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Abstract 

If it exists, the smallest number N - Rk(£) is called the kth Rado number of a given system 
v of linear equations if it is guaranteed that any k-coloring of the numbers 1,2 . . . . .  N contains 
a monochromatic solution of _r. For the family of equations a(x ÷ y ) =  bz, all Rado numbers 
R2(a ,b )  are determined. @ 1999 Elsevier Science B.V. All rights reserved 
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I. Introduction 

In 1917 Schur [8] proved the existence o f  a natural number N such that in any 

coloring o f  the numbers 1,2 . . . . .  N by k colors there are three numbers x, y, and :: 

which are of  the same color and satisfy x + y = z. 

More generally, in 1936 Rado [6] considered systems of  linear equations (see [2]). 

Given a system of  linear equations X, and a natural number k, the smallest natural 

number N, such that for every k-coloring o f  the numbers 1,2 . . . . .  N there exists among 

the colored numbers a monochromatic solution of  27, is denoted by Ra(E) and called 

a Rado number. 

Just a few Rado numbers are determined so far (see [1 ,3 -5 ,7 ] ) ,  most of  them 

recently. For x + y = z  the corresponding Rado numbers R/~ are called Schur numbers 

and exact values are known only for k ~< 4. Here we will consider the generalized 

class of  equations a(x + y ) = b z  where a, b are positive integers and determine all of" 

the corresponding Rado numbers R(a, b) for k - 2. 

2. The two-color Rado numbers for a(x + y )  = bz 

In a(x + y)  = bz, the coefficients a and b can be assumed to be coprime. 
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Theorem 1. For ( a , b ) =  1 we have R(a ,b)=r  where 

r = ~(a) = (4a 2 + 1)a for b = 1, 

r = fl(a) = a(a 2 + 1 )/2 for b = 2, 

r - - 9  f o r b = 3 ,  a = l ,  

r = 10 for b = 3 ,  a = 2 ,  

(4a 2 + a + 9) for a -- 2 (mod 9), 
a (4a 2 + 2 a + 9 )  for a - 4 ( m o d  9), 

r = 2(a) = ~ (4a 2 + 4a + 6) for a --- 5 (rood 9), 

(4a 2 + 5a + 3) for a-- -7(mod 9), 
(4a 2 + a + 6) for a -= 8 (mod 9), 

b 
r = 7 ( b )  = b ( b + l ) / 2  for b>t4, 1 ~a<~-~, 

b b 
r = 6 ( b )  = [b/2]b for b / > 4 ,  ~ < a < ~ ,  

b 
r =ab  f o r b > . 4 ,  ~ < a < b ,  

r = e(a,b)= [aZ/b]a for b >1 4, b<a. 

for b = 3 , a  ~> 4, 

Table 1 indicates those regions where the Rado numbers R(a,b) have equal 
formulas when ( a , b ) =  1. For ( a , b ) > l  the asterisks can be replaced by R(a/(a,b), 
b/(a, b)). 

The Rado numbers R(a, 1 ) =  (4a 2 + 1)a were proved by Burr and Loo (on Rado 
Numbers I, II, preprints 1992). The Rado numbers R(a, 2 ) =  a(a 2 + 1)/2 were proved 
by Harborth and Maasberg in [5]. It remains to determine the Rado numbers for b ~> 3. 

Throughout this paper the abbreviation r will be as in Theorem 1. The two colors 
are called green and red. 

For R(a, b)/> r a special 2-coloring of  1,2 . . . . .  r - 1 is described which does not 
contain a monochromatic solution (x, y,z)  of a(x + y ) =  bz. 

For R(a,b) <<, r it is assumed that a 2-coloring of 1,2 . . . . .  r exists without a mono- 
chromatic solution (x, y,z) of a(x + y ) =  bz and then a contradiction is deduced. 

The Rado numbers R (1 ,3 )=  9 and R(2, 3 ) =  10 can be proved as follows. 

The 2-coloring of  1,2 . . . . .  8 in which 1, 3,4, 7 are green and 2, 5, 6, 8 red does not 
contain a monochromatic solution (x, y,z) of x + y = 3z which proves R(1,3) t> 9. In 
each 2-coloring of 1,2 . . . . .  9 at least one of the solutions (3,6,3), (6,6,4), (9,9,6), 
and (3,9,4) is monochromatic, and thus R(1,3) ~< 9 holds. 

