

DISCRETE MATHEMATICS

Discrete Mathematics 197/198 (1999) 397-407

All two-color Rado numbers for a(x + y) = bz

Heiko Harborth*, Silke Maasberg

Technische Universität Braunschweig, Diskrete Mathematik, Pockelsstraße 14, D-38106 Braunschweig, Germany

Received 9 July 1997; revised 5 March 1998; accepted 3 August 1998

Abstract

If it exists, the smallest number $N = R_k(\Sigma)$ is called the kth Rado number of a given system Σ of linear equations if it is guaranteed that any k-coloring of the numbers 1, 2, ..., N contains a monochromatic solution of Σ . For the family of equations a(x + y) = bz, all Rado numbers $R_2(a,b)$ are determined. © 1999 Elsevier Science B.V. All rights reserved

Keywords: Rado numbers; k-colouring; Schur number

1. Introduction

In 1917 Schur [8] proved the existence of a natural number N such that in any coloring of the numbers 1, 2, ..., N by k colors there are three numbers x, y, and z which are of the same color and satisfy x + y = z.

More generally, in 1936 Rado [6] considered systems of linear equations (see [2]). Given a system of linear equations Σ , and a natural number k, the smallest natural number N, such that for every k-coloring of the numbers 1, 2, ..., N there exists among the colored numbers a monochromatic solution of Σ , is denoted by $R_k(\Sigma)$ and called a Rado number.

Just a few Rado numbers are determined so far (see [1,3-5,7]), most of them recently. For x + y = z the corresponding Rado numbers R_k are called Schur numbers and exact values are known only for $k \le 4$. Here we will consider the generalized class of equations a(x + y) = bz where a, b are positive integers and determine all of the corresponding Rado numbers R(a, b) for k = 2.

2. The two-color Rado numbers for a(x + y) = bz

In a(x + y) = bz, the coefficients a and b can be assumed to be coprime.

PII: S0012-365X(98)00248-9

0012-365X/99/\$ – see front matter © 1999 Elsevier Science B.V. All rights reserved

^{*} Corresponding author. E-mail: h.harborth@tu-bs.de.

Theorem 1. For (a,b)=1 we have R(a,b)=r where

$$r = \alpha(a) = (4a^{2} + 1)a \quad \text{for } b = 1,$$

$$r = \beta(a) = a(a^{2} + 1)/2 \quad \text{for } b = 2,$$

$$r = 9 \quad \text{for } b = 3, \ a = 1,$$

$$r = 10 \quad \text{for } b = 3, \ a = 2,$$

$$\begin{cases} (4a^{2} + 2a + 3) \quad \text{for } a \equiv 1 \pmod{9}, \\ (4a^{2} + a + 9) \quad \text{for } a \equiv 2 \pmod{9}, \\ (4a^{2} + 2a + 9) \quad \text{for } a \equiv 4 \pmod{9}, \\ (4a^{2} + 4a + 6) \quad \text{for } a \equiv 5 \pmod{9}, \\ (4a^{2} + 5a + 3) \quad \text{for } a \equiv 7 \pmod{9}, \\ (4a^{2} + a + 6) \quad \text{for } a \equiv 8 \pmod{9}, \end{cases}$$

$$r = \gamma(b) = b(b+1)/2 \quad \text{for } b \geqslant 4, \ 1 \leqslant a \leqslant \frac{b}{4},$$

$$r = \delta(b) = \lceil b/2 \rceil b \quad \text{for } b \geqslant 4, \ \frac{b}{4} < a < \frac{b}{2},$$

$$r = ab \quad \text{for } b \geqslant 4, \ \frac{b}{2} < a < b,$$

$$r = \varepsilon(a,b) = \lceil a^{2}/b \rceil a \quad \text{for } b \geqslant 4, \ b < a.$$

Table 1 indicates those regions where the Rado numbers R(a,b) have equal formulas when (a,b)=1. For (a,b)>1 the asterisks can be replaced by R(a/(a,b),b/(a,b)).

The Rado numbers $R(a,1) = (4a^2 + 1)a$ were proved by Burr and Loo (on Rado Numbers I, II, preprints 1992). The Rado numbers $R(a,2) = a(a^2 + 1)/2$ were proved by Harborth and Maasberg in [5]. It remains to determine the Rado numbers for $b \ge 3$.

Throughout this paper the abbreviation r will be as in Theorem 1. The two colors are called green and red.

For $R(a,b) \ge r$ a special 2-coloring of $1,2,\ldots,r-1$ is described which does not contain a monochromatic solution (x,y,z) of a(x+y)=bz.

For $R(a,b) \le r$ it is assumed that a 2-coloring of $1,2,\ldots,r$ exists without a monochromatic solution (x,y,z) of a(x+y)=bz and then a contradiction is deduced.

The Rado numbers R(1,3) = 9 and R(2,3) = 10 can be proved as follows.

The 2-coloring of 1,2,...,8 in which 1,3,4,7 are green and 2,5,6,8 red does not contain a monochromatic solution (x,y,z) of x+y=3z which proves $R(1,3) \ge 9$. In each 2-coloring of 1,2,...,9 at least one of the solutions (3,6,3), (6,6,4), (9,9,6), and (3,9,4) is monochromatic, and thus $R(1,3) \le 9$ holds.

