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Abstract

If it exists, the smallest number N =R, (2) is called the kth Rado number of a given system
2 of linear equations if it is guaranteed that any k-coloring of the numbers 1.2,..., N contains
a monochromatic solution of X. For the family of equations a(x + y)= bz, all Rado numbers
R:(a.b) are determined. (© 1999 Elsevier Science B.V. All rights reserved

Keywords: Rado numbers; k-colouring; Schur number

1. Introduction

In 1917 Schur [8] proved the existence of a natural number N such that in any
coloring of the numbers 1,2,...,N by & colors there are three numbers x, y, and =
which are of the same color and satisfy x + y=r=.

More generally, in 1936 Rado [6] considered systems of linear equations (see [2]).
Given a system of linear equations 2, and a natural number 4, the smallest natural
number N, such that for every k-coloring of the numbers 1,2,..., N there exists among
the colored numbers a monochromatic solution of X, is denoted by R;(X) and called
a Rado number.

Just a few Rado numbers are determined so far (see [1,3-5,7]), most of them
recently. For x + y =z the corresponding Rado numbers R, are called Schur numbers
and exact values are known only for & < 4. Here we will consider the generalized
class of equations a(x + y)=>hz where a, b are positive integers and determine all of
the corresponding Rado numbers R(a, b) for & = 2.

2. The two-color Rado numbers for a(x + y)= bz

In a(x + y)= bz, the coefficients ¢ and b can be assumed to be coprime.
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Theorem 1. For (a,b)=1 we have R(a,b) =r where

r=oa(a) =(4a2+1)a for b=1,
r=p(a) =a(d® +1)/2  for b=2,
r =9 Jor b=3, a=1,
r =10 for b=3, a=2,

[ (4a* +2a +3) for a=1(mod 9),
(4’ +a+9) for a=2(mod 9),
(4a*> +2a+9) for a=4(mod 9),
(4a* + 4a+6) for a=5(mod 9),
(4a*> + 5a+3) for a=7(mod 9),

| (4a° +a+6) for a=8(mod 9),

r=/1(a)=g< S for b=3,a >4,

7

r=yb) = blb+1)/2 for b =4, lsasg,

b b
r=46(b) = [b/2]b for b =4, 2 <4<5
r = ab for b =4, §<a<b,
r =¢e(a,b)= |'a2/b]a for b=4, b<a.

Table 1 indicates those regions where the Rado numbers R(a,b) have equal
formulas when (a,b)=1. For (a,b)>1 the asterisks can be replaced by R(a/(a,b),
b/(a,b)).

The Rado numbers R(a,1)=(4a® + 1)a were proved by Burr and Loo (on Rado
Numbers I, II, preprints 1992). The Rado numbers R(a,2)=a(a® + 1)/2 were proved
by Harborth and Maasberg in [5]. It remains to determine the Rado numbers for b > 3.

Throughout this paper the abbreviation r will be as in Theorem 1. The two colors
are called green and red.

For R(a,b) = r a special 2-coloring of 1,2,...,r — 1 is described which does not
contain a monochromatic solution (x, y,z) of a(x + y)=bz.

For R(a,b) < r it is assumed that a 2-coloring of 1,2,...,r exists without a mono-
chromatic solution (x, y,z) of a(x + y)==>bz and then a contradiction is deduced.

The Rado numbers R(1,3)=9 and R(2,3) =10 can be proved as follows.

The 2-coloring of 1,2,...,8 in which 1,3,4,7 are green and 2,5,6,8 red does not
contain a monochromatic solution (x, y,z) of x + y =3z which proves R(1,3) = 9. In
each 2-coloring of 1,2,...,9 at least one of the solutions (3,6,3), (6,6,4), (9,9,6),
and (3,9,4) is monochromatic, and thus R(1,3) < 9 holds.