For R(2,3) /> 10 the numbers 1,4,6,7,9 are colored green and 2,3,5,8 red. For 
R(2,3) ~< 10 it is easy to verify that in each 2-coloring of  1,2 . . . . .  10 one of  the solu- 
tions (3,6,6), (3,3,4), (6,6,8), (2,4,4), (9,3,8), (10,2,8), and (6,9, 10) is monochro- 
matic. 
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Table 1 
Rado numbers R(a, b) with (a,b)= 1 

...... 3 ...... "-~" i-]'~" ~ 7 ~  ~ a )  [ X(a) 

...... 4 ...... v ( b ) [  * l a b  I * , (a,b) 

...... 6 ......... ....... . * . . . . . . . 1 " 1 7 .  ..... .... a b  

7 8 ( b )  I a b  a b  

i i!iiii iii{i ii! . I  ii£! - ab 
...... 9 ......... ~!~) J ~ b )  1 ................ i ~ 9  ab 

1 6 i 7 i 8 1 9 ~ : : : ~ --- 

i ~(a)  i o~(a) i a (a)  i ~(a)  i 

i * i [3(a)! * [[3(a) I .-- 

i A(a) i i . 
X(a) i * 

* ie(a,b)i * ie(a,b)i 
e(a,b) : e(a,b) i e(a,b) i e(a,b) i 

* ~(a,b) * ~ * 

i i ab  * e(a,b)  i e (a ,b )  

i • i ab * e(a,b) i 
i • i ab  i ab  * 

Table 2 
Proofs of R(a,b)= r (Theorem 1) 

b=3 a~>4 

b >~ 4 1 <~ a<b/2 

b/2<a<b 

b<a 

b odd 

b even 

b odd 

b even 

Proof of R(a,b) ~ r 

Lemma 1 

Lemma 2 

Lemma 3 

Lemma 2 

Lemma 3 

Lemma 4 

Proof of R(a,b) 

Lemma 5 

I 

~<r 

Lemma 6 

Lemma 7 

Lemma 8 

Lemma 9 

The remaining part of  the proof of Theorem 1 (b ~> 4 and a ~> 4 for b = 3 )  is 

partitioned into Lemmata 1-9, as shown in Table 2. The first steps of the proofs for 

R(a,b)  <<. r are similar and therefore given in Lemma 5 which precedes Lemmata 6-9 .  

Lemma 1. For b = 3, a >~ 4, and (a, 3) = 1 we have R(a, 3) >1 r where r = 2(a) f rom 
Theorem 1. 

Proof. First, r will be written in a different way. Let d and t be defined by a =- d (mod 3) 

with d E { 1,2} and by t = ( a -d )~3 ,  that is, a = 3t+d.  For a ~ 1 (mod 9) we have d = 1 

and t -= 0 (mod 3) which implies a + t +  1 -= 2 (mod 3) and r = ( ( a+ t+  1 )a+d)a/3.  Corre- 

sponding transformations reduce the six cases of Lemma 1 to the following three cases: 

a { ( ( a + t + l ) a + 3 )  

r =  ~ ((a + t + 2)a + d)  

((a + t + 1)a + d)  

for a + t + 1 ------ 0 (mod 3), 

for a + t + l = - l ( m o d 3 ) ,  

for a + t + 1 _--2(mod3). 
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Now for R(a, 3)~> r the numbers 1,2 . . . . .  r -  1 are colored as follows. The number 

a, all numbers (a + t + 1 )a, (a + t + 2)a  . . . . .  r - a, all numbers 3, 6 . . . . .  3 [(a + t ) /2 j ,  

and all numbers d, d + 3, d + 6 . . . . .  d + 3(a + t -  1 ) are colored red and the remaining 

numbers are colored green. It may be noted that 2a ,3a  . . . . .  (a + t)a are green since 

3[ (a  + t)/2J < 2 a ,  and since 3(a + t -  1) + d < 4a and 2a, 3 a ~ d ( m o d 3 ) .  
For every solution (x, y ,z)  of  a(x + y )  = 3z we have 31(x + y )  since (a, 3) = 1. Only 

solutions (x ,y ,z)  with 1 ~< x , y , z < r  are considered, and the cases 3Ix and 3Xx will be 

distinguished. 

I f  3[x then 3[y holds as well. 

I f  x and y both are green then x , y  ~> 3( [ (a  + t)/2J + 1). Then z = a ( x  + y) /3  ~> 

(a + t + 1 )a and therefore z is red since it is a multiple o f  a. 

