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This volume contains the proceedings of a conference on Combinatorial

Theory that took place at Schloss Rauischholzhausen in May 1982 to

mark the 375t h anniversary of the Universitat Giessen. There were eight

invited lectures and over twenty contributed talks. 21 of these papers

are contained in this volume. In accordance with the aim of the con­

ference, they cover the whole range of Combinatorics. We hope that the
conference and this book will contribute to a better understanding of

the various aspects of this fast developing and diverging field, as

well as stimulate the exchange of ideas.

We would like to thank all the referees for their cooperation and, in

particular, their prompt response. We are also indebted to Frau

D. Begemann and to Frau R. Schmidt for helping with the organizational
details of the conference, and to the Hochschulgesellschaft for

financial support. Finally, we are very grateful to the secretaries of

the Mathematisches Institut; without their help, the manuscript would

not have been completed in time.

Giessen, October 1982 Dieter Jungnickel

Klaus Vedder
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CRITICAL PERFECT SYSTEMS OF DIFFERENCE SETS

WITH THE MINIMUl1 START

Jaromir Abrham
Department of Industrial
Engineering
University of Toronto
Toronto, Ontario, Canada

and Anton Kotzig
C. R. n. A.
Universite de Montreal

Quebec
Canada

The concept of a perfect system of difference sets has been intro­

duced in [4] as a mathematical model of the following problem in radio­

astronomy: A few movable antennas are used in several successive con­

figurations to measure various spatial frequencies relative to some area

of the sky. The distances between antennas determine the frequencies

obtained. We do not want to miss any frequency, and want to avoid re­

dundancy (repetition of the same spacing between antennas). For more

details, the reader is referred to [4] and [5].

Let c,m,Pl"."Pm be positive integers, let S. = {xO'<xl'< ... <x ,},

i l, ..• ,m be sequences of integers, and let D. = {x .. ­x
k.,

L'k<j"'p.},

i l, ,m be their difference sets. Then we say that the system

{Dl, ,Dm} isa perfect system of difference sets (PSDS) starting with

c D. = {c,c+l, •.. ,c­l+ I [Pi+
l)}.

Each set D. is called a com­
i=l 2

ponent of the PSDS {Dl, •.. ,Dm}. The size of Da is Pa' the half­size of

Da is r a = [Pa/2] where [x] denotes the integer part of a real number x.

Then Pa = 2r2+o a where 0a = 0 or 1 accordinq to whether Pa is even or

odd. This notation will be used throughout the paper. The reader will

observe that the size of a component is not the number of its elements;
1

if the size of Da is Pa then Da has 1+2+",+Pa = 2Pa(Pa+l) elements.

vIe will briefly review some earlier results concerning PSDS:

A PSDS is called regular if all its components have the same size.

A regular PSDS with m components of size p, starting at c, vTill be called

an (m,p,c)­system. In [4], the existence of (m,p,l)­systems has been

related to graceful numberings of certain graphs, and some relations

between m,p,c, necessary for the existence of an (m,p,c)­system, have

been obtained. Further existence studies have been carried out in [7];

one of the results obtained here is that, if an (m,p,c)­system exists,

then p'" 4. Without this result, a lot of time and money could have been

spent in efforts aimed at finding (m,p,c)­systems with large values of

p. A generalization of this result to the nonregular case has been ob­

tained in [9]: Every PSDS contains at least one "small" component (a



2

component of size 4). This has been further generalized in [2]:

Every PSDS starting at c (c;,. 1) contains at least c small components.

This follows immediately from the inequality (5) below. Proceeding from

the inequality (2) it has been proved in [1] that, in a PSDS \.ith m com­

ponents with the half­sizes r
1

... r
m,

it is r m K(/rn+l) where K

is a constant, and that the average of half­sizes of the components of

any PSDS is bounded by a constant. The first result implies that the

of perfect systems of difference sets starting with a given c,

which has a given number m of components, is finite. Moreover, it fol­

lows from the results in [2] that c m, This means that the number of

all PSDS with a given number of components and all possible starts c is

finite.

Let us now denote (similarly as in [1, 2])

m
n !2 I (2r +0 ) (2r +8 +1)

a=l a a a a

m
s = I r (3r +28 +1)

a=l a a a

i'
m
I r (r +1) ,
a=l a a

n­i'

and let S = {c,c+l, ... ,c+s­l}, L = {c+i, .•. ,c+n­l}, M = {c+s, .•. ,c+i­l}.

Furthermore, let us put x'+k 1 ­x. 1 = , j = l, ... ,p , k = 1, ••. ,J ­,a J­,a j a a
Pa+l­j, a = l, •.. ,m. Then the elements of Da can be represented in the

form of a difference triangle

1
•••• d a

Pat

The top (bottom) r
a

rows of this triangle will be referred to as

its upper (lower) half. Then sand i' denote the number of elements in

the lower (upper) halves of all triangles corresponding to {Dl, ••• ,Dm},
and n denotes the number of all elements in all such triangles. Accord­

ing to Proposition 1.1 in [4] we have

k P +l­k
I d.

a

j=l Ja

Pa+l­k k
I d.,
j=l Ja

k 1,2, ..• ,ra,
a 1, ... ,m

Adding over k and a we get

m r a k Pa+l­k m r a Pa+l­k k
(1) I I I d. I I I d.

a=l k=l j=l Ja a=l k=l j=l Ja
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in words: The sum of all elements in the upper halves of the difference

triangles corresponding to Dl, ... ,Dm is equal to the sum of all ele­

ments in the lower halves. If we replace the elements in the lower

halves by c, ... ,c+s­l in the middle rows by c+s, .•. ,c+l­l, and in the

upper halves by c+l, •.. ,c+n­l, we get from (1) the inequality
c+n­l c+s­l

I' J.' >_ I' 'L L' l.e.
i=c+l i=c

(2) (n+I+2c­l) (n­i) s (s+2c­l), or (2n­i I +2c­l) i I s (s+2c­l)

and this is equivalent to the fundaMental inequality obtained in [1]

(see also [2] or [9]). This inequality has been instrUMental in esta­

blishing a number of important properties of PSDS; for details and other

results on PSDS see e.g. [1], [2], [3], [5], [6], [7], [8], [10], [12],

[13], [14].

In [2], the inequality (2) has been used to develop another in­

equality, easier to use, which will be useful in the proof of Theorem 3

below. Since [2] is not yet available in print we will repeat the main

steps here.

1 2 + ! L C2H l ( 3k 2+3k )s '2 L c 2k(3k +k) 2' k z L '

i' 1 I' 2 1 I' 2
'2 L c 2k(k +k) + '2 L c 2k+ l(k +k)

kd

n

I
Let us consider a PSDS with m components and let ck denote the

number of components of size k, Then m = L c and we can write
k

2
+6k+2)

(3)

If we denote, for any positive integer p,

E
P

then the second inequality in (2) yields

(El+E 2+W l+W2) (4c­2+3El+7E2+4wO+llwl+7w2) ­

­ (E
l+3E 2+3w l+3w2)

(4c­2+E
l+3E 2+3w l+3w2) 0

wh i ch implies

2 2 2 2 t1 ()El­E2+wl­w2+2E1E2+·Elwl+2Elw2­2E2w2+2wO El+E 2+wl+w 2

(4c­2) (E2+wl+w 2)

2
Adding 2E, to both sides we can transforM the last inequality into



Oividing

we get

this last inequality

El (E l-2c+l)

E
l+E 2+wl+w2

4

(4 )

3El-E2+2wO+Wl-W2 2 4c-2+26c

SUbstituting from (3) we can transform the last inequality into

c 2+c 3+c 4 22c-l + 6c + (c2k_l+c2k)·

Furthermore,

2c-l+6
c

(2c-l) (E2+wl
+(

2)
+Ei

El+E 2+wl+w 2

2 E2+wl+w2 1
It is El:S El, El:S E2, and therefore > -E

l+E 2+wl+w2
- 2

This implies 2c-l+6 2 = c, and (4) yields thenc
1 \ )(5) c 2+c 3+c 4 2 c + "2 (c2k-l+c2k .

Since (5) is weaker than (2) it holds as a strict inequality whenever

(2) holds as a strict inequality.

Throughout this paper, we "ill use the symbols cl,c2 , C3 ' C4 to de-

note the one-component perfect systems of difference sets representeQ

by the following triangles:

3
2

3
1

4
6

3
5

2
5

6

3
4

1

A perfect system difference sets will be called critical if its

elements satisfy (2) as an equality. Equivalently, {Ol, ... ,D
m}

is a

critical PSOS if the elements of L,S,M correspond to the elements in

the upper halves, lower halves, and middle rows of the difference tri-

angles corresponding to the components of {Dl' ... 'Om}.

The reader will observe that a PSDS starting with c satisfying (5)

as an equality satisfies also (2) as an equality and therefore is criti

cal. A noncritical PSDS starting with c satisfies (5) as a strict

inequali ty.

Only critical PSOS w i t.h c 1 (the mi.n i.mum start) uill be consi-



5

dered in this paper. For c > 1 vre wouLd get different results. The

reader will observe that the above PSDS Cl,C2,C3,C4
are all critical

(with c = 1).

Let us start our study of critical PSDS by investigating the pos­

sible position of 1. I've get the following

Lemma 1. Let 6 = {Dl, ... ,D
m}

be a critical PSDS and let D be its
a 1

component containing 1. Then Da also contains sand s+l. Let d i a 1.

If the size Pa of Da is odd then i t ra+l where r a = [Pa/2]. If Pa is

even then the sizes of all components of {Dl, .•. ,D } are even numbers.­ m

Proof. To simplify the notation vie w i.Ll, drop the subscript a; hence

r r a 1
e.g. d. will stand for d. etc. Let d. = 1. If i :£ r+8 (where1. 1., a 1.

8 = p­2r) we have = " s+l and :£ S and this implies

r r+l r+ld i+l s, d i = s+1. If i" r+l we get in a similar way d i_r = s,

d:+l r r1.­r s+l. If Pa is odd and i = r+l we get dr+2 = d l = s and this is

impossible. Furthermore, we see from these considerations that Da con­

tains s,s+l. If Pa is even then SES, s+lEL, hence M = there is no

component of odd size.

= v or

V" s-i-L,

if 1.
r +1

d g = v.
h­r gg'

must have u:£ s ,

d
r g

= u andh­r ,gg
Clearly, vie

ference v­u in D
g

1
Let 6 = {Dl""'Om} be a PSDS and let n = dhg, where Dg is one of

the components. Then we \lill say that n is represented as the dif­
r +1,rg _ d g

v­u = n 2. either 0h+l,g ­ u, hg

Lemma 2. Under the assumptions of Lemma 1, Da contains 2 and at least

one the numbers s­l, s+2 (in addition to the numbers l,s,s+l). The

numbers 1,2 are neighbors in the first row of the triangle

to D
a
if and only if 6 is either C

l
or C

2.
If 2 is represented in Da

as the difference of s+2 and s then 6 is either C3 or C4•

Proof. Let us denote by Db the of 6 containing 2; the sub­
1script b will again be omitted. Let us define j (1:£ j :£ Pb) by d j = 2.

mh dr+ l ­ 2 d r 'f J' £ d r+ l dr. +2 1.·r-L- · 1 Th ten . ­ + . +1 1. :£ r+u , . J "r+. • e wo cases
J J J­r J­r

are similar (they can be transformed into each other by writing the

elements of each row in the trianqle representing Db in the opposite

order), so only the first case wdI L be discussed. Since d:+l" s+l,
r < . r+1 _ r r+1 J r

d j+ l ­ s, we have e i.t.he r d
j

- s+2, d
j+ l = s or d j = s+l, d j+ l = 5­1.

This implies that 2ED
a

(since,s,s+lED
a)

and, therefore, Db = Da. In

the first case, S+2EDa, in the second one, s­lE0a.

Let us now distinguish the two cases (according to the way in
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s, hence i = j, which is impossible, hence i r+1, and

which 2 is represented as the difference of two elements of D
a)

.

I. Let 2 be represented as the difference of s+2 and s. Let = 2,

s+2 d r = s for some J' r+o. Let = 1. If i r+o weJhave
J ' j+l J.
r

d i +l d: = s'
J.-r '

r+l r+l r 1
this implies i j+r+l and Pa > 2. Furthermore, d i_r = d j+ l = dj+l+dj+r+l

= s+l and d r.+2 1 r+l { }d.+d. 1 = 5+3, hence s+3 Land M = s+1,s+2, p = 3.
J J J+ a

Let us now denote L I = L-{s+3}, SI S-{1,2,s}. If L I ¢ SI there

exist a yELl and an XES' such that y = x+3 (since 3 must be in sone

component of our PSDS), and this is impossible, as y s+4, x s-l. We

conclude that L I = ¢ = SI and He have a PSDS ':lith only one component

of size 3, which must coincide ':lith either C
3
or C

G.

If P = 3, 3EM and the first row of the triangle cor-

must contain a nur:1ber > 3 wh i ch belongs to S- and this

s+l and s-l. Let
J

we can see as in

II.
d:+l
J

case

1,2 were neighbors

we get C
l
or C

2
•

responding to D
a

is impossible.

s-l for some j r+o.

d: = s, d:+ l =
J.-r J.-r

we would have r = 1,

s+l

p = 2 or 3. Ifp

j+r. If

2, 3EL and

2,

Lemma 3. Let 6 = {Dl, ... ,u
m
} be a critical perfect system of dif-

ference sets different from each of c
l
, C

2
, C

3
, C

4
. Then 3ED (i.e. 3 is

la
in the same component as 1 and 2). Let k be defined by d

k a
= 3. Then

either 3 is represented in D
a
as the difference of s+3 and sand

k :0; r a + a or 3 is represented in Da as the difference of 3+2 and s-l

and +1.
a

s+3 (if k r+o)

s+3 (if k r+l)

s+2 (if k r+o)

s+2 (if k r+l)

s+l (if k r+8)

s+l (if: k r+l)

our assumptions, if D
a
contains 1,2, it contains s, s+l, s-l;

that, in all 3 cases considered here, 3ED
a,

hence Da Da•

r
s-l, dr+ l

d k+ l k

d
r s-l, d r+ l
k-r k-r

r s-2, dr+ l
dk+ l k

d
r s-2, dr+ l
k-r k-r

B.

or

C.

or

Under

this means

Proof. Let us denote by D
a
the component containing 3; the subscript

a will again be omitted. Let k be defined by = 3 (in Da); now we

have the following three possibilities.

A. s,

d r d r +lor k-r s, k-r
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will now show that the above case C is impossible. In case C,

if k s; r+o, have
r

s-2, d r+ l 2, ,r+lwe dk+ l = s-i-L, If = ,Ie have a.
k J J

s+l and we see that j k wh i ch is If k:2: r+l we l1ave
d r+ l = s+l, hence k = r+j. According to the proof of Lemma 1 (Case I) ,k-r
we have also i = r+j whe r e = 1, hence i = k and this is again

l.
impossible.

Let us no..., consider case A. If k z r+l, 1:1e have = s , If i
1

is defined by d i = 1 we have by the proof of Lemma 2 (Case I) i = r+j,

d: = s, hence i = k and this is a contradiction.
l.-r

In case B, if k s; r+o, ,.e have s-l; '.•e also have = s -d,

where = 2, and this is a contradiction again. This completes
J

proof of Lemma 2.

Lemma 4. Let 6 satisfy the assumptions of Lemma 3. Let j,k be defined

again by = 2, = 3 (j s;k+o). If 3 is represented as the dif-

ference of s+3 and s then k j-l. If 3 is represented as the dif-

ference of s+2 and s-l then k = j+r+l.

Proof. We have = 1 (see Lemma 2) and d: = s, and this implies
J r J r

j = k+l in the first case. In the second case, we have d j+l = s-l =
and this implies k = j+r+l.

Theorem 1. Let 6 satisfy the assumptions of Lemma 3. Then 6 cannot

have any component of odd size.

Proof. Let us assume the opposite. Then, according to Lemma 1, D
a

is of odd size. Let us consider two separate cases.

1,

s-3+3

1
d. 1 = 3 which
J-

2, d;

3 is represented as the difference of s+3 and s.

1 1 1 r r+1 r+1
Then d. 1 = 3, d. = 2, d.+ 1, d. = s, d. = s+l, d. 1 = s+3, and

J- J J r J J J-

d:+
1
2 = 1+d:+1 = s+4. This implies s+4EL, M = {s+1,s+2,s+3}, 0 = 5.

J- J- J • a
There are two possibilities for the position of s+2 in the triangle

representing D : either s+2 = d:+
1
1 or s+2 = d:+

2
1. In the first case,

a J+ J-
r+l r 1 1 1

s+2 = d j+1 = dj+1+dj+r+1 = s-1+dj+r+1, hence d j+r+1

is impossible. In the second case, j = 3, = 3, d;
dj = d; = s, di = s+2 = di+3+2, i.e. di = s-3, and di

which is a contradiction.

A.

d:+2
J

M = {s+1,s+2,s+3} with s+l =

represented as the difference of s+2 and 5-1.

1 1
2, d j+r = 1, d j+r+1 = 3 (see Lemma 4). We have

2+s+2 = s+4EL, so again

B. 3 is

Then
J

d
1+d r +1
j j+l
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r+l
s+2 = d j+l• vie have two possibilities for the pos i t i on of this

time: either s+3 = or s+3 = We observe that Pa = 5, r a 2

1 1 1 3
again. In the first case, d j = 2, d j+2 = 1, d j+3 = 3, and s+3 = d j+2
1 1 1 1 .. dl 2

dj+2+dj+3+dj+4 = 4+d j+4 which j+4 s-l = d j+l and we have a
. 3 111

contradiction. In the second case, s+3 = d. 1 d. l+d,+d'+l' Since
J- J- J J

s = = we have = s-2, and ,ve conclude that = 3 =
1

d j+3 and we have a contradiction again.

Remark. It has been shown in [2] that the average number of dif-

ferences in the components of any PSDS cannot exceed 21. Howeve r , the

largest average number of differences ever achieved - to the best

our knowledge - is ten (see [11] and [12]). It was hoped that this can

be improved by constructing a (critical) PSDS with one component of

size 3 and several components of size 5 [6]. Using a computer, P.J.

Laufer attempted to construct such PSDS with up to six components of

size 5. All results were negative; Theorem 1 shows why.

To investigate in more detail the last remaining case (when all

components are of even size), let us substitute into (2) for n,s,! and

write the result as an equality (we consider critical PSDS). We get

( 2, , , 2 ? 2 = 02 L. r a) L. r a) - L. r a) + - L. r
a=l a=l a=l a=l a

m
Let us put x = I r , y =a
2 2 a=l

y -2xy-x +2y = O. Solving

m 2
I r a
a=l
for y

Then the last equation becomes

in terms of x we obtain (since s » 0)

y = x-l + I(x-l)z+x z

Since x,y are positive integers, x must be such that (x_l)2+x2 is a

perfect square. Our search (for x ,;; 120) provided the following pairs

x,y:

x 1, y 1

x 4, , Y 8

x 21, Y 49

x 120, Y 169

If x = 1, Y 1, we get either Cl or C2. If x = 4, Y = 3, then,

necessarily, m = 2, and r l = r 2 = 2. However, no PSDS with 2 com-

ponents of size 4 can exist (see [7]), Theorem 4.2). For x 21,

y = 49, our complete search revealed the following possible candidates

for critical PSDS (by c k we denote the number of components of size k,
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by m the total number of components) :

l. c 2 2, c 4 5, c
6

3, m 10

2. c 2 5, c 4 2, c 6 4, m 11

3. c 2 9, c 4 2, c 6 0, c a 2, m 13

4. c 2 7, c 4 2, c 6 2, c 3 1, m 12

5. c 2 11, c 4 1, c 6 1, Ca 0, c l O 1, m 14

6. c 2 a, c 4 4, C6 0, c a 0, cIa 1, m 13.

The question is still open whe t.he r any of the above 6 possibilities

really yields a critical PSDS. At t.h i.s moment, the problem seems to

be too difficult to decide even when using a computer.

The authors are indebted to the referee for pointing out that

the above search for x can be replaced by using the Pell equation. The

equation x2+(x_l)2 u 2 is equivalent to 1 = u2_2x2+2x or 2 = 2u2-4x2+4x

or (2x-l)2_2u2 = 1 which is a Pell equation. The Pell equation

M
2_2u2 = -1 has the general solution = Ak, u = Bk where 1\+Bk l 2
(1+12)2k+l. Using this formula we can obtain same values of x as

above.

To summarize, we

Theorem 2. There exists no critical PSDS, different from Cl'C2'C3'C4'
with the sum of half-sizes $ 20. There exists no critical PSDS with

the sum of half-sizes equal to 21 and fewer than 10 There

exist no critical PSDS with the sum of half-sizes between 22 and 119.

We would like to conclude this study by conjecturing that the

critical PSDS with start one are cl'c2 ' C3 ' C4 '

The above results yield immediately the following extension of

earlier results about the number of small components.

Theorem 3. Every PSDS with start one, which is different from cl'c2 '

C3,C4, and such that the sum of the half-sizes of its components is

less than or equal to 119, at least bvo small components (i.e.

of size 2,3, or 4),

Proof. If our PSDS has c k conponents 0::: size k, k" 2, then it satis-

fies (5) with c 1:

(6)

If the PSDS in question is noncritical, (6) holds as a strict inequality,
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hence c 2+c 3+c4 2. If it is critical, then it must be one of the

above-mentioned six possible candidates. However, each of them has

at least seven small components.
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1. Summary:

The aim of this survey report is to draw attention to some recent developments which

seem to have changed the face of Coding Theory completely. While this area of appli-

cable algebra -which has strongly been influenced [3] by hard problems of communica-
tions engineering- during the last two decades has become a main part of Combinatorics,
reaching from Finite Geometries to Representation Theory [18], it has never been fully

accepted as a part of Algebra itself - the reasons for this being manifold. On the one

hand, Coding Theory can easily be mistaken for a part of Linear Algebra, while on the

other hand a non-typical feature distinguishes it from the main concept of modern and
classical algebra: The properties of codes are "basis-dependent" so that the many tools
of "basis-free" algebra are not always helpful.

Due to some very recent publications ([13],[19],[29]) this situation may be changing

very soon, as the interaction between these fields has provided new insights into both:

Results from Algebraic Geometry permit the construction of codes, which are better
than those known before, while very well-known bounds on codes in turn improve Weil 's
bound for the number of points on a curve over a finite field.

On the other hand, a very recent paper [9] shows that the construction of extremely

good codes is possible by rather elementary means.

The aim of this survey report is to introduce a general mathematical audience to

the background, eventually leading to these new developments. As is usual for a survey
the author has included results from many different fields, not just from his own one.

Thus, this report hopefully is in the spirit of the classical understanding of research
- providing a collection of material which is not even contained in the most recent
book [30] on Coding Theory.

2. Introduction:

Coding Theory has been developed during the last four decades in order to improve or

secure the quality of data transmission systems, where transmission can mean to trans-
port data through space (e.g. telephone links, satellite communications etc.) or time
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(e.g. magnetic tapes, optical discs etc.). Possible threats to the quality of such

communication lines are additional noise on the line, erasures, distortions, bursts

due to fading etc.
The general model for a transmission system embodying the feature of such error pro­

tection is shown in the following figure:

Channel:

telephone

radio
magnetic tape

optical disc

noise

erasure

distortion
bursts
fading

Messages
Data

Messages
DataITransm i

IReceiver I Decoder I<E­­­­­­­­'
Figure 1.

At this point, some notation and definitions are necessary.

Henceforth, messages are vectors of a fixed length k over a finite field

GF(q), i.e. E GF(q)k.

An encoder is an injective mapping

E: GF(q)k ... GF(q)n

where n(;;; k) is the length of the code C = im E, which consists of codewords

c = (co'''''cn_1) E C.

The decoder is a surjective mapping

D: GF(q)n ... GF(q)k

performing a maximum likelihood decision [30] on the vectors coming out of the channel

The channel is assumed to be discrete and memoryless [30] with known symbol­error dis­

tribution p(x,y), x,y E GF(q), determining the channel capacity C. Dmaps the re­

ceived word w to the message element most likely to have produced that result; for

a symmetric discrete, memoryless channel this means the m E GF(q)k for which
differs from w in the fewest coordinates.



the example of a Binary Symmetric Channel (BSC) trans­

symbol error probability p of interchanging the two

is easily computed [32] to be

14

The practical problem now is
"How to find a good code?"

which more explicitly reads

"How to find an encoder/decoder pair (E,D) such that both can be computed

in a small number of steps, such that e = im E has a high rate R = *
and the decoder 0 performs with a low residual error probability Perr(D)
using a small amount of time."

A beautiful though not very helpful ­ partial answer to this question was given by
Shannon [27], whose famous theorem reads

For a discrete memoryless channel with capacity C, for any R (0 < R < C) and
each g> 0 there exists an integer n, a code ecGF(q)n with lei = qLRnJ

and a decoder 0 with Perr(D) < g.

Here the capacity C of a discrete memoryless channel means, loosely speaking, the

maximum amount of information that can be put through the channel per symbol trans­
mitted.
This can best be illustrated by

mitting zeros and ones with the

symbols. Its capacity CBSC(p)

CBSe( p) = 1 + P log2P + (1­ P)1og 2(1­ P) .

Thus, for a noiseless channel (p = 0) the capacity reaches its maximum of 100%, while

in the jammed situation (p the capacity is zero.
Proofs of Shannon's theorem for the simplest case of the Binary Symmetric Channel (BSC),

giving the flavour of the proof technique, can be found in [30] or [32]. It should be
remarked that this technique is based on a purely probabilistic argument so that

Shannon's theorem gives a completely non­constructive answer to the question above in
the following sense: A random code of length n and the appropriate size with the

maximum likelihood decoding rule is very likely to have a very small residual error

probability. For many reasons, though, it is desirable to be able to construct the
code explicitly.

2. Linear Codes

the problem mentioned above is to consider linear codes.

k­dimensional subspace e = im E, where

An immediate approach to

A linear (n,k,q)­code is a
EEHom(GF(q)k, GF(q)n).

With respect to a suitable basis, the encoder E

GE which maps the messages onto the codewords by
is given by the generating matrix

E : -- GE•
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Hence C is the rowspace of GE. Any basis ... of the dual code cl
can be used to form the control matrix Hof c, i.e. H = ... Thus an
alternative description of the linear code C is, therefore, given by C = kerH.

Using a probabilistic reasoning applied to control matrices, one can prove Shannon's

theorem [32] in the class of linear codes over GF(q) as well. Yet, apart from the

problem of finding an infinite class of linear codes with rates approaching channel
capacity, the question as to how to decode linear codes efficiently is still not an­

swered.

If the discrete memoryless channel is additive, i.e. p(x,y) = with = p

and ujx ) = for x E GF(q)'­{o}, then the maximum likelihood decoding principle
is equivalent to the method of minimum weight decoding, which reads:

For any E GF(q)n define to be the codeword c E C with

wgt(u ­ c) = min wgt(u ­ x),
­ ­ xEC ­­

where for z E GF(q)n the weight of z is given by

wg t = I{i I0 :;; i :;; n­1, zi '*' ol I .

Here again it should be pointed out that the concept of weight is heavily dependent

on the choice of basis in the vector space.

Decoding by the minimum weight method means algebraically: For each coset

of C in GF(q)n the minimum weight vector the coset leader, has to be computed.

Comments on the complexity of this problem will be made later. Before doing so, how­

ever, the geometric meaning of this decoding procedure will be discussed more closely:
Defining the minimum weight d of C by

d = I!:. E c-. IoI }

the code is said to be e­error­correcting if 2e + 1 < d

The geometric meaning behind this is clear, observing that a metric is defined on
GF(q)n by the Hamming distance

= ­1'.) of E GF(q)n.

If C is e­error­correcting the spheres Se(!:.) of radius e around the codewords
c are disjoint.

The following elementary estimate for deriving a lower bound for d from the struc­

ture of the control­matrix H of C will be used throughout the rest of this report.



16

Fact 1. If any 1-1 rows of the control-matrix H of c are linearly independent,

then d 1.

We now give an example.

Example 2. Let r 2 be an integer, q = 2 and n = 2r-1. Let H be the

(2r-1)xr-matrix the rows of which are formed by the non-zero vectors of GF(2)r.

Then C = kerH is the r-th Harruning-code with n = 2r-1, k = 2r-1-r, d = 3 as is
easily verified. These codes have especially attractive feature of being decodable

nicely. Suppose the received vector is u E GF(2)n. We assume that at most one error

occured during transmission (recall d = 3). Then has the form u = c+e, where
both the codeword £ and the error-pattern e, having at most one non-zero entry,

are unknown. To determine these we compute the syndrome

u·H=c·H+e·H=o+eH

since C = kerH. Now eH is the i-th row of H if e was of the form

= (0, ..,0,1 , 0, ... ,0) , where the entry 1 occurs in position i. Thus the error
is in position and can easily be corrected (confer [3],[6]).

Now it is time to come to the draw-backs of using linear codes. Decoding is gener-

ally a much harder problem - only Hamming codes are so nice. Recalling the remark about
n-kcoset leaders we note that for an (n,k,q)-linear code a table of q coset-leaders

has to be stored, if this simple decoding method is used. Even though more sophisti-

cated methods can be applied in certain cases, the problem of decoding arbitrary lin-

ear (n,k,q)-codes is NP-complete (see [2]or[4]).

Finally, one further remark should be made here. Although Shannon's theorem holds for

the class of linear codes over GF(q), linear codes with given minimum distance will
generally contain fewer codewords than unrestricted optimal codes. In other words,
linear codes are subjected to quite restrictive bounds.

3. Bounds on the parameters of codes

An immediate restriction on the choise of the parameters of linear codes can easily
be derived using Fact 1 from the previous section.

Observation 3. For a linear code of lenght n, dimension k and minimum weight d

the inequality k r d s n+1 holds.

Codes satisfying this bound with equality are called Maximum Distance Separable
(MDS)-Codes (confer [12],[18],[30]).
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In a later section we shall return to this special class of codes.

Another bound that can easily be derived by standard counting arguments is given

in the following:

Lemma 4. For a linear (n,k,q)-code C the equality L wgt(c) = nqk - nqk-l holds.
cEC -

The proof of this lemma is by standard double counting (the non-zero entries in

the matrix formed by the list of codewords). An easy but useful consequence of this
1emma is the so-ca11 ed Plotk in bou nd:

(qk-1)d .

For given q let A(n,d) denote the maximum possible size of a linear code

C < GF(q)n of length n and minimum distance at least d.

Using this notation two important bounds are the following:

Lemma 5 (Plotkin bound). q-lIf d > then

A(n,d) . (d-en) d, where _ q-l
O - -q-'

Lemma 6 (Sphere-packing bound).

ld-l J
2 .

A(n,d) L qn.
i=o 1

The proof is again by double counting [30]. Equality in this bound is achieved
by the so-cal l ed Perfect Codes (see [18],[28],[30J ).

Whereas the above bounds are upper bounds, a powerful lower bound has been given by
Gilbert and Varshamov [18].

Lemma 7 (Gilbert-Varshamov bound).

Again, the proof makes use of Fact 1. One can construct a control matrix for such
a code by iteration. If i rows have been chosen such that any d-l are linearly ir
dependent and if, furthermore,

d-2 ., k
L (q-l)J(:) < qn- -1, then add a new row to H.
j=l J
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Important asymptotic versions of bounds are derived immediately from these finite
versions. For a linear code of length n, dimension k and minimum distance d let

R = denote the rate of the code and the ratio 0 = the relative distance.

If the length n tends to infinity (as Shannon's theorem proposes), the asymptotic

behaviour is of considerable interest. Observation 3 and Lemma 4 yield

(3')

(4') 0 for linear codes over GF(q) of
sufficiently large rate.

Here f.:s g means f(n);:; g(n)(1 + o(n)) as n ... co,

In the same manner the asymptotic Plotkin bound may be derived.

Theorem 8: For linear codes over GF(q)

1
1- 0

o

for

for

6 E

o E

[0 .9.::1:.], q

[.9.::1:. 1]q ,

Proof: Take any "long" (n,k,q)-code with minimum weight d. Shorten it, i.e. take

all codewords having zeros in fixed positions and omit these coordinates, to a length
n fulfilling the condition

d > n'.9.::1:. of Lemma 5.q

Then this shortened code still has minimum weight d. Plotkin's bound, however, gives

A(n',d);:; d <d. This in turn implies qk<d·qn-n'. With n ... co and
d- .9.::1:. n'

q

d = on, we have nn' ... 00 and R;:; 1 - . 0

The most interesting conclusion can be derived from Lemma 7 giving the Gilbert-
Varshamov asymptotic lower bound.

Theoran 9.
with rates

q-lLet 0;:; 0 < --q--' For any q there exist linear codes Ci
Ri and relative minimal distance 0i > 0 satisfying

over GF(q)

where

Proof:

Ri 1 - Hq(oi)'

Hq(X) = x logq(q-l) - x logqx - (I-x) 10gq(l-x).

We may assume that q = 2.



19

One can estimate partial binomial sums as follows:

Let 12" < >. < 1. Then
n

2x·>.·n L

i=>.n 1

Thus For x lo92(ix) this inequal ity becomes

Symmetry of binomial coefficients
n H

2(6)2

Van 6(1-6}

and Sterling's formula then give

Applying this to Lemma 7 for suitable values of ni,ki,d i yields the assertion. 0

The asymptotic form of the sphere-packing bound gives an upper bound for R using
the same technique [18].

Theorem 10.

Using tools from Representation Theory, Linear Programming and the theory of Special
Functions this bound can be sharpened to the McEliece-Rodemich-Rumsey-Welch-bound [11]

for the case q=2. This will be of importance later:

Theorem 11: For q=2 we have R,$ 1 - H2(i-
Before going to the next sections, a rough sketch should provide some intuitive under-

standing of these bounds. (The true upper bound of the (hatched) region of asymptotic-
ally admissible codes will not be drawn).

R

1

asymptotic Plotkin's upper bound

McEliece (q=2) upper bound

Gilbert-Varshamov lower bound

9..:....! 1
q
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Codes whi ch are on or above the Gil bert-Varshamov bound for 1arge n are called "good'
codes. They exi st by Theorem 9. By Shannon's theorem, however, there are much "better"

codes with respect to Rand Perro These, of course, cannot have a uniformly high
minimum weight. However, there still remains the major problem of constructing good
codes which are well decodable.

4. Codes which are well decodable: Cyclic Codes

Definition. Let n E IN, (n,q) = 1 and

GF (q) [71nJ"" GF (q)[x J / (x n-1 )

be the group ring Rn. An ideal C 4 Rn is called a cyclic code.

How can one determine the rate and the minimum distance of such a code? An analysis

of the structure of Rn will help to answer this question. Since (n,q) = 1, Rn
is a semisimple ring:

s
Rn "" QlGF(q)[xJ/(p.(x)),

i=l 1

where the Pi(x) are the irreducible factors of xn-1
C is always a partial sum

c"" QlGF(q)[xJ/(p.(x))
i EI 1

s
n Pi(x). Thus a cyclic code
i=l

for some subset I s {I, ... ,s}. Hence c(x) ERn is a codeword c E C

iff c(x) '" 0 mod Pj(x) for each j E {l , ... ,s}'-r,

iff c(x j) = 0 for each root O:j of pix), j $: 1.

Using these basic facts almost all properties of cyclic codes can easily be derived.
In this context, a simple observation, which may be considered as a finite version of

Hilbert's Nullstellensatz, will be helpful.

Observation 12. With each cyclic code C 4 Rn
C = Ql GF(q)[xJ / p .(x)

i EI 1

there is uniquely associated the set of common zeros Vc = U {o:. ... } of the code
j$:I J J

polynomials in C. Then dimGF(q)c = n - [Vcl and a control matrix for c is given by
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H

j¢r .