For R(2,3) = 10 the numbers 1,4,6,7,9 are colored green and 2,3,5,8 red. For
R(2,3) <10 it is easy to verify that in each 2-coloring of 1,2,...,10 one of the solu-
tions (3,6,6), (3,3,4), (6,6,8), (2,4,4), (9,3,8), (10,2,8), and (6,9, 10) is monochro-
matic.
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Table 1
Rado numbers R(a, b) with {a,b)=1
bha ] L 2 31 4 516 7 8 9
1 a@) i a@) i a(@ i a@) i a@ | «a(a@) | a(a) i a(a) | a(a)
2 1B@: ™ ip@: * ip@i * @i " P
3009 10 * i@ M * iA@ M@ %
4 Yyt * ab * le(@b), * ie@b)i * ie(@b)i -
S Ty lowm| a i ab | * le@h)ic@hic@b) e@py.
6 v(b) * * * ab * |ea,b) e h
7 fyoy|ow) 6| ab | ab | ab | * |e@h)e@h)
S i v s R s ey iy B B
S lwive)| * emy| e * b a | |
] : : :
Table 2
Proofs of R(a,b)=r (Theorem 1)
Proof of R(a,b) = r Proof of R(a,b) < r
b=3 az4 Lemma 1 Lemma § Lemma 6
b>4 1 €a<b/2 b odd Lemma 2 Lemma 7
b even Lemma 3
bj2<a<b b odd Lemma 2 Lemma 8
b even Lemma 3
b<a Lemma 4 Lemma 9

The remaining part of the proof of Theorem 1 (b >4 and a >4 for b=3) is
partitioned into Lemmata 1-9, as shown in Table 2. The first steps of the proofs for
R(a,b) < r are similar and therefore given in Lemma 5 which precedes Lemmata 6-9.

Lemma 1. For b=3, a >4, and (a,3)=1 we have R(a,3) = r where r = A(a) from
Theorem 1.

Proof. First, » will be written in a different way. Let d and ¢ be defined by a=d(mod3)
with d € {1,2} and by t =(a—d)/3, that is, a=37+d. For a=1(mod 9) we have d = |
and ¢ = 0 (mod 3) which implies a+¢+1=2(mod 3) and r=((a+¢+1)a+d)a/3. Corre-
sponding transformations reduce the six cases of Lemma 1 to the following three cases:
((@a+t+1a+3) fora+t+1=0(mod3),
((a+t+2)a+d) for a+t+1=1(mod3),
((a+t+1Da+d) fora+t+1=2(mod3)

a
r=

3
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Now for R(a,3) = r the numbers 1,2,...,r — 1 are colored as follows. The number
a, all numbers (¢ + ¢t + Da, (@ + ¢+ 2)a,...,r — a, all numbers 3,6,...,3|(a +1)/2],
and all numbers d,d +3,d +6,...,d +3(a+t—1) are colored red and the remaining
numbers are colored green. It may be noted that 2a,3a,...,(a + t)a are green since
3|(a+1)/2] <2a, and since 3(a +t — 1)+ d < 4a and 2a,3a #d (mod 3).

For every solution (x, y,z) of a(x+ y)=3z we have 3|(x + y) since (a,3)=1. Only
solutions (x, y,z) with 1 < x, v,z <r are considered, and the cases 3|x and 3fx will be
distinguished.

If 3|x then 3|y holds as well.

If x and y both are green then x,y = 3(|[(a + ¢)/2] + 1). Then z=a(x + y)/3 =
(@ 4+t + 1)a and therefore z is red since it is a multiple of a.

Let x and y both be red. If 3 < x, y < 3|(a+1)/2] then 2a <z <2|(a+1t)/2]a < (a+
t)a and z is green. It remains that at least one of the variables x and y, say x, can be
a multiple of a, that is, x = (¢ + ¢+ 1)a. Then

(a+t+1)a for a+t+ 1=0(mod3),
x=2 < (@a+t+3)a for a+t+ 1=1(mod3),
(a+t+2)a for a+t+ 1=2(mod3)

can be concluded since 3|x and 3 fa. Together with y >3 it follows that
z=alx+ y)/3=r.

If 3}x then 3y and x=d (mod 3) and y=3 — d (mod3) can be assumed.

If x and y both are green then x = 4a since d+3(a+t—1)=4a—3. With y > 3-d
it follows that z=a(x + y)}/3 = (a+ ¢+ 1)a, so z is red.

If x and y both are red then y is a multiple of a with y = (a+ ¢+ 1)a. Then

(a+t+3)a for a+t+1=0(mod3),
vz ¢ (a+t+2)a fora+t+1=1(mod3),
(a+t+1)a for a+t+ 1=2(mod3)

can be concluded since y=3 — d{(mod3) and a =d (mod 3). Together with x > d it
follows that z=(y +x)a/3 =z r. O

Lemma 2. For b > 4,1 <a<b,(a,b)=1, and b odd we have R(a,b) = r where

[ b(b+1)2 for 1 <a<b/2,
T\ ab for bj2 <a<b.