Let x and y both be red. I f  3 ~< x, y ~< 3 [(a + t)/2J then 2a ~< z ~< 2 [(a + t ) / 2 J  a ~< (a + 

t)a and z is green. It remains that at least one o f  the variables x and y, say x, can be 

a multiple o f  a, that is, x >~ (a 4- t + 1 )a. Then 

( a + t + l ) a  for a + t + 1 ~ 0 ( rood3) ,  

x>~ ( a + t + 3 ) a  for a + t + 1 = 1 (mod3) ,  

( a + t + 2 ) a  for a + t + l - 2 ( m o d 3 )  

can be concluded since 31x and 3 )~a. Together with y / >  3 it follows that 

z = a(x + y)/3 >~ r. 
I f  3~/x then 3)~y and x - = d ( m o d 3 )  and y - 3 -  d ( m o d 3 )  can be assumed. 

I f x  and y both are green then x ~> 4a since d + 3 ( a 4 - t - 1 ) = 4 a - 3 .  With y > / 3 - d  

it follows that z = a(x + y)/3 >>- (a + t + 1 )a, so z is red. 

I f  x and y both are red then y is a multiple of  a with y ~> (a + t 4- 1)a. Then 

( a + t + 3 ) a  for a + t + l - 0 ( m o d 3 ) ,  

y>~ ( a + t + 2 ) a  for a + t + 1-= 1 (mod3) ,  

( a + t + l ) a  for a + t + l = 2 ( m o d 3 )  

can be concluded since y ~ 3 - d (mod 3) and a -= d (mod 3). Together with x >~ d it 

follows that z = (y + x)a/3 >1 r. [] 

Lemma 2. For b >1 4, 1 ~< a < b , ( a , b ) =  1, and b odd we have R(a,b) >~ r where 

= ~ b ( b + l ) / 2  for 1 <~a<b/Z, 
r [ a b  for b /2<a<b .  

ProoL The numbers 1,2 . . . . .  r - 1 are colored as follows. The multiples kb of  b 

are colored green for l <~ k <b/4 and red for b/4 <k  <r/b. The remaining numbers 

kb 4- m < r  with 0 ~< k < r / b  and 1 ~< m < b  are colored red for 1 ~< q < b / 2  and green 

for b/2<q ~< b -  1 where q is detemained by q a = m ( m o d b ) .  
For every solution o f  a(x 4- y)  ~ bz we see that bl(x 4- y)  since (a, b) = 1. The cases 

blx and bXx will be distinguished. 
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If  x = kl b then y = k2b and z = (kl + k2)a. 
Let x = k l b  and y = k 2 b  both be green. Then 1 ~<k t ,k2<b /4 ,  that is, 

2 <~ kl + k~ < b/2, and z = (kl + k2)a is colored red. 

I f  x = klb and y = k2b both are red then b/4 <kl,k2 <r/b, that is, 

b / 2 < k l + k 2 < ~ 2 ( ( r / b ) _ l ) =  f b  1 for 1 <~a<b/'2, 
L 2 ( a -  1) fbr b/2<a<b.  

Then z = (kl + k2)a is colored green whenever z < r. 

I f  b~x then bf'y and for x = q l a ( m o d b )  and y - q 2 a ( m o d b )  we have 1 ~< ql,q~_ <b. 
From bl(x+y) it follows that 0 =-x+y =- (ql +q2 )a (rood b) and thus ql +q2 - 0 (rood b) 

since ( a , b ) -  1. However,  this contradicts 1 ~< ql,q2 <b/2 or b/2<ql,q2 <b, that is, if 

x and y both are of  the same color. 

Lemma 3. For b >~ 4, 1 <<, a<b, (a,b) 1 and b el;en we have R(a,b) >~ r where 

7" 

( b + l ) b / 2  .for 1 ~ a ~ b . ' 4 ,  
bb/2 for b/4 < a < b/'2, 
ab ,for b/2 < a < b. 

Proof.  Since (a, b ) =  1, only a = 1 and b - 4  satisfy a = b/4. In this case 1,4, 5, 6, 9 red 

and 2, 3, 7, 8 green describes a 2-coloring without a monochromatic solution (x, y ,z)  of  

x + y=4z .  This proves R(1 ,4)  >~ 10, and aCb/4  can be assumed in the following. 

The numbers 1,2 . . . . .  r -  1 are colored as follows. The multiples k(b/2) of  b/2 are 

colored green for 1 ~< k < b/2, red for b/2 <k < 2r/b, and for k -  b/2 green i f  a > h/2 

and red i f  a < b/2. The remaining numbers kb + m < 1" with 0 ~< k < r/b and 1 ~< m < b. 

mCb/2,  are colored red for 1 ~< q<b/2 and green for b/2<q ~< b 1 where q is 

determined by qa ~ m (mod b). 

Again bl(x+y ) for every solution of  a ( x + y ) -  bz since (a, b ) -  1. The cases (h/2)!_', 
and (b/2) t 'x  will be distinguished. 

I f  x = kl (b/2)  then y = k2(b/2) and z = a(kl + k2 )/2. 