This matrix shows the close connection to the technique of Discrete Fourier Transforms
for instance, [6],[18],[21]) which immediately yields fast and efficient decoding

algorithm (see, for instance, [3], [6] [32]). A rewording of Fact 1 gives an estimate

for the minimum distance of a cyclic code.

Corollary 13 (BCH-bound). Let Z be the length of the longest arithmetic
of exponents of elements of Vc with a stepwidth relatively prime to n.

minimum weight d of C satisfies the inequality d Z + 1.

progression

Then the

Before discussing the consequences we give an example to illustrate the usefulness

of these observations.

Example 14. Consider the Hamming Code H
3

[5]. observe that its control matrix

consists of all points of PG(2,2) and rearrange the rows according to the Singer

group of PG(2,2). Then the set of rearranged codewords is an ideal

H3 GF(2}[x] j(x? -1).

Over GF(2}[x]

/-1 = (X-l)(x3+X+l)(X3+x2+1).

Since x3+x+l = p(x) is the indicator function of the difference set {O,I,3} mod?,

H3 is the ideal generated by p(x). So let a be a root of p. Then

2 4V
H'

= Io ,« .c"}. Hence dim H3 = ? - 3 4 and d 3 as i = 2.
3

The corresponding control matrix is given by

1 100
a 010

H' = a 2 001
a 3 011
a 4 110
a 5 111
a 6 101

Decoding this code is even easier than described in Example 2 and mathematically more

attractive (confer [3] or [6]).

This short description of the properties of cyclic codes shows that they are

- well described
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- easily designed
and, moreover,

- very practical,

as there are decoding procedures (see [3J,[20J,[22J) for cyclic codes of length n

requiring O(n log2n) steps.
After these good properties, one has to mention the sad ones. Although some improve-

ments on the BCH-bound are known (see [7J or [23J), it is bad asymtotically as the

following theorem shows [18J.

Theorem 15. There does not exist an infinite sequence of primitive BCH-codes of lengtl

n over GF(q), where primitive means n = qm_ 1, with 6 and R approaching non-zero

1im i ts.

interesting for specifi c appl ications (e.g. the
R = l£ so that (6,R) lies far above the asymptotic

23'
that in terms of asymptotic behaviour they do not

Though cyclic codes may be very

(23,12)-Golay code has 6 =b'
Plotkin bound). Theorem 15 shows

meet any of the bounds discussed.

Recently other constructions were proposed which do not have those disadvantages.

The first one is due to Ahlswede and Dueck [lJ using random arguments. They show that

for n .... ex> there exists an E GF(2)n and 111"'" TlLR'nJ E Sn such that
111 Tl2 Tl l11 2c = , , , .•. }

is a code of rate R (close to capacity) with Per r .... O.

The disadvantage of this approach is clear. The proof is non-constructive and does not
give any computationally feasible decoding rule.

The second one is just being published by Delsarte and Piret [9J who give an alge-

braic construction of codes with a feasible encoding/decoding algorithm which simul-

taneously reach channel capacity and have probability of erroneous decoding tending
to zero.

This problem was a major challenge during the last few years. It may briefly be

mentioned that the construction of these codes makes use of the idea of concatenated

codes which are defined as follows:

First consider a so-called outer code,(for instance, a cyclic code over a field

GF(qm) ) consisting of codewords = (co, ... ,c n-1). Here each ci is a vector of

length mover GF(q) and thus a codeword of the so-called inner code. Delsarte and

Piret succeeded in designing suitable outer and inner codes to achieve their result.
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It should, however, be mentioned that this is only possible because they drop the

requirement of a least d.

On the other hand, this condition was not omitted in the investigations going back

to Goppa (see [13], [15], [19], [29]) whose resul ts will be discussed in the sequel.

5. Codes which hopefully are better: Goppa-Codes

For the construction of Goppa-Codes one considers an extension field GF(qm) of GF(q).

Let G E GF(qm)[z] be a polynomial of degree r. Let

mP = {a1, ... ,an} c GF(q )

be a set of places in GF(qm) such that P n VG = 0, i.e. P does not contain a

zero of G.
The Goppa-Code f(P,G) is the subspace of vectors c E GF(q)n fulfilling the equation

n-l ci
L -- = 0 in GF(qm)[z] / (G).
i=o z-ai

The properties of Goppa-Codes can easily be derived from this construction.

Theorem 16. The Goppa-Code f(P,G) has dimension k n - mr and minimum weight

z - a.
1

G(z)-G(a i) = 0 in GF(qm) lz l .

Proof. Consider the equation (*). By Lagrange interpolation a

is a codeword iff c·
L - 1

G(a. )-1
1

vector £ E GF(q)n

Thus the coefficients of zO,... ,zr-l have to satisfy a system of linear equations

of rank at most rover GF(qm) and thus rank at most r : mover GF(q). Hence

dim f(P,G) n-mr. Equation (*) also shows that at least r+l of the ci's have

to be non-zero in order to give a rational function the enumerator of which is di-

visible by G. 0

The latter argument shows implicitly that Goppa-Codes are well decoded by the

Berlekamp-Massey-Patterson algorithm (confer [3],[20],[22]), using the approximation

by rational functions, with complexity O(n log2n).

Another combinatorial observation leads to an estimation of the asymptotic behaviour

of Goppa-Codes.
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Observation 17. ([18],[30]) Let Iqm(r) be the number of irreducible polynomials of
degree rover GF(qm) and assume

d-1 m
(**) < Iqm(r).

Then there exists a Goppa-Code f(P,G) over GF(q) with an irreducible polynomial

G E GF(qm)[z] of degree r admitting GF(qm) and having parameters

n = qm, k n - rm and minimum weight d.

Proof. By the same reasoning as in the proof of the minimum weight bound, it is clear

that the denominator D(z) of the expression (*) for a codeword of weight w is of
degree w-l. Thus D(z) can be divided by J irreducible polynomials of degree
r. 0

We can now prove the asymptotic result on Goppa-codes [181.

Theorem 18. For n there exist Goppa-codes asymptotically meeting the Gilbert-

Varshamow bound.

m

Proof. Observe that I m(r) l(qm_(r-1 )l) (see [3] or [l8]). Substitution of this
q r

slightly sharper bound in condition (**) yields, using Lemma 7, the statement for
n -+ 00.

For many years this result has been believed to be best possible.

The last section of this report gives a short description of very recent results
which show that the final word has not been said, yet.

6. Generalized Goppa-Codes are better

During the years 1979-81 Goppa [13] pointed out that the construction of Goppa-codes

is possible over other extensionfields (e.g. function fields) and that this might
lead to better codes if one uses tools from algebraic geometry. This idea has recently

been used by Tsfasman, Vladut and Zink who give a very compressed plan of attack in
[29].

Goppa's idea is the following (see [13],[19]).

Let X be a smooth projective curve of genus g over GF(q). Let {Po,P1··· ,Pn}
be the set of rational points of X over GF(q).
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is assumedbe two effective divisors [31], where G
n

Let D= L P. and G = Lm
Q
Q

i=l '
to be rational (i.e. mQ = mQo for all conjugates QO of Q) and of degree a.
Furthermore, the supports of the divisors D and G should be disjoint. Let

denote the GF(q)-vector space of differentials w, whose divisors (w) dominate

G-D, (i.e. (w) <; G-D).

Let 2g-2<a;;;n+g-1. The linear map

nres D: -> Ifq , given by

w -> resD(w) = (res p (w), ... ,resp (w))
1 n

is injective [19], since a > 2g - 2.

The generalized Goppa-code is the subspace f(D,G) 00 im(res D) of If n. By Riemann-
- q

Roch's theorem (see [31],[24]), f(D,G) has the dinension k=n+g-1-a.

The weight wgt(w) = wgt(resD(w)) in a natural way is given by wgt(w)

= !{i I resp.((J)) * O}I being the number of poles of w, which is equal to the number,
of zeros of (w) reduced by the degree of (w). Thus we obtain the following inequal-
ity for the minimum weight d : d <; a - 2g - 2.

Remark 19. The close relation between the generalized Goppa-codes and those of section
5 can be worked out without too much effort. The similarity of the concepts becomes
clear by the residue map res which, in the case of the definition of the elementary

Goppa-codes of section 5, is just the mapping
n c.
L -'- -> (cl'''''cn) ,i=l z-cxi

while the "disjointness" of the divisors G and D corresponds to the condition that

G(z) should have no zeros in the set {cx1'.·· ,an}'

To consider the asymptotic behaviour of generalized Goppa-codes we restrict our atten-

tion to a slightly less general situation.

a Po.and G
n

D= L p.
i=l '

and relative distancen+g-1-a
n

has the rate R

Let {Po"" ,Pn} be the set of all rational points on X,

Then the code f(D,G)

6 <; a + - 2g .

For the sequel of a closer look at the asymptotic behaviour of the quotient is

is necessary. By theorem [14], the number n(X) +1 of rational points ( i.e.

GF(q)-points on a curve X of genus g(X)) is estimated by the following inequality
[19]: In(X)-ql;;; 2g(X)vq.
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then (see [19], [29])

A consequence of this result was observed by Tsfasman [19].

Theorem 20. The 1i ne R+6 = 1 - Yq wi th 0 $: R,6 $: 1 - Y
region of asymptotically admissible codes over GF(q).

Proof. Recall that a is allowed to run over the interval
Taking the limit over all curves X and observing that d

a - 2g - 2, the statement becomes obvious. 0

lies completely in the

2g - 2 < a ;:;; n +g - 1 .
is bounded from below by

This immediately yields two consequences. The first one is an improvement of

inequality for the cases q=2 and q=3 [19].

Corollary 21. For q=2,3 the asymptotic Plotkin bound gives Y2 4 and Y3 j.

Remark 22. 1 1This improves the classical Weil bounds Y2 > 2VZ and Y3 > 2V,j

Yet another observation implies a further improvement of this estimate.

Theorem 23. Y2 0.525.

Proof. By Theorem 20, the line R+6 = l- Y2 has to lie under McEliece's bound

(see Theorem 11). Thus Y2 has to be large enough that the line R+l l- Y2 is a
tangent of McEl i ece' s functi on H2(4 -v'6(T=6) ). Differenti ati on gi ves a tangent for

Y2= 0.525... 0

For q > 3 no such simple corollaries of theorems in Coding Theory are known to yield
improvements in this area of Algebraic Geometry.

On the other hand, the tools provided so far will give a contribution to Coding

Theory improving the Gilbert-Varshamov lower bound. These results are due to Zink and
Vladut [29] and Thara ([15],[16]).

Theorem 24.

satisfying

For q =

1im y (X)
X q

p2, P a prime,
=_1_
vq - 1

there are families of curves Xover GF(q)
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Corollary 25. Let 51 < 52 be the solutions of the equation H (5) - 5 = _1_.
q I/q-l

For q = p2, P 7, there are generalized Goppa-codes over GF(q) which asymptotic-

ally "lie" on the line-segment connecting (51,H(51))and (S2,H(52)). Thus they are
clearly above the Gilbert-Varshamov bound.

Proof. Observe that for q 72 the straight line R+5

Gilbert-Varshamov bound, for all 5 E (51,5 2),

7. Conclusion

1
1 - I,Iq-l 1ies above the

The results from the last section show that generalized Goppa-codes are better than
all other known families of codes: The reader should note that they only exist for

relatively large alphabets. No easy approach for the interesting case q=2, which in

most practical application is of major interest, seems to be known [19]. Besides, for
generalized Goppa-codes it is necessary to compute the genus of a given curve as well

as a basis of the space of differentials. In principle this can be performed by Coates

algorithm [8]. Nevertheless, the question of efficient decoding algorithms is not
settled [19]. Although Goppa [13] refers to Mahler's p-adic approximation algorithm

[17], a general method has not been developed yet.

Finally it should be pointed out that the Oelsarte-Piret approach [9], cf.5ect.5,

seems to be far more promising, as they construct codes achieving capacity (which is
far beyond all bounds discussed so far) by dropping the requirement of a uniform

minimum weight.
It should be a challenge to all coding theorists to use this approach to construct

codes lying above the Gilbert-Varshamov bound by elementary means.
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GENERALIZED SCHUR NUMBERS

Albrecht Beutelspacher and Walter Brestovansky
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Saarstr. 21, D-6500 Mainz, West Germany

An n-partition of a set X is a set IT = {Al, ... ,A
n}

of subsets of X such

that any element of X is contained in exactly one element of IT. The n-partition

IT = {Al, ... ,A
n}

of a set X of integers is said to be m-sum free, if in no component

Ai of IT there are m (not necessarily distinct) integers a
l,
... ,a

m
with the pro-

perty that a
l
+ ... +a

m_ l
= am (i E {I , ... ,n}) •

Issai SCHUR [4] proved in 1916 that, for a given n, there is an integer v such

that no n-partition of {l, ... ,v} is 3-sum free. More generally, using RAMSEY's theo-

rem, one can show that this is true for an arbitrary integer m 2. (See for instance

HALDER and HEISE [3], p. 142.) The smallest number v such that no n-partition of

{l, ... ,v} is m-sum free will be denoted by v = a(m,n). These numbers a(m,n) are

called SCHUR numbers. It is easy to check that for any number v' a(m,n), there is

no m-sum free n-partition of {l, ... ,v'}.

SCHUR numbers have been thoroughly investigated (see e. g. [5]). In this paper

we shall first determine the SCHUR numbers a(m,2). Moreover, in Section 2, we shall

give new lower bounds for the numbers a(3,6) and a(3,7).

Afterwards, we define generalized SCHUR numbers for arithmetic progressions in an

obvious way. Here, an interesting phenomenon occurs: There are generalized SCHUR num-

bers which are not finite. Therefore, in Section 3, we look for conditions which assure

that these numbers are finite (or, infinite, respectively).

Finally, in Section 4, we shall give an explicit formula for the generalized

SCHUR numbers with n = 2.

1. SCHUR numbers

In this Section we are concerned with the ordinary SCHUR numbers a(m,n). Clearly,

a(m,l) = m-l and a(2,n) = 1. Therefore, we shall always suppose m 3. Our first

tool is to determine a(m,2). In order to do this, the following general lemma is use-

ful.

1.1 LEMMA. a(m,n) moa(m,n-l) - 1.

Proof. It is to show that there exists an m-sum free n-partition of the set

{1, .•. ,m"a(m,n-l)-2}.
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By the definition of a = a(m,n-1), there is an m-sum free (n-1)-partition

{A
1,
.•. ,A

n_ 1}
of {l, .•• ,a-1}. Let us define the following sets:

An {a,a+1, ..• ,(m-1)a - 1}, Y = {(m-1)a, ... .mo - 2}.

Moreover, the sets B
1,
... ,B

n_ 1
are defined as follows:

(m-1)a -

We claim that

X = {1, •.• ,ma-2}.

l+sEB.
J

n = {A
1

U

sEA.
J

(j E {l, ... , n-1 }) •

For: Obviously, Tf is an n-partition of X. In order to show that Tf is m-sum free

we distinguish the following cases:

Case 1. Let a
1,···,am_1

be elements of A,
J

m-sum free, a
1+···+am_1 $ A.. Moreover, since

J
is no element of Y.

for a j E {l, ... ,n-1}. Since A. is
J

a
1+··

.+a
m_1

s (m-1) (a-1), a
1+··

.+a
m_1

Case 2. Suppose b
1

E B
j

exists an element a
1

in

and

A.
J

a , ..• ,a 1 E A, for a j E {l, .•. ,n-1}. Then there
2 m- J

with b
1

= (m-1)a - 1 + a
1•

It follows

Since A.
J

is sum free, a + ... +a 1 $ A,; consequently
1 m- J

$ B ••
J

Case 3. Let b
1

and b
2

be elements of B
j

and c
3,
•.. ,c

m_1
A. U B, (j E {1, .•. , n-1 }). Since m <: 3 , it follows
J J

be elements of

b
1

+ b
2

+ c
3+··

.+c
m_1

<: b
1

+ b
2

<: 2(m-1)a > ma,

hence b1+b2+c3+···+cm_1 $ A. U B
J j

Case 4. If a 1,··· ,am_1
are elements of A , then

n

a
1+
...+a

m_1
<: (m-1)a,

so a 1+···+a 1 $ A .
m- n

Together we have shown that Tf is m-sum free.O

Since a(m,l) = m-1, the above Lemma implies immediately

1 • 2 COROLLARY. a(m,n)
n-1

(m + ..• +m+l). 0

1.3 THEOREM. a(m,2) = m
2

- m - 1.

the

m-1 E A
2.

Therefore (m-1) ·(m-1) $ A
2,

hence

m
2-m-1

= (m-2)·1 + 1·(m-1)2 A
1,

so

In view of 1.2 we have only to show that a(m,2) :; m
2_m_1

holds. Assume on

contrary that there exists an m-sum free 2-partition {A
1,A2}

of {l, .•• ,m
2-m-1}.

Without loss in generality we can suppose E A
1.

This implies (m-1)·1 $ A1,
2

(m-1) E A
1
. Now,

consequently
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Consider now the number m. If mEAl' then

{m_1)2 = (m-2) om + 1 01 $ A
1;

if m E A
2,

then

m
2-m-1

= (m-2)om + 1 0{m-1) $ A
2:

in both cases a contradiction. 0

2. The SCHUR numbers 0{3,6) and 0(3,7)

On the SCHUR numbers 0{3,n), the following is known (see 1.3, [1] and [2]):

o (3 ,2) 5,

0(3,3) 14,

o (3 ,4) 45,

0(3,5) 158.

With the aid of a computer we could show the following

2.1 THEOREM. 0(3,6) 476 and 0(3,7) 1430.

(Note that 1.1 implies

0(3,6) 3 00{3,5) - 1 473, and

0(3,7) 3 00{3,6) - 1 1427.)

The above Theorem implies in particular (cf. [5]):

2859 03
n-7 + 1

2.2 COROLLARY. 0{3,n) 2

Proof of Theorem 2.1.

(a) The following 3-sum free 6-partition {A
1,
.•. ,A

6}
of {1, ... ,475} shows

0{3,6) 476. For each integer a 475 and any i E {1, •.. ,6} it holds

a E A.
l

476-a E A..
l

So, we list only the integers less than 239.

A
1:

1, 4, 10, 16, 21, 23, 28, 34, 40, 43, 45, 48, 54, 60, 98, 104, 110, 113, 115,

118, 124, 130, 135, 137, 142, 148, 154, 157, 159, 181, 203, 227, 232, 238.

A
2:

2, 3, 8, 9, 14, 19, 20, 24, 25, 30, 31, 37, 42, 47, 52, 65, 70, 88, 93, 106, 111,

116, 121, 127, 128, 133, 134, 138, 139, 144, 149, 150, 155, 156, 161, 167, 184, 195,

218, 224, 230, 235.

A
3:

5, 11, 12, 13, 15, 29, 32, 33, 35, 36, 39, 53, 55, 56, 57, 59, 77, 79, 81, 99,

101, 102, 103, 105, 119, 122, 123, 125, 126, 129, 143, 145, 146, 147, 153, 163, 169,

171, 173, 193, 213, 215, 217, 233, 237.
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A
4:

6, 7,17,18,22,26,27,38,41,46,50,51,75,83,107,108,112, 117, 120,

131, 132, 136, 140, 141, 151, 152, 160, 221, 222, 231.

AS: 44, 49, 58, 61, 62, 63, 64, 66, 67, 68, 69, 71, 72, 73, 74, 76, 78, 80, 82, 84,

85, 86, 87, 89, 90, 91, 92, 94, 95, 96, 97, 100, 109, 114, 212, 219, 225, 226, 229,

234, 236.

A
6:

158, 162, 164, 165, 166, 168, 170, 172, 174, 175, 176, 177, 178, 179, 180, 182,

183, 185, 186, 187, 188, 189, 190, 191, 192, 194, 196, 197, 198, 199, 200, 201, 202,

204, 205, 206, 207, 208, 209, 210, 211, 214, 216, 220, 223, 228.

(b) The following 3-sum free 7-partition {B
1,
..• ,B

7}
of {1, ... ,1429} shows

a(3,7) ;;; 1430. For i E {1, .•. ,6} it holds A. S; B.. Moreover, for iE {I, •.. .»
and any integer a 1429 we have

a E B. 1430-a E B ..

Therefore, we list only the integers a with 476 a 715.

B
1:

477, 499, 521, 545, 550, 556, 562, 567, 591, 613, 635, 637, 640, 646, 652, 657,

659, 664, 670, 676, 679, 681, 684, 690, 696.

B
2:

479, 485, 502, 513, 536, 542, 548, 553, 559, 564, 570, 571, 576, 599, 610, 627,

633, 638, 639, 644, 645, 650, 655, 656, 660, 661, 666, 667, 673, 678, 683, 688, 701,

706.

B
3:

481, 487, 489, 491, 511, 531, 533, 535, 551, 555, 557, 561, 577, 579, 581, 601,

621, 623, 625, 631, 641, 647, 648, 649, 651, 665, 668, 669, 671, 672, 675, 689, 691,

692, 693, 695, 713, 715.

B
4:

478, 539, 540, 549, 563, 572, 573, 634, 642, 643, 653, 654, 658, 662, 663, 674,

677, 682, 686, 687, 711.

B
5:

530, 537, 543, 544, 547, 552, 554, 558, 560, 565, 568, 569, 575, 578, 582, 680,

685, 694, 697, 698, 699, 700, 702, 703, 704, 705, 707, 708, 709, 710, 712, 714.

B
6:

B
7:

476, 480, 482, 483, 484, 486, 488, 490, 492, 493, 494, 495, 496, 497, 498, 500,

501, 503, 504, 505, 506, 507, 508, 509, 510, 512, 514, 515, 516, 517, 518, 519, 520,

522, 523, 524, 525, 526, 527, 528, 529, 532, 534, 538, 541, 546, 566, 574, 580, 583,

584, 585, 586, 587, 588, 589, 590, 592, 593, 594, 595, 596, 597, 598, 600, 602, 603,

604, 605, 606, 607, 608, 609, 611, 612, 614, 615, 616, 617, 618, 619, 620, 622, 624,

626, 628, 629, 630, 632, 636.0
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3. SCHUR numbers of arithmetic progressions: Finiteness conditions

Let a and d be non-negative integers; by Na,d we denote the arithmetic pro­

gression

there is an m-

If there is no

{a,a+d, ... .v l

Na,d = {a,a+d,a+2d, ••• }.

If there exists an integer v E Na,d such that no n-partition of

is m-sum free, then we denote the smallest such integer by 0a,d(m,n).

such integer, we put 0a,d(m,n) 00. In other words: 0a,d(m,n) = 00, if

sum free n-partition of Na,d

Clearly, 01,1 (m,n) = a(m,n). Moreover, it is easy to check that for any v E Na,d

with v ';;; o d (m , n) it holds that no n-partition of {a, a+d, •.. .vl is m-sum free.a,

In this Section we shall deal with the question, whether

not.

0a,d(m,n) = 00 holds or

3.1 LEMMA. Let a
1,
.•. ,a

m_1
be elements of

only if d divides (m-2)a.

if and

Proof. By definition of Na,d' there exist non-negative integers

ai=a+ds
i

(iE{l, ... .m-J l ) .

with

It follows

is in if and only if (m-2) a is a mUltiple of d. 0

3.2 COROLLARY. If d (m-2)a, then o d(m,n) = 00.0
a,

The following Lemma shows that it is sufficient to consider arithmetic pro-

gressions with gcd(a,d) = 1.

3.3 LEMMA. Let 9 be a common divisor of a and d. Then

0a,d(m,n) = gooa d(m,n).

g'g

ofA we define A = I x E A}. Clearly, 71 = {Ai"" ,A }
9 9 A A n

is an n-partition of {a,a+d, .•. ,a+td} if and only if = {-l, ... is an n-par-

tition of ... ,a+td}. Moreover, 71 is m-sum free Yf only Yf 71 is m-sum
9 9 9 9

Proof. For a subset

free. 0

Remark. For an integer 9 we define ooog and 00 + 9 = 9 +00 = 00.

From now on, we suppose always that a, d, m and n are positive integers with

n ;;; 2, m ;;; 3 and d (m-2)a. Denote by k the positive integer with dk = (m-2)a.
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The proof of the following Theorem is analoguous to 1.1 and will be omitted

here.

3.4 THEOREM. 0a,d(m,n) m'o
a,d(m,n-l)

- a.O

3.5 PROPOSITION. If m is even and k is odd, then °a,d(m,n) ;

Proof. In view of 3.4 it is sufficient to prove the assertion for n 2. Define

Ai
; {a + sd I s odd} and A

2
{a + sd I s even} .

Then {Ai ,A
2}

is an m-sum free 2-partition of

Namely: If a+s
1
'd, .•. ,a+s

m_1·d
E Ai' then

N
a,d

Now, sl+ ... +sm_l is the sum of an odd number of odd summands; since k is supposed

to be odd, k + sl+ ...+sm_l is even. Thus a + (k + sl+···+sm_l)d $ Ai'

On the other hand, any sum of m-l elements of A
2

is in Ai'

This shows 0a,d(m,n) ; 00.0

3.6 THEOREM. Suppose

(i) a is not a multiple of d (in particular, d f 1) and

(ii)

Then 0a,d(m,n) ;

Proof. Again, by 3.4 it is sufficient to show 0a,d(m,m-2)

we define for j E {1, .•. ,m-2}:

In order to do this,

A ; {a + sd I s = j (mod m-2)} ; {a + sd I sEN. 2}'
j J,m-

We claim that {A
1,
... ,A

m_2}
is an m-sum free (m-2)-partition of Na,d

Namely: Let a
1,
... ,a

m_1
be elements of A

j
(j E {1, ••. ,m-2}). Then there exist

non-negative integers t
1,
... ,t

m_1
with

a
i

; a + (j + t
i
(m-2»d

It follows

(i E {L, ••• ,m-l}).

a +

a +

(m-z i a + [(m-l)j + (t + ...+t 1)(m-2)]d
1 m-

[k + (m-l)j + (t
1+
... +t

m_1)(m-2)
le ,

If this element were in A. as well, it would follow
J

k+j _ k + (m-l)j + (\+ ... +t
m_1)

(m-2) = j (mod m-2) , or

k = 0 (mod m-2) .

Thus m-2 would be a divisor of k which forces a to be a multiple of d:
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a contradiction to the assumptions of our Theorem.O

3.7 THEOREM. 0
a,d(m,n)

a'0
1,d(m,n).

Proof. without loss in generality, we can suppose that 0
1,d(m,n)

is finite.

Denote by TI; {A
1,
.•. ,A

n}
an arbitrary n-partition of {a,a+d, •.. ,a oa

1,d(m,n)}
(Note that a 1,d(m,n) E N1,d' so a 00

1,d(m,n)
E Na,d') It is to show that TI is not

m-sum free. For this purpose, consider the following n-partition TI
o

; {B
1
, ... ,B

n
}

of {l,1+d, ... ,0
1
d(m,n)}:,

B. ; {l+sd I a + as"d EA.}
J J

(j E {t , ..• .n l ) .

By the definition of 0
1,d(m,n),

in at least one component B
h

of TI
o

elements b
1,···,bm_1

with b
1+
... +b

m_1
E B

h.
If b

i;
1 + Si"d, then

a + asiod E (i E {l, ... ,m-1})

and

there are

Thus TI is not m-sum free. Consequently, 0
a,d(m,n)

a 00
1,d(m,n).0

4. The SCHUR numbers

Remark. The above Theorem says among other things: If 0
1,d

is finite, then aa,d

is finite as well. However, the converse is not true: 3.3 and 1.3 imply

02,2(4,2) ; 2 0 °1,1 (4,2) ; 2'o(4,2) ; 22.

On the other hand, by 3.6, 01,2(4,2) ;

0 a , d (m,2)

The aim of this Section is to prove the following Theorem:

4.1 THEOREM. Denote by a, d and m positive integers with d I (m-2)a and m 3.

Then

0
a,d

(m,2) ; { 00, m

a(m -m-1)

is even and

otherwise.

k is odd

This Theorem will be proved by a series of Lemmas.

4 2 LEMMA (2) > a(m
2-m-1)

- d.• . 0 a , d m,

Proof. It is to show that there exists an m-sum free 2-partition of the set X

{a,a+d, •.. ,a(m
2-m-1)-d}.

Define

B
1

{a,a+d, ... , (m-1) a-d},

B
2

{(m-1)a,(m-1)a+d, ,(m-1)2a-d},

B, {(m-1)2a, (m-1)2a+d, , (m
2-m-1)a-dL
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Since (m-2)a is divisible by d, the sets X, B
1,

B
2

and

Na,d As in the proof of 1.1 one can show that {B
1

U B
3,B2}

partition of X.D

are subsets of

is an m-sum free 2-

are even.

Then

4.3 LEMMA. Suppose that one of the following conditions holds:

(i) m is odd, or

(ii) m and k = (m-2)a
d

( 2) a(m
2-m-1).

Ga,d m,

Proof. Assume that there exists an m-sum free 2-partition {A
1,A2}

{a,a+d, ... ,a(m
2-m-1)}.

We can suppose a E A
1.

Then (m-1)a E A
2,

so

Consequently,

of X =

(m-1)2 a E AI.

Since m 3, the integer z = a + 2(m-2)a = a + 2kd is an element of X. We claim

that z is in A
1.

(Otherwise, we would have

a(m
2-m-1)

(m-2) '(m-I)a + l'z A .'t 2·

a contradiction.)

(i) Since m-1 is even, it would follow

m-I m-l
---'a + ---·z A

1,2 2

a contradiction.

(ii) Since k is even, the integer y = a +
2

is in X. Moreover,

(m-3)'a + 2'y = a + 2kd

implies that y E A
2.

Consider now the element x = a + (m-l)kd of X. On the one hand,

we have

x = (m-3)'(m-l)a + 2'(a + $ A
2•

But, using that m is even, we get from

x l'a + m-2' a + m-2'(a+2kd) $ A
2 2 1

that x is no element of either. 0

By 3.5, 4.2 and 4.3, Theorem 4.1 is proved.

We conclude with the following Corollary to 4.1:

4.4 COROLLARY. Suppose m 3. If d is odd, then

2
G
a
, d (m, 2 ) = (m -m-1)a.

2
In particular, G

a
, l (m,2) = (m -m-1)a.
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Proof. Suppose that m is even. Then from dk (m-2)a it follows that dk is even

as well. So, if d is odd, k has to be divisible by 2. Now, 4.1 implies that

a d(m,2) is finite.Oa,
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Spherically invariant random processes are generalizations of the well

known Gaussian process. Their joint probability densities are functions

of a non-negative definite quadratic form, but there is no exponential

dependence from the argument as in the Gaussian case. Though some spe-

cial relations between these densities themselves and the characteristic

function of the process are known, in most cases explicite notations

in terms of familiar functions are not available.

The use of G-functions, which form a class of higher-transcendental

functions, yields comprehensive explicite notations. Thus, quantitative

solutions of problems, where spherically invariant random processes are

involved, can be achieved easily.
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1. Introduction

A random process is completely characterized, if the joint proba­

bility density function (POF)is known for each random vector, taken

from the process by sampling its amplitudes at arbitrary values of the

parameter t. Because the number of the elements of such a random vector

should not be limited, one has to know all higher­order POFs.

An equivalent characterization is given by means of the characteristic

function (CF), defined as the Fourier­transform of the POF, whenever

all higher­order CFs are available.

As an example we refer to the well known Gaussian process with normally­

distributed amplitudes. In this case all the nth­order POFs as well as

the CFs are given by the exponential function exp(­q2/2) of an argument

q2 , that is a non­negative definite quadratic form of n variables.

Spherically invariant random processes (SIRPs) were introduced as ge­

neralizations of the Gaussian process or under equivalent points of

view. Their POFs and CFs are only functions of such a quadratic form,

too, but there exists no exponential dependence as in the Gaussian

case.

The earliest work in this area was done by Lord (1954) [1] and Kingman

(1963) [2] in connection with the classical "random­flight­problem" and

by Vershik (1964) [3], who discovered that an ergodic SIRP necessarily

has a normal distribution. In consequence of this result Blake and

Thomas (1968) [4] uttered some doubt on the physical significance of

non­normal SIRPs.

Independently McGraw and Wagner (1968) [5] looked at random processes

with concentric ellipses as contour­lines of their second­order POFs.

This feature reveals a necessary but not sufficient condition, that

the process under consideration is a SIRP.

The work of Picinbono (1970) [6], Kingman (1972) [7], and Yao (1973)

[8] yielded representation theorems asserting, that each SIRP is equi­

valent to a univariate randomization of a Gaussian process. The randomi­

zation has to be performed over a variable, that multiplies the co­

variance function of the normally distributed process. These theorems

are based on properties of completely monotone functions, earlier

(1931 ­ 1938) evaluated by Bochner [9­12], Schoenberg [13­15], and

Widder [16].

So far it had become obvious, that a SIRP is completely characterized

by its mean value, its covariance function, and (in addition to the

Gaussian case) likewise by its univariate POF or CF. Higher­order POFs
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are Hankel-transforms of the CF, they also can be obtained by differen-

tiating functions, that are closely related to the univariate or bivari-

ate PDF, respectively.

Further work on SIRPs, concerned to detection problems, was done by

Picinbono and Vezzosi (1970-72) [17, 18] and by Goldman (1974-76)

[19, 20] starting with the assumption, that higher-order PDFs should be

known in principle. A similar understatement was made by Leung and Cam-

banis (1978) [21], who gave an expression to calculate the Shannon Lower

Bound for Rate Distortion Functions.

Recently (1978) some new results were obtained [22], stimulated by ex-

perimental studies on speech signals, performed by Wolf and Brehm (1973)

[23]. These signals were found to be realizations of a SIRP [24 - 26]

under a certain constraint, that reveals to be not restrictive in most

cases of practical interest. Motivated by this important result, the

work [22] discovers, that one has to become acquainted with G-functions

in order to achieve a mathematically treatable description of SIRPs.

This statement stems from the fact, that in most cases higher-order

PDFs cannot be expressed by commonly used functions despite a new and

likewise simple relation between their densities, given in terms of

Laplace-transforms.

Now we will view at the essential parts of the work reported here. In

the following section we shall deal with the properties of SIRPs, re-

ferring especially to Yao [8] and some additional results, that are

given in [22]. We will start with the assumption, that the first-order

PDF explicitely is prescribed or known from experimental data. Further-

more it should be certified, that the concerned process is a SIRP, as

may be deduced from measured second-order PDFs under certain further

assumptions. At first we will see, that multivariate PDFs of an odd

order can easily be obtained from the first-order PDF only by means of

differentiations. Because of the fact, that PDFs have to be non-negative

valued functions of their variables, we then will find an unique solu-

tion of an integral equation, using a representation-theorem for com-

pletely monotone functions due to Widder [16]. This solution yields a

new relation between the first-order PDF of a SIRP and its higher-or-

der ones, expressed in terms of Laplace-transforms. Though this trans-

formation is commonly considered to be very familiar, results are not

easily obtained, as will be illustrated by examples. In the case of a

Gamma-distribution, which is of great importance in the fields of speech

processing, multivariate PDFs of even order can explicitely be given

only by means of G-functions.
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As may be expected, the properties of these higher-transcendental func-

tions are not well known. Therefore we should look at them in some more

detail. Consequently, in the first part of the third section we shall

introduce the G-function by its definition as a Mellin-Barnes-integral

and list up those properties, that are referred to in the following. As

will be seen, the special interest in these functions is due to the fact,

that they form a set, closed under the operations of differentiation,

integration, and commonly used integral-transformations. The values of

each G-function, dependent on its argument and some parameters, can be

calculated by means of an algorithm given in [22]. In the second part

of this section we will show, how to express all quantities characteri-

zing a SIRP, e.g. CF or especially higher-order PDFs in terms of G-func-

tions.