For $R(2,3) \ge 10$ the numbers 1,4,6,7,9 are colored green and 2,3,5,8 red. For $R(2,3) \le 10$ it is easy to verify that in each 2-coloring of $1,2,\ldots,10$ one of the solutions (3,6,6), (3,3,4), (6,6,8), (2,4,4), (9,3,8), (10,2,8), and (6,9,10) is monochromatic.

b\a	1	2	3	4	5	6	7	8	9	
1	α(a)	α(a)	α(a)	α(a)	α(a)	α(a)	α(a)	α(a)	α(a)	
2	β(a)	*	β(a)	*	β(a)	*	β(a)	*	β(a)	
3	9	10	*	$\lambda(a)$	$\lambda(a)$	*	$\lambda(a)$	$\lambda(a)$	*	
4	γ (<i>b</i>)	*	ab	*	$\varepsilon(a,b)$	*	$\varepsilon(a,b)$	*	$\varepsilon(a,b)$	
5	γ(b)	δ(<i>b</i>)	ab	ab	*	$\varepsilon(a,b)$	$\varepsilon(a,b)$	$\varepsilon(a,b)$	ε(a,b)	******
6	γ(<i>b</i>)	*	*	*	ab	*	$\varepsilon(a,b)$	*	*	
7	γ(b)	δ(<i>b</i>)	δ(<i>b</i>)	ab	ab	ab	*	$\varepsilon(a,b)$	$\varepsilon(a,b)$	••••••
8	γ(<i>b</i>)	*	δ(<i>b</i>)	*	ab	*	ab	*	$\varepsilon(a,b)$	•••••
9	γ(<i>b</i>)	γ (<i>b</i>)	*	δ(<i>b</i>)	ab	*	ab	ab	*	*********
:	:					***************************************				٠.

Table 1 Rado numbers R(a, b) with (a, b) = 1

Table 2 Proofs of R(a,b) = r (Theorem 1)

			Proof of $R(a,b) \geqslant r$	Proof of $R(a,b) \leq r$		
b=3	<i>a</i> ≥ 4		Lemma 1	Lemma 5	Lemma 6	
<i>b</i> ≥ 4	1 ≤ <i>a</i> < <i>b</i> /2	b odd	Lemma 2		Lemma 7	
		b even	Lemma 3			
	b/2 < a < b	b odd	Lemma 2		Lemma 8	
		b even	Lemma 3			
	b < a		Lemma 4		Lemma 9	

The remaining part of the proof of Theorem 1 ($b \ge 4$ and $a \ge 4$ for b = 3) is partitioned into Lemmata 1-9, as shown in Table 2. The first steps of the proofs for $R(a,b) \le r$ are similar and therefore given in Lemma 5 which precedes Lemmata 6-9.

Lemma 1. For b=3, $a \ge 4$, and (a,3)=1 we have $R(a,3) \ge r$ where $r=\lambda(a)$ from Theorem 1.

Proof. First, r will be written in a different way. Let d and t be defined by $a \equiv d \pmod{3}$ with $d \in \{1,2\}$ and by t = (a-d)/3, that is, a = 3t+d. For $a \equiv 1 \pmod{9}$ we have d = 1 and $t \equiv 0 \pmod{3}$ which implies $a+t+1 \equiv 2 \pmod{3}$ and r = ((a+t+1)a+d)a/3. Corresponding transformations reduce the six cases of Lemma 1 to the following three cases:

$$r = \frac{a}{3} \begin{cases} ((a+t+1)a+3) & \text{for } a+t+1 \equiv 0 \pmod{3}, \\ ((a+t+2)a+d) & \text{for } a+t+1 \equiv 1 \pmod{3}, \\ ((a+t+1)a+d) & \text{for } a+t+1 \equiv 2 \pmod{3}. \end{cases}$$

Now for $R(a,3) \ge r$ the numbers $1,2,\ldots,r-1$ are colored as follows. The number a, all numbers $(a+t+1)a,(a+t+2)a,\ldots,r-a$, all numbers $3,6,\ldots,3\lfloor (a+t)/2\rfloor$, and all numbers $d,d+3,d+6,\ldots,d+3(a+t-1)$ are colored red and the remaining numbers are colored green. It may be noted that $2a,3a,\ldots,(a+t)a$ are green since $3\lfloor (a+t)/2\rfloor < 2a$, and since 3(a+t-1)+d<4a and $2a,3a\ne d\pmod{3}$.

For every solution (x, y, z) of a(x + y) = 3z we have 3|(x + y) since (a, 3) = 1. Only solutions (x, y, z) with $1 \le x, y, z < r$ are considered, and the cases 3|x and 3|x will be distinguished.

If 3|x then 3|y holds as well.

If x and y both are green then $x, y \ge 3(\lfloor (a+t)/2 \rfloor + 1)$. Then $z = a(x+y)/3 \ge (a+t+1)a$ and therefore z is red since it is a multiple of a.

Let x and y both be red. If $3 \le x$, $y \le 3 \lfloor (a+t)/2 \rfloor$ then $2a \le z \le 2 \lfloor (a+t)/2 \rfloor a \le (a+t)a$ and z is green. It remains that at least one of the variables x and y, say x, can be a multiple of a, that is, $x \ge (a+t+1)a$. Then

$$x \geqslant \begin{cases} (a+t+1)a & \text{for } a+t+1 \equiv 0 \pmod{3}, \\ (a+t+3)a & \text{for } a+t+1 \equiv 1 \pmod{3}, \\ (a+t+2)a & \text{for } a+t+1 \equiv 2 \pmod{3} \end{cases}$$

can be concluded since 3|x and 3|a. Together with $y \ge 3$ it follows that $z = a(x + y)/3 \ge r$.