Let x=k l (b /2 )  and y=k2(b/2)  both be green, that is, 1 ~< kl,k2 <~ b/2, and thus. 

1 ~< (kl + k2)/2 ~< b/2. Then z = q a  with q=(kl  + k2)/2 is red. Note that q h/2 
implies k~ =k2 : b / 2  and a>b/2 so that z - a ( b / 2 )  is red. 

Let x - k l ( b / 2 )  and y=k2(b/2)  both be red, so that b/2 <~ kt,k3 <2r/h, that is, 

b for 1 ~ a<b/4, 
b kl +k2  r 

~< ~ ~< ~ - 1 b -  1 for b/4<a<l~/2, 
2a 1 for b..'2 < a </). 

Then z = q a  with q=(k l  + k2)/2 is green for b/2 <~ (kl + k 2 ) / 2 < b .  Since (kl + 

k 2 ) / 2 = b / 2  implies k l - k 2 = b / 2  and a < b / 2  so that z - a b / 2  is green, i f  

(kl +k2) /2  >~ b then either a<b/4 and z - a b = 2 a ( b / 2 )  is green or a>b/2 and z >~ at, 
is not contained in 1,2 . . . . .  r -  1. 

I f  ( b / 2 ) ~ x  then ( b / 2 ) [ y  and then x=_qla(modb) and y=-q2a(modb) with 

1 <~ql,q2<b. From b [ ( x + y )  it follows that O - x  + Y=-(ql +q2)a(modb)  and 
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thus ql + q 2 - = 0 ( m o d b )  since ( a , b ) = l .  However,  this contradicts 1 ~q l ,q2<b/2  
or b/2<ql ,qz<b,  that is, i f x  and y both are o f  the same color. [] 

L e m m a  4. For 4 <<. b<a and (a,b)= 1 we have R(a,b) >>. r where r=  [a2/b]a. 

Proof .  Here 1, 2 . . . . .  r -  1 are colored as follows. The multiples ka of  a are colored 

green for 1 ~< k < a and red for a ~< k < [a2/b]. All multiples kb of  b with 1 ~< k ~< L(a -  

1)/2J are colored red and with [(a + 1)/2J ~< k < a  are colored green. Since (a ,b ) - - -1  

every remaining number x can be written as kb + ma with 1 ~< k < a and m ~ 0. These 

numbers are colored red for m < 0 and green for m > 0. 

For solutions (x,y,z)  of  a(x + y ) = b z  we see that z = k l a  since ( a , b ) =  1. 

For x=k2a it follows that y = k l b -  k2a. 
I f x = k 2 a  and z = k l a  both are green then 1 ~< kl,k2 <a and thus y = k l b - k 2 a  with 

m = - k 2  is red or negative, that is, not contained in 1,2 . . . . .  r - 1. 

I f  x = k2a and z = kl a are both red, then a <<. kl, k2 < [aZ/b] and thus y <<. ( Ia2/bl - 
1 ) b  - a 2 < 0 is not contained in 1,2 . . . .  , r - 1. 

For  x = kzb with k2 < a  it follows that y = (kl - k 2 ) b .  

I f x  and z both are green, then t(a + 1)/2J ~< kz<a and 1 ~< kl < a  so that y=k3b 
with k3 = kl - k2 ~< a - 1 - / (a  + 1 )/2J ~< [(a - 1)/2J is red or negative. 

I f x  a n d z  both are red, then 1 ~< k2 ~< [ ( a -  1)/2J and a ~< kl < [a2/b] so that y=k3b 
with k3 = k l  - k 2  ~> a -  [ ( a -  1)/2J ~> [ ( a +  1)/2J is green for aXk3 and for a[k3 as well 
since y = kl b - x < kl b <<. ( [a2/b] - 1 )b < a 2 . 

For the remaining numbers x in 1,2 . . . . .  r - 1, that are x = k2b 4- ma with 1 ~< k2 < a 

and m >i 1, we have y=k3bqzma with k3=kl - k z .  
I f  x and z both are green then y = k 3 b -  ma with k3 < a  is red or negative. 