Proof. The numbers 1,2,...,» — 1 are colored as follows. The multiples kb of &
are colored green for 1 < k<b/4 and red for h/4 <k <r/b. The remaining numbers
kb + m<r with 0 < k<r/b and 1 < m<b are colored red for 1 < g<b/2 and green
for b/2<q < b — 1 where g is determined by ga =m (mod b).

For every solution of a(x + y) = bz we see that b|(x + y) since (a,b)=1. The cases
b|x and bfx will be distinguished.



H. Harborth, S. Maasbery ! Discrete Mathematics 1971198 (1999) 397-407 401

If x=kb then y=kb and z = (k1 + k»)a.

Let x=kb and y=kb both be green. Then | <k .kr<b/4, that is,
2 <k +k<b/2, and z = (k| + k2)a is colored red.

It x=k b and y =k,b both are red then b/4 <k\.k>» <r/b, that is,

bh—1 for 1 <a<b/2,

biz<kith <A == {Z(a 1) for b2<a<bh

Then z = (k) + k2)a is colored green whenever z <r.

If bfx then by and for x =g a(mod b) and vy =ga(mod b) we have 1 < q,,¢> <b.
From bl(x+y) it follows that 0 =x+ y =(q,+¢7 )a (mod b) and thus g +¢> = 0(mod b)
since (a.b)=1. However, this contradicts 1 < q,.¢9> <h/2 or b/2<q|,q> <b, that is, if
x and y both are of the same color. [

Lemma 3. For b =4, 1 <a<bh, (a.b)=1 and b even we have R(a.b) = r where

(b+1Yb/2 for 1 €a < b4,
r= < bb/2 for bld<a<b/2,
ab for b2 <a<b.

Proof. Since (a,b)=1, only a=1 and b =4 satisfy a =5/4. In this case 1.4.5,6.9 red
and 2.3,7,8 green describes a 2-coloring without a monochromatic solution (x, vz} of
x 4+ y=4z. This proves R(1,4) = 10, and a # b/4 can be assumed in the following.

The numbers 1,2,..., r — 1 are colored as follows. The multiples k(5/2) of b/2 are
colored green for 1 < k <b/2, red for h/2 <k <2r/b, and for k = b/2 green if a>h2
and red if a <b/2. The remaining numbers kb + m <r with 0 < k<r/b and 1 < m<h.
m+#b/2, are colored red for 1 < g<b/2 and green for b/2<g < b — 1 where ¢ is
determined by ga = m (mod b).

Again b|(x+ ) for every solution of a(x+ y)= bz since (a.h)=1. The cases (h/2)|x
and (b/2) fx will be distinguished.

If x=k(b/2) then y=k:(b/2) and z = al(k; + k>)/2.

Let x=4k(h/2) and y =k (b/2) both be green, that is, 1 < k| .k» < b/2, and thus
1 < (ki + k2)/2 < b/2. Then z=gqa with g= (k| + k2)/2 is red. Note that ¢=h/2
implies &} =k =»b/2 and a>b/2 so that z=a(bh/2) is red.

Let x =k ((bh/2) and y =k:(b/2) both be red, so that b/2 < ki, k> <2r/b, that is,

) b for 1 <a<b/4,
< ~<——1=¢b-1 for b/d<a<b/2,
2a — 1 for b/2<a<h.

Then z=ga with g=(k; + k2)/2 is green for b/2 < (k; + k2)/2<b. Since (k| +
k2)/2=5b/2 implies k =k =b/2 and a<b/2 so that z=ab/2 is green. If
(k) +42)/2 = b then either a <b/4 and z =ab=2a(bh/2) is green or a>b/2 and z = ub
is not contained in 1,2,..., r—1.

If (b/2) |x then (b/2) |y and then x=g;a(modb) and v=g.a(modb) with
1l <gqi.g2<b. From b|(x + y) it follows that O0=x + y=(q; + ¢g2)a(modb) and
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thus ¢; + g, =0(mod b) since (a,b)=1. However, this contradicts 1 < ¢q;,q, <b/2
or b/2<q1,q, <b, that is, if x and y both are of the same color. [

Lemma 4. For 4 < b<a and (a,b)=1 we have R(a,b) > r where r = [a*/b]a.