If 3/x then 3/y and $x \equiv d \pmod{3}$ and $y \equiv 3 - d \pmod{3}$ can be assumed.

If x and y both are green then $x \ge 4a$ since d+3(a+t-1)=4a-3. With $y \ge 3-d$ it follows that $z = a(x+y)/3 \ge (a+t+1)a$, so z is red.

If x and y both are red then y is a multiple of a with $y \ge (a+t+1)a$. Then

$$y \geqslant \begin{cases} (a+t+3)a & \text{for } a+t+1 \equiv 0 \pmod{3}, \\ (a+t+2)a & \text{for } a+t+1 \equiv 1 \pmod{3}, \\ (a+t+1)a & \text{for } a+t+1 \equiv 2 \pmod{3} \end{cases}$$

can be concluded since $y \equiv 3 - d \pmod{3}$ and $a \equiv d \pmod{3}$. Together with $x \ge d$ it follows that $z = (y + x)a/3 \ge r$. \square

Lemma 2. For $b \ge 4$, $1 \le a < b$, (a,b) = 1, and b odd we have $R(a,b) \ge r$ where

$$r = \left\{ \begin{array}{ll} b(b+1)/2 & for \ 1 \leq a < b/2, \\ ab & for \ b/2 < a < b. \end{array} \right.$$

Proof. The numbers $1,2,\ldots,r-1$ are colored as follows. The multiples kb of b are colored green for $1 \le k < b/4$ and red for b/4 < k < r/b. The remaining numbers kb + m < r with $0 \le k < r/b$ and $1 \le m < b$ are colored red for $1 \le q < b/2$ and green for $b/2 < q \le b-1$ where q is determined by $qa \equiv m \pmod{b}$.

For every solution of a(x + y) = bz we see that b|(x + y) since (a, b) = 1. The cases b|x and b|x will be distinguished.

If $x = k_1 b$ then $y = k_2 b$ and $z = (k_1 + k_2)a$.

Let $x = k_1 b$ and $y = k_2 b$ both be green. Then $1 \le k_1, k_2 < b/4$, that is, $2 \le k_1 + k_2 < b/2$, and $z = (k_1 + k_2)a$ is colored red.

If $x = k_1b$ and $y = k_2b$ both are red then $b/4 < k_1, k_2 < r/b$, that is,

$$b/2 < k_1 + k_2 \le 2((r/b) - 1) = \begin{cases} b - 1 & \text{for } 1 \le a < b/2, \\ 2(a - 1) & \text{for } b/2 < a < b. \end{cases}$$

Then $z = (k_1 + k_2)a$ is colored green whenever z < r.

If $b \not | x$ then $b \not | y$ and for $x \equiv q_1 a \pmod{b}$ and $y \equiv q_2 a \pmod{b}$ we have $1 \leqslant q_1, q_2 < b$. From b | (x+y) it follows that $0 \equiv x+y \equiv (q_1+q_2)a \pmod{b}$ and thus $q_1+q_2 \equiv 0 \pmod{b}$ since (a,b)=1. However, this contradicts $1 \leqslant q_1, q_2 < b/2$ or $b/2 < q_1, q_2 < b$, that is, if x and y both are of the same color. \square

Lemma 3. For $b \ge 4$, $1 \le a < b$, (a,b) = 1 and b even we have $R(a,b) \ge r$ where

$$r = \begin{cases} (b+1) b/2 & \text{for } 1 \le a \le b/4, \\ bb/2 & \text{for } b/4 < a < b/2, \\ ab & \text{for } b/2 < a < b. \end{cases}$$

Proof. Since (a,b) = 1, only a = 1 and b = 4 satisfy a = b/4. In this case 1,4,5,6,9 red and 2,3,7,8 green describes a 2-coloring without a monochromatic solution (x, y, z) of x + y = 4z. This proves $R(1,4) \ge 10$, and $a \ne b/4$ can be assumed in the following.

The numbers 1, 2, ..., r-1 are colored as follows. The multiples k(b/2) of b/2 are colored green for $1 \le k < b/2$, red for b/2 < k < 2r/b, and for k = b/2 green if a > b/2 and red if a < b/2. The remaining numbers kb + m < r with $0 \le k < r/b$ and $1 \le m < b$. $m \ne b/2$, are colored red for $1 \le q < b/2$ and green for $b/2 < q \le b-1$ where q is determined by $qa \equiv m \pmod{b}$.

Again b|(x+y) for every solution of a(x+y) = bz since (a,b) = 1. The cases (b/2)|x and (b/2)|x will be distinguished.

If $x = k_1(b/2)$ then $y = k_2(b/2)$ and $z = a(k_1 + k_2)/2$.

Let $x = k_1(b/2)$ and $y = k_2(b/2)$ both be green, that is, $1 \le k_1, k_2 \le b/2$, and thus $1 \le (k_1 + k_2)/2 \le b/2$. Then z = qa with $q = (k_1 + k_2)/2$ is red. Note that q = b/2 implies $k_1 = k_2 = b/2$ and a > b/2 so that z = a(b/2) is red.