Finally, in the fourth section there are given some illustrations, how

to apply the obtained results in cases of practical interest. Referring

to experimental data, received from bandlimited speech signals, we will

describe their first-order PDF in terms of a G-function. Then we will

present some higher-order PDFs, calculated by means of the algorithm

mentioned above. Furthermore we shall present and evaluate an explicite

expression for the Shannon Lower Bound of Rate Distortion Functions,

which are of great interest in the fields of information theory.
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2. Spherically Invariant Random Processes

At first we will agree upon some notations and definitions, that are

used in the following. We shall deal with random vectors

= ... , whose elements = are random variables,

taken from a stationary random process by sampling its amplitudes

at arbitrarily chosen instances tv' v = 1, ..• , n. Ordering the same

elements in a row constitutes the transposed vector We will interpret

= (xl' ... , xn) as a vector, too, or only as a collection of n ordinary

real variables. = (a i k) is a quadratic matrix with real elements a i k
and det = A.

It is well known, that the matrix is non-negative definite iff the

inequality concerning the quadratic form of the variables

xT x = 1: a i k xi xk o holds for each choice of the vector x.-

Thus, we will use a shorthand notation for the nth-order probabi-

lity density function (PDF) Pc c -(xl' .•. , x n) of the random
'>1' ••• , -n

vector An expectation value will likewise be noted by

J dx 1'" J dx
nTg(X1 , "0' xn) = J = Finally an equation

like will indicate, that the PDF is given by a function

f(·), the argument of which is solely a quadratic form of the variables

collected in x.

Now, starting with a definition of a spherically invariant random pro-

cess (SIRP) we will outline those properties of SIRPs that are of common

interest, especially in the fields of communication engineering. Without

any loss of generality we will assume, that a given stationary random

process has zero mean and unit variance. For convenience we further

assume, that each pair of different random variables, taken from the

process by sampling its amplitudes, is uncorrelated, i.e. = 0ik

with Kronecker's delta. Thus, constitutes a SIRP iff all its higher-

order PDFs are spherically invariant functions of their variables. Con-

sequently, these POFs can be given in the form

() -n/2 f (T ) 'IT-n / 2 )PI = 'IT n n .

The type of the functions introduced here by the notation f n(') = f(·; n)

depends on n, the order of the PDF. These functions have to be properly

determined for each prescribed univariate PDF.
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Obviously the well known Gaussian process is a SIRP according to the

relation

(2n)-n/2

Le. f (s; n)
-n/22 exp (-s/2) . (2-2)

In this special case the type of the functions f{s; n) is exponential
-n/2and affected by n, only due to the simple term 2 .

The assumptions made above concerning zero mean, unit variance, and

decorrelation are not restrictive at all, because the PDF of a random

vector, which is generated by linear mapping = l + is easily ob-

tained [31]

-n/2 2 2 'T 1
n f{q ; n) with q = M- (2-3)

from (2-1) . The mean value of the new variables is and their covari-

ance matrix is given by = In the case of a second-order PDF con-

tour-I ine s , Le. lines of equal height, are concentric ellipses.

Now, the problem is to calculate higher-order POFs from the univariate

PDF, which may be given in terms of a mathematically treatable function,

i.e. we assume to know f{s; 1) according to reI. (2-1). In general, this

problem has no unique solution. On the other hand it is well known, that

the order of a PDF can be reduced by integration, which results in

(2-4)

an expression, that shows how to calculate f(·; n) from f(·; n+2). In-
2troducing spherical coordinates (p, and substituting r s,

s + p2 = x we obtain

f (s; n) f dx f{x; n+2) for 0 < s < 00

s
(2-5)

and after differentiation with respect to s

-d
ds f(s; n) f{s; n+2) (2-6)
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Thus, all multivariate PDFs of an odd order can easily be calculated

d
m

f(s; 2m+1) = (_1)m f(s; 1)
dsm

(2-7)

(2-8)
m

(_1)m _d__ f (s; 0)

ds
mf (s , 2m)

by differentiating the function f(s; 1) closely related to the univaria

te PDF. Likewise all multivariate PDFs of an even order can be calcula-

ted from

if the formally introduced function f(s; 0) is known.

This function may be determined in accordance to reI. (2-4). But a

straight-forward handling is prevented by the fact, that a resultant

integral equation cannot be solved uniquely without some proper assump-

tions. Because we look for PDFs, all functions f(s; n) in eqs. (2-7,8)

should have non-negative values. This statement is equivalent with the

restriction, that both the functions f(s; 1) as well as f(s; 0) must be

completely monotone. Consequently [16] there exists a unique represen-

tation of f(s; 1)

f (s; 1) J dt e-s t <jJ(t)

o

L(<jJ(t);s); (2-9)

as the Laplace-transform of a non-negative valued function ¢(t). This

expression is closely related to "Yao's representation theorem". Based

on relation (2-9) we can proceed to calculate f(s; 0) by integrating

f(s; 1) in accordance to (2-4). Starting with

(2-10)

we obtain

f(s;O)

f(s;O)

IT- 1/ 2
J dy J dt

_(s+y2)t
<jJ(t)e

0

IT- 1/ 2 J J
2

dt
-st <jJ (t) dy e-y te

0 (2-11 )

J dt
-st [t-1/2 <p (t) ]e

0

l(t-1/2 ¢ (t.) ; s) .
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Because of the fact that f(O; 0) = 1 according to a normalized univaria­

te PDF, all integrals do exist. Furthermore we conclude that f(s; 0) is

completely monotone as Laplace­transform of the non­negative valued func­

tion t­1/ 2 ¢(t). The ultimate result is, that all higher­order PDFs of a

SIRP may be calculated

f(sin) l(t(r.­1)/2L-1(f(Pil);t);S)

n 2
L x

J
'

j=1

(2­12)

from the univariate PDF only by means of the familiar Laplace­transfor­

mation.

The procedure to be performed may be illustrated by an example. The

(two­sided) Laplace­distribution is defined by its first­order PDF

Thus we have

f(s; 1) = exp(_21/2 s1/2), 0 s < 00 ,

and the inverse Laplace­transform is found [32] to be

-1 ­3/2¢(t) = 2 t exp[­1/(2t)],

(2­13)

(2­14)

(2­15)

a non­negative valued function. From this we conclude, that a univariate

Laplace­distribution is consistent with the assumption, that the random

process in question is a SIRP. We now refer to [32] again and find

f(s;n) = LC1 t n/2­2
2

­1/(2t) )e is

(2­16)

an expression in terms of modified Bessel­functions K
v
' which guarantees

a comprehensive formulation of all higher­order PDFs.

Another distribution described by a special Gamma­PDF

(x)
1 3 1/2 s­1/2 e­ s
"4 (-:;) with s = 31/ 2 Ixl/2 (2­17)



47

which is a consistent first-order PDF of a SIRP, too, is of outstanding

interest in the fields of speech processing. In this case a comprehen-

sive formulation of higher-order PDFs only may be given in terms of

G-functions. Therefore we conclude that higher-order PDFs may be calcu-

lated by means of the very familiar Laplace-transformation, but we have

to keep aware of the fact, that in available tables results are either

not listed or only given in terms of higher transcendental functions,

whose properties are commonly unknown.

At the first glance one may argue, that each univariate PDF, found by

an experiment, requires the acquaintance with a new class of higher

transcendental functions. Fortunately, as will be seen in the following

sections, this is not true, because the use of G-functions will allow to

describe a large variety of random processes. This statement should sti-

mulate the interest in the properties of G-functions, that will be trea-

ted in the following section.

Before doing so, we will look at another definition of SIRPs related

to the univariate CF of the process under consideration. By definition

we have for the nth-order CF

TI-n/2 J( dx.)
j=1 J

-00

. T 2
f(t ;n)

n

L
j=1

2x.
J

(2-18)

The complexity of this formula considerably reduces because of the sphe-

rical symmetry [1] of For convenience we assume again, that the

process is uncorrelated with zero mean and unit variance. At first

we find, that the CFs are not affected by their order n. They depend only

on the sum of the squares of their variables

(2-19)

From this result we may deduce another definition of a SIRP, sometimes

used in the literature. Obviously a random process is a SIRP iff

the type of all higher-order CFs does not depend on the order n. This

definition seems to be more straight-forward. However it is of lower

practical interest, because no facilities are introduced to measure the

CFs of a random process. Nevertheless, we can calculate higher-order

PDFs from the CF by means of the Hankel-transformation as it is known

from [1] in cases of spherical symmetry. With = g(v2) we obtain

an expression
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f ds{s(n-1)/2 g(S2)} (rs) 1/2 I
n
-
2

(rs)
-2-

from which we see, that

form a pair of Hankel-transforms.

(2-20)

(2-21 )

Though a lot of formulas are available [34], we should not be surprised

about the fact, that comprehensive solutions avoiding the G-functions

cannot be found in the case of the Gamma-distribution.

Another interesting feature of SIRFs is, that the random variables

Pn , <1>1' ... ,<I>n-1' defined by

n-1
Pn II sin<I>.

j =1 J

n-k
= Pn cos<I>n+1_k II sin<I>.

j=1 J

for k c (2,n-1)
(2-22)

= Pn cos <I> 1 '

are mutually statistically independent. The functions f(r 2; n), charac-

terizing a SIRP, do not affect the PDFs of the new variables

<1>1' ... , <l>n-1' Therefore a SIRP is completely described only by the uni-

variate PDFs

depending on n.

< 00 (2-23)

Sometimes, as we will see later on, it is more convenient to look at the

PDFs of other random variables, defined by on = n-1/ 2 Pn , which can be

interpreted as estimation-values of the standard deviation of sIt).

These PDFs are given by

p (r) = n1/ 2 p (n1/ 2 r), 0 < r <
on Pn

(2-24)

an expression, which should tend to 6(r-1), i.e. to Dirac's delta-func-
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tion centered about r = 1 in the limit n 00 , if the process under con

sideration has to be ergodic. However, the limiting PDF

Po (r) = lim (2-25)

differs from the delta function for all non-Gaussian SIRPs, as will be

seen in the following section.
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3. G-Functlons

3.1 DEFINITIONS AND PROPERTIES

The G-functions, which were introduced by Meijer in 1936, are generali-

zations of the hypergeometric functions. Here, we will restrict oursel-

ves to listing definitions and those properties of the functions, that

are needed to describe SIRPs later on. For detailed information the rea-

der should consult original research documents by Meijer [27], Erdelyi

et. al. [28], Luke [30], and Brehm [22]. In special cases G-functions

can be expressed in terms of other higher transcendental functions,

which might be more familiar to the reader. A listing of such corres-

pondences is given by Luke [30].

In the literature G-functions are named in different, but eqUivalent

forms

Gmn(zla1'" .,ap) (3-1)
pq b 1,· .. ,bq

They are functions of the complex variable z and depend furthermore on

two sets of complex parameters a
p

_ (a
1,

... , a
p)

and bq = (b
1
, ..• ,bq),

which are ordered into four groups

(3-2)

The non-negative integers m, n, p, q obviously refer to the number of

elements in the different groups. Within any group the elements may be

interchanged, as becomes evident from the definition of the G-function

in terms of a Mellin-Barnes-integral

(21Ti) -1 Jds
C

m n
rrr(b.-s) rrr(1-a.+s)

zS j=1 J j=1 J
q P
rrr(1-b.+s} rrr(a.-s}

j=m+1 J j=n+1 J

( 3-3)

If a group contains no elements, the corresponding empty product in the

integrand is interpreted as unity. Because of the factor

ZS = exp (s log z) the G-function generaly is a multivalued function

of the complex variable z. The well known Gamma-function f(s) is ana-

lytic in the whole s-plane, except for the points s = 0, -1,-2, ... ,

and s = "".

Therefore, each parameter b
j

E (b
1,

... , bm) gives rise to an infi-
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nite number of simple poles at the points, where b j - s is a negative

integer or equal to zero. The same holds for each parameter

a k E (a 1, ... , an) at those points, where 1 - a
k

+ s equals a negative

integer or zero.

Poles resulting from any b. must not coincide with those resulting from
J

any a k ' but there may occur poles of higher order, if at least two ele-

ments b j 1, b j 2 differ by an integer or zero.

The path of integration goes from 0 - ioo to 0 + ioo so that all poles of

r(b j - s), j = 1, •.. , m, lie to the right of the path, whereas all po-

les of r(1 - a
k

+ s), k = 1, ..• , n, lie to the left. The convergence

of the integral depends on several relations between the numbers m, n,

p, q and on other constraints, that may be omitted here.

If q > 1 and either p < q or p = q and jzl < 1, the path may be bent to

a loop beginning and ending at +00, as illustrated below for three para-

meters a 1, b 1 and b 2•

E

b l bl+1 b l +2 b 1+3 b 1+4 bl+5

b2 b 2+1 b2+2 bz+3
The integral can be evaluated as a sum of residues. Under the restric-

tion, that all poles are simple, the result is a weighted sum of hyper-

geometric series, as given by Luke [30]. In the case of second-order

poles, one may proceed using L'Hospital's theorem, as done by Luke [30],

but the resultant formulas exhibit a considerable increase in complexi-

ty.

A rigorous approach to the evaluation of the integral as a sum of resi-

dues in the case of higher-order poles is involved with some formal dif-

ficulties, because there have to be made differentiations of the inte-

grand, that is represented as a product of functions, divided by another

product of functions, all of them depending on the variable s. A general

concept for an evaluation based on the logarithm of the integrand has

been given by Brehm [22]. It has been transferred into an algorithm,

designed to be implemented on a digital computer. Thus, values of the

G-functions can be computed, using sums of series even in the case of

higher-order poles.
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Limiting forms of the G-functions for small arguments can be derived

from those series representations. The dominant part of these forms is

destined by that b
T

, which shows the minimum real part of all elements

b" •.. , bm. The result is

m n
IT* r : 6 .) IT r C'-a .)
, J 1 J

q P
IT fCl-6.) IT fCa j)

m+l J n+l

for z ->- 0 C3-4)

with RCb,) min RCbj), jc(l ,m); a j = aj-b,; Sj

bj-bk '" integer ,j"'k; j ,kECl ,m).

If there are more elements with minimum real part, one has to distin-

guish whether some of them are equal or not. In the case of real para-

meters and b, ... min (b" ... , bm), there exists a logarith-

mic singularity at the origin, according to the limiting form

*
(].1-1) !

b ].1-1
z ].1Clog z)

with

m n
IT r CS .) IT r Cl-a . )

].1+1 J 1 J
q P
IT fCl-S.) IT fCa.)

m+1 J n+1 J

a.-b
J ].1

b.-b
J ]J

for z ->- 0 C3-5)

min jc(l,ml.

The asymptotic behaviour of the G-functions is either exponential, lo-

garithmic or algebraic, depending on the given grouping of the parame-

ters. In the special case n 0 and m q, occurring in section 4, we

have

for [z ] ->- 00, larg z ] 2. Ccr+E:) Tl-O, <5 > o.
cr, 6, Mk are constants not depending on z.

C3-6)
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For a detailed information, especially in the remaining cases, the rea­

der may consult Luke [30] or Brehm [22].

Before we look at some further properties of the G­functions, we first

have to agree upon notations concerning the sets of parameters.

With

l
a , a 1 , · · · , a n l a n+ 1 , · · · , a p )

­ b 1,··· ,bm bm+1, •.. ,bq,a

(3­7)

l ap ' a ) ::
a,b

q

a1,··· ,an Ia n+ 1,··· ,ap,a
a ,b1,··· ,bm bm+1, .•. Ibq

it is indicated, how to adjoin a new parameter a to two positions of

the four parameter groups. Likewise

(3­8)

means, that the value a has to be added to all parameters ap and the

value B has to be subtracted from all parameters bq.
Now, there exist two rules to change the order of G­functions (i.e. to

diminish or enlargen the values of m, n, p, q) by deleting or adjoining

common parameters in corresponding groups

+1 a,a
I

q' q
(3­9)

Gm+1
a ,a

)p+1 , q q

A power of the argument may be extracted from or included in the G­func­

tion itself according to

(3­10)

In the discussion of the G­functions, we can without loss of generality

suppose that p q in view of the important relation

1­b
G
nm( z­ 1 1 q), arg(z­1) = ­arg(z)
qp 1­ap

(3­11)

So far, we have gathered some interesting properties of the G­functions,
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which can be derived from the definition (3-3). The outstanding impor-

tance of these functions for describing SIRPs, however, stems from the

fact, that differentiations, integrations, and especially integral-trans

formations can be performed within the class of G-functions.

In the following we will give a listing of and some comments to those

relations.

Differentation

zk dz q

zk d
k

[Gmn(Z- l l a )]dzk pq

=

(_l)k G m n+1( -1
11-k,a

)
p+1 q+1 z b ,l P

q

(3-12)

( 3-13)

. (3-14)

Here we see, that differentiation can easily be done by formal altera-

tions in the set of the parameters.

F(x)

Integration

The indefinte integral

x
f dy
o

Gmn ( >. Yla )
pq y bP

q (3-15)

F(ro}- f dy
x q

is solved within the class of G-functions by

F(x) (3-16)

Thus, if it is possible to express either the cumulative distribution

function or the corresponding density function in terms of G-functions,

then it is possible to do this for both of them.

Integral-transformations are based upon the so called "master formula",

already given by Meijer.
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f dx (1\ X I
0 q T

1 Gn+ 1l m+v ( w -bm,Cvl c ,-ba-v q-m
I q+a p+T I -a d· d ,-a ( 3-17)

n' 11' T-Il p-n

Gm+v n+1l ( A an,-d
ll
l -d ,a

T-Il p-n
w P+T q+a w bm,-Cvl -c ,ba-v q-m

Specializing one of the two G-functions in the integrand yields the fol

lowing transforms.

Laplace Transforms

With the familiar definition

l(f(x);s)

we have

J dx f(x)e- s x

o

1 n+1 m (Sj-bq )
A G q p+1 I O,-ap

O,a
G m n+1 p

5 p+1 q s b q

(3-18)

(3-19)

a relation, that also may be read in the reverse direction yielding

the formula for the inverse Laplace transformation.

(3-20)

Fourier Transforms

The Fourier-transformation may be splitted into the Fourier-Cosine-

and the Fourier-Sine-transformation

FC(f(X) i y) = J dx f(x) cos (xy)
o

(3-21 )

f dx f (x) sin (xy) .
o

In the case of G-functions we have
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(3-22)

1/2 2 1/2-b
1T n+ 1 m (LI q)

q p+2 4A a,1/2-ap,l/2

o ,« ,1/2
1/2 -lG m p )

1T Y p+2 q y2 b q

(3-23)

1/2 2 1/2-b
1T n+1 m (LI q ).

q p+2 4A

Because a SIRP has a first-order PDF, that is an even function of its ar­

gument, the corresponding CF is twice the Fc-transform of the PDF.

Hankel Transform

With the definition

we get

J
1/2dx (xy ) J

k
(xy) f (x)

o

(3-24)

-l 21 1 / 2 - b
mn 2 a. _ 2 n+1 m L q 3-25

JK(Gpq(AX IbqP) ,y,k) - (2A) G q p+2(4A 1+2k l -a 1-2k). ( )
4 '2 p' 4

Thus, it is possible, starting with a first-order PDF expressed in terms

of a G-function, to calculate the corresponding CF and then to determine

higher order PDFs as Hankel transforms.

Mellin Transform

This transformation, defined by

M(f(x);z) = f dx

o

results in terms of r-functions

z-l
x f (x) (3-26 )
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m n
rrr (b .+z) rrr [1- (a .+z) ]
1 J 1 J

q p
rr r[1-(b.+z}] rr r(a:+z}

m+1 J n+1 J

(3-27)

It is a powerful tool, to determine all the moments of a prescribed

distribution.

In all cases there might exist some constraints concerning the number or

values of the parameters. Details are listed in Luke [30] or Brehm [22].

3.2 COMPLETE CHARACTERIZATION OF SIRPs BY MEANS OF G-FUNCTIONS

In this section we will aim at a complete description of a SIRP using

MEIJER's G-function. Therefore we start under the assumption, that the

first-order PDF of the process is prescribed or well fitted by

(x) for -00 :0: x :0: 00 ( 3-28)

i.e. by a G-function, whose parameters are properly chosen. The special

dependence on the square of the variable x is not necessary but recom-

mended, because the PDF is an even function. Naturally we have to cer-

tify, that G(s) is completely monotone in order that the representation

(3-28) is consistent with the properties of a SIRP. This may be done in

several ways, that are discussed in detail in [22]. Likewise the norma-

lizing factor

A (3-29)

must be finite. In this expression the constant A yields unit variance,

if it is chosen equal to

ri (].. +b j)
(-1 ) E:

j=1 2

Prr (].. +a j)
j=1 2

(3-30)

E: = n - (q-m) •

In cases of infinite variance (e.g. Cauchy-distribution) we may choose

A = 1. Obviously both results have been obtained by means of Mellin-

transformation according to (3-27), which also yields all
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moments of the distribution

o with

E = n-(q-m) (3-31)

r(a+k)
(a)k - r (a)

and k

Looking at (3-15, 16) we find, that the

Cummulative distribution function

PE; (x )

A 2 a +1/2,1
1 - Gffi

+
l
q:l(AX +1/2)

2 A1/2 p+l q (3-32)

both for x ;:: 0

is given by another G-function with slightly changed and two additional

parameters. Because the PDF is an even function, Fe-transformation (3-22)

leads to the

characteristic function

(3-33)

and likewise by means of the rules (3-19, 20) concerning Laplace-trans-

formation all

higher-order probability density functions (PDFs)

TI- '0/ 2
'J 2

f(s;'0) ; s = l: x.
j=l J (3-34)

1-\) a ,0
with f(s;\)) TI

l / 2 A
-2-

Gm+l
('0-;)/2,b

q
)s p+l

2 Ap (r)
P'J

are obtained without any further calculations. Finally, and this com-

pletes the characterization of the SIRP, we will list the

PDFs of the random variables p and a, defined by (2-23, 25)
V

a ,0
Gm+l n (Ar 2\ p ); 0 r 00 (3-35)
p+l q+l \)-1 b

2 ' q

PaIr) = 2(2n)1/2 A Gm: l 0 < r < 00. (3-36)

Referring to these results, comprehensive notations are available, that

may be the basis of further calculations.
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4. Applications

4.1 SPEECH AS A REALIZATION OF A SIRP

As mentioned above, an application of the theory outlined in the prece­

ding sections must be based on results of experimental studies. Firstly,

one has to find a proper fit to the first­order PDF of the random pro­

cess in question, and secondly, one has to verify that this process is

a SIRP.

Therefore, experimental studies with speech signals were performed [23].

This was done in the time domain, i.e. the signals were sampled and the

relative frequency of the occurrence of quantized amplitude values was

measured. Thus, it had been assumed, that the random process, whose rea­

lizations were examined, is stationary as well as ergodic. At the first

glance, this assumption might appear to be very restrictive. However,

for most applications it is not, as recently has been stated again by

Abut et. al. [35].

Measurements were done with speech signals, bandlimited to the frequency

range from 300 to 3400 Hz, according to the requirements of telephone

channels. The number of evaluated samples was 106 or 107 in the first­

or second­order case, respectively. In consequence statistical varian­

ces are small enough to guarantee, that the measured relative frequen­

cies are fairly good approximations to the corresponding PDFs. In a lo­

garithmic scale fig. 4.1 shows experimental points of the first­order

PDF versus amplitude values, normalized to unit variance.

10'

10­ 1
,I\. -'-

/
jP ."r­,

./
/' ,

;:f:
)"/ -.

­6 ­4 ­2 o
x

Fig. 4.1: Experimental points of the first­order PDF, fitted by

(­­­­­­) Laplace­, (­­­) Ko­, and (­­­) Gamma­distribution
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Together with the measured points there are drawn three curves repre­

senting the following PDFs

Laplace Pt; (x) 2­1/2 1/2 (4­1 )exp(­2 [x ] )

K Pt; (x ) 'If -1 K (Ix I) (4­2)
0 0

31/ 2 r1
/
2

(1/2
Ix0·Gamma Pt;(x) 4'lf1/2

Ixl exp (4­3)

It can be seen, that the best fit is achieved by the Gamma­PDF. Never­

theless there even may exist another PDF, that yields a significantly

better fit. This question will be discussed later on.

One may ask, whether it is recommended to look for an optimum fit, be­

cause the PDF might vary for different speech signals considerably. How­

ever, measurements have certified, that the first­order PDF of bandli­

mited speech is almost unaffected by the personal characteristics of the

speaker as well as the used language.

For the following it is of great importance, that measurements have pro­

ved, that the type of the distribution remains unchanged by linear fil­

tering, a typical feature of SIRPs.

The shape of the second­order PDF depends on T , the distance in time be­

tween the relevant random variables t;(t) and t;(t+T), i.e. on the statis­

tical dependencies between these variables, which are essentially affec­

ted by the personal characteristics of the speaker. Experimental results

are illustrated in fig. 4.2, where four maps of contour­lines are given,

referring to the four PDFs in perspective view, for special values of T.

The experimental points corresponding to values of equal height are well

fitted by concentric ellipses in the cases T = 0.25,0.75, and 1.0 msec.

For T = 50 msec statistical independence is achieved, which results in

diamond­shaped contour­lines.

On the basis of these measurements we now conclude, that bandlimited

speech signals are realizations of a SIRP under the constraint T < 5 msec,

i.e. the joint distributions for random vectors, whose elements are sam­

pled amplitudes of speech signals, are spherically invariant whenever

the distance in time between each pair of elements is less than 5 msec.

As already mentioned in section 2, the Laplace­distribution as well as

the Gamma­distribution is consistent with the assumption of spherical

invariance. Following our general concept we now have to look for a re­

presentation in terms of G­functions. With the relation
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Fig. 4.2: Second-order POFs of

speech signals, given

in perspective views

and contour-lines with

T = 0.25, 0.75, 1.0,

50m'" and 50 msec.
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(4-4)

given in Luke [30] we have the common representation for both distribu-

tions

ps(x)
20 2

A G0 2 (h Ib b)
l' 2

with
A1/2

(4-5)

A (2 1 +b
2) and+b 1) ("2 A 1 12 r ("2+b1) r ("2+b2)

which even includes the Ko-distribution, as can be seen from the corres

pondences listed below.

b 1 b 2
A A Ps (x)

0 0 (2'TT)-1 1/4 'TT- 1K
o
(!X!)

1/2 0 (2'TT)-1/2 1/2 2-1/2exp(_21/2!x!)

(3/2) 112 (4'TT)-1
31/2 31/2 -1/2 31/2

1/4 -1/4 3/16 -------;;2 (-2-\ x I )
4'TT

Because the parameters b
1,

b 2 can be varied continuously, there may

exist continuous transitions between those distributions. Consequent-

ly an even better fit of the PDF might be achieved by appropriate modi-

fications of b
1

and b
2.

The type of the functions given by (4-5) depends on the choice of the

parameters b
1

and b
2,

as discussed in detail by Brehm [22]. Here, we

only will give the main results referring to fig. 4.3, where the para-

meter plane is drawn. Because the parameters are interchangeable the

figure is symmetric relative to the line b 2 = b
1.
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fII
-"2 __-1

Fig. 4.3: Unshaded Area indicates possible combinations of b 1, b 2 for
G20_PDF
02

Though the functions show an exponential decay for large argu­

ments according to (3­6) they cannot be normalized, if b 1 ­1/2 or

b 2 ­1/2. This sterns from singularities in the origin and may be de­

duced from the identity.

(4-6)

and the limiting forms (3­4, 5) for small arguments. On the other hand,

is not completely monotone, if b 1 > 0 and b 2 > O. Therefore

first­order POFs for SIRPs are only given in the nonshaded area. Here

we find the generalized Laplace­distributions for b 2 = 0 and ­1/2 < b1,
which tend to the Gaussian­distribution in the limit b 1 00. Another

well known class of distributions, whose members are the generalized

Gamma­distributions, is found along the line b 2 = b 1 ­1/2, from which

only a subset may be identified with first­order PDFs of a SIRP.

It should be mentioned here, that representations of first­order PDFs

of SIRPs are not restricted to the subclass of the G­functions. An

unlimited number of further subclasses, from which are

only a few examples, are found following a strategy given by Brehm [22].
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In order to achieve a complete description of a SIRP, whose PDF is given

by (4-5) we specialize all formulas of interest in the foregoing section

to m = q 2 and n = p = O. As an example we obtain for the PDF of the

radius

n 1/ 2
30 21

0
pp (r) 2A G13 ( Ar v-1 ) ; 0 s r ::;; 00,

v r b
1,

b 22 2 '

an expression, that can be reduced to

(r)
n 1/ 2

20 21 )pp = 2A-- G0 2 (Ar v-1 0 s r ::;;
v b 12 2 '

(4-7)

(4-8)

i.e. to modified Bessel--functions,under consideration of eq. (3-9), in

the case of generalized Laplace-distributions. Not only for the sake of

a more convenient scaling of the drawings it is recommended to look at

the equivalent PDF p (r), where now in the notation the subscript n is
on

chosen instead of v. In fig. 4.4 results are shown for the three distri-

butions of interest here with values n = 1, 2, 4, 8, and n

At first we recognize, that in each case the limiting PDF po(r) do not

agree at all with Dirac's delta-function 6(r-1) centered at the value

r = 1, they even do not approximate it. This behaviour challenges the

question, whether non-Gaussian SIRPs really might be proper models

for processes, that are delt with in practice and for which ergodicity

has to be assumed. A positive answer will be given in the following

section based on the observed relatively fast convergence to the

limiting PDF po(r) with increasing n.

At last we should pay attention to the fact, that, dependent on the type

of the distribution, significant dissimilarities occur for small values

of the argument. These dissimilarities will have considerable influence

on the results to be presented later on.
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Ko-Distribution Laplace-Distribution

4.0

n = 1
n = 2
n =4
n=8

-r3.02.01.04.03.02.01.0

Gamma-Distribution

(2-24) ) •

n = 1
n =2
n = 4
n =8
n-oo

1.0 2.0 3.0 4.0

Fig. 4.4: PDFs p (r) correspon·
on

ding to first-order

Laplace-, Gamma-, and

K -distribution. (For
o
definition of Po see

n
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4.2 RATE DISTORTION FUNCTIONS FOR SIRPs

As a further application of the results, outlined in the last section,

we now will discuss and solve a problem, that is of great importance in

communication engineering.

In accordance with techniques of sampling bandlimited signals, we assume

that there exists a source of a signal, that is discrete in time and con­

tinuous in its amplitudes. Thus, the source realizes a random series

that is characterized by its higher­order PDFs. We will further assume,

that the series is stationary and ergodic and that its elements are iden­

tically distributed with zero mean and unit variance. At last there

should be no correlation between different elements, i.e. = 0ik

with Kronecker's delta, as a realistic consequence of prediction tech­

niques, most commonly used in signal coding and decoding. Now, the pro­

blem is to determine the minimum rate R of information, which has to be

provided to ensure, that the receiver may reconstruct the signal with a

distortion not exceeding a prescribed quantity D. The distortion measure

can be defined in several ways. Here, we decide for the mean square cri­

terion

(4-9)

applied to the differences between the elements of the source and the

reconstructed series {nk } . The mathematical treatment leads to a vari­

ational problem with certain constraints, as discussed in detail in

Berger [36]. Thus, the required minimum rate is dependent on the statis­

tical properties of the source, but beyond that it is only a function of

the distortion quantity D. In the case of a Gaussian source the result

is
A G

R (D) = R (D) = ­ (log D) /2 . (4-10)

If we now look at other sampled SIRPs, we need to consider that decorre­

lation does not imply statistical independence as in the Gaussian case.

Consequently mathematical difficulties increase to such an extend, that

the problem has not been solved up to now. Nevertheless, a formula is

known to calculate the "Shannon Lower Bound" (SLB) RL(D) to the rate

distortion function R(D) in the case of SIRPs. According to the nomen­

clature the relation RL(D) R(D) holds for each value of D and R
L

has

been found to be very tight to R, esp. for values D « 1.
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The SLB is expressed in a limiting form

C(n)

RG(D) - lim C(n)
n->-oo

2[n r(n/2)]-1 J dr r n- 1 f(r 2; n) log[rr-n/ 2 f(r 2 j n)]
o

(4-11 )

(4-12)

with a term lim C(n) correcting the Gaussian case.
n->-oo

Now, we will show, how integration as well as the limiting process can

be performed for all SIRPs which are characterized by G-functions. We

introduce the PDF p (r) and obtain the following sum
an

C (n) = C
1
(n) + C

2
(n) + C

3
(n)

C
1
(n) 1 log(2rre) 1 1 [-n/ 2 r (n/2) n-n/2/ 2]2" + n og rr

C
2(n)

- J dr Pa (r) log[p (r) ]n an0 n

C
3
(n) 1-n J dr (r) log r .n Pa

0 n

with

(4-13)

Interchanging the order of integration and limiting process, we obtain

C1 (00) = 0 from the asymptotic behaviour of the r-function and C2 (00 ) = 0

because the integral is bounded for each value of n. The remaining addi-

tive term

C3 (00 ) = - J dr PaIr) log r ,
o

(4-14)

contains the PDF PaIr) defined by eg. (2-25). Now integration is done

by parts. Because of the fact, that we can express PaIr) in terms of

G-functions, the indefinite integrals

x
h 1 (x) = J dr PaIr)

x

J
-1

dr [r h
1
(r)] (4-15)

are principally known as well and the general result is

Ix
C(oo) = {-h1 (x) log x + h 2(x) Jlx = 0

20 21Specializing this result for = A G0 2 ( AX b
1,

b
2)

leads to

(4-16)

(4-17)

under consideration of the behaviour of the G-functions for large and
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small arguments respectively. To achieve a simple notation the abbre­

viation x(z) = log z ­ w(z) has been introduced, where

w(z) =d log f(z)/dz is the digamma­function tabulated e.g. in [33].

Quantitative results are given in fig. 4.5. As could be expected, the

rate decreases in the non­Gaussian cases on account of the remaining

statistical dependencies after decorrelation. The significant differen­

ces between the curves emphasize, that it is an essential point, to have

an optimum fit of the first­order PDF.
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Fig. 4.5: Shannon Lower Bounds for Rate Distortion Functions of SIRPs

with Gaussian­, Ko­' Laplace­ and Gamma­distribution

One may argue that there have been obtained results, which cannot be

applied to problems arising in the fields of speech processing, because

the assumption of spherical invariance has to be restricted to a fini­

te number of successive signal samples. Referring to pulse­code­modula­

tion­(PCM)­systems, that are in use for the processing of bandlimited

speech signals at a sampling rate of 8 kHz, we conclude that the re­

striction T < 5 msec is equivalent to the constraint n < 40. Thus, the

results might become meaningless in the limit n + 00 On the other hand
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we have already recognized that the PDFs p (r) rapidly converge to
an

PaIr) with increasing n. In order to justify a quantitative statement

the integral (4-11) has been evaluated numerically for finite values of

n avoiding the limiting process. The results shown in fig. 4.6 certify,

that for n 40 the limiting values are reached up to about 90% in each

of the three cases. Consequently we conclude that the assumption of in-

variance does not imply a severe restriction.