I f x  and z both are red then y = k 3 b + m a  and a ~< kl < ra2/b~ so that y is green for 

a)/k3 and also for alk3 since y is a multiple o f  a and y = k l b - x < a  2. [] 

Lemma 5. Assume the existence o f  a 2-coloring of  1,2 . . . . .  r without a monochro- 
matic solution (x, y,z) of  a(x + y ) =  bz. Let b be green (without loss o f  generality). 
I f  mo is the greatest integer such that b, 2b . . . . .  mob are green, then (mo + 1 )b, (too + 
2)b . . . . .  hb and 2a, 3a . . . . .  ( ~ -  1)a are red and ~a, (~ + 1)a . . . . .  ga are green, where 

I r _ l  for 3<<.b<a, 

a r  b 
h :  -b-+ l for b >~ 4, 1 <~ a <~ -~, b even, 

r f o r b > ~ 4 , 1 < ~ a < ~ , b o d d  
b b 

and b >~ 4, -~ <a<b,  

2 m o + l  / f  ( 2 m o + l ) a  green, 
e =  2 m o + 2  ~ ( 2 m o + l ) a  red, 

g = min(  Lr/aJ, 2h}. 
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Proof.  Every component o f  the solutions (wb, ( b -  w)b, ab) with 

1 for 3 ~< b<a, 
w -- h otherwise 

is contained in 1,2 . . . . .  r. This can be verified straightforward using the following steps 

First, w and if necessary h (Lemma 5) and r (Theorem 1) are substituted so that the 

components o f  the solution depend on a and b only. Then the maximum component 

is determined as 

max{ wb , ( b -  w)b, ab} = { hbab otherwise.f°r 3 ~< b<a, 

At last the maximum component can be verified to be at most r by Theorem 1. 

Since no solution (wb, (b - w)b, ab) is monochromatic and b, 2b . . . . .  mob are green it 

follows m0< max{w,b - w , a } ,  that is, (m0 + 1)b ~< max{wb , (b -  w)b, ab} <<. r. Thus 

(m0 + 1 )b belongs to 1,2 . . . . .  r and then it is red by definition of  m0. 

The solutions (ub, vb,(u + v)a) with 1 ~< u, v ~< m0 force 2a,3a . . . . .  2moa to be red 

as long as these values are in 1,2 . . . . .  r. In the following (2m0+2)a  < r can be shown. 

From the arguments above 

a for 3 ~< b < a ,  
m0 + 1 ~< h otherwise 

will be used. 

For b = 3  it follows that 2(m0 + 1)a ~< 2a 2 and 2a2<~r holds (with r from 
Theorem 1 ). 

For b >/4  and a < b/2 it follows that 2(m0 + 1 )a <. 2ha < hb <. r. 
For b ~> 4 and a > b/2 the components o f  the solution (2a, ( b -  2)a, a 2) are contained 

in 1,2 . . . . .  r since r=ab  or r - -  Fa2/b~a. This solution is not monochromatic and thus 

2moa<  max{2a,(b  - 2)a, a2}<r. Moreover, (2mo + 2)a ~< a + amax{2,  b - 2,a} ~ r 
with r = ab if a < b and r -- IaZ/bl a for a > b. 

The solution ((too + 1)b,(mo + 1)b,(2mo + 2)a)  forces (2too + 2)a to be green. 

Let to be the greatest integer such that (mo + 1)b,(mo + 2)b . . . . .  tob are red. 

If  to ~< h -  1 is assumed then the components o f  the solution (b, ( to+ 1 )b, ( to+2)a)  are 
contained in 1,2 . . . . .  r, since (to + 1)b <~ hb and hb <~ r by definition o f  h (Lemma 1 ), 

and since (to + 2)a ~< (h + 1)a and (h + 1)a ~< r can be verified straightforward by 
substituting h (Lemma 1) and if necessary r (Theorem 1 ). Then (to + 1)b is green and 

(to + 2)a is forced to be red. Then the solution ((too + 1)b,(to + 1 - mo)b,(to + 2)a) 

determines (to + 1 - mo)b to be green. Since to + 1 - m o  ~< to it follows that to - 

1 - m o  ~< mo which is equivalent to 2too - to + 1 i> 2. On the other hand, m o +  1 ~< to 

implies 2mo - to + 1 ~< mo so that (2too - to + 1)b is green. Now the solution ((to -~ 
1 )b, (2mo - to + 1 )b, (2too + 2)a)  is green, a contradiction. 

It remains to ~> h. Then (mo + 1)b,(mo + 2)b . . . . .  hb are red by definition of  to. The 
solutions (ub, vb, (u + v)a) with mo + 1 ~< u, v ~ h force (2too + 2)a, (2too + 3)a . . . . .  2ha 
to be green as long as these values are in 1 ,2 , . . . , r ,  that is, up to 9a. 
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So far the color o f  (2m0+ 1 )a remains unknown and by ~ the green and red multiples 

of  a are separated. [] 

Lemma 6. For b = 3, a >~ 4, and (a, 3) = 1 we have R(a, 3) <~ r where r = 7(a) from 
Theorem 1. 