Let $x = k_1(b/2)$ and $y = k_2(b/2)$ both be red, so that $b/2 \le k_1, k_2 < 2r/b$, that is,

$$\frac{b}{2} \le \frac{k_1 + k_2}{2} \le \frac{r}{b/2} - 1 = \begin{cases} b & \text{for } 1 \le a < b/4, \\ b - 1 & \text{for } b/4 < a < b/2, \\ 2a - 1 & \text{for } b/2 < a < b. \end{cases}$$

Then z = qa with $q = (k_1 + k_2)/2$ is green for $b/2 \le (k_1 + k_2)/2 < b$. Since $(k_1 + k_2)/2 = b/2$ implies $k_1 = k_2 = b/2$ and a < b/2 so that z = ab/2 is green. If $(k_1 + k_2)/2 \ge b$ then either a < b/4 and z = ab = 2a(b/2) is green or a > b/2 and $z \ge ab$ is not contained in $1, 2, \ldots, r - 1$.

If (b/2) / x then (b/2) / y and then $x \equiv q_1 a \pmod{b}$ and $y \equiv q_2 a \pmod{b}$ with $1 \leqslant q_1, q_2 \leqslant b$. From $b \mid (x + y)$ it follows that $0 \equiv x + y \equiv (q_1 + q_2)a \pmod{b}$ and

thus $q_1 + q_2 \equiv 0 \pmod{b}$ since (a,b) = 1. However, this contradicts $1 \le q_1, q_2 < b/2$ or $b/2 < q_1, q_2 < b$, that is, if x and y both are of the same color. \square

Lemma 4. For $4 \le b < a$ and (a,b) = 1 we have $R(a,b) \ge r$ where $r = \lceil a^2/b \rceil a$.

Proof. Here $1, 2, \dots, r-1$ are colored as follows. The multiples ka of a are colored green for $1 \le k < a$ and red for $a \le k < \lceil a^2/b \rceil$. All multiples kb of b with $1 \le k \le \lceil (a - a) \rceil$ 1)/2| are colored red and with $|(a+1)/2| \le k < a$ are colored green. Since (a,b) = 1every remaining number x can be written as kb + ma with $1 \le k < a$ and $m \ne 0$. These numbers are colored red for m < 0 and green for m > 0.

For solutions (x, y, z) of a(x + y) = bz we see that $z = k_1 a$ since (a, b) = 1.

For $x = k_2 a$ it follows that $y = k_1 b - k_2 a$.

If $x = k_2 a$ and $z = k_1 a$ both are green then $1 \le k_1, k_2 < a$ and thus $y = k_1 b - k_2 a$ with $m = -k_2$ is red or negative, that is, not contained in 1, 2, ..., r - 1.

If $x = k_2 a$ and $z = k_1 a$ are both red, then $a \le k_1, k_2 < \lceil a^2/b \rceil$ and thus $y \le (\lceil a^2/b \rceil - 1)$ 1) $b - a^2 < 0$ is not contained in 1,2,...,r - 1.

For $x = k_2 b$ with $k_2 < a$ it follows that $y = (k_1 - k_2)b$.

If x and z both are green, then $|(a+1)/2| \le k_2 < a$ and $1 \le k_1 < a$ so that $y = k_3 b$ with $k_3 = k_1 - k_2 \le a - 1 - \lfloor (a+1)/2 \rfloor \le \lfloor (a-1)/2 \rfloor$ is red or negative.

If x and z both are red, then $1 \le k_2 \le \lfloor (a-1)/2 \rfloor$ and $a \le k_1 < \lceil a^2/b \rceil$ so that $y = k_3 b$ with $k_3 = k_1 - k_2 \ge a - \lfloor (a-1)/2 \rfloor \ge \lfloor (a+1)/2 \rfloor$ is green for a/k_3 and for a/k_3 as well since $y = k_1 b - x < k_1 b \le (\lceil a^2/b \rceil - 1)b < a^2$.

For the remaining numbers x in 1, 2, ..., r-1, that are $x = k_2b \pm ma$ with $1 \le k_2 < a$ and $m \ge 1$, we have $y = k_3 b \mp ma$ with $k_3 = k_1 - k_2$.

If x and z both are green then $y = k_3b - ma$ with $k_3 < a$ is red or negative.

If x and z both are red then $y = k_3b + ma$ and $a \le k_1 < \lceil a^2/b \rceil$ so that y is green for $a \mid k_3$ and also for $a \mid k_3$ since y is a multiple of a and $y = k_1 b - x < a^2$. \square

