k).
Since k+k = k ·2, (k, k, 2) is a solution. Then COL(2) 6= COL(k) because there is no monochromatic

solution.
Since (2k − 2) + 2 = k · 2, (2k − 2, 2, 2) is a solution. Then COL(2) 6= COL(2k − 2). We can also

conclude that COL(k) = COL(2k − 2) because there are only 2 colors.
Since (2k2−3k)+k = k · (2k−2), (2k2−3k, k, 2k−2) is a solution. Then COL(2k2−3k) 6= COL(k)

Since (k2−2k+2)+(2k−2) = k·k, (k2−2k+2, 2k−2, k) is a solution. Then COL(k2−2k+2) 6= COL(k).
Similarly, we can conclude COL(k2 − 2k + 2) = COL(2k2 − 3k).

Finally, (k3 − 4k2 + 5k) + (2k2 − 3k) = k · (k2 − 2k + 2), so (k3 − 4k2 + 5k, 2k2 − 3k, k2 − 2k + 2) is
a solution. Therefore, COL(k3 − 4k2 + 5k) 6= COL(2k2 − 3k) and COL(k3 − 4k2 + 5k) = COL(k).

Next, we want to show that COL(ak2 − (2a − 1)k) 6= COL(k) for every a ∈ N. We proceed by
induction on a.

Base case: When a = 1, COL(k2 − k) 6= COL(k) because (k2 − k, k, k) is a solution.
Inductive case: Suppose COL(ak2−(2a−1)k) 6= COL(k), we want to show that COL((a+1)k2−

(2a+ 1)k) 6= COL(k).
First we know that COL(ak2 − (2a− 1)k) = COL(k2 − k) because there are only 2 colors.
Since ak2 − (2a− 1)k + k2 − k = k · ((a+ 1)k − 2a),
(ak2 − (2a− 1)k, k2 − k, (a+ 1)k− 2a) is a solution. Then COL((a+ 1)k− 2a) 6= COL(k2 − k) and

COL((a+ 1)k − 2a) = COL(k).
Since (a + 1)k2 − (2a + 1)k + k = k · ((a + 1)k − 2a), (a + 1)k2 − (2a + 1)k, k, (a + 1)k − 2a) is a

solution. Then COL((a+ 1)k2 − (2a+ 1)k) 6= COL(k). This proves our inductive hypothesis.
Since k ≥ 4, k − 2 ∈ N.

COL((k − 2)k2 − (2k − 5)k) = COL(k3 − 4k2 + 5k) 6= COL(k)

This contradicts a statement we proved earlier in this proof. Therefore, the Theorem holds.
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4.1.2 A Lower Bound

As an extension, we also have a lower bound on the least number of numbers we need to color to
guarantee that every 2-coloring has monochromatic solution.

Theorem 4. For every k ≥ 4, k ∈ Z, there exists a 2-coloring of [
⌈
(d k2 e)k

2

⌉
− 1] that has no monochro-

matic solution to x+ y − kz = 0.

Proof. We show that such a coloring exists by presenting the following coloring and proving that there
is no monochromatic solution to x+ y − kz = 0

COL(i) =

RED if i ≤
⌈
k

2

⌉
− 1

BLUE otherwise

First we want to show that there cannot be any red monochromatic solution, which means there is
no solution where x, y, z are all in range [1,

⌈
k
2

⌉
− 1].

Since z ≥ 1, x+ y ≥ k. Then either x or y must be at least k
2 , which contradicts the fact that both

of them must be at most
⌈
k
2

⌉
− 1

Next, we want to show that there cannot be any blue monochromatic solution, which means there

is no solution where x, y, z are all in range [
⌈
k
2

⌉
,
⌈
(d k2 e)k

2

⌉
− 1].

Since z ≥
⌈
k
2

⌉
, x+ y ≥

⌈
k
2

⌉
k. Then either x or y must be at least

(d k2 e)k
2 , which contradicts the fact

that both of them must be at most
⌈
(d k2 e)k

2

⌉
− 1 numbers.

Corollary 3. For every integer k ≥ 4, let equation A be x+ y − kz = 0,

• For every 2-coloring of [k3 − 4k2 + 5k], there is a monochromatic solution to A.

• There exists a 2-coloring of [
⌈
(d k2 e)k

2

⌉
− 1] that has no monochromatic solution to A.

4.2 3-coloring N for (1, 1,−k)
We show that for every k ≥ 4, c(1,1,−k) ≤ 3 by constructing a 3-coloring that has no monochromatic
solutions to x+ y = kz.