Proof .  As in the proof  o f  Lemma 1 we can take for r,  

a { ( ( a + t + l ) a + 3 )  f o r a + t + l ~ 0 ( m o d 3 ) ,  

r = ~  ( ( a + t + 2 ) a + d )  for a + t + 1 = 1 (mod3) ,  

( ( a + t + l ) a + d )  for a + t + l - 2 ( m o d 3 )  

with a - - d  (mod 3), d E { 1,2}, and t = ( a -  d)/3 so that a = 3t + d. 

By Lemma 5 it follows that 2a, 3a . . . . .  (~ - 1 )a are red and c~a, (c~ + 1 )a . . . . .  r are 

green. The cases a < c~ and a / >  e will be distinguished. 

I f  a ~< . ~ -  1 then the solution (a,2a, a 2) forces a to be green. The number (2 t+d)a  
is red since 2 < 2t + d < a  ~< c~-1, and (d, 2a, (2t + d)a) forces d to be green and then 

(d, 3 - d,a) forces 3 - d to be red. The number 4a is red since 4 ~< a ~< c~ - 1 and 

thus (4a, 3 - d,(a + t + 1)a) forces (a + t + 1)a and therefore also (a + t + 2)a  to 

be green. Now in all three cases a + t + 1 - 0, 1, and 2 (mod 3) completely green 

solutions ((a + t + 1)a, 3, r) ,  ((a + t + 2)a,d,r), and ((a + t + 1)a,d,r), respectively, 

are determined in contradiction to the first assumption o f  Lemma 5. 

I f  a >t c~ then the solutions (~a, 3,a(:~a + 3)/3) ,  ((~ + 2)a, 3, a((c~ + 2)a  + 3)/3),  and 

((c~ + 1 )a, 3, a((~ + 1 )a + 3) /3)  are considered for c~ = 0, 1, and 2 (mod 3), respectively. 

Every component is contained in 1,2 . . . . .  r since already the largest component a ( (e  + 

2)a  + 3)/3 is at most r which follows for t >~ 2 from (e + 2)a  + 3 <~ (a + t)a + 3 and 

for t = l ,  that is, a = 4  or a = 5 ,  from ( c ~ + 2 ) a +  3 < . ( a + t +  1)a + 3. Up to b = 3  

each component is a multiples o f  a and of  size at least :~a. Thus all three solutions 

are green, which is a contradiction. [] 

L e m m a  7. For b >1 4, 1 <~ a<b/2, and ( a , b ) =  1 we have R(a,b) <~ r where 

( b + l ) b / 2  for 1 ~ < a ~ < ( b - 1 ) / 2  and b odd ( Case A ), 
r=  ( b + l ) b / 2  Jbr l <~a<~b/4and b even (Case B), 

bb/2 .for b /4<a<b/2  and b even (Case C). 

Proof .  Starting with Lemma 5 it follows that b, 2b . . . . .  mob are green, (m0 + 1 )b, (too + 

2)b . . . . .  hb and 2a, 3a . . . . .  ( ~ -  1)a are red and ~a,(~ + 1)a . . . . .  2ha are green with 

( b + l ) / 2  in C a s e A ,  
h = b/2 in Cases B and C, 

2 m o + l  i f  ( 2 m o + l ) a  green, 

= 2 m o + 2  if  ( 2 m o + l ) a r e d .  

As in the proof  o f  Lemma 5 the solution ( h b , ( b -  h)b, ab) is considered. Since 

ab <. (b - h)b <~ hb can be verified and hb is red this solution forces ab to be green 
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and thus a ~< m0. Furthermore, m0 <2m0 + 1 ~< ~ so that a < ~ and then a 2 is red with 

one possible exception if a = 1. 

At first, Case C will be discussed. Here a > b/4 ~> 1 and a ~ is red so that the solution 

(ha, ha, a ~) forces ha to be green. If  the solution ( lh /2 ib ,  Ih/2~b, ha) is not green thcn 

m0 + 1 ~< [h,/2], that is, m0 <h/2 .  However, this contradicts h.."2 b/'4 < a  ~< m~ and 

Case C is proved. 

I f a  2 is red the solution ( ( ~ - l ) a , ( b  ~ + l ) a ,  aa)  forces (b ~ + l ) a  to be green 

since ba green implies b > ~  which is equivalent to b - ~ + l  >~ 1. F r o m ( b  ~ l ) a  

green it follows b - ~ + 1 - 1, that is, a is green, or b :~ + 1 ~> ~. 

In the following, three alternatives are distinguished, ( 1 ) a red, (2) a green for a ~> 2, 

and (3) a green for a =  1. 