Lemma 5. Assume the existence of a 2-coloring of 1,2,...,r without a monochromatic solution (x, y, z) of a(x + y) = bz. Let b be green (without loss of generality). If m_0 is the greatest integer such that $b, 2b, \ldots, m_0b$ are green, then $(m_0 + 1)b, (m_0 + 1)b$ 2)b,...,hb and $2a, 3a, ..., (\alpha - 1)a$ are red and $\alpha a, (\alpha + 1)a, ..., ga$ are green, where

$$h = \begin{cases} \frac{r}{a} - 1 & \text{for } 3 \leq b < a, \\ \frac{r}{b+1} & \text{for } b \geq 4, 1 \leq a \leq \frac{b}{4}, b \text{ even,} \\ \frac{r}{b} & \text{for } b \geq 4, 1 \leq a \leq \frac{b}{4}, b \text{ odd} \\ & \text{and } b \geq 4, \frac{b}{4} < a < b, \end{cases}$$

$$\alpha = \begin{cases} 2m_0 + 1 & \text{if } (2m_0 + 1)a \text{ green,} \\ 2m_0 + 2 & \text{if } (2m_0 + 1)a \text{ red,} \end{cases}$$

$$\alpha = \begin{cases} 2m_0 + 1 & \text{if } (2m_0 + 1)a \text{ green}, \\ 2m_0 + 2 & \text{if } (2m_0 + 1)a \text{ red}, \end{cases}$$

 $g = \min\{|r/a|, 2h\}.$

Proof. Every component of the solutions (wb, (b-w)b, ab) with

$$w = \begin{cases} 1 & \text{for } 3 \le b < a, \\ h & \text{otherwise} \end{cases}$$

is contained in 1, 2, ..., r. This can be verified straightforward using the following steps. First, w and if necessary h (Lemma 5) and r (Theorem 1) are substituted so that the components of the solution depend on a and b only. Then the maximum component is determined as

$$\max\{wb, (b-w)b, ab\} = \begin{cases} ab & \text{for } 3 \le b < a, \\ hb & \text{otherwise.} \end{cases}$$

At last the maximum component can be verified to be at most r by Theorem 1.

Since no solution (wb, (b-w)b, ab) is monochromatic and $b, 2b, ..., m_0b$ are green it follows $m_0 < \max\{w, b-w, a\}$, that is, $(m_0 + 1)b \le \max\{wb, (b-w)b, ab\} \le r$. Thus $(m_0 + 1)b$ belongs to 1, 2, ..., r and then it is red by definition of m_0 .

The solutions (ub, vb, (u+v)a) with $1 \le u, v \le m_0$ force $2a, 3a, \ldots, 2m_0a$ to be red as long as these values are in $1, 2, \ldots, r$. In the following $(2m_0+2)a \le r$ can be shown. From the arguments above

$$m_0 + 1 \le \begin{cases} a & \text{for } 3 \le b < a, \\ h & \text{otherwise} \end{cases}$$

will be used.

For b=3 it follows that $2(m_0+1)a \le 2a^2$ and $2a^2 \le r$ holds (with r from Theorem 1).

For $b \ge 4$ and a < b/2 it follows that $2(m_0 + 1)a \le 2ha < hb \le r$.

For $b \ge 4$ and a > b/2 the components of the solution $(2a, (b-2)a, a^2)$ are contained in 1, 2, ..., r since r = ab or $r = \lceil a^2/b \rceil a$. This solution is not monochromatic and thus $2m_0a < \max\{2a, (b-2)a, a^2\} < r$. Moreover, $(2m_0 + 2)a \le a + a \max\{2, b-2, a\} \le r$ with r = ab if a < b and $r = \lceil a^2/b \rceil a$ for a > b.

The solution $((m_0 + 1)b, (m_0 + 1)b, (2m_0 + 2)a)$ forces $(2m_0 + 2)a$ to be green.

Let t_0 be the greatest integer such that $(m_0 + 1)b, (m_0 + 2)b, \dots, t_0b$ are red.

If $t_0 \le h-1$ is assumed then the components of the solution $(b, (t_0+1)b, (t_0+2)a)$ are contained in 1, 2, ..., r, since $(t_0+1)b \le hb$ and $hb \le r$ by definition of h (Lemma 1), and since $(t_0+2)a \le (h+1)a$ and $(h+1)a \le r$ can be verified straightforward by substituting h (Lemma 1) and if necessary r (Theorem 1). Then $(t_0+1)b$ is green and $(t_0+2)a$ is forced to be red. Then the solution $((m_0+1)b, (t_0+1-m_0)b, (t_0+2)a)$ determines $(t_0+1-m_0)b$ to be green. Since $t_0+1-m_0 \le t_0$ it follows that $t_0-1-m_0 \le t_0$ which is equivalent to $2m_0-t_0+1 \ge 2$. On the other hand, $t_0+1 \le t_0$ implies $t_0-t_0+1 \le t_0$ in the solution t_0+1 is green. Now the solution t_0+1 in the solution t_0+1 is green, t_0+1 is green, t_0+1 is green.

It remains $t_0 \ge h$. Then $(m_0 + 1)b, (m_0 + 2)b, \ldots, hb$ are red by definition of t_0 . The solutions (ub, vb, (u+v)a) with $m_0 + 1 \le u$, $v \le h$ force $(2m_0 + 2)a, (2m_0 + 3)a, \ldots, 2ha$ to be green as long as these values are in $1, 2, \ldots, r$, that is, up to ga.

So far the color of $(2m_0+1)a$ remains unknown and by α the green and red multiples of a are separated. \square

Lemma 6. For b=3, $a \ge 4$, and (a,3)=1 we have $R(a,3) \le r$ where $r=\lambda(a)$ from Theorem 1.