Proof. Here 1,2,...,7 — 1 are colored as follows. The multiples ka of a are colored
green for 1 < k<a and red for a < k <[a*/b]. All multiples kb of b with 1 < k < |(a—
1)/2] are colored red and with |(a + 1)/2] < k<a are colored green. Since (a,b)=1
every remaining number x can be written as kb + ma with 1 < k<a and m # 0. These
numbers are colored red for m <0 and green for m>0.

For solutions (x, y,z) of a(x + y)=bz we see that z=ka since (a,b)=1.

For x = ka it follows that y =k b — kya.

If x=k,a and z = k,a both are green then 1 < k,%, <a and thus y =kb — kya with
m=—k; is red or negative, that is, not contained in 1,2,...,r — 1.

If x =kya and z =k a are both red, then a < ki, k> < [a?/b] and thus y < ([a%/b] —
1)b — @* <0 is not contained in 1,2,...,r — 1.

For x =k;b with k; <a it follows that y=(k; — k2)b.

If x and z both are green, then [(a@ + 1)/2] < k;<a and 1 € k| <a so that y=4k;b
with ks=k —ky <a—1—-[(a+ 1)/2] < [(a — 1)/2] is red or negative.

If x and z both are red, then 1 < k; < |[(a—1)/2] and a < k; < [a?/b] so that y =ksb
with ks =k| —k; 2 a— [(@—1)/2] = |(a+1)/2] is green for afk; and for alk; as well
since y=kib —x<kib < ([a*/b] — 1)b<d’.

For the remaining numbers x in 1,2,...,# — 1, that are x =kyb £t ma with 1 < k) <a
and m = 1, we have y=k3bF ma with ks =k — k.

If x and z both are green then y=k3b — ma with k; <a is red or negative.

If x and z both are red then y =k;b+ma and a < & < [a?/b] so that y is green for
a [k; and also for alk; since y is a multiple of @ and y=kb —x<a?. O

Lemma 5. Assume the existence of a 2-coloring of 1,2,...,r without a monochro-
matic solution (x, y,z) of a(x + y)=bz. Let b be green (without loss of generality).
If mq is the greatest integer such that b,2b,...,myb are green, then (my+ 1)b, (mg +
2)b,...,hb and 2a,3a,...,(a — 1)a are red and aa, (« + 1)a,...,ga are green, where

'2—1 for 3 <b<a,
b
b:l Jor b>4,1<a< g, b even,
h= < b
% Jorb>4,1<a< g, bodd
and b = 4, é<a<b,
\ 4

2my+ 1 if 2mo + 1)a green,
2mo +2 if 2mg+ 1)a red,

g= min{|r/a|,2h}.
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Proof. Every component of the solutions (wb, (b — w)b,ab) with

e 1 for3<b<a,
" 1 & otherwise

is contained in 1,2,...,7. This can be verified straightforward using the following steps.
First, w and if necessary # (Lemma 5) and » (Theorem 1) are substituted so that the
components of the solution depend on a and b only. Then the maximum component
is determined as

ab for 3 <b<a,

max{wb, (b — w)b,ab} = { hb  otherwise

At last the maximum component can be verified to be at most » by Theorem I.
Since no solution (wb, (b —w)b, ab) is monochromatic and b,2b,...,meb are green it
follows mo < max{w,b — w,a}, that is, (my + 1)b < max{wb,(b — w)b,ab} < r. Thus
(mo + 1)b belongs to 1,2,...,r and then it is red by definition of my.
The solutions (ub, vb,(u + v)a) with 1 < u, v < my force 2a,3a,...,2mpa to be red
as long as these values are in 1,2,...,7. In the following (2mg+2)a < r can be shown.
From the arguments above

a for3 <b<a,

1< .
o + { h  otherwise

will be used.

For b=3 it follows that 2(mg + 1)a <20° and 24°<r holds (with r from
Theorem 1).

For b > 4 and a<b/2 it follows that 2(mg + 1)a < 2ha<hb < r.

For b > 4 and a>b/2 the components of the solution (2a, (b —2)a,a*) are contained
in 1,2,...,r since r =ab or r = [a*/b]a. This solution is not monochromatic and thus
2mpa < max{2a,(b — 2)a,a’} <r. Moreover, (2mg + 2)a < a + amax{2,b — 2.a} < r
with r=ab if a<b and r = [a®/b]a for a>b.