(1) If a is red then b -  ~ + 1 ~> ~ which is equivalent to ~ ~< h and thus ( :~-  a)h 

a < h b  <~ r so that the solution (a,(~ - a)b - a,(~ - a)a) forces (:~ - a)b - a to be 

green. Since (b + 1)a < (b + 1)b/2 -- r the solution ((b + 1 )a, (~ a)b a, ~a) determines 

(b + 1)a to be red in contradiction to ( b -  1 ) a = 2 h a  green in Case A. 

In Case B the solution ((b + 1)h, (b + 1 )h, (b + 1 )a) implies (b + 1 )h green. Since a 

red implied ,z<h + 1, it follows that (h + 1)a is green and thus ((b + 1 )h,h,(h + 1 )a) 

forces to be red. Now the solution (h ,h ,a )  is red, a contradiction. 

(2) If a is green for a ~> 2 then a 2 was determined to be red and either b =  ~, or 

b c~+ l  > ~ .  

For b = ~ the solution (2a, ( b -  2)a, a : )  is red, a contradiction. 

F o r b - : ~ + l  ~> ~, which is equivalent to ~ < h ,  i f tb l lows f r o m ~ < 2 ~  1 ~<b~<2h 

that (b l ) a  is green. Furthermore, (~ - a)b + a < ~b <~ hb <~ r so that the solution 

((b 1)a,(~ a)b + a,~a) forces (:~ - a)b + a to be red. Since 2 ~< a ~< m0 <~- the 

third component o f ( b - a , ( ~ - a ) b + a , ( z + l - a ) a )  is red which forces b a to be 

green. Then ( b -  a ,a ,a )  is green, a contradiction. 

(3) If a is green for a =  1 then ( 1 , b -  1, 1) forces b -  1 to be red and thus also 

b 2 is red. Since b a = b  was assumed to be green it follows that b - - ~  and 2 d h ~< 

(~ + 1 ) / 2 < z  determines h a = h  to be red. Then (2, h h -  2, h) implies that hb 2 is 

green. 

In Case A the solution ( b -  2, ( h -  1)b + 2, h) forces ( h -  1)b + 2 to bc green and 

then (hb - 2, (h - 1 )b + 2, 2h - 1 ) forces 2h - 1 to be red in contradiction to h - 2h 1 

being green. 

In Case B from h = b / 2 = ~ / 2 < ~ -  1 it follows that h +  1 is red. Then ( h -  2. 

hb + 2,h + 1) implies that bh + 2 is green since bh + 2 <~ bh + h = r .  Now the green 

solution (hb 2, hb + 2, b) is a contradiction. 

Lemma 8. For b >~ 4, b / 2 < a < b ,  and ( a , b ) =  1 we have R(a ,b)  <~ r where r - a h .  

ProoL Using Lemma 5 it follows that hb is red and eta is green. However, h b - - r - - a b  

and ga = a rain{b, 2a} = ab determine hb = ya, a contradiction. 

Lemma 9. For 4 ~< b < a  and ( a , b ) -  1 we have R(a ,b)  <~ r where r Ia2."bla. 
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Proof .  Using Lemma 5 it follows that b ,2b  . . . . .  mob are green, (m0 + 1)b,(m0 + 

2)b . . . . .  hb and 2a,3a  . . . . .  ( ~ -  1)a are red and aa, (a  + 1 ) a , . . . , r  are green with 

h : ( r / a ) -  1 : [aZ/b] - 1, 

2 m 0 + l  i f  ( 2 m 0 + l ) a  green, 

= 2 m 0 + 2  if  ( 2 m o + l ) a r e d .  

Since ( 2 a , ( b - 2 ) a , a  2) is a solution and 2a ~< ( b - 2 ) a < a  2 < r  it follows that ~ ~< a. 

Some abbreviations are needed. The number 6 is determined by r / a =  [a2/b] = 

( a 2 +  6) /b  with 1 ~< 6 < b .  The numbers y and ~ are determined by a = y b  + c with 

1 ~< 7 and 1 ~< ~ < b. Furthermore, there are numbers a and T so that ~a ÷ ~ = ab  with 

1 ~< z < b and ~ < a. Also a ~< r/a follows from a = ( r / a ) ( ~ a + Q / ( a  2 + 6 )  for ~ < a ,  and 

for ~ = a i f  6 - - ~  is noted. Then a a  is green and (~a, 3, era) forces z to be red. 

The number yah is red since ya i> a >1 ~ t> 2m0 + 1 and y a = ( a  - ~ ) a / b < h .  This 

implies yba <~ (~ - 1)a which is equivalent to ~ - yb >~ 1. The number (G - ya)a is 

red since ~ - ~a ~> 2 follows from (or - 7 a ) b =  (~ - yb)a + • >>- b + • and a - y a < ~  

follows from (~r - ya )b - c~b = ~( a - b)  - yba + ~ <<. ( a - b - yb )a + ~ = ( ~ - b )a + ~ < O. 