Proof. As in the proof of Lemma 1 we can take for r,

$$r = \frac{a}{3} \begin{cases} ((a+t+1)a+3) & \text{for } a+t+1 \equiv 0 \pmod{3}, \\ ((a+t+2)a+d) & \text{for } a+t+1 \equiv 1 \pmod{3}, \\ ((a+t+1)a+d) & \text{for } a+t+1 \equiv 2 \pmod{3} \end{cases}$$

with $a \equiv d \pmod{3}$, $d \in \{1, 2\}$, and t = (a - d)/3 so that a = 3t + d.

By Lemma 5 it follows that $2a, 3a, ..., (\alpha - 1)a$ are red and $\alpha a, (\alpha + 1)a, ..., r$ are green. The cases $a < \alpha$ and $a \ge \alpha$ will be distinguished.

If $a \le \alpha - 1$ then the solution $(a, 2a, a^2)$ forces a to be green. The number (2t + d)a is red since $2 < 2t + d < a \le \alpha - 1$, and (d, 2a, (2t + d)a) forces d to be green and then (d, 3 - d, a) forces 3 - d to be red. The number 4a is red since $4 \le a \le \alpha - 1$ and thus (4a, 3 - d, (a + t + 1)a) forces (a + t + 1)a and therefore also (a + t + 2)a to be green. Now in all three cases $a + t + 1 \equiv 0$, 1, and $2 \pmod{3}$ completely green solutions ((a + t + 1)a, 3, r), ((a + t + 2)a, d, r), and ((a + t + 1)a, d, r), respectively, are determined in contradiction to the first assumption of Lemma 5.

If $a \ge \alpha$ then the solutions $(\alpha a, 3, a(\alpha a + 3)/3)$, $((\alpha + 2)a, 3, a((\alpha + 2)a + 3)/3)$, and $((\alpha + 1)a, 3, a((\alpha + 1)a + 3)/3)$ are considered for $\alpha = 0, 1$, and $2 \pmod{3}$, respectively. Every component is contained in $1, 2, \ldots, r$ since already the largest component $a((\alpha + 2)a + 3)/3$ is at most r which follows for $t \ge 2$ from $(\alpha + 2)a + 3 \le (a + t)a + 3$ and for t = 1, that is, a = 4 or a = 5, from $(\alpha + 2)a + 3 \le (a + t + 1)a + 3$. Up to b = 3 each component is a multiples of a and of size at least αa . Thus all three solutions are green, which is a contradiction. \square

Lemma 7. For $b \ge 4$, $1 \le a < b/2$, and (a,b) = 1 we have $R(a,b) \le r$ where

$$r = \left\{ \begin{array}{ll} (b+1)b/2 & \textit{for } 1 \leqslant a \leqslant (b-1)/2 \textit{ and } b \textit{ odd } (\textit{Case } A), \\ (b+1)b/2 & \textit{for } 1 \leqslant a \leqslant b/4 \textit{ and } b \textit{ even } (\textit{Case } B), \\ bb/2 & \textit{for } b/4 < a < b/2 \textit{ and } b \textit{ even } (\textit{Case } C). \end{array} \right.$$

Proof. Starting with Lemma 5 it follows that $b, 2b, ..., m_0b$ are green, $(m_0 + 1)b, (m_0 + 2)b, ..., hb$ and $2a, 3a, ..., (\alpha - 1)a$ are red and $\alpha a, (\alpha + 1)a, ..., 2ha$ are green with

$$h = \begin{cases} (b+1)/2 & \text{in Case A,} \\ b/2 & \text{in Cases B and C,} \end{cases}$$

 $\alpha = \begin{cases} 2m_0 + 1 & \text{if } (2m_0 + 1)a \text{ green,} \\ 2m_0 + 2 & \text{if } (2m_0 + 1)a \text{ red.} \end{cases}$

As in the proof of Lemma 5 the solution (hb, (b-h)b, ab) is considered. Since $ab \le (b-h)b \le hb$ can be verified and hb is red this solution forces ab to be green

and thus $a \le m_0$. Furthermore, $m_0 < 2m_0 + 1 \le \alpha$ so that $a < \alpha$ and then a^2 is red with one possible exception if a = 1.

At first, Case C will be discussed. Here $a > b/4 \ge 1$ and a^2 is red so that the solution (ha, ha, a^2) forces ha to be green. If the solution $(\lfloor h/2 \rfloor b, \lceil h/2 \rceil b, ha)$ is not green then $m_0 + 1 \le \lceil h/2 \rceil$, that is, $m_0 < h/2$. However, this contradicts $h/2 = b/4 < a \le m_0$ and Case C is proved.

If a^2 is red the solution $((\alpha - 1)a, (b - \alpha + 1)a, aa)$ forces $(b - \alpha + 1)a$ to be green since ba green implies $b \ge \alpha$ which is equivalent to $b - \alpha + 1 \ge 1$. From $(b - \alpha + 1)a$ green it follows $b - \alpha + 1 = 1$, that is, a is green, or $b - \alpha + 1 \ge \alpha$.

In the following, three alternatives are distinguished, (1) a red, (2) a green for $a \ge 2$, and (3) a green for a = 1.

(1) If a is red then $b - \alpha + 1 \ge \alpha$ which is equivalent to $\alpha \le h$ and thus $(\alpha - a)b - a < hb \le r$ so that the solution $(a, (\alpha - a)b - a, (\alpha - a)a)$ forces $(\alpha - a)b - a$ to be green. Since (b+1)a < (b+1)b/2 = r the solution $((b+1)a, (\alpha - a)b - a, \alpha a)$ determines (b+1)a to be red in contradiction to (b+1)a = 2ha green in Case A.