The solution ((mg + 1)b,(mg + 1)b, (2mg + 2)a) forces (2my + 2)a to be green.

Let 7y be the greatest integer such that (mg + 1)b,(mg + 2)b, ..., b are red.

If to < h—1 is assumed then the components of the solution (b, (t5+1)b, (£,+2)a) are
contained in 1,2,...,r, since (o + 1)b < hb and kb < r by definition of # (Lemma 1},
and since (f) +2)a < (h+ 1)a and (2 + 1)a < r can be verified straightforward by
substituting # (Lemma 1) and if necessary » (Theorem 1). Then (# + 1)b is green and
(o + 2)a is forced to be red. Then the solution ((mg + 1)b,(fy + 1 — mp)b, (ty + 2)a)
determines (#; + 1 — mgp)b to be green. Since #; + 1 — mg < ¢, it follows that ¢, —
1 — my < my which is equivalent to 2my — #g + 1 = 2. On the other hand, mg + 1 < 1y
implies 2mg — fo + 1 < my so that (2mg — 2, + 1)b is green. Now the solution ({(#, +
1)b,(2mg — ty + 1)b,(2mg + 2)a) is green, a contradiction.

It remains #y = A. Then (mg + 1)b, (mg + 2)b,...,hb are red by definition of 7. The
solutions (ub, v, (u+v)a) with mo+1 < u, v < h force (2mg+2)a,(2mg+3)a,...,2ha
to be green as long as these values are in 1,2,...,7, that is, up to ga.
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So far the color of (2mg+1)a remains unknown and by « the green and red multiples
of a are separated. L[]

Lemma 6. For b=3, a > 4, and (a,3)=1 we have R(a,3) <r where r = A(a) from
Theorem 1.

Proof. As in the proof of Lemma | we can take for 7,

4 ((a+t+1)a+3) fora+t+1=0(mod3),
r== < ((a+t+2)a+d) fora+t+1=1(mod3),
((a+t+1)a+d) fora+t+1=2(mod3)

with a=d (mod3), d€{1,2}, and t =(a — d)/3 so that a =3¢ +d.

By Lemma 5 it follows that 2a,3a,...,(o — 1)a are red and oa, (¢ + 1)a,...,r are
green. The cases a<o and a > o will be distinguished.

If a < «— 1 then the solution (a,2a.a”) forces a to be green. The number (2t + d)a
is red since 2<2t+d <a < a—1, and (d,2a,(2t 4 d)a) forces d to be green and then
(d,3 — d,a) forces 3 — d to be red. The number 4a is red since 4 <a<a— 1 and
thus (4a,3 — d,(a + t + 1)a) forces (a + ¢t + 1)a and therefore also (a +¢ + 2)a to
be green. Now in all three cases a +¢+ 1 = 0, 1, and 2 (mod3) completely green
solutions ((a@ + ¢+ 1)a,3,r), ((@ +t+2)a,d,r), and ((a + t + 1)a,d,r), respectively,
are determined in contradiction to the first assumption of Lemma 5.

If a > o then the solutions (aa, 3, a(xa + 3)/3), ((2 +2)a,3,a((a + 2)a + 3)/3), and
((x+ Da,3,a((x+ 1)a—+3)/3) are considered for =0, 1, and 2 (mod 3), respectively.
Every component is contained in 1,2,...,r since already the largest component a((x +
2)a + 3)/3 is at most » which follows for ¢ = 2 from (x+2)a+3 < (a+t)a+ 3 and
for t=1, that is, a=4 or a=S5, from (¢ +2)a+3<(a+t+1)a+3. Up to b=3
each component is a multiples of ¢ and of size at least aa. Thus all three solutions
are green, which is a contradiction. [

Lemma 7. For b 24, 1 <a<b/2, and (a,b)=1 we have R(a,b) < r where

(b+1)/2 for 1 <a<(b-1)/2 and b odd (Case A),
r=4¢ (b+1)b/2 for 1 <a<b/dand b even (Case B),
bb/2 for bjA<a<b/2 and b even (Case C).