1,5 Gamma

__ _

Laplace

Fig. 4.6: Convergence of the

correcting terms

C(n) to the limi-

ting values

'0302010':!-o-------:':----..---.,-:------------l

Finally it should be emphasized, that the solution to this complex pro-

blem which never has been worked out so far, has been found now, be-

cause higher-order or equivalent PDFs could be given explicitely. We

achieved this without detailed knowledge of the features of special

G-functions used in intermediate steps of the calculation. We only needed

a proper fit to the first-order PDF in terms of a G-function and then

we have used some common relations between those functions, their inte-

grals, and transforms. By further consideration of the behaviour of the

G-functions for large and small arguments an expression for C(oo) has

been obtained, the evaluation of which can be performed by means of a

pocket calculator. Of course the computation of C(n), requires an algo-

rithm to calculate values of several G-functions. If, however, the al-

gorithm given in [22] once is implemented on a digital computer, there

arises no problem at all. Altoghether, these facts should strengthen the

conviction that G-functions are highly recommended to achieve new re-

sults of theoretical as well as practical interest in any field, where

SIRPs are of importance as for instance in communication theory and

speech processing.
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5. Conclusions

SIRPs are generalizations of the very familiar Gaussian random process.

They are of great importance, especially in the fields of communication

engineering, because signals are treated there as realizations of ran­

dom processes. For these SIRPs a complete characteri.zation by means of

higher­order PDFs has been obtained in an utmost comprehensive notation

using Meijer's G­function.

Though these higher­transcendental functions are commonly not used, they

are highly recommended for the solution of problems with spherical sym­

metry, because they form a set of functions, that is closed under opera­

tions like differentiation, integration, and some integral­transforma­

tions. Therefore, as has been shown, all higher­order PDFs are explici­

tely available under the assumption, that the first­order PDF of a SIRP

is expressed in terms of a G­function.

These results have been applied to bandlimited speech signals, from

which it is known, that they are realizations of a SIRP under a certain

constraint, which is not restrictive in most cases of application. For

convenience there have been evaluated some higher­order PDFs, referring

to a univariate Laplace­, Ko­' and Gamma­distribution. In order to cal­

culate the values of the G­functions, an algorithm implemented on a di­

gital computer was used, which had been developed from an integral­

representation of the G­function.

Finally, the solution of a problem of great interest, arising in the

fields of information theory, has been found due to the fact, that ex­

plicite expressions for PDFs even of unlimited order are available now.

The Shannon Lower Bound for the Rate Distortion Function of a decorre­

lated SIRP has been determined, referring to a limiting form of G­func­

tions, only by means of a pocket calculator. By this result, the recom­

mendation of the G­functions for a convenient description of SIRPs is

emphasized essentially.
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l_Introduction.

In our search towards a geometric interpretation of the sporadic

simple groups which would be close in all respects to the theory of

buildings of Tits [13], [1], [14] it is necessary to introduce restric-

tions if we want to avoid the paralyzing effect of hundreds of objects.

On the other hand, restrictions which would be made too soon could

have a paralyzing effect as well or just mislead us. Therefore, it

may be appropriate to explore in a fairly broad sense, a small group

like the Mathieu group M12.
Our choice of M12 rather than Mil is moti-

vated by several observations, in particular the presence of outer auto

morphisms of order 2 to explain and so a potential existence of geome-

tries admitting polarities.

There is no attempt towards formalization and a complete classi-

fication of all geometries satisfying given axioms. Nevertheless, our

search is systematic enough to prepare such classifications.

2.Subgroup structure.

6 3We shall work with the simple group M12 of order 95040=2 .3 .5.11.

For basic facts about this group such as the character table, the list

of maximal subgroups and their structure, the action of these sub-

groups on the dodecadsleft invariant by M12 inside the larger group

M24, we refer to Laneburg [9], Conway [4], Fischer-McKay [5], McKay [10]

and their bibliography.

In the natural action on 24 points mentioned already, M12 has two

orbits of 12 points, which is denoted by [12;12], while the automor-

phism group M12.2 of M12 is transitive on the 24 points with two

blocks of imprimitivity of size 12. This is summarized by [12 2]

There are 11 conjugacy classes of maximal subgroups in M12 of

which six appear in pairs fused by M12.2.
Here is a description of

*This research was partially carried out at Ohio Snate University and

at the Technische Universitat Braunschweig.
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these subgroups together with their index, their permutation character

and the subdegrees of the corresponding permutation group, when avai­

lable. The conventions are those of [41, [51.

[ 1,11;12]

12 12=1+11

[ 12;1,11]

[ 2,10;6 2]

66

71=1+11
2

71=1+111+ 54

66=1+45+20

495 71=1+111+112+553+2.54+66+99+144

495=1+6+16+24+2.32+
+2.48+3.96

2[6 .;;;,10]

4
13,9;3 ]

M9·S3
=32.21+2'S3

4
[3 ;3,9]

M8,S 4 [4,8;4,8]

=2 1+ 4.S
3=C(2A)

220

71=1+112+54

71=1+111+54+553+99

220=1+12+27+72+108

495=1+6+16+24+2.32+2.48
+3.96

71=1+161+162+45+
+2.54+66+99+144

71=1+161+162+2.45+ 2.5
4

+553+2.66+2.99+2.120

+2.144+176

A4xS3 [4 x3;4 x3] 1320

=N(22)=NU
B)

2 x S5 [6 X2;6 x21 396

=C(2B)

22.2 3.S
3=N(22)

[4 3;4 3] 495

[12; 12] 144=1+2.11+55+66

Comments 1. The notation A.B describes a group with a normal subgroup

A and a quotient group B. Notations such as 3 2,2 3 ar­e for elementary

abelian groups and 21+ 4,2 1+2 for extraspecial groups of orders 32 and 8

respectively.

2. The subdegrees for M
9,S3

given in [5] are not correct. The right

numbers are easily obtained from the action of M12 on 3­sets, inside
4

[3,9;3 ] .

3. In 2xS
5,

means that a grid consisting of 6 blocks of 2 points

and 2 blocks of 6 points is invariant. The permutation character

given in [5] does not seem to be correct. This holds also for the

character of L?(ll).
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3.Geometric terminology.

We are using freely the terminology, notations and results of

Buekenhout [2]. In particular, we shall denote by r a geometry of

finite rank n, over some basic diagram 6 and we shall assume that M12
is a flag-transitive group of 6-automorphisms of r. We assume that r
has the properties (SC)(strong connectivity) and (IP)(intersection

property). Since it turns out that we shall only have to consider

linear diagrams, r can be seen in two dual ways, as a set of points

together with distinguished subsets such that any intersection of

some of them is still a member of their family.

Whenever we have to deal with a rank 2 geometry, we shall describe

it by a picture of the following shape

o g,do,d1 1
o 0 B
s+l t+l
v b

Po=[C].D P1=[E].F

This is read as follows: 0 and 1 are labels given to the elements of

the geometry and we call O-elements (resp.l-elements) points (resp.

lines); g is half of the girth in the incidence (bipartite) graph i.e.

half of the elements in a shortest circuit; do (resp.d1) is the

greatest distance which can be achieved in the incidence graph, from

a point (resp.line); s+l (resp.t+l) is the number of elements incident

with a given line (resp.point); v (resp.b) is the number of points

(resp.lines); Po (resp.P1) denotes the stabilizer of a point p (resp.

line) in M12 and C is the normal subgroup fixing each line incident

with p; finally B denotes the Borel subgroup or stabilizer of a

maximal flag in r which may also be identified with Po n Pl'

The most common of these pictures will be replaced by abbrevia-

tions inspired by those used in [1] such as : 0---0 for 0 0

for 0 0 for __C_o for 0 3 , 3 , 40 (complete graph),
2 2

(affine plane of order n).
n n+l

When it is available (and non trivial), we shall also give a

picture of the incidence graph itself using a O-element (or l-element)

as starting vertex and concentric circles with respect to it. This is

inspired for instance from [3].

To describe a rank 3 geometry, we use similar conventions, for
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B
g,do,d 1 1 g' 2

o 0 0

r+1 s+1 t+1
»: v 1 v :

Po P1 P2

where Po is the stabilizer of a O-element, V o is the number of O-ele-

ments, the residue of a 2-elements is a rank 2 geometry with a diagram
g,do,d1

and the residue of a O-element is likewise related to the

instance

parameters g'

4.Variations on the Steiner system S(5,6,12).

When looking for a geometric interpretation of M12, the most

obvious idea is of course to consider the Steiner system S(5,6,12)

invariant by M12 , consisting of 12 points and 132 blocks of 6 points

such that every set of 5 points is contained in a unique block.

From our viewpoint, it is natural to consider the blocks as

hyperplanes of our geometry and to accept their Lrrt e r s ec.t Lon s as

elements of the geometry. This leads to a rank 5 geometry which is

conveniently described by the following diagrams where we list only

the most useful residues.

M12
g__6__6_C B=2
2 2 2 3 4

12 66 220 495 132
Ml1 M10 : 2 M

9
' S
3

[;:].4.34 36

M11 36
__6_C_J

2 2 3 4 6 15 20 15 (1)
11 55 165 66 S5 S4· 2 S3xS3 [2]3

4M10 Mg.2 [2J4,S
3 S5

M10 M
92 3 4 3 4

10 45 30 9 12
M
9

[214.2 3 4 [;:].4 S3

We observe that the parabolic subgroup P
4=S6

is the only one which is

not maximal in M12 . It is of index 2 in an M
10

. 2 which is not conjugate

to P 1 •
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5.Truncations of the Steiner system.

When r is a geometry of rank n over the set of indexes

{O,l, ... we can get a new geometry from it by the procedure of

truncation. Therefore we choose a subset and we keep only

the elements of r whose type is in This may look a little strange

since we left with the Steiner system which corresponds to

in (1) and we wanted to avoid it in order to get (IF). Actually (IF)

may still hold in the truncation. For this it is necessary and

sufficient that be connected in the diagram structure on Taking

only the non trivial cases where 2 < I < 4 this gives us 9 distinct

truncations to study.

Here they are.

The nine truncations of (1) having rank> 2 and (IF)

(2) 0 1 2 C 2 B=2.4 B=220 0 0

2 2 2 9 3 2 3 4
12 66 220 495 66 220 495 132
M11 M1CD·2 M9· 8i

2 . 4J 84 M10 · 2 M9·83 r21484 86

(4) 0 1 C 2 (5) § 3,6,6 2 Af 4
0 0 0 B=M

9
0 B=2.8

32 2 10 4 3 4
12 66 220 220 495 132
M11 M10·2 [MJ.83 M9·83

[2]484 86

(6+ B=2.4.2
329

66 220 495
M10·2 M9·83

(8) 1 3,5,6 § B=M9·2
0

3 10
66 220

M10·2

4,7,8 2 B 2 4 8= .. 3
9

495
[2.4] 84

(10) 2 3,5,6
15
495

[2.li] 84

4o B=2.4.8
34

132
86

Most of these structures are easy to work out for oneself. It may take

some more time to get a good control over the incidence graph, beyond

the parameters given in the diagram. The most delicate here is (10)

which we could work out fairly easily, from a line. The development

from a point should be more interesting if we refer to our experience

based on the examples listed in [3].
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120

Among the geometries (2) to (10) a major role is played by (4) which

appears as a residue of a less trivial geometry for the Conway group

C1 and which is a member of a family including other sporadic groups.

In it, we observe that the characteristic 3 of the "ground field"

appears clearly in all parameters (2,10 are equal to a power of 3 plus

one) and in the structure of the local parabolic subgroups. This holds

also in the residues of the geometry which we did not list. In this

respect, (4) appears as optimal: it is the most complete (less trunca­

ted) geometry having such a good behaviour with respect to a prime

number, namely 3.

6.Looking for quadrangles.

Let us observe all geometries obtained so far, in particular their

rank 1 residues which are residues of flags F having r­1 elements,

where r is the rank of the geometry. The stabilizer of F which we call

a rank 1 parabolic subgroup acts transitively on the rank 1 residue

of F. A non trivial observation is that in all but one cases, this

group turns out to be doubly­transitive. The exception occurs in (10)

with the action of S6 on a line of 15 points. Here we remember that

S6 SP4(2) which is acting on a generalized quadrangle of 15 points.

Therefore, our lines of 15 points bear each a structure of generalized

quadrangle with lines of 3 points or 3­lines. Let us look more closely

at these 3­lines and their geometric structure.

Let Q12 be the set of 12 O­elements of (1). Here the points of

the geometry we want to study, are the 3­elements of (1) i.e.all

subsets of 4 points of Q12' On the other hand, each such set is the

set of fixed points of a unique involution of M12 which can be seen

in the parabolic subgroup 2.4.S
4.

Such an involution is called central

in M12.
Let us examine pairs of commuting central involutions whose

product is central i.e. pure subgroups 22 of central type. These fall

into two conjugacy classes namely:



80

Awhose members have 3 involutions with disjoint sets of fixed points

in
B whose members have 3 involutions whose sets of fixed points intersect

pairwise in 2 points and all of these sets of fixed points cover a

4-element of (1) i.e. a block of the Steiner system.

Let A E A. Then CM (A) has order 25. If B E B, then CM (B) has order
12 12

23. Therefore M12 . 2 acts on A and on B. This has intersecting geometric

consequences.

Now,let p,q be central involutions' such that <p,q> E B. Then CM (D).
. . 3·· Lu s i 11 2D=<p,q>, lS elementary abellan of order 2 and It contalns exc USlve y

central involutions. Exactly one of these, say p *q has the property

that <p,p * q> and <q,p * q> are members of B while p * q;ipq. Clearly

p * (p * q)=q. Therefore <p,q,p * q> and its transforms under M12 , is a

good choice for a line of 3 points on the set of all central

involutions. It can be checked that these are the lines of the gene-

ralized quadrangles of 15 points obtained from (10). Our analysis shows

that M12 . 2 acts on these lines of 3 points while it does not act on the

quadrangles. This means that there are 264 quadrangles (instead of 132

so far) on which M12 . 2 acts. Hence we get the following geometry

for M12 . 2 .

In the last residue we recognise a truncation of the cube namely

o
2
6

o
2
12

o
2
8

has two orbits on the 2-elements and so we

to that arising from the Dynkin diagram Dn

On this geometry (11), M
12

expect a phenomenon similar

We indeed get
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which admits polarities, but in which (IP) fails since a 0 2,3,3 0

3 3
oontradicts (IF). 4 4

All polarities of (12) are conjugate. They admit 15 absolute points

and their ce ntralizer in M12 is 2 x A
5.

We did not analyze truncations of (11).

7.More on central involutions,

The following geometry is produced by Ronan and Stroth [12]; it

arises implicitly in the work of Goldschmidt [6].

g 8,12,:1-2

3
495

[2 1+4JS
3

The incidence graph, seen from a

12
12

24

is as follows

16

M12.2
acts on this geometry which is close to a classical generalized

polygon over F
2
, by the fact that B is a 2-Sylow subgroup of M12,

8.Further with central involutions.

Let us consider as points now, the 132 blocks of S(5,6,12) and

take as adjacency the fact that two blocks intersect in 4 points of

S(5,6,12). Then we get a graph as follows

20 20

1 1

45 45
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The group M
SS4

has 2 orbits of 4 points in this graph and these orbits

are cliques. Indeed, in S(5,6,12) M
S
S4 has an orbit of 4 points and

one of S points. The determines 4 blocks on it and on the second,

there is an invariant pairing such that any 3 pairs in it constitute

a block. This gives our two orbits of 4 points of M
S
. S4 in 0

132
.

Taking these two families of 4-cliques as elements of a geometry, of

different types, we obtain

<] 3 495 [2 3] S4
132 2

SP4(2) -5 495 [2 3] S4

which satisfies (IP). The group M
12 . 2

does not act on the points and

so it provides no dualities. Could there nevertheless be dualities?

Assume a is one. Then it must centralize M12 and therefore it fixes

each point in (14). Then it fixes also each 4-clique. Hence there are

no dualities. Two of the truncations give (10) again. We did not ana-

lyze the third one.

We can slightly modify our construction. Instead of 132 points we

take 66 points Or cosets of some M
10

. 2 , or pairs of points in the

Steiner system. Here MS . S4 has an orbit of 4 points consisting of the

4 two-cycles of its central involution on 0 12 . By intersections,

these sets of 4 points give also sets of 2 points and we can analyze

this situation to get

c S
0-----0-----0 B=2.4.2
232

66 14S5 495

M10.2 [2.4] S4

=SP4(2).2

The relation between (14) and (15) is clear: identifying all hyper-

planes in (14) we get the same diagram as in (15) and very likely, a

covering of (15).

We did not analyze truncations here.

9.Another geometry of

Ronan [personal communication] and G. Gla uberman have observed the

following geometry which is remarkably close to a generalized polygon



(16) o 5,6,6

4
220

2
[3 .2] S4
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It has polarities with 20 absolute points. Here is the incidence

graph, seen from a point (G.Glauberman and A.Katz, personal communi­

cation) .

1 4 12 36 1
0 4­­­10­3 --{D3­ ­ ­ 10 3­ ­ ­ 1

10.The lonesome L2(11).

1 g 27

1 2

It is striking that maximal subgroups L2(11) do not interfere

very much with the other maximal subgroups of M12 . This is perhaps

not completely hopeless for the smaller maximal subgroups, which we

did not analyze much. Anyway L2(11) has an interesting life on itself.

Let us recall that there are 2 classes C1,C2 of subgroups L2(11)
in M12 . The members of C1 are maximal. Each element of C2 is in a

unique subgroup M
11

of each of the two classes of such subgroups. In

M12 . 2 , C1 and C2 are invariant and the normalizer of a subgroup

L2(11) is now PGL
2(11)

which is maximal in M12 . 2 , in both cases.

Consider the action of M12 on the 144 cosets of some L2(11).
Since the degree 144 is small and since an element of order 11 fixes

a point. it is not hard to show that the subdegrees must be 1.11.11.55

and 66. The group M12 . 2 acts on the 144 points and fuses the two

suborbits of degree 11 since PGL
2(11)

cannot act on 11 points.

Let a plane be any subset of degree 11 which is a suborbit of a

point stabilizer. Together with its transforms it generates a semi­

biplane in the sense of D.Hughes [7].

(17)

(18)

o_C__o_ :;)_ . ­0 B=S

2 10 2 3
144 3960 144

L2(11) t3X 2] 2. 2 L2(11)
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These two geometries are non isomorphic. We do not know whether there

are polarities. Truncations were not analyzed. The group M12.2 acts

on the points with PGL2(11) as point-stabilizer. It does not act on

the planes but rather on 288 planes whose geometry will not be further

studied here.

Let now M11 act on the 144 points. This is a transitive action

and it must necessarily lead to 12 blocks of imprimitivity of size 12.

Consider such a block as a hyperplane. Its stabilizer is a subgroup

L2(11) of M11 which is 2-transitive on the 12 points of the block. By

intersections, this generates another semi-biplane which was disco-

vered by D.Leonard [8].

c
(19) 0------0------0 B=5

2 11 2
144 4752 144

L2(11) f5]2.2 L2 ( 11 )

Here the stabilizer of a point is maximal and the stabilizer of a

plane is not. Hence there are no dualities. However the action of M11
provides a parallelism on the planes which is invariant by M12 and

since there are 2 classes of subgroups M
11 ,

there are 2 invariant

parallelisms. These two parallelisms are interchanged by M12 . 2 .

We did not analyze truncations.

11.Some other interesting situations.

If we dualize (9) on 495 points and if we let M12 . 2 act on it

we get 440 (instead of 220) lines of 9 points and a geometry having

(IF) :

(20) B=2.4,S
3

We did not determine the parameters do,d1.

The following are also given in such an incomplete way.

o
10

1320

[A
4]xS3

4,do,d1o
3

396

[2] S5



(22)
4,do,d1

0----.::.0

3 8
495 1320

2.4,S 4 [A
4]

X S
3
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Orbits and Enumeration

Peter J. Cameron
Merton College, Oxford OXI 4JD, U.K.

1. Introduction

Sequences of natural numbers feature prominently in almost all parts of mathematics,

as well as many areas outside the traditional boundaries of the subject. Neil Sloane's

"Handbook of Integer Sequences" [11] bears testimony to this fact. It is a list of

2372 sequences, in lexicographic order, drawn from a wide range of topics. The only
criteria for inclusion of a sequence of natural numbers in the Handbook are that

enough terms should be known to distinguish it from its neighbours, and that somebody
must have found it interesting enough to commit it to print in the scientific litera­
ture.

The sequences discussed in this article arise in the following way. G is a group
of permutations of an infinite set X, having the property that G has only finitely

many orbits on the set of all k­element subsets of X, for each natural number k; we

let nk(G) denote the number of these orbits (with the convention that no(G) = 1).

For example, if G= S, the symmetric group on X, then nk(G) = 1 for all k, and
G real izes the sequence (1,1,1. .. ) (which, for technical reasons, does not appear in

the Handbook). If we take instead for G the direct product of two copies of S, acting

on the disjoint union of the corresponding sets, then nk(G) = k+1, since a k­set
contains t points from the first G­orbit (for some t E {0,1,2, ... ,k}), and the orbit
containing the k­set is completely specified by the value of t. Thus G realizes the

sequence (1,2,3,4,5, ... ) of natural numbers (#173 in the Handbook).

type we are considering, let fG(t) denote the formal power series

An easy argument shows that fGxH(t) = fG(t)fH(t), where the direct

This can be described concisely using generating functions. For any group G of the
<0 k
L nk(G)t .
k=o
product acts on

-1 ­2the disjoint union of the two sets. Since fS(t) = (l­t) , we have fSxS(t)=(l­t) ,

from which our above observation follows by the binomial theorem. More generally, we

have f m(t) = (l­t)­m, so that nk(Sm) = thus the groups S3,S4
S

realize the sequences of triangular, tetrahedral, and higher figurate numbers

(##1002, 1363, 1578, 1719, 1847, 1911, 1976, 2013, 2046 and 2073). (From now on, #N

refers to sequence number N in the Handbook.)
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Looked at another way, nk(Sm) is the number of partitions of k into m parts (of
which some may be zero), where the order of the parts is significant; that is, the

number of ways of placing k identical objects into m distinguishable boxes. We see

that there is an enumeration problem intimately connected with the group. In this ar­
ticle, I shall examine which enumeration problems are connected with groups in this

way, and what it tells us about an enumeration problem to know that it determines

(nk(G)) for some group G. Sections 2­4 treat the first topic, giving constructions

of groups (and sequences) using wreath products, ultrahomogeneous models, and ad hoc
methods. Section 5 discusses model­theoretic generalities about the sequences (nk(G)),

while section 6 examines the question of rate of growth of such sequences. The final

section introduces a further sequence associated with certain groups G, in terms of a
graded algebra AG; this sequence enumerates "connected structures" of the type con­

cerned.

Of course, more than one group can realize a given sequence. As well as S, the

group A = of all order­preserving permutations of the rational numbers

satisfies nk(A) = 1 for all k. However, whereas there is an element of S mapping a
given k­tuple to another given k­tuple in any order, in A we may map only in one pre­
scribed order. We say that S is highly transitive, and A is highly homogeneous but not

highly transitive. We will exploit the difference in the next section.

2. Wreath products

The wreath product provides a means of constructing new groups (and hence new se­

quences) from old ones, that is considerably more flexible and subtle than the direct
product construction mentioned in the preceding section. Among the sequences we will

meet here are the Fibonacci sequence and the partition function.

Let Hand K be permutation groups on sets Y and Z. set X = Yx Z, regarded

as a family of copies of Y indexed by Z. The wreath product G H K is generated

by (i) the cartesian product of IZI copies of H, one for each element of Z, where the

copy of H indexed by z E Z acts on the copy of Y indexed by z and fixes all the

others pointwise, and (ii) elements of K, permuting the copies of Y among themselves

according to their given action on Z.

Examples. (i) Let Sm be the finite symmetric group
of G = S Wr Sm on k­sets is determined by a partition of
ly empty, where the order of the parts is irrelevant; so

of placing k identical objects in m identical boxes, with

fG(t) = (1_t)­1(1_t2)­1 ... (l_tm)­l.

of degree m. Then an orbit

k into m parts, some possib­

nk(G) is the number of ways
generating function
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For m = 3,4,5,6, we obtain sequences ##186, 229, 237, 243.

(ii) Similarly, is the number of partitions of k into parts of size
at most m; by the familiar duality of partitions, this is the same as above.

(iii) nk(SWrS) is the number p(k) of partitions of k (#244), with generating

function ; (l_ti)-l.

i=o

Example. Recall the group A = An orbit of G = on k-sets is de-
termined by a partition of k into parts of size 1 or 2, where the order of the parts
is important; that is, an expression for k as a sum of ones and twos, in order. It

is well-known that this implies that nk(G) = Fk, the kt h Fibonacci number (#256).

This example shows that (nk(GWrH)) is not determined by (nk(G)) and (nk(H));
we require more information about H, which can be summarized in a formal power series

in countably many indeterminates (see [2 III] for details).

The cycle index of a finite permutation group G is the polynomial in the indeter-

minates 51's2"'" given by

where ni(g) is the number of cycles of lenght i in the cycle decomposition of g. If
G is any permutation group with nk(G) < 00 for all k, select representatives

X1,X2, ... of the G-orbits on finite sets, and let Gi be the (finite) permutation

group induced on Xi by its setwise stabilizer. The modified cycle index of G is
def ined by

Z(G;sl,s2"") = ; Z(G i ;sl,s2" .. ).
1

(Our convention is that the cycle index of the "group of degree zero" is 1.)

If G is finite, then Z(G;sl,s2"") = Z(G;sl +1, s2+1, ... ).

Let Nk(G) be the number of orbits of G on ordered k-tuples of distinct elements,
00 k

and FG(t) = L Nk(G)t /k!. The next result summarizes properties of the modified cycle
k=o

index and its connection with our problem.

2 3
Theorem 2.1. (i) fG(t) = Z(G;t,t,t , ... ).

(ii) FG(t) = Z(G;t,O,O, ... )

(iii) Z(GxH) = Z(G)Z(H).
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(iv) Z(GWrH) is obtained from Z(H) by substituting Z(G;sk,s2k,s3k,· .. )-1

for each occurrence of sk' for k = 1,2 ....

(v) If G is transitive, then Z(Gx)

of x, acting on the points different from x.

Z(G), where Gx is the stabilizeraS1

Corollary 2.2.

We have fS (t)
2

ra ti ng functi on

Example. The group A has a single orbit on k-sets for each k, and the group in-
2duced on a k-set is trivial. So Z(A; sl ,s2'''') = 1 + sl + sl + ... = 1/(1-s1)'

2 2= 1 + t + t, so fS2wrA(t)= 1/(1 - t - t), the well-known gene-

for the Fibonacci sequence.

In the same way, we see that the sequences real ized by SmWr A for m = 3,4,5,6
are the tribonacci, tetranacci, pentanacci and hexanacci numbers (##406, 423, 429,

431); while if G is the iterated wreath product of m copies of A, then G realizes
the sequence of powers of m (for m = 2,3, ... ,9,11, these are ##432,1129, 1428, 1620,

1765, 1874, 1937, 1992 and 2054).

The modified cycle index of the infinite symmetric group S is a bit more compli-
co

cated, but familiar manipulations (see [8J p.52) put it in the form exp L (Sj/j).
j=l

Further manipulation shows that, if nk(G) = mk, then
co j -mj

fGWr S(t) = .n (1-t) .
J=l

(This is easily proved directly.)

Taking m. = 1 for all j, we obtain the generating function for the partition
J

function p(k). Taking mj = p(j), we see that realizes #1019 in the
Handbook, studied under the name "functional determinants" by Cayley. Sequences pro-

duced by further iteration do not appear in the Handbook.

Any non-trivial wreath product is imprimitive, in the sense that there is a proper

equivalence relation left invariant by the group. Conversely, any imprimitive group
can be embedded in a wreath product. The techniques of this section are useful in

studying (and finding lower bounds for) sequences realized by imprimitive groups. In

the next two sections, I give some constructions which yield primitive groups.

Incidentally, I do not have any example of a sequence realized by both a primitive

and an imprimitive group.
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3. Ultrahomogeneous models

The countable random graph r (see [6]) has the property that any isomorphism bet­

ween finite induced subgraphs of r can be extended to an automorphism of r. Moreover,

every finite graph occurs as an induced subgraph of r. Thus, if G is the automorphism

group of r, then nk(G) is the number of isomorphism types of graphs with k vertices.
So G realizes the sequence (1,1,Z,4,11,34, ... ) (#479).

This is a special case of a very general phenomenon. Call a structure r ultrahomo­

geneous relative to an isomorphism­closed class C of finite structures if (i) every
finite subset of r carries an "induced substructure" in C, and every member of C is

isomorphic to an induced substructure of f; and (ii) any isomorphism between finite

induced substructuresofrcan be extended to an automorphism of r. Thus, if G is the

automorphism group of r, then nk(G) is the number of k­element structures in C, up

to isomorphism. Furthermore, the modified cycle index of G (if it exists) is the sum

of the cycle indices of the automorphism groups of all C­structures.

In what follows, it will be convenient to talk of classes of structures containing

infinite as well as finite members (e.g.graphs). Necessary and sufficient conditions
for the existence of a unique countable ultrahomogeneous structure in C (corresponding
to all the finite members of C) are as follows:

(a) C has only countably many finite members, up to isomorphism;

(b) any finite subset of a C­structure carries an induced C­structure, and

inc 1us i on maps behave well (so that r.estricting to Y and then to Z Y

yields the same result as restricting to Z);

(c) a structure of type C is determined by its finite substructures (in the
sense that if every finite subset of X carries a C­structure, and if the

inclusion maps behave well, then there is a unique compatible C­structure
on X);

(d) (the amalgamation property)

f i : Mo .... Mi are embeddings

and embedd ings gi : Mi .... M3

if Mo,M1 and MZ are C­structures, and

(i = 1,Z), then there is a C­structure M3
(i = 1,Z) such that fig i = fZgZ'

The reader is urged to check that conditions (a)­(d) hold for the class of graphs.

A proof of the equivalence is given in [IZ], and further discussion in [4].

The amalgamation property says, loosely speaking, that if we are given two C­struc­

tures with a common substructure, then an amalgam exists in which the intersection of

the two structures is at least the given substructure.
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In many situations, the first three conditions are obvious, and only the fourth

requires proof. (Thus, (a) - (c) hold if C is the class of all relational structures

over a given first-order language with no function or constant symbols, or all those

satisfying a given collection of universal sentences. For example, the structure of

a graph is completely determined by the knowledge of all its 2-vertex subgraphs.)

Thinking of a complementary pair of graphs as a colouring of the edges of the

complete graph with two interchangeable colours, we see that there is a group G

for which nk(G) is the number of k-vertex graphs up to complementation (the average
of ##479 and 780). (Alternatively, the random graph r is self-complementary; let G
be the group of its automorphisms and anti-automorphisms.) Similarly, there is a

group G for which nk(G) is the number of switching classes (Seidel equivalence
classes) of graphs on k vertices (#321). We may allow the graphs to have loops (#646),

or to be directed (##715,784, 1229). Other examples are tournaments (#484), and va-

rious generalizations to relations of higher arity (##606, 872, 875).

Note that, if the group G and the class C are related in the above way, then

nk(G) is the number of unlabelled k-element structures in C, while Nk(G) (the
number of orbits of G on ordered k-tuples) is the number of labelled k-element struc-
tures in C. However, in some cases, it is possible to construct a group G' for

which nk(G') is the number of labelled k-element structures. The requirement is

that the amalgamation in (d) can be performed without making any additional identifi-
cations. For example, let C be the class of graphs. Take C' to be the class of struc-

tures each of which consists of a graph together with a total ordering of the vertices

Then C' still satisfies (a) - (d); and a finite C'-structure is essentially a labelled
graph, so the corresponding group G' realizes the sequence (1,1,2,8,64,1024, ... )

enumerating labelled graphs.

Three further examples of this phenomenon:

(i) If C is the class of total orders, then nk(G') is the number of orderings
of {1,2, ... ,k}, viz.k! (#659). This example can be modified by regarding the two

total orders on a C'-structure as interchangeable, giving a group realizing the se-

quence (1,1,2,5,17,73, ... ), the average of ##469 and 659 (the number of inverse pairs

in Sk)'

(ii) If C corresponds to the group G = (so that nk(G) is the number of

partitions of k), then nk(G') is the number of partitions of the set {1,2, ... ,k},

the kt h Bell number (#585).
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(iii) If C is the class of k-uniform hypergraphs, then G' is a subgraph of

which is (k-1)-homogeneous but not k-homogeneous, answering a question of
Glass ([6], p.248).

4. Other examples

There is a group G realizing the sequence #545 (1,1,2,5,11,26, ... ) enumerating

graphs with k edges and no isolated vertices. For let X be the set of all 2-element

subsets of an auxiliary infinite set Y, and G the symmetric group on Y, in its in-

duced action on X. A k-subset of X consists of k distinct 2-subsets of Y, i.e.
k edges of a graph on Y; two k-sets are in the same orbit if and only if the corres-

ponding graphs (after deletion of isolated vertices) are isomorphic. In a similar

way, we can realize the sequence enumerating t-uniform hypergraphs with k edges, for
given t. Furthermore, the direct product of two symmetric groups, acting on the direct

product of the underlying sets, realizes the sequence enumerating graphs with kedges

having a named bipartite block, while its extension by a group of order 2 (inter-
changing the factors) realizes the sequence enumerating graphs with k edges having a
named bipartition.

Further examples include the collineation groups of projective or affine spaces

of infinite dimension over finite fields. In these cases, nk(G) is the number of
different configurations of k points in projective or affine space, up to collineations

of the space.

In the above example, the connection between the groups and the structures enumer-

ated is fairly obvious. This is less so in the next three cases. They are #121

(sequences generated by a binary shift register), #298 (commutative bracketings -
the Wedderburn-Etherington problem), and #122 (boron trees).

The binary sequences in the first case are defined by the condition xi+k = 1 + Xi

for all i; two sequences are equivalent if they differ by a cyclic shift. The group

G is constructed in [2 IT]: it is a transitive extension of the subgroup of A fixing

a dense subset of with dense complement. (The fact that all such subsets are equiva-
lent under order-automorphisms of was proved by Skolem.) In another formulation,
the structures being enumerated are local orders, or tournaments containing no 4-vertex

subtournament consisting of a vertex dominating or dominated by a 3-cycle. Any local

order gives rise to a circular ordering of the point set; the local orders giving a
fixed circular order form a SWitching class. The equivalence of local orders and

shift register sequences was shown by A.Brouwer, after he had noted that the sequence
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obtained in [2 IT] for (nk(G)) agreed with #121 in the Handbook - a good example
of how the Handbook was intended to be used!

The Wedderburn-Etherington numbers count commutative bracketings of a sequence of

k symbols, or words of length k in the free commutative non-associative structure on

1 generator. Equivalently, they count binary trees with k end vertices, where the

distinction between left and right is not significant. The corresponding group was
constructed in [2 IV] as a group of permutations of the set of finite sequences of

rational numbers. (If the left-right distinction is significant, we obtain the se-

quence of Catalan numbers; I do not know any group realizing this sequence.)

A boron tree is a tree in which all vertices have valency 1 or 3. The sequence

enumerating boron trees is realized by a group which is a transitive extension of
the group described in the preceding paragraph. (This is to be expected, because of

the correspondence between boron trees rooted at an end vertex and binary trees.)

Inspection of the boron trees with up to 5 end vertices shows that this group is

5-homogeneous (n5(G) = 1) and 3-transitive but not 4-transitive. Thus it is a

counterexample to an earlier conjecture of the author (see [4]).

It is notable that the last three groups were constructed in the context of prob-

lems of a purely permutation-group-theoretic nature: see [2, II, IV]. Another common

feature of the three will be seen in Section 6.

5. Model-theoretic observations.

In this section and the next, we turn to the question: which sequences (nk) of

natural numbers are realized by a group G, in the sense that nk = nk(G) for all k?