In Case B the solution ((b+1)h,(b+1)h,(b+1)a) implies (b+1)h green. Since a red implied $\alpha < h+1$, it follows that (h+1)a is green and thus ((b+1)h,h,(h+1)a) forces to be red. Now the solution (h,h,a) is red, a contradiction.

(2) If a is green for $a \ge 2$ then a^2 was determined to be red and either $b = \alpha$ or $b - \alpha + 1 \ge \alpha$.

For $b = \alpha$ the solution $(2a, (b-2)a, a^2)$ is red, a contradiction.

For $b-\alpha+1\geqslant \alpha$, which is equivalent to $\alpha\leqslant h$, if follows from $\alpha<2\alpha-1\leqslant b\leqslant 2h$ that (b-1)a is green. Furthermore, $(\alpha-a)b+a<\alpha b\leqslant hb\leqslant r$ so that the solution $((b-1)a,(\alpha-a)b+a,\alpha a)$ forces $(\alpha-a)b+a$ to be red. Since $2\leqslant a\leqslant m_0<\alpha$ the third component of $(b-a,(\alpha-a)b+a,(\alpha+1-a)a)$ is red which forces b-a to be green. Then (b-a,a,a) is green, a contradiction.

(3) If a is green for a=1 then (1,b-1,1) forces b-1 to be red and thus also b-2 is red. Since ba=b was assumed to be green it follows that $b=\alpha$ and $2 \le h \le (\alpha+1)/2 < \alpha$ determines ha=h to be red. Then (2,hb-2,h) implies that hb-2 is green.

In Case A the solution (b-2,(h-1)b+2,h) forces (h-1)b+2 to be green and then (hb-2,(h-1)b+2,2h-1) forces 2h-1 to be red in contradiction to b=2h-1 being green.

In Case B from $h=b/2=\alpha/2<\alpha-1$ it follows that h+1 is red. Then (b-2, hb+2, h+1) implies that bh+2 is green since $bh+2 \le bh+h=r$. Now the green solution (hb-2, hb+2, b) is a contradiction. \square

Lemma 8. For $b \ge 4$, b/2 < a < b, and (a,b) = 1 we have $R(a,b) \le r$ where r = ab.

Proof. Using Lemma 5 it follows that hb is red and ga is green. However, hb = r = ab and $ga = a \min\{b, 2a\} = ab$ determine hb = ga, a contradiction. \Box

Lemma 9. For $4 \le b < a$ and (a,b) = 1 we have $R(a,b) \le r$ where $r = \lceil a^2/b \rceil a$.

Proof. Using Lemma 5 it follows that $b, 2b, ..., m_0b$ are green, $(m_0 + 1)b, (m_0 + 2)b, ..., hb$ and $2a, 3a, ..., (\alpha - 1)a$ are red and $\alpha a, (\alpha + 1)a, ..., r$ are green with

$$h = (r/a) - 1 = \lceil a^2/b \rceil - 1$$
,

$$\alpha = \begin{cases} 2m_0 + 1 & \text{if } (2m_0 + 1)a \text{ green,} \\ 2m_0 + 2 & \text{if } (2m_0 + 1)a \text{ red.} \end{cases}$$

Since $(2a,(b-2)a,a^2)$ is a solution and $2a \le (b-2)a < a^2 < r$ it follows that $\alpha \le a$. Some abbreviations are needed. The number δ is determined by $r/a = \lceil a^2/b \rceil = (a^2 + \delta)/b$ with $1 \le \delta < b$. The numbers γ and ε are determined by $a = \gamma b + \varepsilon$ with $1 \le \gamma$ and $1 \le \varepsilon < b$. Furthermore, there are numbers σ and τ so that $\alpha a + \tau = \sigma b$ with $1 \le \tau < b$ and $\alpha < \sigma$. Also $\sigma \le r/a$ follows from $\sigma = (r/a)(\alpha a + \tau)/(a^2 + \delta)$ for $\alpha < a$, and for $\alpha = a$ if $\delta = \tau$ is noted. Then σa is green and $(\alpha a, \tau, \sigma a)$ forces τ to be red.

The number γab is red since $\gamma a \geqslant a \geqslant \alpha \geqslant 2m_0 + 1$ and $\gamma a = (a - \varepsilon)a/b < h$. This implies $\gamma ba \leqslant (\alpha - 1)a$ which is equivalent to $\alpha - \gamma b \geqslant 1$. The number $(\sigma - \gamma a)a$ is red since $\sigma - \gamma a \geqslant 2$ follows from $(\sigma - \gamma a)b = (\alpha - \gamma b)a + \tau \geqslant b + \tau$ and $\sigma - \gamma a < \alpha$ follows from $(\sigma - \gamma a)b - \alpha b = \alpha(a - b) - \gamma ba + \tau \leqslant (a - b - \gamma b)a + \tau = (\varepsilon - b)a + \tau < 0$. Now the solution $((\alpha - \gamma b)a, \tau, (\sigma - \gamma a)a)$ forces $(\alpha - \gamma b)a$ to be green and therfore it remains only the possibility that $\alpha - \gamma b = 1$ and α is green.

The cases $\varepsilon = 1$ and $\varepsilon \geqslant 2$ will be distinguished.