Proof. Starting with Lemma 5 it follows that b,2b,..., myb are green, (my+ 1)b, (mg+
2)b,...,hb and 2a,3a,...,(x — 1)a are red and aa, (o + 1)a,...,2ha are green with

he (b+1)/2 in Case A,
T b2 in Cases B and C,

2my+ 1 if (2my + 1)a green,
2mo+ 2 if (2mg + 1)a red.

As in the proof of Lemma 5 the solution (4b,(b — h)b,ab) is considered. Since
ab < (b — h)b < hb can be verified and 4b is red this solution forces ab to be green
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and thus a < my. Furthermore, mg <2mgy + 1 < o so that a <o and then a° is red with
one possible exception if a=1.

At first, Case C will be discussed. Here a>5b/4 > 1 and &° is red so that the solution
(ha,ha.a*) forces ha to be green. If the solution (|4/2]b, [h/21b,ha) is not green then
mg + 1 < [h/2], that is, mp<h/2. However, this contradicts #/2 =h/4<a < my and
Case C is proved.

If a® is red the solution ((o — 1)a, (b — %+ 1)a.aa) forces (b — o+ 1)a to be green
since ha green implies b = « which is equivalent to b —a+1 = 1. From (b — %~ 1)a
green it follows b — 2+ 1 =1, that is, a is green, or b —x+ 1 = o.

In the following, three alternatives are distinguished. (1} a red, (2) a green for a = 2.
and (3) a green for a=1.

(1) If a is red then b — 2+ 1 = « which is equivalent to « < / and thus (x — a)b —
a<hb < r so that the solution (a.(x — )b — a.(2x — a)a) forces (x — a)pb —a to be
green. Since (b+ 1)a<(b+1)b/2 =r the solution ({(b+ 1)a.(x—a)b—a.2a) determines
(b + 1)a to be red in contradiction to (b — 1)a=2ha green in Case A.

In Case B the solution ((b+ 1)h,(b+ 1)h,(b+ 1)a) implies (b + 1)k green. Since a
red implied <k + 1, it follows that (4 -+ 1)a 1s green and thus ((b+ 1Ya A (h + 1)a)
forces to be red. Now the solution (%, A, a) is red, a contradiction.

(2) If « is green for a > 2 then ® was determined to be red and either b=« or
b—a+1=a

For b=u the solution (2a.(b — 2)a.a") is red, a contradiction.

For b— 2+ 1 = 2, which is equivalent to x < A, if follows from a<2x—1< b < 24
that (b — 1)a is green. Furthermore, (x — a)b + a<ab < hb < r so that the solution
(b — Da.(x — a)b + a,aa) forces (x — a)b + a to be red. Since 2 < a < my<z the
third component of (b — a,(z — a)b+ a,(2+ 1 — a)a) is red which forces b — « to be
green., Then (b — a,a,a) is green, a contradiction.

(3) If a is green for a=1 then (1,b — 1, 1) forces » — 1 to be red and thus also
b —2 is red. Since ha =b was assumed to be green it follows that b=a and 2 < h <
(% + 1)/2<« determines ha=h to be red. Then (2.4h — 2./) implies that 4b — 2 is
green.

In Case A the solution (b — 2,(h — 1)b + 2, k) forces (h — 1}b + 2 to be green and
then (hb —2,(h— 1)b+2,2h— 1) forces 2i — 1 to be red in contradiction to b =2k — 1
being green.

In Case B from h=5b/2=2/2<x — 1 it follows that & + | is red. Then (h — 2.
hb + 2.h + 1) implies that bk 4 2 is green since b + 2 < bh + h=r. Now the green
solution (hb — 2,hb + 2.b) is a contradiction. [

Lemma 8. For b > 4, b/2<a<b, and (a.b)=1 we have R(a.b) < r where r=abh.

Proof. Using Lemma 5 it follows that Ab is red and ga is green. However, hb =1 =ub
and ga =a min{b,2a} =ab determine hb=ga, a contradiction. ]

Lemma 9. For 4 < b<a and (a,b)=1 we have R(a.b) < r where r=[a"/bla.
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Proof. Using Lemma 5 it follows that b,2b,...,mob are green, (my + 1)b,(my +
2)b,...,hb and 2a,3a,...,(¢ — 1)a are red and aa,(ox 4+ 1)a,...,r are green with

h=(rla) — 1={a*/b] — 1,

_{2my+1 if (2mg + 1)a green,
\2my+2 if (2mg+ 1)a red.