First, we observe that it is enough to consider groups of countable degree.

Proposition 5.1. If G is an infinite permutation group with nk(G) < 00 for all k,
then there is a countable permutation group G1 of countable degree satisfying

nk(G) = nk(G1) for all k.

Proof. There are first-order formulae in a suitable language expressing the facts
that G is a group, that G acts on X, and that G has nk orbits on the set of k-element

subsets of X for all k. Now the existence of a countable model follows from the down-

ward Lowenheim-Skolem theorem ([1], p.10).

This argument can be modified to find a group G1 of countable degree with the same

modified cycle index as G. However, there is another way to proceed. Given the group

G, construct a first-order language with a name (a k-ary relation symbol) for each

orbit of G on ordered k-tuples, for each k.
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The set X carries an ultrahomogeneous relational structure over this language, with
G as an automorphism group acting "ul trahomogeneously". It follows easily that the

class of finite substructures of X satisfies conditions (a)-(d) of Section 3. We de-

duce the existence of a countable ultrahomogeneous model on a set Xl' with automor-
phism group Gl . (If a countable group is desired, enumerate the pairs of k-tuples
lying in the same orbit, select an element of Gl mapping the first member of each
pair to the second, and take the subgroup generated by these elements.) This argument

shows that, in a certain sense, the construction of Section 3 is the most general one

possible. However, it often tells us more about a structure to have an explicit con-

struction than merely to have an existence theorem, as the last three examples of

Section 4 show.

Next, we show that there is no upper bound for the rate of growth of the sequence

(nk(G)), with the consequence that there are uncountably many such sequences.

Proposition 5.2. Given a natural number t and a sequence (m k) of natural numbers,

there is a group G such that nk(G) = 1 if k < t, while nk(G) mk if k t.

Proof. A structure in the relevant class consists of a set, together with a col-

ouring of its k-element subsets with mk distinguished colours for each k t. Clearly

this class has properties (a)-(d) of Section 3. Now let G be the automorphism group
of the countable ultrahomogeneous structure.

Corollary 5.3. There are uncountably many sequences (nk(G)).

Proof. This is a simple diagonalization. If there were only countably many, say

(nk(Gl ) ) , (nk(G2)), ... , apply (5.2) with t = 1, mk = nk(G k)+l, to obtain a contra-
diction.

the construction of Propo-
k-l

p = Ln.: note
j=o J

For those who don't believe the Continuum Hypothesis, I remark that, in fact, there
N

2 0are such sequences. (Given a subset V of IN, perform

2ksition5.2with mk=l if k¢V,mk=p +1 if kEV,where

that nj depends only on We have mk if k ¢ V; so we can re-

cover the set V from the sequence.)

By contrast to Proposition 5.2, we have the following:

Proposition 5.4. Let G be the automorphism group of an ultrahomogeneous structure

with only finitely many relation symbols. Then nk(G) is bounded by the exponential
of a polynomial in k.
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Proof. If the relations have arities m1,m2, ... ,mn, then the number of isomor-
(k) m1 m2 mnphism types of k-element structures is at most 2P , where p(k) = k + k + ... + k

We can formulate the general existence question as follows. Suppose that we are

given a sequence (nk). As in the proof of (5.1), there is a first-order theory of

groups realizing this sequence. Is this theory consistent? According to the Compact-
ness Theorem ([1], p.l0), the theory is consistent if, for every natural number t,
there is a group Gt with nk(Gt ) = nk for all k t. This suggests looking for
"local" necessary conditions. Some conditions of this sort are given in the next sec-

tion, as well as others of a more "global" character.

There is another way in which our problem is related to model theory. Let L be a

countable first-order language with no function or constant symbols, T a complete

consistent theory over L, and Man infinite model of T. A theorem of Engeler, Ryll-

Nardzewski, and Svenonius ([1], p.81) asserts that T is -categorical if and only if
Aut(M) has only finitely many orbits on k-subsets of M. for all k. (Another equiva-
lent condition is that, for each k, there are only finitely many k-tuples of elements

of M, up to elementary equivalence in M.)

6. Necessary conditions.

In this section we list a few known properties of the sequences (nk(G)) arlslng

from groups G. Obviously, a sequence must satisfy these conditions if we are to be

able to find a group realizing it!

The most important property is that such sequences are non-decreasing.

Theorem 6.1. nk+1(G) nk(G).

This raises two questions: how fast must the sequence grow, and in what circum-

stances can consecutive terms be equal?

Examples in Sections 1 and 2 show that intransitive groups, or transitive but im-

primitive groups, may exhibit polynomial growth rate. By contrast, Macpherson [9]

showed the following:

Theorem 6.2. If G is primitive, then either nk(G) = 1 for all k (G is highly
1/2-£homogeneous), or for any £ > 0, nk(G) > exp(k ) holds for all sufficiently

large k.

It is conjectured that in fact, for primitive but not highly homogeneous groups,

the sequence (nk(G)) grows at least exponentially.
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It is known [2 IV] that, in order to prove this, it is enough to show that a primitive

group realizing slower than exponential growth rate is 3-homogeneous. Macpherson has

refined the techniques used for Theorem 6.2 to an extent where a proof of the con-
jecture looks possible.

In fact, very few examples are known of primitive groups where the growth rate is
exponential, that is, where log nk(G) c k: only the last three examples in Section
4 and some related ones. (We have c = log 2 for #121, and c = log 2.48 ... for ##122,

298. No example with c < log 2 is known.) Perhaps there is a gap between exponential

growth and the type exhibited by ##545, 659, that is, log nk(G) c k log k. If this

were true, the sequences with exponential growth would be especially interesting.

Questions about growth rate can be asked even when no group is present. Here are
SOOle examples.

(i) In the Engeler-Ryll-Nardzewski-Svenonius theorem (see Section 5), is it true

that if T is finitely axiomatisable, then nk(Aut(M)) is bounded by the exponential
of a polynom ia1 (cf. (5.4) )?

(ii) A theorem of Pouzet [8] asserts that, if R is a relation on an infinite set,

and mk the number of restrictions of R to k-element subsets, then either (m k) grows

polynomially (i .e. a kn;:; mk;:; b k
n for some natural number n and positive constants

a and b), or (m k) grows faster than any polynomial. Can this be extended to structures
with arbitrarily many relations? What can be said about structures with polynomial

growth? (For example, which infinite graphs have this property?) And if the growth

rate is faster than polynomial, must it be at least fractional exponential?

Turning to the other question, groups with nk = nk+ 1, we observe that any (k+1)

homogeneou s group (that is, a group with nk+ 1 = 1) has thi s property, by Theorem 6.1.
A considerable amount is known about such groups (see,for example,[2 IV]), but for

the present problem we regard them as "trivial". In [2 IJ it is shown that, if

nk(G) = nk+ l(G) and G is intransitive, then G fixes a set of size at most k and acts
(k + l j-hrmoqeneous ly on its complement. Thus, we need only consider transitive groups.

A similar reduction in [2 II] allows us to consider only primitive groups. It is also
shown there that no primitive group G has n2(G) = n3(G) > 1; while if G is transitive

and n3(G) = n4(G) > 1, then G acts on a dense local order (so that G is a subgroup

of the group associated with #121 if its degree is countable). Other known examples

of primitive groups with nk(G) = nk+1(G) are the infinite-dimensional affine group
(k=4), the group associated with switching classes of tournaments (k=4), the group

associated with boron trees (#122) (k=6), and a related group associated with "boron-

carbon trees" (k=4). In all known cases, nk(G) = 2 and G is (k-1)-homogeneous.
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The investigation of groups with this property has raised a number of interesting

combinatorial questions, related to Ramsey's theorem. For a discussion of some of

these, see [3] and [4].

It is shown in [2 I] that, if G is transitive and nk(G) = nk+ 2(G), then G is

(k+2)-homogeneous. Evidence suggests that, for primitive groups, the sequence (nk(G))
2is nearly log-concave; that is, violations of the inequality nk(G)nk+2(G) nk+1(G)

are comparatively rare. (This reinforces the conjecture that (nk(G)) grows at least

exponentially.) The only result in this direction is

by Cameron and Saxl [5].

An interesting test case is k=l, assuming that n1(G) = 1 (that is, G is transi-

tive). Putting n2(G) = r , n
3(G)

= s , the above formula gives s -1). This

bound is attained for G a finite elementary abelian 2-group acting regularly (and
only for such a group). Even for infinite primitive groups, it is best possible, apart

from a factor. (For example, let C-structures consist of colourings of the edges of

complete graphs with r colours in such a way that any triangle has at least one edge
of the last colour. The automorphism group Gof the countable ultrahomogeneous C-

structure is primitive and has n2(G) = r, n
3(G)

= For r=2, the subgraph

of the first colour is that described by Woodrow [12].)

7. Algebras

We have already seen (in
00 k
t nkt
k=o

Section 2) the
00 • -m.
n (l-tJ ) J
j=l

relation

(*)

There, it connected the sequence (mk = nk(H)) with the sequence (nk = nk(H Wr S)),
where S is an infinite symmetric group. There are two other familar situations where

(*) occurs:

(i) If mk is the number of connected graphs with k vertices, then nk is the total

number of graphs with k vertices. Similarly for connected graphs and graphs with k
edges, trees and forests with k vertices, etc.

(ii) If A is a graded algebra which is a polynomial ring generated by mk homogene-

ou s elements of degree k (for each k), then nk is the dimension of the kt h homogeneous

component.
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These three occurrences of the same relation are, of course, not unconnected.

Let X be a set (in our application, an infinite set). Let Vk be the rational vector

space of functions from k-subsets of X to and A = @V; define multiplication
k=O k

on A by setting, for f E Vk, g E V-f.' Ms X, IMI = k+-f.,

(fg) (M) = L f(K)g(M-K),
KSM
IKI=k

and extending linearly. This makes A a (commutative and associative) graded algebra.
If G is a permutation group on X, vk

G the vector space of G-invariant functions in
G 00 G G

Vk' and A = @Vk' then A is a subalgebra of A; and if nk(G) is finite, then
k=O

dim vk
G = nk(G).

Remarks: (i) Theorem 6.1 follows from the fact that, if e is the constant func-

tion in VI with value 1, then e is not a zero-divisor, so that multiplication by e

is a monomorphism from vk
G to Vk+1

G

(ii) Macpherson's result (Theorem 6.2) implies that, if G is primitive, then AG

cannot be finitely generated unless G is highly homogeneous ( in which case AG is the
polynomial ring generated bye).

Under certain conditions, AG is a polynomial ring. If G is the automorphism group

of the countable ultrahomogeneous structure in a class C, then sufficient conditions
can be formulated in terms of C. The' requirements are that C possesses concepts of

"connected structure" and "disjoint union" (so that any structure is uniquely the

disjoint union of connected ones) and "involvement" (so that, if the point set of a

C-structure M is partitioned, then Minvolves the disjoint union of the induced struc-
tures on the parts). We see immediately that for the groups G corresponding to the
sequences #479 (graphs with k vertices) and #545 (graphs with k edges), the algebra

AG is a polynomial ring; and the sequences enumerating its polynomial generators by
degree are #649 (connected graphs with k vertices) and #985 (connected graphs with

k edges) respectively.

If G = HWr S, then a member of the class enumerated by (nk(G)) consists ofa par-
tition of k together with a structure from the class enumerated by nk(H) on each part.
The connected structures are precisely those in which the partition has a single part.

Thus AG is a polynomial ring, and the sequence enumerating its generators is (nk(H)).

It would be interesting to have further examples. A first step might involve com-

puting the sequence (mk) from a given sequence (nk) using (*), and checking whether

it occurs in the Handbook.
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A test case is #321 (switching classes of graphs). Since there are equally many

switching classes and even graphs, the sequence (mk) enumerates connected even graphs

(i.e. Eulerian graphs). However, I do not know whether AG is a polynomial ring or not

Of course, AGis not always a polynomial ring. For example, if H is a finite per­

mutation group, then ASWr H is isomorphic to the ring of invariants of H, where H

acts as a linear group via permutation matrices (see [2 II]), so that fSWr H(t) is
the Molien series of H. (It is an interesting exercise to check that Corollary 2.2

agrees with Molien's theorem in this case.)
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PICTURES AND SKEW (REVERSE) PLANE PARTITIONS

Michael Clausen and Friedrich Statzer
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D-8580 Bayreuth, West-Germany

Pictures first appeared in papers by James/Peel [2] and Zelevinsky [5,6] in connec-

tion with the representation theory of symmetric groups. Roughly speaking a picture

is a bijection T:A-+B (A,B:::N XJN) such that T and T-
1
both satisfy the same stan-

dard property. We distinguish two different standard properties, which are defined

by means of several orderings of IN XJN:

(a,b) ,,;; (c,d) :- (a";; c and b";; d)
P

(a,b) ,,;; (c,d) :- (a";; c and b;;;' d)
C

(a,b) ,,;; (c,d) :- (either a < c or a = c and b";; d)
L

(a,b) ,,;; (c,d) :- (either a < c or a = c and b;;;' d)
J

Note that 'f (resp. 'j) is a linearization of (resp. A map f :X-+Y (X, Y :: IN xJN)

is called PJ-standard (resp. PC-standard), iff f is an order morphism

(resp. A bijection T:A+B (A,B:::N xJN) is said to be a PJ-picture
-1

(resp. PC-picture) of shape A =: ITI and content B, if T and Tare PJ-standard

(resp. PC-standard). Let PJ(A,B) (resp. PC(A,B)) denote the set of all PJ-pictures

(resp. PC-pictures) of shape A and content B.

Since 'j is a linearization of we get immediately PC(A,B) :: PJ(A,B).

Example.

illustrates the bijection T of shape

A = {(1,4),(2,3),(2,4),(2,6),(4,2)}
T

and content

B = {{l,3),{l,4),(2,1),(2,2),(2,3)} with

T (1 ,4) = (l ,3), T (2,3) = (1 ,4), T (2,4) = (2,2), T (2,6) = (2, 1), and T (4,2) = (2 ,3) •

T is PC-standard as well as

-1
T

Hence T is a PC-picture.
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is a PJ-picture but not a PC-picture.
o

A problem which arises in representation theory is to compute explicitly all pic-

tures between two skew diagrams A and Bo Before we establish an algorithm which con-

structs all those pictures by suitable hook deformations we give some characteriza-

tions of pictures.

The reader is referred to [1] for a more detailed exposition.

1. Pictures

We have learnt the following useful "geographical" notation from A. Zelevinsky

[5,p.157].

d

Every point (c,d) E IN XJN decomposes

1'1XJN into disjoint subsets:
c

NW N NE

W E

SW S SE

We write (a,b) (X,Y, ••• ,Z) (c,d) iff (a,b) * (c,d) and (a,b) lies in one of the re-

gions X,Y, ••. ,Z with respect to (c,d).

Example. (a,b) (c,d) - (a,b) (N,NW,W) (c,d). 0

We frequently have to deal with bijections T:A+B satisfying for all x,y E A some

of the following "geographical" conditions.

name geographical condition

(E) x (E) x T(x) (W,SWl T(y)

(S,SE) x (S,SE) Y T(x) (SW,S ,SE) T(y)

(S) x (S) y T(x) (SW,S) T(y)

(SE) x (SE) Y T(x) (SW) T(y)

(SW) x (SW) y T(x) (SW,S,SE,E,NE) T(y)

By definition, a subset A of IN xJN is P-convex iff x y z and x,z E A implies

yEA. Finite P-convex sets will be called skew diagrams. A skew diagram containing

the point (1,1) will be called a diagram. X A is A-regular iff there is a P-convex

set D with (1,1) ED and X = A \ D. 11
1
and 11

2
denote the natural projections JNXJN+JN

given by 1I
i

: For the chain {Xt 5 ... 5 x
n}

we often use the short-hand

notation {x , ••• ,x}< A B denotes the disjoint union of A and B.
1 n J
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Now we can state

Theorem 1. For a bijection T:A+B (A,B C :Nx:N) the following conditions are equivalent.

For all x E A: T[ {y E A x 'J y} ] is B-regular and for all z E B:

T- 1 [ {y E B z 'J y} ] is A-regular.

For all x,y E A the bijection T satisfies the geographical conditions(3)

(1) T:A+B is a PJ-picture.

(2)

(E),{S,SE) and (SW). 0

A similar characterization holds for PC-pictures:

Theorem 2. For a bijection T:A+B (A,B C:N xlN) the following conditions are equivalent.

o

(1) T:A+B is a PC-picture.

(2) For all x E A: T[{y E A x f y}] is B-regular and for all z E B:

T-
1[{y

E B z f y}] is A-regular.

(3) For all x,y E A the bijection T satisfies the geographical conditions

(E) , (S) , (SE) , (SW) •

Under additional assumptions we can give further characterizations.

(Compare with [S,p.1S7].)

Theorem 3. Let A,B :: liI X:N be P-convex. Then for a bijection T:A+B the following

conditions are equivalent.

(1) T is a PJ-picture.

(2) T is a PC-picture.

(3) For all x,y E A the

and (SW).

bijection T satisfies the geographical conditions (E), (S)

(4)
-1

IT
10T

and IT
10T

are column strict skew reverse plane partitions and ITfT as well

as IT20T-1 are row strict skew plane partitions.

[So the entries in IT
10T

are non-decreasing from left to right in each row and

strictly increasing down the columns. The entries in IT
20T

are strictly decreasing

in the rows and non-increasing down the columns.].
o

Next we answer the question which subsets of IN XlN can be the shape or content of a

picture. Define k := {1,2, ••• ,k}.

Lemma. Let \2l * A C IN XlN.

(1) If the bijection T:A+B satisfies (E) then A is row-finite, i.e. for all

i E:N: IAn {{i,j) I j E IN}1 <00.
(2) If the bijection T:A+B satisfies (E) and (SE) then A:: IN for some k E IN.

(3) PJ (A,B) * \2l for suitable B C IN XlN iff A is row-finite.

(4) PC{A,B) * \2l for suitable Be lNXlN iff A C l'/xk for some k E IN.
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" (1)" Note that if x (E) x' and T (x)
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(a,b), T(x') (a' ,b') then by (E):b < b'.

{A I 3k:A C JNXk}.

"(2)" If there is no such k then by (1) there exists an infinite sequence (x
1,x2'

••• )

of elements in A such that xi (NW) x
i
+
1•

Then T (xl) (NE) T (x 2) (NE) T (x
3)

••• , which

is impossible.

" (3) " "=0" is clear by (1) and Theorem 1.

"<=" If A is row-finite then there is a unique order isomorphism

By Theorem 1, (3), N
A

E PJ(A,A).

[N
A
will be called the natural PJ-picture with respect to Aol

"(4)" "=0" is clear by (2) and Theorem 2.

" <=" Let A C K := IN x{ 1, ••• ,k}. The natural PJ-picture N
K
is even a PC-picture.

The "restriction" of N
K
to A is a PC-picture of shape A.

D

Let be the set of all row-finite subsets of 1'1XJN and let R
O

Now we introduce equivalence relations on Rand R
O
•

A,A' E are said to be PJ-equivalent iff there exists a bijection f:A'+A such that

for all B PJ(A,B)Of := {Tof I T E PJ(A,B)} = PJ(A' ,B).

Similarly, A,A' E R
O
are PC-equivalent iff there exists a bijection f:A'+A such that

for all BE R
O

PC(A,B)of = PC(A',B).

Of course, if PJ(A,-)of = PJ(A' ,-) and PJ(B,-)og

PJ(A' ,B') = g-10 PJ(A,B)Of.

PJ (B' , -) then

We give more handy characterizations of these equivalence relations.

Theorem 4. For A,A' E the following conditions are equivalent.

(1) A and A' are PJ-equivalent.

(2) There exists a bijection f:A'+A such that for all x,y E A':

x (E) y - f(x) (E) f(y)

x (S,SE) Y - f(x) (S,SE) f(y)

x (SW) Y - f(x) (SW) f(y).

(3) There exists a bijection f:A'+A such that f is an order isomorphism

f: (A' as well as an order isomorphism f: (A' ,:f) + (A,:f) •
D

Since J is a total order there exists at most one bijection f:A'+A satisfying the

conditions above.

Theorem 5. For A,A' E R
O
the following conditions are equivalent.
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(1) A and A' are PC-equivalent.

(2) There exists a bijection f:A'+A such that for all x,y E A' and all directions

R E {E,S,SE,SW} the following holds:

x (R) Y <= f(x) (R) f(y).

(3) There exists a bijection f:A'+A such that f is an order isomorphism

f: (A' as well as an order isomorphism f: (A' ,'f)+(A,'f)'
o

If we cancel in A E R all "empty rows" and "empty columns" then we get a set cpr (A) ,

the compression of A.

Example.

A cpr (A);

Corollary. TO A cpr (A) } is a transversal with respect to PC-equivalence

o

The specification of a PJ-transversal is more complicate. For (i,j) EJNXJN,

we define

N.. :; {(k,j) I k < U U {(h,j-1) I h;;;' U.

;;;. 2,

Theorem 6. T:; {A E I A ; cpr (A) and for all (i,j) E A,

is a transversal with respect to PJ-equivalence.
[J

;;;. 2, AnN .. * ¢}

Now we are going to define orderings on TO and T allowing estimates for PC(A,B) and

PJ(A,B).

For A,C E! (resp. A,C E !o) we write A C (resp. A C) iff there exists a

bijection f:C+A such that for all B E (re sp , B E PJ (A,B)o f ::: PJ (C,B) (resp.

PC{A,B)Of::: PC(C,B)).

Theorem 7. and (');0, ';;PC) are partially ordered sets (; posets).
[J
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If A '),J B (resp. A '),c B) then necessarily IAI IBI· This suggests the following

partitions.

T = l:J l:J T and TO l:J_ l:J TO
=n =n'

n n

where

:= {A E T IAI = 00 l; := {A E TO IAI oo}

T := {A E T IAI =n l; TO := {A E TO IAI nL
=n =n

The maximal and minimal elements in the posets above are characterized in the

following.

Theorem 8.

(1) {{ (i,n+i-i) liE n} n E ]-I} is the set of all maximal elements in

as well as in

(2) A E ! is minimal in iff is linear.

(3) {{ (i, i) liE n ] n E ]-I} is the set of all minimal elements in

o
o

According to the last theorem is a poset with 0- and i-element.

Example.
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Note that is neither a lattice nor ranked. The same is true for all n>3.

This example also suggests several "geographical" dualisms and automorphisms of

), which we are going to describe now.
=n PC

A and ,A E TO is the transpose of A.
=n

D = < a , I 04=,2=1S' ,

in the following obvious way.

oA E TO is the 90
0
rotation of

=n

The dihedral group
o

on every

For A E TO,
=n

Example.

A

o
oA ,A

Obviously, D
S
acts faithfully on iff n>3. For n>3, the Kleinian 4-group

{ 22. . 0 33 .1,0 ",0 ,} lS a group of automorphlsms of (T ). O,OT,o ,0 , act as antl-automor'
2 =n PC 2

phisms on ). Note that 0 is a central symmetry and a , is a reflection fixing
=n PC

a line parallel to the axis {(i,-i) i E 2Z L
o

For 0 E DS and A E let 0A denote the obvious bijection

Then a straightforward computation shows that for all A,BET
o
the following holds:

=n

2 2 -1
a BOPC (A, B)o (a A) and

These formulae are closely related to results of Zelevinsky and Schutzenberger/Knuth.

2. Pictures between skew diagrams

Let S be a skew diagram.

In this section we want to develop an algorithm which generates the union of all

PC(S' ,S), S' a skew diagram. [Recall that by Theorem 3 PC(S' ,S) = PJ(S',S).]

We begin with the computation of the union of all PC(D,S), D a diagram.

Reversing in ids the order of the columns, we get a PC-picture T
S'

which is the star-

ting point of the algorithm.

Example.

id =5 T =
5

Now we can formulate the algorithm in its first version.
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Let S be a skew df.aqram ,

Algorithm I

(r,s) (rn,sn) and }

D
n
1!J{(r,s)} is a diagram

o

Tn(rn,Sn)' if (p,q)=(rn i ,sni )
n n

Tn (rn,q), if p=r
n i

and (rn,q)
n

Tn (p,sn)' if q=sni and (p,sn)
n

Tn(p,q), if (p,q)E D
n

Tn (p,q), if (p,q) soL p;lrn and q;lsn

Define (rn'Sn) E by

T (r,s) <::T (u,v),
n n n j n
for all (u,v)E S 0

--n

T
n
+
1
(p,q) :=

Define D 1:0 be the
n

greatest diagram con-

tained in the shape

of

YES
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Theorem 90 Given a skew diagram S, the algorithm above will produce

UD : D a diagram PC{D,S).

In addition, there are no repetitions in the listo a

In fact, the algorithm generates a directed tree of PC-pictures (see the example below)

where the tops of the branches are the desired PC-pictures. All maximal chains

T
S=T1,00.,Tk

in this tree share the following properties:

(i) D
1
CD

2
C ••• C D

k
(ii) Tk is of shape Dko

(iii) For all j >i: T.I = T. [ 0

J D
i

1. D
i

(iv) For all n <k: T I I - T [I In+1 IT \H - n T \H '
n n n n

where H := {(r ,s )} Ij {{a,b) E IT I I (a,b) (E,S) (r ,s )} is the hook in IT I
n nn n nn n

corresponding to the J-smallest entry x Tn{rn,Sn) in Tn outside D
n"

In such a chain, T
n+ 1

arises from Tn by a suitable hook deformation:

I
_.._ __----J

T
n

and

make no problems since it can be shown that Tn has no entry

ways such that
-1 1

Tn+1 (x) (N,NW,W) T
n-

(x) = (rn,sn)

-1
{T

n
+
1

(x) } D
n
is a diagram.

hook deformations

(v)

in all

In order to get in the tree all covers of Tn one has to deformate Tnl
H

,as indicated,
n

(vi)

These

in the region shaded with respect to x. This property results from the fact that a

certain subpicture of Tn has the same compression as the corresponding subpicture of

T
1
=T

S•
We indicate this in the following.

Example.

(Compare with

@-@-@
in the example

below. )

15 14 23 31

24 32
__ 3342

43

3 52

15114

124 23

33 32 31

43 42 41

53 52 51

24 '23
33 32 31

43 42 41

53 52 51

15 114

124 23

33 32 31

'4i' rr
53 52 51



s

iFs

Example. This is the tree
generated by algorithm I
with respect to the skew
diagram

@
[41J

m -, m
32 31

43 42 41

52 51

42 41,

" ".., "152 51

/
15 14 23

24 33 32 [ill
@

is 14

24 23@r 33

,3
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We will now deal with the second version of the algorithm, which for a given skew dia­

gram S will produce the union of all PC(S',S}, S' a skew diagram. Again, beginning with

T
S'

a directed tree of PC­pictures will recurrently be generated by hook deformations.

But in order to get skew diagrams as shapes empty rows and/or empty columns eventually

have to be filled in at suitable positions.

To skip formal details in the formulation of the second algorithm we are going to de­

scribe some of them now.

(a,b) t- (1,1).] The type vector

a 1 will tell us whether, or in

b. 1 1what order of succession

(a­1,b­l) Eu empty rows and/or empty co­

(a­1,b­1) $u and a>l, b>l lumns have to be filled in.

if

if

if

if
{

(1,1,0,0),

Z(U,x):= (1,0,1,0),

(1,0,0,0) ,

(1,1,1,1) ,

If A is a finite subset of NXN then the smallest diagram containing A will be called

the of A.
o

Let nEN, be a skew diagram and x = (a,b}E U a U­regular point ( Le. {x} is

U­regular). [Note that then

z (n,i
n):=

Z (U,x),:= (r
n i

,sni ) the type vector

i n n

If Tn has been constructed by the algorithm below then, according to the algorithm,

one has to associate to T and x
-1 n

whereU:={x}I!JT l{(a.,b.}
n r,

In the course of the algorithm the ones in Z(n,i
n}

will step by step be replaced by

zeroes. Such a (possibly modified) Z(n,i
n}

describes how to get the PC­picture

T := Z(n,in}*T
n
out of Tn. The "*­product" is defined as follows. lLet a,b,cE{O,l}.]

(1,a,b,c)

(O,l,a,b)

(O,O,l,a)

T := T
n

T arises from T
n

index r . -1 and
n

T arises from T
n

columns of index

by inserting in Tn an empty row between the rows of

r .
n

by inserting in Tn an empty column between the

s . ­1 and s . •
n i, n i,

n n

(0,0,0,1) T := (0,1,0,0) * «(0,0,1,0)* T i .
n

Example. Assume T
4

(see the table) has been constructed by the algorithm below. Then

M
4

= {(1,4},(2,3},(3,2},(4,1}}. If i4, 2 then Z(4,2} = (1,1,1,1) and we get:

(0,0,1,1}* T4

33 32 31

43 42 41

53 52 51

0124

25

33 32 31

43 42 41

53 52 51

(0,0,0,1)* T4

33 32 31

43 42 41

53 52 51
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Algorithm II

(Start)

Let H (T) denote the hook in I T:=Z (n,i ) *Tn I n nIRead S I T corresponding to the entry

(an+ 1 ,bn+ 1)
=: T(rT,sT)·

Determine Z(n,i )
nIForm Ts/ with respect to

T and (r
ni ,sni )

n
n n

JT1:=TSI T(p,q),if (p,q)E ITI\ H (T)
n

(an+ 1,bn+ 1),if
(p,q)=(r

n i ,sni ) lin:= in+1 I--
Tn+ 1 (p,q):= n n

T(rT,q),if p=r . and (rT,q)E H (T)
nl. n

In:= 0 I n
T(p,sT),if q=s . and (P,sT)E H (T)

nl. nn

lin:= 0

In : n+1

NO
I(r -1

M={(r 1,s1),···,(r,s n)Jn = k ,s ) := Tn (an+1 ,bn+ 1)n n n nn nmnm
n n

YEE

{ I«,<' «< ,< '1D := diagram-closure of
I--- Mn:= (r,s) D;I!I{n

-1 I{T (a.,b.) i En}
n l. l. - l.S a dl.agram

In n-1 1 i = m:
YES n n NO

YES

0
1 NO

n = 0 "'1 Replace in Z(n,i
n)

the leftmost 1 by Z(n,i ) = 0
I n

YES

( Stop )
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Theorem 10 0 Given a skew diagram S ETo, algorithm II will produce U PC(S',S),
=k

union over all skew diagrams S' ETO0

=k o

Since trees generated by algorithm II are rather extensive even for small skew dia­

grams S, we restrict ourselves to the followingo

Example 0 Let S be the content of T
4

(see the last example) 0 Then T
4
actually occurs

in the tree generated by algorithm II with respect to So We describe all covers of T
4

in this treeo

4 these covers naturally decompose into 4 classeso

(l,a,b,e) (O,l,a,b) (O,O,l,a) (0,0,0,1)

(1,4) (1,1,0,0)

(4,1) (1,0,1,0) 32 31

42 41

52 51

32 31

42 41

52 51

Starting with a skew diagram S a suitable modification of algorithm II will ge­

nerate a tree consisting essentially of all pictures of content S, ioeo algorithm III

constructs U PC(A,S), union over all

These algorithms can be applied to various problems in representation theory and

combinatorics (see [1,2,5,6]).
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A CANONICAL PARTITION THEOREM

FOR CHAINS IN REGULAR TREES

W. Deuber, H.J. Promel, B. Voigt

Fakultat fUr Mathematik
Universitat Bielefeld
4800 Bielefeld 1
West-Germany

Abstract

In this paper we prove a generalization of the Erdos-Rado canonization theorem to

regular trees.

§ 1 Introduction

In 1950 Erdos and Rado proved the following theorem:

Theorem 1.1 [2] (Eltdo.6-Rado canoMza.Uon theoltern).

Let /:;. : [IN] k -> IN be a cofoJvi.ng 06 the k-e1.ement .6ub.6W 06 11 (the nonnega.Uve

integeM I with many colOM. Then thette ewt.!> an inMnde .6Ub.6et

X E: [IN]w and thette ex.i.6t.!> a 0-I.6equence I = (i O,... ,i k_1) E: 2k such. that evetty

two k-e1.ement .6ub.6et.!> A = {aO,... ,a k_ 1} < and B = {bO, ... ,bk_ 1} < 06 X Me

cololted the .6arne i66

a
v

b
\!

601t evetty \! < k with i
v

1 .

This result generalizes the well known theorem of Ramsey [4]: if /:;.: [IN]k -> 6 is

a coloring using only finitely many colors, then necessarily I = (0, ... ,0) , viz.

all k-element subsets of X are colored the same.

Recall that the formulation of the Erdos-Rado canonization theorem involves an



(ao"" ,am_I) is an initial sequence of

a
v
= b

v
for every v < m . Particularly 0
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ordering on the ground-set, here the nonnegative integers:

subsets A and B of X are colored the same iff they agree on the subsets given

by the sequence

In this paper we consider a generalization of the Erdos-Rado canonization theorem

to certain partially ordered sets, where the coloring acts on k-chains, i.e. to-

tally ordered k-element subsets.

We prove also some apparently new partition results for chains in d-regular trees.

The paper is organized as follows:

The main results are presented in section 2. In section 3 the partition results for

chains in d-regular trees are proved. Section 4 contains some technical tools that

are used in section 5 in order to prove the canonical partition theorem for chains

in d-regular trees.

§ 2 Results

A tree is a partially ordered set possessing a minimum such that every in-

terval [x,y] = is a totally ordered set.

A d-regular tree, where d is a positive integer, is a tree such that

every non-maximal element x E P possesses precisely d immediate successors.

Notation: By "T(d)" we denote the d-regular tree of height w without any maxi

mal nodes.

For our purposes the following explicit representation of T(d) is useful:

- elements of T(d) are finite {O, ... ,d-l} - sequences, including 0, the empty

sequence.

(ao,···,am_ l) < (bo, ... ,bn_l) iff

(bO,... ,bn_l) , i.e. m < nand

is the minimum of T(d) .

In diagram I the first 4 levels of T(2) are depicted:
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diagram

Notation: By "Ck" we denote the chain of length k.

Here it is convenient to represent Ck by nonnegative integers less than k, viz.

{O,... ,k-l} with the natural order of the integers.

,

Definition: Let be a tree. A subset PcP is a subtree (with the order

< coming from P) iff the infima with respect to P and P agree, more precisely

A

infp(x,y) = infp(x,y) for all x,y E P

Compare also diagram 2 .

a subtree no subtree

diagram 2

For trees Rand T the binomial coefficient denotes the set of subtrees of

T which are isomorphic to R .

Finally we introduce the following convention:

If g E

and if

( T) is a k-chain in T, sayCk

g = {g(O), ... ,g(k-l)}<

E is an £-chain in Ck, say
£

i = {i(O), ... ,i(£-l)}<
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then g. i E (c
T ) denotes the l-chain in T which is contained in g exactly
l

in the same way as is contained in Ck' viz.

g. i = {g(i(O)), ... ,g(i(l-I))}<

As a first "appl ication" let us reformulate the Erdos -Rado canonization theorem:

Theorem 1.1* [2] FOJt evvr..lj c.oloJUYlg s , (T -> IN , whvr..e k if., a pO.6.uLve

iYltegvr.., thvr..e ewt6 a T(I) -.6ubbLee IE , L,«, T if., giveYl blj aYl in-

MYlile .6Ub.6et 06 T(I) , and thvr..e ewt6 l < k and a .6ubc.hain i E 06 Ck

.6Uc.h that eac.h two k-e.temeYlt .6ubc.ha.iYl.6 g, h E ( T) 06 T Me c.olofted the MmeCk
i66 g. i = h . i .