Theorem 5. For every integer k ≥ 4, there is a 3-coloring of N that has no monochromatic solution
to x+ y − kz = 0.

Proof. We propose the following 3-coloring of N:

COL(x) = COL

((
k

2

)e

r

)
=


red if e mod 3 = 0

green if e mod 3 = 1

blue if e mod 3 = 2

where r is a real number in [1, k2 ), and e is largest integer possible.

In any solution (x, y, z), kz
2 ≤ max(x, y) < kz

Let z =
(
k
2

)a
b. Then

(
k
2

)
z =

(
k
2

)a+1
b and kz ≤

(
k
2

)a+2
b because k ≤ k2

4 for every integer k ≥ 4.

Based on the proposed coloring, any number between kz
2 and kz cannot be in the same color as z.

Therefore, there cannot be a monochromatic solution.

Corollary 4. For every integer k ≥ 4, c(1,1,−k) = 3.
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5 General Sequences of Length 3

Now we look at more generic cases of non-regular sequences of length 3. In this section, we find better
upper bounds on ca given certain conditions.

Before we show the bounds, we first go over some assumptions we can make without loss of generality.
In any nontrivial sequence a = (a1, a2, a3), a1, a2, and a3 cannot all have the same sign, which means

two of them have the same sign and the other one has the opposite sign. Therefore, a1x1+a2x2+a3x3 = 0
has the same solution as

|a1|x+ |a2|y = |a3|z
Now we can impose some conditions on the relationship between a1, a2, and a3.

5.1 |a3| = γ(|a1|+ |a2|) for some constant γ > 1

Theorem 6. For all a, b, c ∈ N where c = γ(a + b) for some known constant γ > 1, there exists a
O(log(c))-coloring such that ax+ by = cz has no monochromatic solution.

Proof. We propose the following (dlog(c)e+1)-coloring of N:

COL(x) = COL (γer) = e mod (dlog(c)e+ 1)

where e is the largest integer possible to make r be a real number in range [1, γ).
In any solution (x, y, z), c

a+bz ≤ max(x, y) < cz.

Based on the proposed coloring, any number between γz and γ(dlog(c)e+1−1)z cannot be in the same
color as z.

γ(dlog(c)e+1−1)z = γdlog(c)ez = γcz > cz

Since γ = c
a+b , any number between c

a+bz and cz cannot be in the same color as z. Therefore, there is
no monochromatic solution.

5.2 min(|a1|, |a2|) = γ|a3| for some constant γ > 1

Similarly, we use the same approach and get a similar bound for ca when min(|a1|, |a2|) > |a3|.
Theorem 7. For all a, b, c ∈ N where min(a, b) = γc for some known constant γ > 1, there exists a
O(log(a+ b))-coloring such that ax+ by = cz has no monochromatic solution.

Proof. We propose the following (dlog(a+ b)e+1)-coloring of N:

COL(x) = COL (γer) = e mod (dlog(c)e+ 1)

where e is the largest integer possible to make r be a real number in range [1, γ).

In any solution (x, y, z), min(a,b)
c max(x, y) ≤ z < (a+ b)max(x, y).

Based on the proposed coloring, any number between γmax(x, y) and γ(dlog(a+b)e+1−1)max(x, y)
cannot be in the same color as max(x, y).

γ(dlog(a+b)e+1−1)max(x, y) = γdlog(a+b)ez = γ(a+ b)max(x, y) > (a+ b)max(x, y)

Since γ = min(a,b)
c , any number between min(a,b)

c max(x, y) and (a+ b)max(x, y) cannot be in the same
color as z. Therefore, there is no monochromatic solution.

With these extra assumptions, we improve the linear upper bounds for ca with logarithmic upper
bounds for non-regular sequences of length 3 where |a3| in not in range [min(|a1|, |a2|), |a1|+ |a2|].

Corollary 5. For all non-regular sequence a = a1, a2, a3, ca has an upper bound of dlog(
∑3

i=1 |ai|)e+ 1
if the one of the following is true:

1. |a3| = γ(|a1|+ |a2|) for some constant γ > 1

2. min(|a1|, |a2|) = γ|a3| for some constant γ > 1
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6 Future Work

In Section 3, there is a gap between the lower bound and the upper bound for the least number of
natural numbers needed to guarantee a monochromatic solution in every 2-coloring. A tight asymptotic
bound may be obtained by further examining the coloring patterns.‘ In Section 5, there is a remaining
case where c is in the range of (b, a+ b) that is not solved.

In addition, it would be interesting to study the same typ of bounds for linear equations where the
monochromatic solutions of interest must have distinct numbers.
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