Now the solution ((~ - 7b)a, z, (a  - 7a)a)  forces (~ - yb)a to be green and therfore it 

remains only the possibil i ty that ~ - ~b = 1 and a is green. 

The cases e = 1 and ~ ~> 2 will  be distinguished. 

I f ¢ = l  t h e n a = y b ÷ l = ~ .  

I f  b is even then a = y b  + 1 is odd and (a + 1)/2 is an integer. Next, (b /2 )a  and 

( ( a +  1) /2)a  are red since 2 ~< b / 2 < b  <<. 7 b = a -  1 and 2 ~< b / 2 < ( a +  1)/2 ~< a -  1 = 

- 1. Then ( ( b / 2 ) a , b / 2 , ( ( a  + 1) /2)a)  determines b/2 to be green. However,  now 

(b/2, b/2,  a)  is green, a contradiction. 

I f  b is odd then the solutions ((b - 1) /2 , ( (b  ÷ 1) /2 )a , ( ( (b  ÷ 1)/2)7 ÷ 1)a) and 

( ( b ÷  1 ) / 2 , ( ( b -  1 ) / 2 ) a , ( ( ( b -  1 ) / 2 ) 7 ÷  1)a) force ( b -  1)/2 and ( b ÷  1)/2 to be green 

since 2 ~< ( b -  1 ) / 2 < ( b +  1)/2 ~< ( ( b -  1 ) / 2 ) y +  1 < ( ( b +  1 ) / 2 )7+  1 ~< 7 b = ~ -  1. Then 

the solution ((b - 1 )/2, (b + 1 )/2, a)  is green, a contradiction. 

I f  e ~> 2 then ea is red since e < b  <~ 7 b = ~  - 1. The solution (a2 ,6 ,ha)  forces 

6 to be red and then (¢a, 6 , r  - 7a 2) implies that r - ya 2 is green. Together with 

(r /a)  - y a = ( 6  + e a ) / b > 6 / b  + e > 2  it follows that ~ ~< (r /a)  - ya. 

The case ¢ ~< b/2 cannot occur since 7b + 1 = ~  ~< ( r / a ) -  y a = ( e a  + 6 ) / b =  

(e(yb ÷ c) ÷ 6) /b  <<. ( (b /2) (yb  ÷ b /2 )  + 6) /b  leads to (2~ - 1)b 2 ~< 4(6 - b)  which is 

impossible for b > 6 and y ~> 1. 

I f  c > b / 2  then (Tb + b - e)a  is green since yb + b - e t> yb + 1 = a  and 7b + 

b - ¢ < 7 b  + b / 2 < T b  + e = a < r / a .  The number (2 + (7 + 1)a - (r/a - 7a))a is green 

since (Y + 1)a - (r/a - 7a) <<. r/a - 2 follows from (r/a - 1)b + 6 = ( 7 b  + b - ¢)a + 

(2¢ - b - 1)a + a - b + 2 6 > ( 7 b  + b - ~)a = ((7 + 1)a - (r/a - 7a))b + 6 and since 

(~ + 1 )a - (r/a - 7a) : (7 + 1 )a - (ca ÷ 6)/b > (y ÷ 1 )a - (ba ÷ b) /b  = ya - 1 > ~ - 2. 

Then ((yb + b - ¢ )a ,2b  - 6,(2 + (~ + 1)a - (r/a - ya) )a)  implies that 2b - 6 is red. 

This gives the contradiction that (6 ,2b  - 6 ,2a )  is red. [] 
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3. Remarks 

For  k ~> 4 numbers  R k ( a , b )  for a # b  and b = 2 a  do not exist  (see [6]). I f  2b ~< a 

or 4a  ~< b then also for k = 3  Rado  numbers  R 3 ( a , b )  do not  exist (see [4, 

Theo rem 2]). I f  a < 2b < 8a in the case o f  k = 3 then a general  p r o o f  for the exis tence 

o f  R 3 ( a , b )  is unknown.  Bes ides  the Schur  number  R3(1, 1 ) =  14 and the trivial Rado 

number  R 3 ( 1 , 2 ) =  1 only the four  numbers  R3(3, 1 ) =  54, R 3 ( 3 , 2 ) =  54, R3(4, 3 ) =  108, 

and R 3 ( 5 , 2 ) =  105 which  were  de termined  with  the help  o f  a compute r  are known 

so far. 
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