Before we state the main result of this paper, namely a canonization result for

colorings t:.: ->IN , let us study partition properties of the trees T(d)
k

with respect to colorings of chains.

First a positive result:

Theorem 2.1 [3] Let d and 0 be pO.6.uLve iYltegeM aYld let t:.: -> 0 be
A T( d) 1

a c.oloJUng. Then thvr..e ewt6 a T(d) - .6ubbLee T E (T(d)) .6Uc.h that aU C1 - .6ub-

c.haiYl.6, i.e. aU poiYJ.t6 06 T Me c.ololled the Mme.

Here even stronger results are known to be valid:

Milliken [3] shows that T can be found even level-preserving and Bicker,Voigt [1]

show that this is a density result rather than a partition result.

For k-chains with k > 1 one obtains negative results:

Theorem 2.2 Let d and k be pO.6.uLve iYltegeM lMgvr.. than 1 . Then thvr..e ewt.6

a c.oloJUng ts : -> 2 , .6Uc.h that evvr..lj T(d) -.6UbbLee IE (T(d)) c.0l'lta.iYl.6
A k T(d)

g,h E (Z) that Me c.olofted di66vr..eYJ.t.tlj.
k

The reason for the negative result 2.2 is that to each Ck-chain in T(d) there

may be associated a type in such a waY,that types are hereditary under subtrees. Let

us visualize this for the particular case d = 2 and k = 2

Proof of 2.2 for d 2 , k 2: A 2-chain g E (T(2))
C"

is given by two 0-1 se-
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a = b
\! \!

for all v < m . Let us call the chain {a.b} a "chain of type 0" iff bm a and

let us call {a .b} "chain of type 1" otherwise. i.e. iff bm 1.

Compare the following diagram 3.

a-chains

diagram 3

Finally let = a iff 9 is a chain of type a and

chain of type 1. Obviously has the desired properties.

iff 9 is a

o

Next we use the ideas of the preceding proof in order to associate to each chain in

T(d) a type. where a type of k-chains is a {a•...•d-1} - sequence of length k-l •

i.e. an element of dk-1 .

Definition: Let 9 E be a k-chain in T(d) • say
k

9 = {aO·····am -1) • (ao·····am -1) •...• (ao'" .• am -I)}
12k

where m1 < m2 < ... < mk . Then define

k-ltyp (g) = (a ..... a ) E d
m1 mk- 1

where particularly typ (g) = 0 for 9 E
1

The next result shows that playing around with the types of k-chains in T(d) is

the only possibility in order to get negative results like 2.2 • viz.

Theorem 2.3 Le:t 6.k and d be po-6J.;t[ve in.:tegeJL-6. Then 60ft eveJty c.o.eolting

T(d) . A T(d)
: ( C

k
) .... 6 eXM.u a T(d) - -6ubtJtee T E (T(d) ) -6uc.h that eac.h :two

k-c.hMm g.h E (CT) 06 Mme type (io e. typ 9 = typ h) Me c.o.eofted the Mme.
k
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Now we can state the main result of this paper:

Theorem 2.4 Let s : .... 1'l be a e-otoJUng, whVLe d and k Me pQ.6-ULve
k

iYl:tegeM. Then thVLe ewu a T(d) - -6ubtAee T E , nQJL evVLy type E dk-1

thVLe ewt an integVL and a <lUbe-hun i ( ) E ( CkA) and thVLe ewu an
k-l T

equ-<-vatene-e fLefution 71 on d <lUe-h that evVLy:two k-e-huYl-6 g, h E ( ) aILeCk
e-otofLed the <lame in6

typ 9 "'" typ h (mod 71) and q : i (typ g) = h . i (typ h)

This result implies that for k-chains of given type the full analogue to the

Erdos-Rado canonization theorem is valid. For k-chains 9 and h of different

type the following two possibilities exist:

- either all chains of type typ 9 are colored differently from those chains of

type typ h (i.e. typg 4<typh (mod 71))

- or eventua11y these chains are colored the same (i. e. typ 9 "'" typ h (mod 71)) ,

viz. /::,.(g) = /::"(h) iff g. i (typ g) "'" h . i (typ h)

§ 3 Partition results

Convention: For the remainder of this paper let d be a fixed positive integer.

The d-regular tree T(d) is abbreviated by T .

Notation: For an element x of T the maximal subtree of T which is rooted ir

x , i.e. the subtree given by is denoted by \ .

For subtrees T E (i) containing x the expression 'ISucT(x)' denotes the set of
A

immediate successors of x with respect to the tree T .

A

Analogously ISuc-y(S) = U {lSucT(x) [xES} <, S for subsets SeT
A

We shall omit the subscript T when no confusion can arise.
A

For subtrees R E (Tl ) we denote by IT(Tx .... R)" the tree which is obtained from
A

T by replacing \ by R ,i.e. T(Tx .... R) is obtained from T by deleting all
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A

elements Tx' R.

Analogously, we denote by T(Ty-+R(y) lyE ISuci(S)) the tree which is obtained from
A "

T by replacing every Ty by R(y) .

Let E dk-1 be a type. Then (::,fr) {gE (CT

k)
[typ 9 denotes the set of

k-chains of T which have type .

Lemma 3.1 Let 6 and k be and let fr E dk-1 be a type. Then

nOlL eveJty calMing /::,. (C T c) -+ 6 theJte a T-MlbtJtee i E that
k'e, A

/::,.(g) = /::"(h) nOlL aU k-chUM g,h E .

Proof: Proceed by induction on k. The case k = 1 has been established by

Milliken [3], see also [1 J. Assume that 3.1 is valid for some k. He prove it

for k+1 . Let t E dk

The crucial point is how to reduce the problem to the case k 1, this invokes the

inductive assumption.

(3.1.1) FalL eveJty calMing /::,.: (C T A) -+ 6 theJte ewu a T-MlbtJtee i E (TT)
Tthat /::,.(g) = /::"(h) nOlL aU (k+1)-chUM g,h E (C with min 9 = min h

k+1 's

This may be proved by a straightforward recursive construction which is based on

the following observation:

Let SeT be a ninite downwaJtd and let q E ISuc(S) . FalL
A T

-+ 6 theJte ewu a MlbtJtee T E ( Tq) that

A

root T .

eveJty calMing s : ( T A)
A Ck+1

T* = T(Tq .... T)

the element root T , which the lLole On q -<.n T*

/::"(g) = /::"(h) nOlL aU g,h E ( T* A) with typ 9 = typ h and min 9 = min h

(3.1.2)

Assertion (3.1.2) follows immediately from the inductive assumption on k:
A k-1 A k

let = ... Ed where = ... Ed and let r be the

immediate successor of q. More precisely, say that q = (aO,... ,am_1) with

respect to the representation of T = T(d) , then let r = (aO'··· ,am-1 . Con-
Tsider the coloring /::,.* : ( -+ 6 which is defined as

I
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lI*(g) = lI(q g)

where q 9 is the (k+1)-chain with minimal element q and k-tail g. By the

inductive assumpt\on there exists aT-subtree T' E (Tf ) such that lI*(g) = lI*(h)
T' A

for all g,h E (C
k
, ' ) . Obviously then T* = T(Tr->T') has the desired oroper-

ties.

Once we have established (3.1.1) we can restrict our consideration to colorings

( T A) -> 6 such that 1I( g) = 1I( h) for all g,h T with mi n 91I: E (C )Ck+1 , i; T k+1'
min h . This induces the coloring 1I* : (C ) -> 6 with lI*(x) = lI(g) for any

( T A)
1

9 E with x = mi n 9 . The assertion then follows from the case k = 1.
Ck+1, i; 0

Remark 3.2 The reader is asked to recall how assertion (3.1.1) has been proved.

The basic idea was to obtain T by a recursive construction - which has not been

carried out explicitly. However, the main tool for that recursive construction is

provided by (3.1.2) which implies that any downward closed finite configuration

s T may be extended to a strictly larger configuration such that the new points -

here the point q , resp. the point root T playing the role of q - satisfy some

property P. Provided this property is hereditary under subtrees, viz. once x E T

has this property with respect to T then also x has this property with respect
A

to every subtree T of T containing x , one can easily construct aT-subtree

T* of T such that every point of T* satisfies this property. All what is left

is to prove assertion (3.1.2). This idea will be tacitly used many times throughout

this paper.

The next lemma is an immediate but useful application of Lemma 3.1:

Lemma 3.3 Let i; E dk-1 a let W DN]<w a 06
T60ft coloJring 1I: (C
k
,J) -> IN a

A T T
T E (T) that lI(g) w g E (C

k
, )

Proof: Consider the coloring 1I* : T -> Wu {*} which is defined as

1I*(9) = lI(g) if 1I( g) E W

= * if lI(g) W
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By Lemma 3.1 there exists a monochromatic T E , bu t as/:;
,

is one-to-one T

is necessarily monochromatic in color '*' o

Lemma 3.4 Let k.:: £. be pO-6itive intege;u., and £.et

be tIjPU. Let TO and Tl be T(d) - .tJteu.
TO

Then 6Oft eVeJLlj pa.-Ur. /:;0 : (C , ) ... IN and /:;1
k,O TO

theJLe ewt T(d) - -6llb.tJteu T E (T) , nes»,
TO Tl

60Jt eVeJLlj 9 E (c ,) and h E (C ,)
k's .t ,I;

, k-l
sEd , nesp.

Proof: The proof can be performed by a zig-zag recursive construction using Lemma

3.3. At even steps the tree TO is constructed and at odd steps the tree Tl is

constructed. The recursive construction follows the pattern as given in remark 3.2.

We perform the main tool for the even steps:

o

Let Sa c TO be a finite downward closed set and let q E ISuc(SO) , additionally

let SI c Tl be a finite downward closed set. We show that there exists a subtree
'1 Te 1 '1 SOU{ }
T E (T) with S T such that /:;O(g) f- /:;1(h) for every 9 E ( g) with

'1 Ck'S
max 9 = q and every h E (cT ,) with max h 51

a £,1;

Let W= {/:;0(9)!9E and max 9 = ql . By Lemma 3.3 for every immediate
k's (r) Tl

successor r E ISuc(SI) there exists aT-subtree T E ({) such that
1

/:;1(h) W for every h E (cT A) with max h E T(r)
0,1;

'1 1 1 (r) -<.- 1Thus T = T {Tr...T IrE ISuc(S)} has the desired properties.

§ 4 Diversification

have images that are as disjoint

= h . This will help us to con-

(viz. Theorem 4.1) is the combinatorial core of our
Tpai r /:;1 : (C ,) ... IN and
k,s , T

exists aT-subtree T E (T) such

The result of this section

proof. Loosely speaking it states that given a

/:;2 : (C T ') ... IN of one-to-one colorings there
£.' I; , A

that the restrictions /:;11(C and /:;21(C T ,)
k's £.' I;

as possible, viz. /:;1(g) = /:;2(h) implies that 9

struct the equivalence relation TI as stated in Theorem 2.4 .
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A k-l A 1-1Theorem 4.1 Le;t k 2 1 be. pO.6LtLve. .{.nte.g eM and le;t E; E d and 1; E d

be. type..o 06 k, fte..op. 06 l-c.h.o.i.Y!.6. The.n 60ft e.ve.Jty pa.{.Jt t.1 : (C --.}J and
T kAT

t.2 : (C1'2) --.}J 06 one.-to-one. mapp.{.ng.6 thene. e.wu a
A

T-.6u.btJte.e. T E (T) .6u.c.h

that t.1(g) f t.2(h) 60ft aU g E and h E (C;,2) w.{.th g f h

We need two preliminary lemmas:

Notation: Let k < 1 be positive integers and let h E (cT ) . By "h<k>" we
1

denote the k-tail of h, i.e. the subchain of h consisting of the last k ele

ments of h, viz. h<k> = {h(l-l-k) , h(l-k) , ... , h(l-I)} .

Lemma 4.2 Le;t k < 1 be. PO.6LtLve. .{.nte.geM and le;t e E d1-1 be. a type. 06

l-c.h.o.i.Y!.6 .

The.n 6Oft e.ve.Jty pa.i.Jt t.1 :

the.Jte. e.wu a T-.6u.btJte.e.

and t.2 ;

.ou.c.hthat

that there exists a

Proof: Let SeT be a downward closed finite set and let q E ISuc(S) . We show

T-subtree T E (;q) such that t.1(h<k» f t.2(h) for every

with min h = root T

1-2
Let r be the 1;a- th immediate successor of q , let 2' = (1;1, ... ,1;1-2) Ed

be the type of (I-I)-chains consisting of the last (1-2) elements of 2 . Con-

sider the coloring t.* : (C Tr A,) --. {a,l} which is defined by
1-1,1;

t.*(h) a if t.
1
(h<k» = t.

2(q
9 h)

1 if t.1(h<k» f t.
2
(q 9 h)

where '9' refers to the concatenation of chains.

By Lemma 3.1 there exists aT-subtree TE (T{) with all its C1-1 - subchains of

tpye 2' monochromatic in color a or monochromatic in color 1 . We consider

these two cases separately:

- there exists aT-subtree T E (T{) is monochromatic in color a .
<k> T.Then t.1(h ) f t.2(h) for every h E (c1,e) , because otherwise t.2(h) =

t.2(q 9 h<.e.-I» , contradicting that t.
2

is a one-to-one coloring.



o

125

there exists aT-subtree T' E (T{) which is monochromatic in color 1 . Then

obviously T Tq(\-->T') has the desired properties.

Lemma 4.3 Let Z k t
T

<.p,e Ed. UOIt paJA l>1: (Ck,(j)@ )-->JN

Let E dk-Z , 2 E dt- k and tet

T
and l>Z : (C

t
,el189 ) --> JN au one-

"9" to c.onc.atenaUon au viz. <.p9 E dk-1 and

2 9 e 9 E dt -1 -

theJte a T 5E (i)

9 E ( T ) and f E ( T A )

Ck,(j)@ Ct_ k+1,1;

Proof: Let SeT be a downward closed finite subset and let q E ISuc(S) .

Let C = {gE (C S A) I max 9 < q) be the set of (t-k+1)-chains of type e
t-k+1,1;

occuring strictly below q . We show that there exists aT-subtree TE (Tf ) such
<k-1> T

that l>1 (g) f l>z(f 9 9 ) for every 9 E (C
k
,(j)@ ) with min 9 = root T and

every r c c with f 9 g<k-1> E ( T )
Ct ,2ge 9 .

Let r be the <.p.th immediate successor of q . Consider the coloring

l>:

By Lemma 3.1 there exists aT-subtree T' E (Tf ) which is monochromatic in some

color c* c C .

We consider two cases separately:

- there exists aT-subtree T' E (T{) which is monochromatic in color 0. Then

obviously T Tq(Tr --> T') has the desired properties.

- there exists aT-subtree T' E (Tf ) which is monochromatic inAcolor C* c C ,

<k-1> T' )where C* f Ii' • Then l>1 (g) f l>Z(f 9 9 ) for every 9 E (C
k
,l!J8 and every

<k-1» di t' th t A •f E c* , because otherwise l>l(g) = l>1(q9g , contra 1C i nq a '-'1 1S

a one-to-one coloring.

Consider T* = T(Tq-->T ') and apply the same argument as before, but now with
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A

C'C* instead of C and with root T' instead of q. After finitely many

steps, i.e. by induction, the process necessarily ends with some

which is monochromatic in color 0.

T-subtree

o

Proof of Theorem 4.1: We proceed by induction on k.

First we consider the case k = , i.e. 2= 0 . Let SeT be a downward closed

finite set and let q E ISuc(S) By Lemma 4.2 we can assume that

<1>(4.1.1) (h ) f for every

We show that there exist T-subtrees

hE(C TA)
i'C

T(x) E (T-f) , x E ISuc(S) , such that

T = T(Tx .... T(x) [xE ISuc(S)) satisfies that

T(min T(q)) f for every h E (c
i,2)

Let q E T be such that
q

(4.1.2) (q) f for every h E (CSA)
i'C

For every x E ISuc(SU{q}'{q}) let T(x) E (T-f) be such that

(4.1.3) (q) f Il g) for every j < l ,

gE( Tx ) with fllgE
Cl_ j ' (Cj ' ... 'Cl _2)

, and every

Such trees exist according to Lemma 3.3

By (4.1.1) , (4.1.2) and (4.1.3) then T = T(\ .... T(x) IXE ISuc(S)) , where

T(q) = Tq(\ .... T(x) [x E ISuc(q)) , has the desired properties.

Next comes the inductive step. Assume that the assertion of Theorem 4.1 is valid

for every j < k , where k is a positive integer larger than 1 . Let S =T be

a downward closed finite set and let q E ISuc(S) . We show that there exist T-sub

trees

that

TT(x) E (TX) , x E ISuc(S) , such that T = T(\ .... T(x) [x E ISuc(S)) satisfies

and for every

for every 9 E
A

( TA) with min 9
Ck,E; A

hE (CTA)
i'C

By Lemma 4.2 and Lemma 4.3 we can assume that

root T(q)
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(4.1.4) <k-1>
III (g) f- liZ(fill 9 )

T
for every 9 E with q = min 9

maxf<q and fO)g<k-1>E(C T,)

l'l;,

and every f E ( T )
Cl-k+1

with

Let r be the 1;0 - th

Z T1to Lemma 3.3. Next let T E (T) be such that

TZ
9 E (C ( and for every

k-1,1;1"'Tk-Z
and h E (T ) with

CD" (1;, •••••• 1;, D Z)J

immediate successor of q. Let T1 E (Tf ) be such that

T1
for every 9 E (C and for every

k-1' sl····· sk- Z
III (q 0) g) f- liZ(h)

h E (S u {q,h
Cl·1;,

tree T1 exists according

(4.1.6)

(4.1.5)

Such a

Such a tree T
Z

exists according to the inductive assumption.

Z
Finally let T

3
E (TT) and for each x E ISuc(S)'{q} let T(x) E (T{) be such

that

and

9 E(4.1.7) III (q 0) g) f- lIZ(f 0) h) for every

j < l • f E ( SU {q} )
T Cj·(l;,o·· .. ,l;,j_Z)

f e h E (c
l
.2)

Such a tree T
3

• resp. such trees T(x) exist according to Lemma 3.4 .

By (4.1.4) up to (4.1.7) then T= T(T ->T(x) IXE ISuc(S)) • where T(q)x
Tq(Tr->T

3) • has the desired properties. o

§ 5 Proof of the main theorem

First we prove a special case of Theorem Z.3:

, k-1
Theorem 5.1 Let I; E d be a type On

II : (C:. -> IN theJLe ew:t6 a T-l.>Ubtttee

a !.>ubc.huYl i E !.>uc.h that eVeJLy :two
l

!.>ame ,[nn g. i = h • i

k-c.huYl.6. Then non eVeJLy c.oloning

TE and theJLe ew:t6 l < k and
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Proof: We proceed by induction on k. First we prove the case k = 1 .
A

Recall that the theorem asserts that T is colored monochromatically or that T

is colored one-to-one.

Thus let SeT be a downward closed finite subset and let q E ISuc(S). We show
A

T is colored mono-

if

and every

such that either
A

for every x E I = (T )C1

: .... lyE S}U{*} with M(x)
1

E IyES} and M(x) = * if { IyES} .

that there exists a T-subtree I E (;q)

chromatically or such that f

yES = (CS)

1
Consider the coloring

A T
According to Lemma 3.1 there exists a monochromatic T E (T) which obviously has

the desired properties.

Next assume that 5.1 is valid for some k. We prove it for k + 1

A dk A, ( ) dk-1Let S = (sO'··· ,sk-1) E and let S = sl"" ,sk-1 E

(k-1) entries in t .

consist of the last

ci T Al
(5.1.1) Thene a T E (T) that evenu x E T thene

an i (x) E U k) Il k} nying that eveny two (k+1)-ChUM
II l

g,h E (C with min 9 = min h = x Me. colMed the Mme inn g<k>. i(x)
k+1'e,

h<k> . i (x)

Let SeT be a downward closed finite set and let q E ISuc(S). Let r be the

So - th immediate successor of q and consider the coloring M : (c::t') .... lN with

M(g) = II g). According to the inductive assumption on k there exists a

subchain i(q) E U and there exists aT-subtree T* E (Tf ) such that
l T*

every two k-subchains g,h E (c A,) are colored the same under the coloring
k's

iff g' i (q) = h . i (q)

Since U is a finite set by Lemma 3.1 the following assertion is an
I

immediate consequence of (5.1.1):

A2
(5.1.2) Thene. a T

i' E U that eveny two
l

min 9 = min h Me the inn

Al
E (TT) and thene a

A2
(k+1)-chuM g,h E (C T with

k+1 ,e,
g<k>'i' = h<k>'i'.
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'3 12(5.1.3) TheJte. e.xM:t6 a T-hLlb-tlte.e. T E (T) .6U.ch that

13 '3hold;., whe.ne.veJt g,h E (C 2) Me. (k+1)-chain6 in T
k+1''''

<k> . , h<k> .,9 . 1 = . 1

which Me. colone.d the.

.6ame..

g<k> . i' = h<k> . i I holds whenever 9 E
2

hE (T (Tx ... t(x)lxqsuc(SU{q)))
Ck+1, 1;

t.(g) = t.(h) .

Let S be a downward closed finite set and let q E ISuc(S). We show that for
'2

every x E ISuc(SU{q}) there exists aT-subtree T(x) E (TT) such that

'2
( Tq ,) with min 9 = q and
Ck+1'[,;

are colored the same, i.e whenever

Let r
'2

b th t: tb ! di t f q . Let T' (r) E (TT )e e "'0 - rnme la e successor 0 be such that

., (f h)<k-1> .,9 . 1 = Il • 1

f E ( S ) ,
C"([,;0, .. ·,1;· 2)J J-

f 0 h E 'c T ,) , where
k+1,1;

t.(q 0 g) = t.(h h) .

T' (r)
holds whenever 9 E (c

k
, , ) ,

h E ( T' (r) ) with
Ck+1_j ' ([,;j"" ,sk-1)

j k + 1 , are such that

Such a tree T' (r) exists according to repeated applications of Lemma 3.3 and

Theorem 4.1
'2T T' (r)

Next let T(x) E (T) for x E ISuc(SU{q})" {r} and let T(r) E (T ) be such

that

T' (r) S
t.(qllg) f t.(f0h) for every 9 E (C 2') , f E (C ,

k'''' j' "'0""''''j-2
h E (C T( (x) ) ) with f 0 h E (C T 2) , where j k .

k+1-j'Sj"",sk-1 k+1''''

Such trees exist to repeated applications of Lemma 3.4 . Then obviously the trees

T(x) , x E ISuc(SU{q}) have the desired properties.

'4 '3
(5.1.4) TheJte. e.xM:t6 a T-hLlb-tlte.e. T E (TT) hLlch that non e.veJtlf 2-chain

'4
f E ( T ) one. On the. noUow-Lng two aUeJtnaUve..6 if.> valid:

C2 ' (1;0) '4 '4
- t.(f(0)0g) = non e.veJtlj 9 E (c:, ,) with f(0)0g E (C

k
:
1
' ) and

f(l) II 9 E (C
k:1

, )

Let S c 13 be a downward closed finite subset and let q E ISuc(S) . Let r be

the sO - th immediate successor of q .

We show that there exists aT-subtree such that for every 2-chain
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f E ( SU{q}) with max f = q either
C2, (1;0)

T*
- t.(f(O) 0 g) = t.(f(l) 0 g) for every 9 E (C

k
, I)

or

T*- t.(f(O) 0 g) f- t.(f(l) 0 g) for every 9 E (C , I)
'3 k
T

Consider the coloring t.* : (ck: ,)", p({yESly<q}) with

T
[,*(g) = {yESly<q and y e q E (C ;:) and t.(Y0g)

k+1 ,e,

According to Lemma 3.1 there exists a monochromatic

= t.(q0g)}

'3
T-subtree T* E which

{i'(0)+1. ... ,i'(t-1)+1} ,

obviously has the desired properties.

Applying 3.1 once more yields the following strenghtening of (5.1.4):

, '4
(5.1. 5) TheJte exMM a T-.w.b.t!lee T E (\) .6LlQh that one On the noilowing two

aLteJtnatlVe.6 i.6 va1.id:

(5.1.6), t.(f(O) 0 g) = t.(f(l) 0 g) , nOte. eveJtlj f E and eveJtlj

T T
9 E (C el ) with f(l) 0g E (C 2)

k'e, k+1'e,

or
A

(5. 1. 7) , t. (f (0) 0 g) f- t. (f ( 1) II g) , nOte. eveJtlj f E (C2 0) ) and eveJtlj

9 E (C \,) with f (1) 0 9 E (C T 2)
k'e, k+1'e,

We claim that T satisfies the requirements of assertion 5.1 . However, it remains

to define the subchain i .

Say i' = {i'(0), ... ,i'(t-1)} , where i' has been introduced in (5.1.2) .

If (5.1.6) is valid then let

i E (Ck+1) be withC
t

if (5.1.7) is valid then let

i E (CC k+1) be with i = {0,i'(0)+1, ... ,i'(t-1)+1}
t+1

By (5.1.3) and (5.1.6), resp. by (5.1.3) and (5.1.7) then T and

desired properties.

have the

lJ

, k-1
Proof of Theorem 2.3 By Theorem 5.1 we can assume that for every type I; E d

there exists a nonnegative integer t( ) 2 k and a subchain i( ) E ( Ck) such
Ct ( )



are colored the same iff

with =

Tf,g E (C A) • By abuse
k's
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Tthat each two k-chains g,h E of type S

g. i ( ) = h· i ( ) •

By Theorem 4.1 there exists aT-subtree T' E such that = for

k-chains g,h E (r) always impl ies that g' i (typ g) = h . i (typ h)
k

It remains to define the equivalence relation TI on dk-1 .

For every type E dk-1 consider the coloring

: -> P(dk-1) which is defined as

= {2Ed k-1Ithere exists an hE (c T ;. )
<, k,1;

By Lemma 3.1 we can assume that = for every

of language let us denote this common color by .

The equivalence relation TI is defined via these colorings, viz. put

e (mod TI) iff eE

Obviously then TI together with the family (i ( ) l Edk-1) has the desired pro-

perties.

§ 6 Concluding remark

Using a compactness-argument (e.g. Konigs -lemma)

following 'finite' version:

Theorem 2.3 implies the

o

-6uc.h that 60ll eVeJr.tj c.oloJUng

S A k-1
(R) and 60ll eVeJr.tj ttjpe sEd

Theorem 6.1 Lct R be a MnUe d-llegU£M :tJr.ee and let k be a p0.6);tlve bttegeJr.

Then theJr.e exb.,v., a MnUe d-!legulM :tJr.ee S
S A

: (C ) -> IN theJr.e exb.,u, an R--6LJ.b:tJr.ee R E
k A

theJr.e exb.,u, a -6ubc.hain i (t) E U k} and theJr.e exb.,v., an eqtUvalenc.e
k-l l R

Ile.la..tion TI on d -6Uc.h that eVeJr.tj:two k-c.hain-6 g, h E ( ) Me c.olOlled theCk
Mme '<'66 typ g typ h (mod TI) and

g . i (typ g) = h . i (typ h)
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For d 1 this yields the finite version of Erdos-Rado canonization theorem.
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The main objectives of these notes are the following: (a) to give a new, directly

applicable setting for and a new version of the exponential formula (Theorem 3.52)

for Krull-Schmidt categories, (b) to extend the combinatorial treatment of partitions
of fi nite sets by means of the "Faa di Bruno" bi algebra (cf. [8], pp. 100, and [24],

pp.36) to arbitrary sheaf-like categories (Theorem 3.74), and (c) to give an
application of homological results to the determination of incidence algebras

(§3, section B). The basic references for us, due to G.-C. Rota and his school,

have been [8] for incidence algebras and [24] concerning Hopf algebras in combinatorics
Other papers in this direction are [6], [18], [29]. Similar and very interesting

relations between combinatorics and Hopf algebras (in a different language: affine

and formal groups) are contained in [15] and [19]. Detailed proofs will appear else-

where.

Essentially, a Krull-Schmidt category is one in which the Krull-Schmidt theorem

holds: Each object X of has a KS··(Krull-Schmidt) decomposition, i.e. admits a

finite direct sum (dually: direct product) decomposition X= U Xi into indecomposables

Xi' which is moreover unique up to isomorphism. This type of category is abundant in
combinatorics since the necessary finiteness assumptions for the proof of a KS-theorem

are trivially satisfied in finite enumeration problems. The simplest examples are the

categories of finite sets, vector spaces, topological spaces, ordered sets, graphs

and groups. Whole classes of are the sheaf-like categories of this paper

(see below) generalizing the category of finite sets, and the "finite" abelian cate-

gories generalizing the categories of finite vector spaces. In sheaf-like categories
the KS-decomposition is unique up to the order of the summands and not only unique up

to isomorphism. In combinatorics, this unique KS-decomposition is usually called

"the partition of a structure into its connected components". KS-categories give rise
to generalized exponential structures, introduced by Stanley [27] as the right frame
work for exponential formulas. The corresponding formula of these notes (Theorem 3.52)

is an identity of power series wi th rational coefficients and in variables Xp,where
p runs over a (possibly infinite) system f of representatives of the isomorphism

classes of "connected", i.e. indecomposable objects of a KS-category, and involves
the orders of automorphism groups, replacing the customary factorials, as a distin-
guishi,ng feature. The examples of the 1i terature are obtained for categories with

only one indecomposable object, up to isomorphism, such as finite sets and vector
spaces respectively (compare and [28]). The simplest standard example is the
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n
identity exp(exp(X)-l) =2: 00 B where B are the Bell-numbers of all partitions

n=O n n! n
of a set with n elements. As an application we obtain the typical relation between

numbers of all structures=objects and those of "connected" structures=indecomposable

objects over a given base. In §4, section A, we apply the exponential formula to
subobjects and equivalence relations respectively in sheaflike categories.
The distinguishing sheaf-axiom of a sheaf-like category - in addition to some

standard assumptions on direct sums etc. and a combinatorially obvious finiteness

condition-is the universality of finite coproducts: If f:X -- Y is a morphism and

Y = U Yi is a finite direct sum(coproduct) decomposition then X = Uf-1(Xi) is the

direct sum of the inverse images. It is easily seen that this axiom is connected with
the distributivity of lattices of subobjects. The basic example is the category Set f

of finite sets. Combinatorial standard examples are obtained as the presheaf categories

of all functors from a category I with finitely many objects into Set f. If, for
instance, I is the monoid with one generator g satisfying a relation gm=gn, l s m::;n<oo,
e.g. g2=g or gn=l, then one obtains the category of all pairs (M,s) of a finite set M

with an endomorphism s satisfying the same relation. Of course, all categories of
sheaves or toposes. e.g. that of finite sets with a group operation, but also combi-

natorially interesting categories like ordered sets, graphs etc. are sheaf-like.
However, the latter are no toposes. The guiding idea, well established in algebra and

sheaf theory and useful in combinatorics is that "combinatorial problems concerning
finite sets can also be formulated and solved for sheaf-like categories". We demon-

strate this philosophy with the counting of (effective) equivalence relations,

corresponding to partitions for f. The sheaf-axiom ensures that the relevant

incidence algebras are bialgebras and, suitably modified, the contravariant bialgebras

of affine unipotent group schemes (Theorem 3.74). The exponential map which in the
case of rational coefficients defines a group isomorphism between the Lie Algebra of
the unipotent group, supplied with the Campbell-Hausdorff composition, and the group

itself, gives a new type of exponential formula. A simple modification of our
construction shows that Rota's hereditary bialgebras for matroids give rise to uni-

potent groups in the same fashion (cf. [24], pp.89). We think that the affine algebras

of unipotent groups are those "bialgebras with a simple axiomatic definition" which

Rota calls for in [loc.cit.], p.95. The structure theory for unipotent algebraic
groups over the rationals (compare, for instance, [7], pp.485) and over the integers
[30] and not only an algebraic language can thus be applied to combinatorial problems.

The new examples and detailed calculations of §4 indicate the combinatorial usefulness

of sheaf-like categories and their derived unipotent groups.

The structure of these notes is the following. The first two paragraphs contain the
necessary purely algebraic preliminaries on abstract incidence algebras and unipotent

groups. The third paragraph develops the combinatorial applications of these notions
and is the heart of these notes. The last section consists of the longer new examples.
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In §l we develop the noti on of abstract i nci dence algebra (AlA) over a groundri ng k
mainly the integers, or the rationals, in combinatorics. Essentially,

this is a complete topological associative algebra Hwith a separated filtration

... of two sided, closed ideals and which is topologically free
as a k-module. The prototype is a power series algebra k[[T]] =k[[Tl, ... ,Tr]] in
finitely many variables Ti with the monomials Tln(l) ... T/(r) as topological basis

and the !l!-adic filtration, !l! the maximal ideal, which also defines the topology.
In combinatorics, the filtration is given by a dimension (rank) function. The notion

of AlA is general enough to include all examples from [6], [8], [18], [24]. On the

other hand,it is sufficiently special to admit useful algebraic and combinatorial

consequences. The main new feature is the filtration which implies a tight connection

between incidence algebras and unipotent groups (Theorems 2.31, 2.34 and 2.35). This

relation is similar to that between complete discrete valuation rings and commutative
unipotent groups in local class f i el d theory (cf. [7], appendix). In the combinatorial

applications (see §3) the multiplication constants of an AlA with respect to a topo-

logical basis (called section coefficients by Rota in [24], pp.lO) are given
as natural numbers from an enumeration problem. This method to transfonn combinatorial
data into algebraic ones is due Ph.Hall (compare [19], p.88, and [8], p.llO-lll).

A similar approach, but without the filtration and the topology, is taken by Joyal
in [18]. The substitution of elements of AlA's into power series is possible, and

can be used in the same fashion as the "generating function calculus" in ordinary
combinatorics. In particular, one can define and calculate Mobius, characteristic

functions and, in characteristic zero, exponential formulas (Theorem 1.29).

In §2 we define and prove some results on unipotent affine groups over a principal

ideal domain, mainly and in combinatorics. It is interesting to note that here
affine, non-algebraic unipotent groups over a ring, namely is not a field,

appear naturally. The reason for this is that counting problems deal with natural
numbers, and that the customary use of fields like the rational, real or complex

numbers has mainly technical reasons. The restriction to objects of bounded dimension

gives rise to algebraic groups for which there is a detailed structure theory (see

above) .
The third paragraph is divided into five sections A to E. In the first we construct

combinatorial incidence algebras. These are algebras k[[T]] (suggestive notation)
of all k-valued functions on sets of types T (Rota's terminology in p.lOO).

The types are equivalence classes of suitable epimorphisms (dually: monomorphisms)
with respect to an equivalence relation. The multiplication in k[[T]] is defined by

multiplication constants which count certain sets of types. The prototype of this
construction is the Hall algebra (cf. [19], pp.88, and [8], p.llO-lll) Our main

observation is a set of simple axioms for the types which are satisfied in many cases

and then easily verified and which ensure that the algebras k[[T]] are AlA's in the
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sense of §1, i.e. have a rich and applicable algebraic structure. Combinatorial

standard calculations known for power series algebras and incidence algebras of

ordered sets can thus be extended to more difficult combinatorial situations. The
algebras k [[T]] render the distinction between standard, reduced and large incidence

algebras in unnecessary, and can also be considered as a suitable reduced version

of the incidence algebra of a category (cf. [6] and [24]). The combinatorial useful­

ness of generalized incidence algebras has already been shown in the basic paper [8].

In special situations (section B) the multiplication constants can be interpreted as

2­cocycles of a small category. The Koszul complex calculations for ,A),where
NO (1) operates tri vi ally on an Abel i an group A (cf. [3], pp, 192), and the result

H2(L,A)=0,where L is a countable directed set [22], admit the determination of all
incidence algebras of full Dirichlet type (cf. [8], pp.1l6) and of LxL ­ triangular

type ([loc.cit.], pp.127) respectively.