Since (2a,(b—2)a,a?) is a solution and 2a < (b—2)a<a® <r it follows that « < a

Some abbreviations are needed. The number & is determined by r/a= [a?/b] =

(a2 + 0)/b with 1 < §<b. The numbers y and ¢ are determined by a=yb + ¢ with

< y and 1 < £ <b. Furthermore, there are numbers ¢ and 7 so that aa + = ¢b with

1 < t<b and a<o. Also ¢ < r/a follows from o = (r/a)(aa+1)/(a*+6) for a <a, and
for « =a if §=r1 is noted. Then ca is green and (aq, 7, oa) forces 7 to be red.

The number yab is red since ya = a > a = 2my + 1 and ya=(a — €)a/b<h. This
implies yba < (a« — 1)a which is equivalent to & — yb > 1. The number (¢ — ya)a is
red since g — ya = 2 follows from (¢ — ya)b=(a —yb)a+1=2b+ 1 and ¢ — ya<a
follows from (¢ —ya)b—ab =a{a—b)—yba+1t < (a—b—yb)at+T1=(e—b)a+1<0.
Now the solution ((& — yb)a, 1,(c — ya)a) forces (o« — yb)a to be green and therfore it
remains only the possibility that « — yb=1 and a is green.

The cases £ =1 and £ = 2 will be distinguished.

Ife=1thena=yb+1=ua.

If b is even then a=yb + 1 is odd and (a + 1)/2 is an integer. Next, (5/2)a and
((@a+1)/2)a are red since 2 < b/2<b<yb=a—1and 2 <b/2<(a+1)2<a—-1=
o — 1. Then ((b/2)a,b/2,((a + 1)/2)a) determines b/2 to be green. However, now
(b/2,b/2,a) is green, a contradiction.

If b is odd then the solutions ((b — 1)/2,((b + 1)/2)a,(({(b + 1)/2)y + 1)a) and
b+ 1)/2,((b-1)/2)a,(((b—1)/2)y+ 1)a) force (b —1)/2 and (b+ 1)/2 to be green
since 2 < (b—1)2<(b+1)2<<((b-1)2y+1<{(b+1)2)yy+1 < yb=a~—1. Then
the solution ((b — 1)/2,(b+ 1)/2,a) is green, a contradiction.

If € >2 then eaq is red since e<b < yb=a — 1. The solution (a?,d,ha) forces
8 to be red and then (ea,d,r — ya®) implies that r — ya® is green. Together with
(r/a) — ya=(6 + ea)/b> /b + £ >2 it follows that a < (r/a) — ya.

The case £ < b/2 cannot occur since yb + l=a < (r/a) — ya=(ea + 8)/b=
(e(yb + €) + 8)/b < ((b/2)(yb + b/2) + 8)/b leads to (2y — 1)b* < 4(5 — b) which is
impossible for 5>6 and y > 1.

If e>b/2 then (yb + b — €)a is green since yb + b — e 2 yb + l=a and yb +
b—e<yb+ b/2<yb+ e=a<r/a. The number (2 + (y + 1)a — (r/a — ya))a is green
since (y + 1)a — (r/a — ya) < rfa — 2 follows from (#/a — )b+ d=(yb+ b —c)a +
Re-b—1a+a—b+2>(b+b—¢cla=({(y+ 1)a— (r/a—ya))b + é and since
(y+Da—-Gla=ya)=(y+1Da—(ca+d)/b>(y+ a—(ba+b)/b =ya—1>0—2.
Then ((yb+ b —€)a,2b — 6,(2 + (y + 1)a — (r/a — ya))a) implies that 2b — § is red.
This gives the contradiction that (,2b — ,2a) is red. [
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3. Remarks

For k£ = 4 numbers R;(a,b) for a# b and b=2a do not exist (see [6]). If 2 < a
or 4a <b then also for k=3 Rado numbers R3;(a,b) do not exist (see [4.
Theorem 2]). If a<2b<8a in the case of £ =3 then a general proof for the existence
of R3(a,b) is unknown. Besides the Schur number R;(1,1)=14 and the trivial Rado
number R3(1,2)=1 only the four numbers R3(3,1) =54, R3(3.2) =54, R3(4,3)= 108,
and R3(5,2)=105 which were determined with the help of a computer are known
so far.
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