If $\varepsilon = 1$ then $a = \gamma b + 1 = \alpha$.

If b is even then $a = \gamma b + 1$ is odd and (a + 1)/2 is an integer. Next, (b/2)a and ((a + 1)/2)a are red since $2 \le b/2 < b \le \gamma b = \alpha - 1$ and $2 \le b/2 < (a + 1)/2 \le a - 1 = \alpha - 1$. Then ((b/2)a, b/2, ((a + 1)/2)a) determines b/2 to be green. However, now (b/2, b/2, a) is green, a contradiction.

If b is odd then the solutions $((b-1)/2,((b+1)/2)a,(((b+1)/2)\gamma+1)a)$ and $((b+1)/2,((b-1)/2)a,(((b-1)/2)\gamma+1)a)$ force (b-1)/2 and (b+1)/2 to be green since $2 \le (b-1)/2 < (b+1)/2 \le ((b-1)/2)\gamma+1 < ((b+1)/2)\gamma+1 \le \gamma b = \alpha-1$. Then the solution ((b-1)/2,(b+1)/2,a) is green, a contradiction.

If $\varepsilon \geqslant 2$ then εa is red since $\varepsilon < b \leqslant \gamma b = \alpha - 1$. The solution (a^2, δ, ha) forces δ to be red and then $(\varepsilon a, \delta, r - \gamma a^2)$ implies that $r - \gamma a^2$ is green. Together with $(r/a) - \gamma a = (\delta + \varepsilon a)/b > \delta/b + \varepsilon > 2$ it follows that $\alpha \leqslant (r/a) - \gamma a$.

The case $\varepsilon \le b/2$ cannot occur since $\gamma b + 1 = \alpha \le (r/a) - \gamma a = (\varepsilon a + \delta)/b = (\varepsilon(\gamma b + \varepsilon) + \delta)/b \le ((b/2)(\gamma b + b/2) + \delta)/b$ leads to $(2\gamma - 1)b^2 \le 4(\delta - b)$ which is impossible for $b > \delta$ and $\gamma \ge 1$.

If $\varepsilon > b/2$ then $(\gamma b + b - \varepsilon)a$ is green since $\gamma b + b - \varepsilon \geqslant \gamma b + 1 = \alpha$ and $\gamma b + b - \varepsilon < \gamma b + b/2 < \gamma b + \varepsilon = a < r/a$. The number $(2 + (\gamma + 1)a - (r/a - \gamma a))a$ is green since $(\gamma + 1)a - (r/a - \gamma a) \leqslant r/a - 2$ follows from $(r/a - 1)b + \delta = (\gamma b + b - \varepsilon)a + (2\varepsilon - b - 1)a + a - b + 2\delta > (\gamma b + b - \varepsilon)a = ((\gamma + 1)a - (r/a - \gamma a))b + \delta$ and since $(\gamma + 1)a - (r/a - \gamma a) = (\gamma + 1)a - (\varepsilon a + \delta)/b > (\gamma + 1)a - (ba + b)/b = \gamma a - 1 > \alpha - 2$. Then $((\gamma b + b - \varepsilon)a, 2b - \delta, (2 + (\gamma + 1)a - (r/a - \gamma a))a)$ implies that $2b - \delta$ is red. This gives the contradiction that $(\delta, 2b - \delta, 2a)$ is red. \square

3. Remarks

For $k \ge 4$ numbers $R_k(a,b)$ for $a \ne b$ and b=2a do not exist (see [6]). If $2b \le a$ or $4a \le b$ then also for k=3 Rado numbers $R_3(a,b)$ do not exist (see [4, Theorem 2]). If a < 2b < 8a in the case of k=3 then a general proof for the existence of $R_3(a,b)$ is unknown. Besides the Schur number $R_3(1,1)=14$ and the trivial Rado number $R_3(1,2)=1$ only the four numbers $R_3(3,1)=54$, $R_3(3,2)=54$, $R_3(4,3)=108$, and $R_3(5,2)=105$ which were determined with the help of a computer are known so far.

References

- [1] A. Bialostocki, H. Lefmann, T. Meerdink, On the degree of regularity of some equations, Discrete Math. 150 (1996) 49-60.
- [2] R.L. Graham, B.L. Rothschild, J.H. Spencer, Ramsey Theory, Wiley, New York, 1990.
- [3] H. Harborth, S. Maasberg, Rado numbers for homogeneous second-order linear recurrences degree of partition regularity, Congr. Numer. 108 (1995) 109-118.
- [4] H. Harborth, S. Maasberg, Rado numbers for Fibonacci sequences and a problem of S. Rabinowitz, in: G.E. Bergum et al. (Eds.), Applications of Fibonacci Numbers, vol. 6, Kluwer Academic Publishers, Dordrecht, 1996, pp. 143-153.
- [5] H. Harborth, S. Maasberg, Rado numbers for a(x + y) = bz, J. Combin. Theory Ser. A 80 (1997) 356–363.
- [6] R. Rado, Studien zur Kombinatorik, Math. Z. 36 (1936) 424-480.
- [7] D. Schaal, On generalized Schur numbers, Congr. Numer. 98 (1993) 178-187.
- [8] I. Schur, Über die Kongruenz $x^m + y^m \equiv z^m \pmod{p}$, Jahresber. Deutsch. Math.-Verein. 25 (1917) 114–117.