The sections C and Dof §3 are devoted to sheaf­like and Krull­Schmidt categories

(see above).
In part E we consider the incidence for isomorphism classes (called types again) of
effective epimorphisms (dually: strict monomorphisms) of a sheaf­like category.

Due to the sheaf­axiom, this is a topological bialgebra, i.e. the multiplication

constants are bisection coefficients in Rota's sense (cf. [24], p.11). The group of

those multiplicative functions (cf. [8], p.40) which have the value one on the types
of isomorphisms, is the already mentioned unipotent group, and contains all the
essential combinatorial informations. In many cases this group is isomorphic to a

group of parameter transformations, i.e. of automorphisms of power series algebras

(3.81,4.18,4.22). For the "Faa di Bruno algebra" this has been shown in [8], p.102.

In (3.81) we explain how the Butcher group used in the numerical treatment of

differential equations (cf. [31]) can be interpreted as the unipotent group derived
from monomorphisms of rooted forests. Example (4.18) contains the theory for the

category of finite sets with an operation of a finite Abelian, e.g. a cyclic, group.

In (4.22) we mention an application to representations of ordered sets.
Notations and abbreviations: respectively = the natural numbers including

respectively excluding zero; = the ring of integers; = the field of rational
numbers; NO(I) = the free additive monoid.of all families n =(n(i);i EI)ENO

I such

that almost all n(i) are 0; an = n(a(i )n(l); i E I} if a(i) is contained in a

commutative ring; # (X) = IXI = number of elements of a set X; UtA) = the group of

invertible elements of an associative ring A; lim=the inverse (projective) limit in

a category or the limit of a convergent sequence; u =direct sum, coproduct; n=direct

product; ker=kernel; cok=cokernel; im = image; = "implies"; '* = "logically
equivalent"; 0 = end of an argument.

The main results of these notes are called "theorems", the others are indicated as
"propositions", "lemmas" or "corollarries".
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§1. Abstract incidence algebras

Let k be a commutative (ground-) ring. For combinatorial purposes the ring Z of

integers and the field of rational numbers are most suitable since enumeration
problems deal with integers. We consider k as topological ring with the discrete

topology .
Let X be a topological k-module; X is called linear topological if X has a basis

of neighborhoods of zero (called a O-basis) consisting of submodules. If X=Y Z
is a topological direct sum decomposition we write X=Y e Z and YI' x. A family

(x(i); i E I) of elements of X is called a topological basis if the map

kI -----+ X , (r(i); i E I) -->I r(i )x(i)

is defined and a topological isomorphism. Here kI has the product topology. Then X
is called topologically free. In general, if X is Hausdorff and complete and if

x = (x(i); i E I) is a O-family, i.e. if for each neighborhood U of 0 in X almost al

x(i) lie in U, then L:{x(i); i E l} exists, i.e. x is summable.

(1.1) Definition: An abstract incidence algebra (AlA) over k is an associative

topological algebra Hwith a filtration

(1.2) H=H(0)::H(I)::H(2):: ...

such that the following conditions are satisfied:
(1.3)(Topology) H is Hausdorff and complete and has a O-basis of two-sided ideals.

(1.4)(Filtration) (i) The H(d) are closed two-sided ideals.
(i i) 1imd H(d) =O.

(iii) For dl'd2<::0: H(d 1)H(dZ) =.H(d1+dZ) '
(iv) For d z O : H(d+l) 1 H(d), and H(d)/H(d+l) is topologically free.

Condition (ii) means that for any neighborhood of 0 there is a d with H(d) =. U.

In the sequel H denotes an AlA over k. The structure introduced above has many

consequences which admit combinatorial interpretations.

(1.5) Dimension, rank: Since H is Hausdorff and limdH(d) =0, also n dH(d) =0.
Thus for x EH, x*0, the number
(1.6) dim(x): =Max {nElNO; xEH(n)} ,

called the dimension of x, is well defined.

The filtration condition (1.3)(iii) implies

(1. 7) dim(s(l)s(2)) <:: dim(s(I))+dim(s(2)), s(i) EH.
(1.8) Topological nilpotence and power series: The conditions

(1.3),(ii) and (iii), imply limdH(I)d=o,i.e. H(I) is a topologically nilpotent

ideal. In particular, also limdxd=O for all XEH(I). Thus, if

g = L: {g (d )Xd; d El'l0} E k [ [X]]

is a power series in one variable X, then
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exists. In particular,

(1+xf1 =2: {(_l)dxd; dENa} E 1
H+H(1).

This implies that H(l) is contained in the Jacobson radical of H, thus

(1.10) XEU(H) <=> xE U(H/H(l)).

Special cases of this general fact appear at different places in the combinatorial

literature (cf. [8], p.89; [18], p.67, Th.?).

(1.11) Structure constants=section coefficients: Since H(d+1) IH(d) for d z O there

is a non-unique topological direct sum

(1.12) H(d) = H(d) aiH(d+1), d z G, hence H(d) H(d)/H(d+1).

By assumption (1.3) (iv), H(d)/H(d+1), hence H(d), is topologically free. Let

(e(t); t E T(d)) be a topological k-bas i s of H(d), i.e.

(1.13) H(d)=n{ke(t); tET(d)}, d e D.

Obvtcus ly .rl lrn e(t)=d for tET(d). From (1.3) (ii), follows that

(1.14) n{H(d); dEI'J
O}
--> H, (x(d); d<:O) --+"i:x(d)

is a well-defined map and a topological isomorphism, i.e. H=nH(d) by identification.

( 1. 15) With T: = 0 {T( d), d <: A}, T(n ): = (J {T( d), d <: n}

there result topological k-bases (e(t); tET(n)) of H(n) for n z O, In particular,

tE T(n) <=> dim e(t) <: n. With respect to the fixed basis e(t), tE T, of H one obtains

multiplication constants

G(t; t(l) ... t(r)) E k,t,t(i) E T,r <: 0, by the formula

(1.16) e(t(l)) '" e(t(r)) = 2: {G(t; t(l) ... t(r))e(t), tED.

Rota in [24], p.10, calls these numbers section coefficients. For r = 2 the notations

t t t
G(t(l) t(2)) =Gt(1)t(2)(t) = {t(1)t(2)} = (t(1)t(2)) = (t; t(1)t(2))

are used instead of G(t; t(1)t(2)) in the combinatorial literature. Our notation is

the one of Macdona1d ([19], p. 88) for the Hall algebra whi ch is one of the proto-

types of incidence algebras.

(1.17) Remark: Just to give section coefficients=structure constants with the obvious

properties means to consider a topological k-algebra with a topological basis or,

dually, an (abstract) coalgebra with a k-basis. Even for a field k there are no

useful combinatorial consequences. The axioms of Joyal ([18], pp.62) in this context

furnish H(l), but not the whole filtration H(d), d z D. It is however this filtration

which connects combinatorics with unipotent groups (§2).

The numbers G(t; t(1)t(2)) depend en the basis e(t), tET. For power series algebras

in finitely many parameters (=indeterminates)
. n n(l) n(r) r

X(1), ... , X(r) the change of the bas i s X =X(1) ... X(r) ,n 01
0

'

to another such basis is interesting and treated by means of the Lagrange inversion

formula (see [17] and [2], due to Abhyankar). Rota et al. [23] call this the transfer
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formula and demonstrate its combinatorial usefulness (for the case of one variable).

This is the reason why we require only the existence of a basis e(t), tET, but do

not incorporate a distinguished one into the structure as in [24], p.3 below. 0

(1.18) Graded abstract incidence algebras: An AlA Hover k is called graded if a

decomposition H=TI(H(d); d e Oj is given and satisfies

(1.19) H(d(1))H(d(2)) c H(d(1)+d(2)) .

In combinatorics this corresponds to the Jordan-Dedekind chain condition. If H has

no zero-divisors then (1.19) is equivalent to

dim(xy) = dim(x)+dim(y) ,x,y E H.

The two standard examples are the power series algebra

k[[X]] = k[[X(i); iEI]] = TI(kXn; nOJo(I)}

in indeterminates X(i), i E I an index set, with the standard grading

k [ [X]] (d) = n (kXn; In I: = I: {n ( i ); iE l} = d} ,

topological word algebraand the

(1.20 )

corresponding non-commutative

=n{tGs(d)(I); d O} ([25], LA 4.13) where

A;s (d) ( I ): =n (kw; w= (i (1) ... i (d)) E I d}

and the multiplication is the composition of words. The topology is the product

'"topology which for infinite I is coarser than the Ass(I)(l)-adic topology. If H is

an AlA and if x=(x(i); iEI) is a family of elements in HP) with limlx(i)=O, then

there is a unique continuous k-algebra homomorphism

(1. 21 ) x# : s ( I) --> H, i --+ x( i ), name 1y

f(x): =x# (f)=x# (L (f(w)w; w=(i(l) ... i(d))}) =H(w)x(i(l)) .. x(i(d)).

(1.22) Base ring extension: If X and Y are linear topological k-modules then the

completed tensor product X®Y=X®kY of X and Y is the Hausdorff completion of

X ®kY with respect to the topology given by the O-basis X' ® Y+X ® Y',where X' and

Y' run over a O-basis of X and Y respectively. If X= kI, I an index set, then

kI® Y=y I with an obvious identification. If finally k --> 1 is a ring homomorphism,

then 1 ®kY' 1 with the discrete topology, is a linear topological l-module. If

H=n(ke(t); tE T} is an AlA over k then 1 ®kH =n(1e(t); tE T} is an AlA over l.

(1.23) Power series calculations: The explicit calculation of substitutuions is

customary and useful in combinatorics. Assume that (e(t); tE T(l)) is a fixed basis

of H(l) obtained in the non-unique way of (1.11).

We identify

(1.24) kT(l)=H(l), i.e. f=I:(f(t)e(t); tET(l)}.

In combinatorics this is the usual identification of "sequences" f

with their "generating functions" H(t)e(t). For r 1 define



140

(1.25) type: T(l{---....:r..J
O
(T(1 ) ) , .! = (t(l) ... t(r)) m,

where m= (m(t); tET(l)) and m(t) = # {i;t(i) = tj .

For a given mENo(T(l))- {OJ and tET(l) we define

(1.26) GS(t;m): =2: {G(t;.!); type(.!) =m}.

The combinatorial interpretation of this number is given in (3.19). If H is commutative

then G(t;.!) does not depend on the order of the t(i) in t and we define

(1.27) G(t;m): =G(t;.!) ,type (.!) =m. Then

(1.28) GS(t;m) = ((m))G(t;m) ,where

((m)): = lrn l ! n{(m(t)!)-l; tE:T(l)} , lrn l : = 2: m(t)

is the multinomial coefficient. Reordering terms in the expression g(f) of (1.9) one

obtains the easy, but useful

(1.29) Theorem: Let

f=(f(t); tET(l))=I f(t)e(t)EkT(l)=n ke(t)=H(l), and

g =.1: {g(d)Xd; d z O} E k [[X]J be a power series in a variable X. Then

(1. 30) g( f) = g(O) 1+ 2:t E:T(1) I: {g( ImI)GS(t ;m) fm; m ENO (T( 1)) - {OJ} e( t) .

There are two important special cases.
-1 _ lml m

(1.31) (l+:L tE:T(l)f(t)e(t)) =l+L tE:T(l) 2:{(-1) GS(t;m)f; m as above} e(t).

(1.32) (Exponential formula) If and H is commutative then

exp(Lf(t)e(t)) = 1+ 2:t( 2:
mG(t;m)(m!)

-lfm)e(t).

If moreover aEU(k)T(l) then

(1.33) exp(L fit) e(t)) = 1+ 2: (2: a(t)G(t;m) fm .
t anT tmm l am 0a m.

The combinatorial interpretation of the number a(t)a-m(m!)-l as a number of partitions

is given in (3.53). Calculations as those of (1.29) are of course known from combi-

natorics (compare, for instance, [5], pp.36 and [27], Th. 3.2). The generic case of

formula (1.31) with indeterminates f(t) is treated in (3.77). The simplest, but

interesting case is that of the Mobius function depending on the basis e(t),

t E T( 1), where one defines functions

n: =const1 =2: {e(t); tET(l)} ,I;: = l+n ,and

(1.34) u: =1;-1 = l+I
tE:T(l)

[2: {(-l)lmI GS(t;m); mElNo(T(1))_{O}}] e(t).

§2. Connections with unipotent group schemes.

This section is inspired by the theory of Witt vectors and A-rings, (see, for instance,

[20] pp.179; [7], §5, pp.1l9; [19], Ch.1).

Let k be a groundring and H an AlA over k. Notations as in §1. The properties of H

are inherited by the group l+H(l), and one obtains
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exp and log induce inverse homeomorphisms

-1 n
x -.... exp(x): = :L {(n!) x;n ? O}

n-1 -1 n
10g(1+x):=:L{(-1) n x;n?l}-l+x 0

(2.4) H(l)
log ,

(2.1) Theorem: Situation as above. Then

(i) With the topology induced from H the group l+H(l) is a Hausdorff, complete

topological group with a basis of neighborhoods of 1 consisting of normal subgroups.

(ii) The filtration 1+H(1)::>}+H(2)'::'" of l+H(l) consists of closed normal subgroups

and satisfies lim
d(l+H(d))

= 1. This implies

(2.2) l+H(1) = 1i m(l+H( 1) /l+H (d) ;d ? 1)

where the first lim means convergence as in (1.4) (ii), and the second the inverse

limit for topological groups.

(iii) The map x -- l+x induces for l-s ms n homeomorphisms

n {ke( t ) ; t I (m, n)} ;;; H(m)/H( n) ----> l+H(m)/l+H (n)

:L f(t)e(t) __ :L f(t)e(t) -----> 1Hf(t)e(t)

where T(m,n):= 0 (T(k); k=m, .... n-1}. For n=m+1 these maps are topological group

isomorph isms. Hence for d? 1 the sequences

(2.3) 0 .... n {ke(t); t I(d)}----> 1+H(1)/l+H(d+1) l+H(l)/l+H(d) ----> 1

of groups are exact, and the groups l+H(l)/l+H(d) have normal series with factors
I

of type k , I a set.

(iv) If k the functions

The ideal H(l) is a topological nilpotent Lie algebra with bracket [x,y]: =xy-yx

in the sense of the following definition.

(2.5) Definition: Consider a topological Lie algebra over a ring k and assume that

has a O-basis of ideals. Then is called topologically nilpotent if the descending

central series n z o, converges to O.

(See [25], LA5.3 and (1.4) (ii), for the definitions).

The standard example for this notion is the topologically free Lie algebra

A A "" A
L(X)=L(X(l), ... , X(r))cAss(X(l) ..... X(r))=Ass(X)

on r generators ([25], LA 4.13). If is any such Lie algebra and

x = (x(I), ... , x(r)) E { there is a unique continuous Lie algebra homomorphism

(2.6) x# : L(X(l), ... X(r)) X(i) ----> x(i).

For = H(1) this is the restriction of the corresponding map for the associative

algebras (1.21). If. in particular, and h(X,Y) E L(X,Y) is the Lie Power series

from the Campbell-Hausdorff foY'mul a with

(2.7) exp(X)exp(Y) =exp(h(X,Y)) in Ass(X,Y)([loc.cit.], LA 4.14), and if x,yEg

then ht x .y}: = (x,y) # (h) is well defined. The part (iv) of Theorem (2.1) can

be improved to

(2.8) Corollary: In the situation of Theorem (2.1)(iv) the map exp:H(l) ----> l+H(l)
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is a topological group isomorphism, where the composition on the left is given by

(x,y) ---+ h(x,y). [J

If R is any commutative k-algebra the results (2.1) and (2.8) can be applied to the

AlA R®kH over R instead of H itself.
In the sequel we use the standard terminology for affine groups from [7], Ch.II.

Let = denote the category of commutative k-algebras and Gr that of groups.

A representable functor G:AL Gr is called an affine group (-scheme, -functor)

over k. If

(2.9) FR: Alk(A,R) ;; G(R) ,
is a functorial isomorphism then A: =A(G) is the affine algebra of G, unique up to

isomorphism, and x: =FA(idA) is the corresponding universal element.

Then F is given by

(2.10) FR(f)=(Gf)(x) f:A R.
In the same fashion one defines affine monoids, rings etc. For example, the AlA H

induces the affine ring
(2.11) AL {associative rings} , R R@ H

More important for the purposes of this paper is the subgroup AH of H, defined in

(2.12) Theorem: (i) The group functor

(2.13) Gr, R I+R @H(l) c R®H
is an affine k-group which is represented by the polynomial algebra

k[X(t); HT(l)], X(t) indeterminates, through

(2.14) Al(k[X(t); HT(l)J,R) ;; A(R), f 1+ L{f(X(t))e(t); to(l)}

and has the universal element

(2.15) 1+ L{X(t)e(t); to(l)} EA(k[X(t); to(l)]).
(ii) The ideals H(d) of H, d z L, induce a filtration

(2.16) A: =A(1)::A(2) =.". , A(d)(R) = l+R ®H(d) ,
by closed , affine, normal subgroups of A such that

(2.17) A;; limd A I A (d).
The quotient A I A (d) is taken in the category of all group functors, is affine and

can: A --+ A I A (d) is fai thfully flat [7].

(iii) Let Ga be the additive groups, represented by polynomial algebras,

(2.18) T(d) can
o Ga A I A (d+1) A I A (d) 1, d z l ,

with faithfully flat can. In particular, A is an inverse limit of groups with
normal series whose factors are groups G I, I a set.a [J

Over an algebraically closed field k the latter property characterizes unipotent
affine groups ([7], p.355,487). We define unipotent for k a principal ideal domain,
e.g. Z, such that the same result is true. We show moreover that unipotent affine

groups give rise to AlA's in a canonical fashion.
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(2.19) Assumption: In the remainder of this section we assume that k is a principal

ideal domain, e.g. or unless explicitly stated otherwise. For combinatorics this

is not a serious restriction. For group schemes over rings this assumption is often

necessary (more generally: k Dedekind)(see, for instance,[l] and [30]). Some results

hold for arbitrary noetherian k.

Assume now that, without loss of generality, G Al(A,-), G = Al(A,-) is an affine

flat k-monoid (i .e. A is flat as k-module) with comultiplication
(2.20) 1::>.: A ----+ A A, a ----+ L a(l) a(2) (see [7], p.145 and [29], p.7)
and counit c : A ----+ k, A+: = kerj e}.

Flatness is a suitable technical condition ([26], [1], [30]), for instance, when

going from to For any k-algebra Rwith structure map 11:k----+R

the k-module Homk(A,R) of k-linear maps is an associative R-algebra with the convo-
lution multiplication

(2.21) fg=)J(f @g) 1::>., i.e. (fg)(a) = L f(a(1))g(a(2)); f,g:A ----+ R,

where )J denotes the mUltiplication on R (compare,for instance, [29], pp.14).

The unit of Homk(A,R) is 11£ = : e, Then
(2.22) G(R) = Al (A,R) cHom(A,R)
is a multiplicative submonoid. Moreover, Hom(A,R) is a linear topological R-module

with the finite topology, a O-basis of which is given by the Hom(A/A' ,R), where A'

runs over the finitely generated k-submodules of A. We write
* +(2.23) H: = Hom(A,k) = A , the dual module, H : = Hom(A/k,k).

If A is k-free with basis x(t), tET, and if e(t)EH=Hom(A,k), tET, is the dual

basis then

(2.24) Hom(A,R) R®H, f ----+ L f(x(t))e(t)

is a topological R-isomorphism. The methods of [26] give

(2.25) Theorem: Situation as above. The R-algebras Hom(A,R) are topological,

Hausdorff, complete and have a O-basis of two-sided ideals. If A is k-free then (2.24)

is an algebra isomorphism. D

Define
+(2.26) Id-11£: A ----+ A, a ----+ a- £(a)lA = : a and

(2.27) 1::>.: A ----+ A@n, a ----+ L a(l) @ ... @a(n)

corresponding to the multiplication Gn ----+ G. The canonical filtration of A is then

defined by
(2.28) A(n): = ker(A - (Id-11£)@n----+ A@n)

= {aEA; L a(l)+ @...@a(n)+=O}.

(2.29) Proposition: (i) The A(n) from (2.28) satisfy the recursive relations

A(l) = k=k1A ' A(n+1) = {a; I::>.(a) - a @1EA(n) @A}.
(ii) The A(n) form an increasing sequence of subcoalgebras of A, and satisfy

A(m)A(n) cA(m+n).
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(iii) Au: =U(A(n); n2:1} is a subbialgebra of A, and the injection AucA is faithfully

flat, i.e.

(2.30) G=A1(A,-) -----> Gu: =A1(Au'- )
is a faithfully flat epimorphism of flat affine monoids.

(2.31) Theorem: Let G=Al(A,-) be a flat affine monoid. Notations as above. Then the

following assertions are equivalent:

(i) The filtration A(n) is exhaustive, i.e. A=U A(n).
(ii) For any the ideal Hom(A/k,R) of Hom(A,R) is topologically nilpotent.

If in addition A is k-free, then
(ii ') The ideal H+ =Hom(A/k,k) of H is topologically nilpotent.

(iii) If V is a finitely generated non-zero G-module, then also the fix module GV is

non-zero. o

o

If (i) and (ii) are satisfied, the monoid G is a group and called unipotent.

See [7], pp.169, for the definition of GV• If k is a field the preceding definition
of unipotence coincides with the usual one ([7], p.487). A similar notion is that

of linear unipotence in [30], p.765. That G is a group in (2.31) follows in the same

fashion as that an infinitesimal formal monoid is a group ([11], p.528). This is not

surprising since commutative infinitesimal respectively unipotent groups a field are

in (Cartier-) duality.

(2.32) Standard example: The additive group Ga,Ga(R) = (R,+), is unipotent.

(2.33) Corollary: The faithfully flat epimorphism (2.30) is the universal homomor-

phism from a monoid G to a unipotent group. 0

For unipotent groups as defined above there is a stability theorem as in [7], p.485.

This result, Example (2.32) and Theorem (2.14) imply

(2.34) Theorem: If H is an AlA over k then "'H ' "'H(R) = l+R e H(l), is k-free and

uni potent. 0

On the other hand one has

*(2.35) Theorem: If G=Al(A,-) is k-free and unipotent then H: =A =Homk(A,k) with

H(n): =Hom(A/A(n),k), n2:0, A(O) =0 is an AlA. Moreover, the unit n and the multi-
. fA' * *Hpl i cat'ion )J 0 i nduce, by dual ity, maps E:: = Ii : A= -. k and
* A *6: =)J : H ---+ H® H= (A ® A) respectively, such that H becomes a cocommutative

topologically k-free topological Hopf algebra, called the covariant Hopf algebra ofG. 0

Commutative such algebras are the affine algebras of formal groups, they are treated
in [11] and [15], pp.492.

We finally consider the Lie algebra of the k-free affine monoid G=Al(A,-). The algebra

H is also a topological Lie algebra with bracket [x,y] = xy-yx.
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(2.39) Proposition: Situation as above. Then

Lie(G): =Der (A,k) =Hom(A/k+(A+)2 ,k) = Hom(A+/(A+)2,k)

is a closed sub Lie algebra of H, where Der contains the derivations Dwith

D(ab) = s(a)D(b) + s(b)D(a). The topology induced fr0m H is the finite topology of
Hom(A+/(A+)2,k). With this topology Lie(G) is the (topological) Lie algebra of G.

[J

If w(a/k): =A+/(A+)2 ([7], p.215) is k-free then
A A ++ ++

R® Lie(G) =R ® Hom(A /(A )2,k) = Hom(A /(A )2,R) =

';:; HomR((R ® A+)/(R ® A+)2,R) =Lie(R ® G) c;: R H.

We identify all objects in this sequence and obtain the following

(2.41) Theorem: Notations as above. Assume k.

(i) If G=Al(A,-) is a k-free, affine, unipotent group and if A+/(A+)2 is k-free,

then Lie(G) is a topologically nilpotent (2.5) Lie algebra. The maps exp and log
induce inverse group isomorphisms

R®H+ -.--+ "H(R) = 1+R@H+

(2.42) u
exp

u

R® Lie(G) . log G(R)

where on the left the group structure is the Campbell-Hausdorff composition (2.7)
(ii) If A+/(A+)2 has tha basis c(i), i 10 I, then there are algebraically independent

generators x(i) of A, iEI, i.e. A=k[x(i); iEI] is a polynomial algebra with
x(i)+(A+)2 = c(i).

(iii) The functor G Lie(G) is an equivalence between the categories of groups as

in (i) and that of topologically nilpotent, k-free Lie algebras. [J

The preceding theorem and the finer structure of G is known if G is algebraic over

a field k ([7], IV. §2); the generalization here is that to arbitrary affine groups

instead of algebraic groups and to topologically nilpotent Lie algebras. If k is
Dedekind (e.g. k =1. as needed in combinatorics) such a structure theory is contained

in [30]. We plan to study its combinatorial implications. Theorem (3.74) below shows

that there is a big class of combinatorially interesting unipotent affine, not alge-

braic, groups over 1. (not only whose affine algebras are polynomial.

§3. Combinatorial incidence algebras and unipotent groups

A. Abstract incidence algebras in combinatorics

The incidence algebras constructed in this section are a variant of the Hall algebra

(see, for instance, [19], pp.SS), and the incidence algebra of a category (compare

[6] and [24], p.43), adapted to the theory of §1. They include many new classes of
examples and almost all examples of the literature. The main observation is the
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connection between sheaf theory and unipotent groups, developed in section E of this

paragraph.

Let be a category, M a class of epimorphisms of and an equivalence relation on

M (compare [24], p.43). The elements of are called types (by Rota) and denoted

by 5, s EM. The main example for M is the class of epimorphisms in categories of sheaves

Dually one obtains a theory for monomorphisms. We assume that is skeletal-small, i.e.

, =class of objects ';;' isomorphism,

is a set. These data are supposed to satisfy the following condition:

(3.1)(Isomorphism): All isomorphisms are in M. 0

(3.2)(Multiplication): If s(1),s(2) are composable morphisms, then

s(1),s(2) EM => s(1)s(2) EM => s(l) EM. 0

Let S2(M) be the set of singular 2-simplices of M, i.e.

(3.3) S2(M): = {(s(l) ,s(2)); X(O) - s( 1) - X(l) - s(2) - X(2), s(i) EM}.

Two 2-simplices (s(1),s(2)) and (r(1),r(2)) are equivalent if there is an isomorphism

h with s(l)h =r(l) and s(2) =hr(2). This h is then unique.

Define

(3.4) S2[M] = [s(1),s(2)]. Then

(3.5)(Local finiteness): For all sEM the set

([s(1),s(2)] ES 2[M]; s(1)s(2) = s} ts finite (compare [24], p.43 and [6]). 0

Define. the dimension (rank) of s E M by

(3.6) dim(s): =Sup n where n runs over all nE1'Josuch that there is a product repre-

sentation s=s(l) ... s(n),s(i) EM, where s(i) is not an isomorphism and the sup is taken

in 1'JoD{oo} . Obviously, dim(s)=O if and only if s is an isomorphism.

(3.7)(Finite dimension): For all sEM the dimension dim(s) is finite. 0

For the equivalence relation we need

(3.8) Isomorphy implies equivalence, i.e. if s(2)=h(2)s(1)h(1)-1 with s(i)EM and

isomorphisms h(i) then s(l) s(2). 0

(3.9) The class eM of isomorphisms in is i.e. if

and s(l) is an isomorphism, then so is s(2). 0

With one obtains a decomposition

(3.10) T= Iso(T) CJ T(l) , T(l) = {s; sEM is not an isomorphism}

We consider c with X= idx.
(3.11) The maps domain (dom) and codomain (cod) are invariant, i.e. for s:X .... Y

in M the types

dom(s):=ldX and cOd(s)=idy in T are well-defined. 0

The main axiom is (compare [6], pp.184)

(3.12) (Section coefficients): For types t,t(1),t(2)ET and SEM,s=t,

the number G(t;t(1)t(2)): = # {[s(1),s(2)] ES 2[M]; s(i) =t(i),s=s(1)s(2)}

is independent of the choice of the representative s of t. 0
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Then dim(t): =dim(s),s=t, is well-defined.

Let k be a commutative coefficient ring. With the above data and conditions consider

the linear topological k-module kT with the product topology and the standard basis

e(t),tET. Define the multiplication f 1f2
by

(3.13) (f 1f2)(t)=L: [G(t;t1t2)f1(t1)f2(t2); \,t
2ET};

kT with this multiplication is denoted by k[[T]]. Define

(3.14) k[[TJ] (d) =IT[ke(t); dim(t) 2:dJ, d2:0.

(3.15) Theorem: Assumptions and notations as above. Then

(i) k[[T]] with the filtration (3.14) is an AlA with multiplication constants

G(t;t(1)t(2)) with respect to the standard basis.

(ii) The family (e(t); tE Iso(T)) is a complete set of orthogonal idempotents.

(iii) Identify kIso(T)= IT [ke(t); tE Iso(T)} ck[[TJ]. Then the k-algebra kIso(T)

with the componentwise structure is a closed subalgebra of k[[T]], and the projection

k[[T]]--> klso(T) induces a topological isomorphism k[[T]]/k[[T]J(l) ';;; kIso(T), and

the topological decomposition k[ [T]] = klso(T)@ k] [T] J( 1). In particular, by (1.10)

fEk[[TJ] is invertible if and only if f(t)EU(k) for all tEIso(T).

The algebra k[[TJ] is called the incidence algebra of M, reduced modulo ([8], [24])'0

The higher multiplication constants G(t;l(l) ... t(r)) are defined as in

(1.16). They admit the following combinatorial interpretation. Define the class Sr(M)

of r-simplices and Sr[M] as (3.3) and (3.4).

(3.16) Corollary: For t,t(l), ,t(r)ET, r z l , and sEM, s=t,

G(t;t(l) ... t(r)) = # [[s(l) s(r)] ESr[M]; s(l) ... s(r) =s,S(l)=t(i)}.

A more suggestive interpretation is the following one.

For XE Ob(JS.) consider the preordered class M(X) = Is EM; dom(s) = X} with s(l) :5s(2)
-1

iff s(1)=ss(2) for some s. This s is then unique and in M and denoted by s(1)s(2) .

For the equivalence relation "", "induced by this preorder, i.e.

s(l) "" s(2) .- s(l) :5s(2) and 5(2) :5s(l) .- s(1)s(2f 1 is an isomorphism,

(3.17) the set M[X] : = M(X)/""3 [s]

of "factors of X in M" is ordered by the induced order and then 1oca lly fi nite by

(3.5). Ths greatest element of M[X] is 1: = [id
X]'

If s:X ---> Y is in M a decreasing

sequence

(3.18) 1 = [id
X]

2: [f(l)] 2: ... 2 [f(r)] = l s l

of length r in M[X] is called a normal series of [s] with r factors f(i)f(i-1)-1 ,

i = 1, ... ,r , in 1.

(3.19) Theorem: Let t,t(l), ... ,t(r) ET be types, and s:Y - X a representative of t.

Then the map

(X(r)=Y ,s(r) X(r-1). s(r-1) ... X(l) • s(l) X(O)=X)

1 = [id
X]

2 [s(l)] 2 [s(2)s(1)] 2 ...

induces a bijection from the set [[s(r), ... ,s(l)]; s(r) • .,s(l)=s,s(i)=t(i)} onto the
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set of normal series of l s l with r factors t(l), ... ,t(r). Hence G(t;t(r), ... ,t(l)) is
the number of these normal series. The number GS(t;m),O*mEJIlo(T(l)), from (1.26) is

then the number of all normal series of Is l of type m,i.e. with m(t), tET(l),

factors of type t.

(3.20) Corollary: Let r =2. Then
G(t;t(2)t(1)) = # {[f]ErHX];[s] < [f],f=t(1),Sf-1=t(2)}. o

The incidence algebra k[[M[X]]] of the locally finite ordered set M[X] is of course

a special case of the above construction. It is the k-module of functions

f: {(i,j);i:5.j in k, (i,j)-> f(i,j) with the multiplication

(fg)(i,j) = L f(i,k)g(k,j);i<k<j} . Then

(3.21) Theorem: (Connection with local incidence algebras)

Situation from above. The map
can : , given by

t([s(1)],[s(2)J) = f(s(1)s(2)-I), s(l) s(2) in M(x) ,

is a continuous k-algebra automomorphism. It preserves the c; -function and thus the

Mobius function. In particular ))M[X] (Ls l vl ) = ))T(5) where s: in 0

The preceding theorem shows that for the calculation of the Mobius function alone the
incidence algebra of an ordered set is sufficient. It can be interpreted as the con-

nection between standard and large incidence algebras in [8].

B. Second cohomology. Multiplication constants as 2-cocycles.

Let and Msatisfy (3.1) to (3.f), and let be a small category whose morphisms are
epimorphisms and whose isomorphisms are identities only. As standard examples one has
(3.23) A locally finite ordered set, considered as a category, and

(3.24) A locally finite cancellation monoid without invertible elements except 1.

Let F : be a functor such that F(M) = is the class of all morphisms of
and s is an isomorphism if ond only if Fs is an isomorphism, i.e. an identity.

A generalization to Morph is possible [9]. Define s(l) s(2), s(i) EM,

iff Fs(l) = Fs(2). Then F induces a btjection

(3.25) F: = T Morph(h). Identify

(3.26) = T = Morph(h) , 5 = Fs.
As is easily seen the conditions (3.8/9/10) are satisfied. Assume however that also

(3.12) is fulfilled. That F is a functor implies that G(t;t(1)t(2)) = 0 unless
t = t(1)t(2). Hence define
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(3.27) z(t (1) , t (2)) = G(t (1)t (2) ;t (1) , t (2)) , (t (1) , t (2) ) E S2

where S2(.!:.) := S2(Morph(.!:.)) as in (3.3).

(3.28) Theorem: Assumptions as above.

(i) The function z : Z defined above is a normalized 2-cocycle.
This means

(a) z(t1,t2) 1 if t 1 = id or t 2 = id.

(b) For (to,tl't2) E S3(.!:.) the cocycle condition

z(tl,t2)z(tO,tlt2) = z(to t 1,t2)z(tO,t 1) holds.

The incidence algebra k[[T]] is given as kMorph(.!:.) the mult i pl icat iot

(3.29) (f 1f2)(t) =L{z(tl'tZ)f1(t 1)f2(t2) ; t 1t 2=t}.
(ii) If on the other hand z is any normalized 2-cocycle k with values in k
one defines k[[.!:.,z]] = kMorph(.!:.) with the multiplication (3.29) and obtains an

associative topological algebra.

(iii) If in (ii) zl,z2 are two cohomologous cocycles, i.e. if there is a normalized
l-cha i n c:S1(.!:.) =Morph(.!:.) U(k), c(id) = 1, with values in the group U(k) such

-1 -1that z2 = zl(dc) where (dc)(t1,t2) = c(t2) c(t1,t2)c(t1) , then the map

(3.30) k[[.!:.,zl]] (fc)(t) = f(t)c(t)
is a topological algebra isomorphism. In particular k[[!:.]]:= k[[!:.,l]] = k[[.!:.,dc]].

o

The preceding theorem points to the interest of the monoid of normalized

ZX = (Z,·)-valued 2-cocycles on.!:. modulo cohomology. Even H norm(f'.lo'Zx) is a very
difficult object. A detailed study of this and a partial combinatorial interpretation
is made in [9].

Assume now in addition that z > 0, i.e. that the numbers z(t(I),t(2)) are non-zero.

Then z is a 2-cocycle with values in the group = {O}, and the second cohomo-
logy group becomes is known in many cases. Examples:

(3.31) .!:. =INo : Then H2(INo' abel ian group) = 0 ([3] ,pp.192). The z from (3.27) is
cohomologous to 1, i.e. z =dc , and we obtain

= dc]] '";; f X
t

t s u l .

This is the theory of algebras of full binomial type in [8], pp. 122. o

(3.32) L=free monoid on a set I of letters: Again H2(.!:. abelian group) = 0 by [3],
;'\

pp.192 , and = Ass(I) (1.20).
o

(3.33) z 2: The Koszul complex calculations of [3],pp. 192, show that

z is cohomologous to a bilinear, alternating map b: IN (I) x (I) ----+ U(m), ando 0
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thus (I) ,b]]. The latter algebra is a skew power series albegra. For I

the set of all prime numbers (1) is isomorphic to with multiplication and we get

the theory of algebras of full Dirichlet type in [8], pp.116. 0

(3.34) a countable directed set: Then again abel ian group) 0 by [22], and

then of upper triangular Lx L-matrices. This generalizes [8].

pp.127, to arb i tr-ary L, e.g. 0

(3.35) Remark: The most general construction of the type (3.28) (ii), is a generali-

zation of the crossed product construction in Brauer theory (see [21],p.242). Let

be any functor (suggestive: operates on A by algebra homomorphisms) and

let z be a normalized 2-cocycle with values in A , i.e.

z(t(1),t(2))EA(cod t(l)) for

Then
A[ n{A(cod t ); t ET :3 f (f(t) to)

o

with the multiplication

(fg)(t) L t l , ug(v) (Au)(g(v))

is an associative topological algebra. It is the most general skew power series algebra.
c

C. "Sheaf-like" categories.

We introduce now those "sheaf-like" categories .IS. for which k[[TJ] becomes a bialgebra.

generalizing the Faa di Bruno coalgebra [24] and most of the other examples there.

Suppose that K satisfies the following conditions:

P.36) (Finite limits): .IS. admits arbitrary finite limits (lim).

(3.37) (Finite coproducts): .IS. admits finite coproducts. 0

(3.38) (Homomorphism theorem): For any f:X in .IS. there is an exact sequence
prcj 1 can

R(f) X x X X X/R(f) , and the induced morphism find with
Y proj 2

o

f find 0 can is a monomorphism. In particular, R (can) R(f) as
Xx X, i.e. the equivalence relation R(f) is effective (see below).

then R(f) {(x(1).x(2)) EX x X; f(x(l)) f(x(2))}.

subobjects of

If X and Yare sets

Amorphism f:X is called an effective (= regular) epimorphism ([14]. pp.180), if

find is an isomorphism, and an equivalence relation ReX xX is called effective if

X/R exists and R=R(can) as subobjects of XxX. Let Mbe the class of effective equi-

valence relations on X considered as subobjects of Xx X. Then with (3.17) we obtain
the following

(3.39) Corollary: The map
M[X], R X/R]

is an order antiisomorphism. In (3.21) one can thus replace M[X] by Rel(X). o
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In the category Setf of finite sets Rel(X) is the ordered set of partitions of X.

(3.40)(Universality): Finite coproducts are universal (see[14],p.243, and [12], p.156),

and disjoint, i.e. (i) if f:X-----+Y is a morphism and Y =Jl. Y(i) a finite coproduct, then

f- 1(Y(i)), f- 1(Y(i)) := X x Y(i), and (ii) if X';; XJl.X then X = O. Then the cane-
y

nical morphisms Y(i)-----+Y are monomorphisms.

Finally we require finiteness for strict monomorphisms . A monomorphism in

is called strict ("echt" in [12],p.16) if any commutative diagram (without the dotted h)

s with an epimorphism e can be commutatively completed by an h
Y .. X

t g
" " h,, __ t which is then unique. For define Sus(X) :=

- _ \ f strict monomorphism} / "" with s(l) "" s(2) iff s(2)h =s(I),
Y' e "X' h an isomorphism. Then SUs(X) is ordered like M[X] in (3.17).

D

(3.41) (Finiteness of strict monomorphisms): For Xc the set Sus(X) is finite.

(3.42) The collection of conditions (3.36) to (3.41) is denoted by (Epi).

D

D

If the above axioms are satisfied then also the sets Rel(X), and the Hom-sets Hom(X,Y)

are finite. For enumeration problems (3.41) is a trivial requirement.

(3.43) Monomorphic situation: For the study of classes Mof monomorphisms,i.e.subobjects,
we do not dualize which is not interesting, but change only axioms (3.38) and (3.40) to

(3.38)oP (Cohomomorphism theorem): Any f in admits a factorization f = se with

a strict monomorphism s and an epimorphism e.

(3.40)oP (3.40) plus: Epimorphisms are universal.
D

In the monomorphic situation we denote the whole collection by (Mono).

(3.44) Main examples: The conditions (Epi) and (Mono) except the finiteness condition

are satisfied in toposes = categories of sheaves ([14], pp.299). Actually, the theorem

of Giraud ([14],p.303,[12],p.156, and [16],p.17) says that toposes are characterized

by simple axioms of which the universality of coproducts is the most distinguishing.

Many combinatorially interesting examples are given in [14],pp.311, see also §4 below.

The conditions are also satisfied in elementary toposes [16]. The combinatorial

standard example is

(3.44') I a category with finitely many objects and := (I,Setf) = category of all
functors from I to finite sets. For the ordered set Sus(X) of subobjects of X is

the Brouwer lattice af all subfunctors of X (compare [16],p.137).
Combinatorially standard examples are the following:

(a) I = 1'1
0
= the free monoid with one generator. The objects of = (lNo,Setf) are

pairs (M,s) of a finite set Mwith an endomorphism s.

(b) I = Z = the free group with one generator. As in (a) one obtains pairs (M,s) with

a permutation s.
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(c) I = the finite monoid on one generator g with the relation gm=gn, l s ms n« co ,

The endomorphism s from (a) has to satisfy the same relation sm=sn. If m=l, n=2

this means that s =s2 is an idempotent.

However, the conditions (Mono) for the monomorphic situation are satisfied for combi­

natorially interesting categories which are no toposes. Special examples from the
literature are the categories of finite topological spaces, ordered sets, graphs,

(rooted) forests etc. The category of finite ordered sets does not satisfy the homo­
morphism theorem.

The next result shows how to derive new relevant categories from given ones by
"induction".

(3.45) Induced categories: Let be a functor and assume that L satisfies

(Mono) and that

F: FX(2)),

is injective. Identify f=Ff, F=inj for f An F­structure on VEL is an XEK

with FX = V. Assume that F induces the fo11 owi ng structures from L to K:

(3.46) If V =JlF(X(i)), VEL, is a finite coproduct with canonical morphisms
uti) : F(X(i))­+V then there is a unique F­structure X on Y such that X =JlX(i) with
canonical morphisms uti).

(3.46)oP The analogue of (3.46) for finite products. o

o

(3.47) If V' -2... F(X), V' is a strict monomorphism

F­structure X' on V' such that s is strict in and such

X" in ';: f=sg : g­­­­sg.

in L there is a unique

that for all

Under these conditions also satisfies the conditions (Mono). The combinatorial

standard example is = Setf = category of finite a category of sets with
structure. A different approach is contained in [18] (categorie des especes).

D. Krull­Schmidt categories and exponential formulas.

Krull­Schmidt categories are the suitable algebraic notion to distinguish between

arbitrary and "connected" structures in combinatorics. They are abundant in this area

because the finiteness conditions necessary for the proof of a "Krull­Schmidt"­theorem
are trivially satisfied in enumeration problems.

An object X of a category with finite coproducts is called indecomposable (in combi­

natorics often connected) if X",O and if X';: X(I) JlX(2) implies X(I) or X(2) ,,0.

A partition of X is a finita subset f = {[s:V(s)­­­­ X]} of Sus(X) (see 3.41) such

that V(s) *°and such that the canonical morphism

(s ; l s l Ef) :.u {V (s) ; [s] Ef} ­­­­ X
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is an isomorphism. A partition is called a Krull-Schmidt(KS-)partition if the Y(s)
are idecomposable.

(3.48) Definition: A category is called a Krull-Schmidt(KS-)category if

(i) Finite coproducts in exist and are disjoint (compare 3.40), and the canonical

morphisms from the summands into the sum are strict monomorphisms, and if

(ii) each XEK has a KS-partition, unique up to isomorphism.

(3.49) Example from section C: If a category K satisfies (Epi) or (Mono) from (3.42)

respectively (3.43) then is a KS-category with unique KS-partitions, i.e. the

KS-partition of each object X is really unique, and not only unique up to isomorphism. 0

The uniqueness of KS-partitions is typical for categories with universality of copro-

ducts such as sheaves, ordered sets etc., but false for groups, modules etc. Often
the dual situation with products instead of coproduct decompositions is considered

(compare,for instance,[4],p.96).

If is a skeletal-small KS-category and if f is a system of representatives of the

isomorphism classes of indecomposable objects of then the map

(3.50) :N (f) -+Ob(K)/ ';:; ,n -+ X(n) :=Jl{n(P)P;PE P}o - -

is a monoid isomorphism where n(P)P= PJl .. .u P,n(P) times, and the addition on the
right is induces fromJl.

(3.51) Interpretation with connected components: In the situation of(3.44)we define

for a functor XE (I,Setf) the oriented graph G(X) with vertex set

IXI :=lJ{X(i);iEl} and oriented edges (x,y), where XEX(i), YEX(j) and there is

a : i -+j with (Xa)(x) = y. Let Kc IXI be a connected component of the underlying

non-oriented graph and define X(K) c X by X(K)(i) = KnX(i). Then X(K) is indecom-

posable and

o

x u {X(K);K connected component of

is the unique KS-partition of X.
IXI}

If K is a KS-category and if £. = ([s:Y(s)-+ Xl} is a partition of X, the type of f
is the vector m = (m(n)) Ei'Jo(T(l)), T(l): =:No(f)- {O}, where

m(n) = # {Is l Ef;Y(s) ';:; Jl{n(P)P;P Ef}}.

From (1.33) one derives

(3.52) Theorem (Exponential formula for KS-categories):

Let be a KS-category with finite automorphism groups. Notations as above. For
nET(l) :=:No(f)_{o} define a(n) = IAut(lLn(P)P)I. For mE:ll\(T(l))

let P(n,m) be the number of partitions ofJl n(P)P of type m. Then:

(i) i0 if weight(m) := L:{m(t)t;tET(l)}*n

(3.53) P(n,m) = if weight(m) = n.
amm!
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(ii) If X(P),PEf, T(n), nET(I), and Yare indeterminates then one has in
m[y,T][ [XJ]

exp(YL{T(n)a(n)-IXn;n ET(I)})

with "partial Bell-Polynomial"

Bn,k(T) = L{P(n,m)Tm; weight(m) n,lml = k } .

A comparable result in a different situation was derived by Stanley in [27], Theorem

3.2. The M(n) from [27]coincide with the P(n,n) from (3.53), i.e. are the numbers of

KS-partitions of X(n) =JL n(P)P. For categories! with unique KS-partitions the P(n,m)

are given by the formula,(which is weltknown in case If I = 1)

P(n,m) = n! [D{(t! )m(t)m(t)!;t ET(l)}J-l

and independent of !. The typical case! = Setf(f) , f any set, is treated in [10].

(3.54) Corollary: In the situation of Theorem (3.52) assume moreover that! admits

unique KS-partitions. Let be another KS-category with unique KS-partitions and

F: a functor which is injective (faithful) on morphisms and has the following

"induction" property for direct sums (compare (3.46)):

F-structures on direct summands determine a unique F-structure on the direct sum, and,

in turn, this F-structure on the direct sum uniquely determines the F-structures on

the direct summands.

All these assumptions are satisfied in the "induction" situation of (3.45). For

nET(I) :=No(f) - {O} let f(n) be the number of indecomposable F-structures on
X(n) :=ll n(P)P. For mEN (T(I)) and kEN let g(n,m,k) be the number of all F-struc-

o
tures Y on X(n) such that the KS-partition f of Y in has k direct summands and such

that the partition Ff of FY =X(n) in ! has type m. Then

(3.55) exp(YLn f(n)T(n)a(n)-I Xn)

= 1 + L LkB k(fT)y ka(n)-l Xnn n,

where B k(fT) := L{g(n,m,k)Tm; weight(m) = n, Iml = k}.n,

In particular, if g(n) the number of all F-structures on X(n) we obtain from

(3.56), by putting Y=T(n) = 1, the formula

(3.55') exp(L f(n)a(n)-I Xn) = 1 + L g(n)a(n)-l xn.n n 0

This result is the typical connection between connected and arbitrary structures in

exponential formulas (compare [28]) and extended to completely new situations in

Theorem (3.74). Special examples, weltknown from the literature (see, for instance,

[28]), are the fo l l ow i nq. A nontrivial new example is given in §4 ,A,(4.12).

Examples: (i) If ! is the category of finite sets and H that of finite graphs and if

F is the functor mapping a graph to its vertex set, then P = {{I}}, T(l) =N,
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and X(n) = {I, ... ,n}. Since the number of all graphs with vertex set {I, ... ,n} is
(n)

2 2 one obtains

where f(n) is the number of connected graphs on {I, ... ,n}.

(ii) as in (i). Let be the category of finite sets with an operation of the

cyclic group of order d, i.e. with a permutation s satisfying sd = 1, and F the

underlying functor. An easy calculation and (3.55') imply

X
n

Xn) = 1 + L 00 g(n)n n=l fiT'

where g(n) denotes the number of all solutions of sd = 1 in Sn'
o

E. Sheaf-like categories and unipotent groups

In this section we assume that is a category which satisfies the assumptions (Epi)

from (3.42). We show that these assumptions give rise to a natural construction of a

combinatorinl incidence algebra as in section A and a derived unipotent group. If

is the category of finite sets the corresponding affine bialgebra is the "Faa di
Bruno" bialgebra from [24], pp.36.

By (3.49) is a KS-category. Let be a system of representatives of indecomposable

ob.iects of modulo isomorphism, and let Mbe the class of effective epimorphisms of

We consider Mas a full subcategory of the category of all morphisms of

As a functor category this inherits the nronerties of and is thus itself a KS-

category; Mis closed under finite direct sums and taking direct summands in

As equivalence relation on Mwe take isomorphv in and obtain T :=

These data satisfy the assumptions made in Theorem (3.15), and we obtain the

incidence algebra k [[TJ] with standard basis e(t), tET. As for any KS-category

(compare (3.50)), is a free abelian monoid with addition induced from

direct sum and the indecomposables as basic, and T = M/ is a free submonoid of

The universality of lL (3.40) implies that an effective epimorphism

f:X---+ Y in M is indecomposable if and only if Y is indecomposable. On

the other hand, if Y is i ndecomposab1e i denti fy Y= idy for YEOb Let S denote

a system of representatives of the isomorphism classes of effective indecomposable

epimorphisms.With the above remarks one obtains without loss of generality a

decomposition

(3.56)

Then U

S = S' o S", S' = {P= S" = {s ES; s is not an isomorphism}.

.- {5,S ES} is a basis of T, and this basis also admits a decomposition
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(3.57) U U' CJ U", U' = u" = {S;SES"}.
This decomposition of the basis U of T gives a direct sum decomposition of abelian
monoids

(3.58) T:= T' Ell T",where T" := Ell rno u"; u"EU"} and

T' := Isom(T) = Eil{l'lou';u' EU'} = = = Ob(.I5.)! ';;

where T' = Ob(.I5.)! ';; is identified through idy = Y, YEOb(.I5.). Hence Ob(.I5.)! ';; from
(3.50) is a free direct summand of T = M! ';;.

The monoid structure of T induces a topological coalgebra structure on k[[T]] by

(3.59) D.: k[ [T]] --> k[[T]] @ k[[T]J, e(t)-->L: {e(t1) @ e(t2); t 1+t2 = t l

g : k[[T]] -k , e(t)--> 6tQ.

Again the universality of JL (3.40)implies the compatability of the algebra and
coalgebra structure, and hence

o

(3.60) Theorem: Assumptions and definitions as above. Then H .-

bialgebra, and (3.15), an abstract incidence algebra.

k[[TJ] is a topological

Rota ([24J,p.13) considers the dual situation. Let A := klTl be the dual (abstract)

bialgebra of Hwith the k-bas i s x(t), tET, multiplication

x(t1)x(t2) = x(t1+ t 2), 1A = x(O), comultipl ication

(3.61) D. : A-->A @ A, x(t) --> L:{G(t;t(1)t(2))x(t(1)) @ x(t(2));t(i) En

(3.62) and counit e : A -->k, x(t) --> 1 if t ET', 0 otherwise, the dual ity being
given by

k[ [T]] x k[T] --> k, (e (t) ,x(t ' )) --> 6(t, t ' ) .

By definition,k[T] is the monoid algebra of T, i.e. the polynomial algebra in inde-

terminates x(u), uEU. For the category .15. = Setf of finite sets Rota ([24] ,pp.36)
calls k[T] the Faa di Bruno bialgebra. In this case

S' = {i d: {l} --> {l}} , S" = {const: {I , .... , n} -----> {l }; n 2: 2},

i.e. U = U" =:IN by identification.

The algebra A = k[T] defines the k-free affine monoid G by

(3.63) G(R):= Al(k[TJ,R) ';; Mon(T,R), g --> f, g(x(t)) = f(t)

where Mon(T,R) denotes the set of multiplicative ([24],p.40) functions f,i.e. f(0)=1 and
f(t(1)+t(2)) =f(t(1))f(t(2)). If we identify in (3.63) and use the identification of

(2.22) and (2.24) we obtain

(3.64) G(R) = Mon(T,R) c R[[T]]: f = L:f(t)e(t)
i.e. G(R) = Mon(T,R) is a multiplicative submonoid of R[[T]]. Of course, since T is

free on uEU, f is already determined by the f(u). Contrary to the impression from
[24] and other sources, since G is represented by k[T], the study of G(R) for all R
is equivalent to that of k[T] or k[[T]] and not simpler.
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In general, G is not a group. However, a group can easily be derived from

G with preservation of the essential properties. Compare the remark in

[24], p.42. The decomposition T = T' ijl Til (3.58) and a little calculation

imply that

(3.65) A':= k[T']cA= k[T] = k[T' (j) Til] = k[T'] ® k[T"]

is a subbialgebra and A is A'-free, hence flat, hence there is a faith-

fully flat epimorphism

(3.66) G = G' = Al(k[T'],-)

of k-free affine monoids where Res is the restriction. Let

( 3 . 67 ) Gil: = ke r ( Res) = Res -1 ( 1 )

be the kernel of Res. Then

(3.68) G"(R) = {f010n(T,R);f(T') = I} = c R[[T]]

where an f " EMon(T",R) is identified with an fEMon(T,R) by

f = 2: t f (t ) e ( t ) = 2:t II f II (t " ) (2:t' e (t' + t" ) ) .

The cartesian diagram (3.69)

(3.69)
G
u u
G" ----. 1

(3.70)
k[T] ::> k[T']
+k[proj]+£ (3.71) tk [[proj]]t n
klT"]::> k k[[T"]] ----.k

induces the cocartesian diagram (3.70) of the affine algebras,where

kl T"] is the affine algebra of Gil and proj : T ---.T" denotes the projection in (3.58).

Dualization implies the commutative diagram of topological algebras (3.71) where the

upper map can is that of (3.15) (iii), and the left k [[proj]] is given by

f" ---.f" proj. The standard basis of k[[T"]] is mapped onto the elements

e"(t") :=2:{e(t' + t");t'ET'}Ek[[TJ], thus
(3.72) {

kl IT" l l = n{ke"(t") .t" ET"} by identification.

We finally identify by (3.58)

(3 . 73 ) T = N (U) T' = Iso(T) = IN (U') = N T" = N (U")
o ' 0 0' 0

and write n instead of t . Let x = (x(u);u E U) and y = (x(u);u E U"). Then

k[T] = kl x l , kl I") = k[y].

(3.74) Theorem: Conditions (Epi) from (3.42), T := {effective epimorphisms}/ = No (U)

Notations from above and § 2 . Then

(i) Gil = Gnflk[[T]], and this is a closed, unipotent, k-free subgroup of flk[[TJ]'

The affine algebra of Gil is k[T"] = k[y] with the universal element

(3.75) 1 + 2:{le"(n);n '" O}E G"(k[yJ) c k[y][ [TJ].

The covariant topological algebra of G" is

k[[T"]] = n{ke"(n);nET" = N (U")} c k[[TJ].
o
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(ii) The unit of k[[T"]] is e"(O) = 1
k[[T]]'

the coalgebra structure comes from the

additive structure of Til (U") , and the multipl ication constants
o

G"(n;n1n2)(n,n1,n2ET") of k[[T"]] with respect to the basis e"(n), nET", are

n
(3.76) G"(n ;n1n2) = G(n

1
+ cod(n) - cod(n

1)
, n

2
+ dom(n) - dOm(n

2))

if cod(n1) cod(n), dom(n2) s domm) in the ordered monoid T ' and 0 otherwise.

Here G( n ) are of course the section coefficients of k[[T]] with respect to then1n2
standard basis e(n), eET.

(iii) The antipode S:k[y] k[y] of Gil, i.e. the inverse of the universal element,

is (1.31) given by

n = 1\1 (U")(3.77) S(yP)=L {a(p,n)y; n*O in Til} , O*p in Til "0 ' where

a(p ,n) = L {( -1) lm IGS"(p;m); weight(m) = n} ,

m runs over the elements of , weight(m) = L{m(n)n;n E Til} and GS"(p;m) is derived

from Gil as GS from Gin (1.26). In particular, S(x(u))=L{a(u,n)l; O*nET"},
(U")where u E U" c:No is the u-th standard basis vector.

(iv) The Lie algebra Lie (Gil) c:k[[T"]] c: k[[T]] of Gil (2.39) has the topological

k-bas i s e"(u), UEU", and the Lie bracket is

(3.78) [e"(u1),e"(u2)] =L ([G"(u;u
1u2)

-G"(u;u
2u1)]

e"(u);uEU"} for u1,U 2EU".

Thus Lie(G") is determined by the indecomposable effective epimorphisms.

(v) (Exponential formula) If k the exponential isomorphism

exp : R ® Lie(G") -----+ G"(R), functorial in R,

(from (2.42) again, as in (3.55)) gives a connection between indecomposable items on

the left and all items on the right. 0

The z-func t ions is the multiplicative function 1;:T-----+ k, 1;(t) = 1,i .e. 1;(X(U)) = 1 for

all u EU. This function is obviously contained in G"(k), Hence ].l = 1;-1, the Mobius

function, is also in G"(k). But 1; = 1;oidk[T]' u = 1;-1 = 1;oS, hence u can be obtained

by setting x(u) = 1 in (3.77). For nET (U) let n" be its component in Til =N (U") .
o 0

Then n E T(l) : = T - Iso(T) if and only if nil * O.

(3.79) Corollary: Let ].lEk[[T]], ].l=L].l(n)e(n), be the Mobius function in k[[T]]. Ther

1 if n E Iso(T) =l'lo(£J,i .e. n" = 0

L {( -1) lmIGS"(n" ;m);m - {OJ} if n" * O. 0

(3.80) Remark: In the situation (Mono) of (3.43) one obtains a corresponding theory

for the class of strict monomorphisms instead of effective epimorphisms. In this case

the ordered set Sus(X) of strict subobjects of X is a distributive lattice, but in

general not a Boolean algebra. However, if Sus(X) is a Boolean algebra for all
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XEOb(.!5.), an equivalence relation on satisfying the conditions (3.8)ff is given by

sl: Yl--+ Xl s2: Y2--+X2 iff Yl' ';;; Y2' ,

where s .": Y.'--+X. denotes the complement of s . : Y,. --+X,. in Sus(X,.)'" , ,
Many examples in [24] are of this type.

(3.81) Example: The Butcher group

Let.!5. be the category of finite rooted forests, f a system of representatives of finite
rooted trees modulo isomorphism and Mthe class of (strict) monomorphisms. We define

an equivalence relation on Msatisfying the conditions (3.8)ff by

sl: Yl--+Xl s2: Y2--+X2 iff Xl-s l(Yl) ';;; X2-s2(Y2),

where Xi - si(Y i) is the rooted forest obtained from Xi by removing si(Yi)'

The types are just the isomorphism classes of rooted forests, hence T (f), and

k[[T]] is a topological bialgebra. The unipotent group Mon(T,R) is isomorphic to the
Butcher group - known from the theory of Ringe-Kutta-methods in numerical mathematics

(see [31])- and admits a power series representation by Butcher series.

(3.82) Remark: The example ([24],pp.89) of finite ordered sets with the direct product

decomposition and its specializations (matroids etc.) do not directly fall into the

two cases (Epi) or (Mono) of this paragraph. The theory can, however, easily be adapted

to this case, in particular,to obtain an analogue of Theorem (3.74).

§ 4. Examples

A. Enumerations of effective epimorphisms and strict monomorphisms

Let K be a category satisfying the conditions (Epi) from (3.42) (or (Mono) from (3.43)),

let Mbe the class of effective epimorphisms (or strict monomorphisms) of and let f

be a representative system of indecomposable objects in modulo isomorphism. By (3.50),

Ob(K)/ ';;; is a monoid with elements [X] := Xmodulo isomorphism and addition
[Xli)] + [X(2)] = [X(I)Jl X(2)] , and isomorphic to I'J (f). We identifyo

(4.1) = ';;;, n =[Jl n(P)P;PEf].

Moreover, if I is any index set we identify i = (0... 010... 0), the entry 1 in the i-th
position, and obtain I as the standard basis of (I). In particular,

(4.2) (£) = ';;; , P = [P]= (0 ... 0lD... 0), 1 at p-th place. By (3.50), tV ';;;
is a free abelian monoid with the f := f modulo isomorphism, f:X--+Y indecomposable,

as basis. Here, fEM is indecomposable if and only if Y is indecomposable. For such an
f we define the type of f by

(4.3) type(f) = (f) xp (f) x (f),
o - 0 0
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where we use the identifications (4.1) and (4.2). Define the set of indecomposable

types by

(4.4) Q := {type(f);f01 indecomposable}cN x JIJ .
- 0 0

We consider Q c JIJ (Q) as standard basis as in (4.2), and call T:=JIJ(Q) the free monoid
- 0

of types. Extending linearly type(f) from the basis Q to JIJ (Q) = T we obtain the sur-
- 0

jective monoid homomorphism

(4.5) type: M/ =:N (Q) , f--->type(f) = L:{ type(f)(n,P)(n,P);(n,P) EQ}.o -

If here f:X--->V is in M and V = lLiV i is the KS-partition of V, then

f = lL .f.,f. := flf- 1(V.) : f-1(y.)---> V., is the KS-partition of f, and
1 1 1 1 1 1

(4.6) type (f)(n,P) = #{i;f-1(V.) .u ,n(P')P',V. P}.
1 P 1

We define type(R) := type(X X/R) for an effective equivalence relation R on X

and type (Is I) := type(s) for a strict subobject [s]. The injection Qc:N xJll
- 0 0

extends linearly to

(4.7) (weight, absolute value) : lN
o
(Q) --->:N

o
x lN

o
,

where weight(t) = L:{t(n,P)n;(n,P) EQ} and It I = L{t(n,P)P

Setting

(4.8) Q(P):= (n,P)EQ}, Q(n).-

we obtain Itl(P') =L:{t(n,P');nEQ(P')}.

The of the maps (4.5) and (4.7) is by

(4.9) rv type, IN (Q) (weight, IILlN x IN (P)
o 0 0

f------------. ([dom(f)],[cod(f)]) ,

i.e. if f:X ->V is in M and has type t = type(f), then

X lLn(P)P and V lLm(P)P with n := weight(t) and m := lt l .

(4.10) Standard example:

Let f = Setf be the category of finite sets. Then = {{l}} and :No'[X] IXI

(i) A system of representatives of indecomposable effective epimorphisms modulo

isomorphism are the constant maps

{l, ... ,n} -> {l}, n :2: 1, hence Q = {(n,l); n Em IN.

Then (weight, I I) : IN (J'l)--->lN x JIl -, t -> (L:{t(n)n;n :2: l}, L:{t(n);n :2: l}).
o 0 0

We identify an equivalence relation R on X with the partition X/R of X. Then the type

tEJlJ
o
(IN) of R is given by

t(k) = number of blocks of X/R with k elements, k :2: 1.

Here weight(t) = IXI and It I = IX/RI. The number of partitions of type t of a set with

n elements, n = weight(t), is
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R (t) := n! ( fT (k!)t(k)t(k)!f1.

kEI'l

(ii) A system of representatives of indecomposable strict monomorphisms modulo iso­

morphism are the constant maps Iil­+{l} and {l}­+{l}, hence Q = {(O,l),(l,l)}';;' {O,l}.
{O 1} -

Then (weight, II) : i'lo ' ­­­+I'lo x I'lo' t­+(t(l),t(O)+t(l)).

We identify a subobject l s : X­­+ Y] of Y with the subset s(X) c Y.

Then the type to'lo{Q,l} of I s l is given by t(O) = IYI ­ lXI, t(l) = IXI.

Here weight(t) = IXI and It I = IYI. The number of subsets of type t of a set with

n elements, n = weight(t), m = l t l , is S(t) := (m).
n

We generalize this to

o

(4.11) Theorem: Situation as above. Let t ET = I'lo (Q) be a type with weight(t)

It I = m. Then
#

M(t) := {fEM;f:llpn(P)P­+llp,m(P')P' has type t } =

= ( n n(P)!m(P)!) n (M(n',P')( fT n'(P)!f1)t(n',P')(t(n',p')!f1,

PEf (n',P')EQ PEf

where M(n',p') = llpn'(P)P­+P'}.

If M is the class of effective epimorphisms of then

Aut (llp,m(P' )P') acts freely on {fE M;f : II pn(P)P ­+llp,m(P' )P'} and we get

# -1R(t) := {RERel (llpn(P)P); type (R) = t l = .

If M is the class of strict monomorphisms of K, then

Aut (u pn(P)P) acts freely on {fE r";f: II pn(P)P­+ II p,m(P' )P'} and we get

# -1
S(t) := {SESus (llp,m(p')p'); type(S)= t} = r'.1(t)a(n) .

nand

The numbers R(t) or S(t) are often closely connected with the section coefficients of

the AlA H := k[[TJ] from (3.60)(see, for instance, (4.18)).

(4.12) An application of the exponential formula:

We consider Mas a full subcategory of the category of all morphisms of K.
An element fEM is indecomposable if and only if cod (f) is indecomposable. Since the

functor
F : x ,(f:X­­+Y) ­­+(X,Y)

satisfies all conditions of (3.54), (3.55') implies

X
n

WtP X
n

(4.13) exp( L M(n,P) a'ri' a(P)= L M(n,m) ­­
(n,P) EQ "'\") n,mEl'lo (f) a(n)

ym

arm)

and
Xn m(P)

n (L (n,P) amY)
PEf nEQ(P)

(4.14) Xn
L M(n,m)

n EI'l(f)
o

where M(n,m) = # {fEM;llpn(P)P­+llp,m(P')P'} and X(P),Y(P),PEf are indeterminates.
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(4.13) and (4.14) are not only the generatung functions for the M(n,m), but also for
the numbers of effective equivalence relations and strict subobjects.

If is the category of finite sets, (4.13) and (4.14) reduce to well-known results
about Bell numbers, Stirling numbers of the second kind and binomial numbers.

For instance,

exp (expX - 1) Xn
l: B(n) fiT

n=O

(expX - l)m
ml

Xn
l: S(n,m) TiT

n=O

and (l+X)m = l:
n=O

Our next example is more complicated, but still very similar to finite sets.

(4.15) Equivariant partitions of G-sets: Let G be a finite group and K := G-Setf the

presheaf category of finite G-sets, i.e. sets with an operation of G from the left.

The epimorphisms of are the G-homogeneous surjections and effective. If X is a

G-set an equivalence relation RERel (X) is simply an equivalence relation

ReX x X such that (x,y) ER, 9 EG impl ies (gx,gy) ER, or equivalently, that G permutes

the blocks of X/R. In this case we call X/R an equivariant partition of X. Let S be

a system of representatives of conjugacy classes of subgroups of G, ordered by U V
if there is a gEG so that g-lUg e V. Then £'. = {G/U;UES} is a representative system

of indecomposable G-sets modulo isomorphism. For U,V ES we define
(U,V) := # {gEG; 9-lUg e V}

and w.l.o.g. we set Q = {(n,U)E(lNS - {a}) x S; supp n U, i.e. for all VE supp n: V
- 0

where supp n := {VES;n(S) *O}, and T = 1\(2.) .From (4.13) we get the generating

functions of #
S(n,m):= {R ERel (lLUn(U)G/U);( lLUn(U)G/U)/R =lLVm(V)G/V} and

#
B(n):= (Rel (llUn(U)G/U))

(4.16) l: ym exp{ l: [exp( l: -1] !tl:!l }
UES V U lUI a(V) a(U)

and

i!'h'{l 1(W)
IVI }

l: aXfVv·I)-lJ } ,
V U IU I

n
(V,V)

l: B(k) { l:

k, 1 V ?: U
k+1= nO supp 1 s V

a(n)

n
B(n) X = exp{ l: IUI [exp(

arnT UES
n(U)

n n(U)!
UE S IUI

By differentiating we derive the recursive relations

B(n+U) =

where

(4.17)

S(n+u ,m) l: {m(v)(UIVVI) S(n,m) +
V?: U '

The number of G-homogeneous maps from lLUn(U)G/U onto llVm(V)G/V is

and
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k(V) )n(U) .
V::::U

S(n,m)a(m)M(n,m) n (_l)m(U)-k(U) (m(U) )
kEn[O,m(U)] U k(U)

U

Applying our results to finite cyclic groups we can solve the following combinotorial
problem:

Let X be a finite set and s a permutation of X.

How many partitions P of X are there such that s permutes the blocks of P?

Let a be the least common multiple of the lengths of cycles of sand G :=?l. /7La be the

cyclic group of order a. Then G acts on X by
- k -k 0 x:= s (x), where kEG and xEX.

Let S := {dZ/Za;d di vides a} be the set of all subgroups of G and defi ne nEI'l; by

n(d Z/ Za := number of cycles of s of length d.
Then the number of partitions P of X such that s permutes the blocks of P is just

B(n) from above.

B. Two unipotent groups in combinatorics

(4.18) A generalization of the Faa di Bruno bialgebra: Let now G = A be a finite

abelian group in (4.15). Then S= P(A) is the set of all subgroups of A, i.e.
QcI'lP(A) x P(A) cIl(A) x I'lP(A). In this case, as for the special case Setf= l-Setf,
-0 0 0 ----

the map (4.6) type: M/ is an isomorphism, i.e. two effective epimorphisms

f and g are isomorphic if and only if type(f) = type(g). We identify M/ = T = I'lo (Q)
According to (3.15) and (3.60), kl ITll is an AlA and a topological bialgebra. Using

(4.11), we can calculate the elementary section coefficients:

(4.19) Theorem: Let (n,U) be an element of QcI'lP(A) x P(A).
- 0

For types t 1,t2ET,G((n,U);tl't2) = 0 unless

t 2(m,V)=0 for all (m,V)EQwith V<tU, weight(t2) = nand t 1 = (It21, U).
If tET satisfies t(m,V)=O for all (m,V)EQwith V£U and the weigth of tis n, then

G((n,U);(ltl,U),t) =
-1lUI IVI m(H) t(m,V)

n(H)!) n {(TilT n [(TOT) n(H)!]) t(m,V)!}
(m,V) Q HcV
V '= U

For sets this is the Faa di Bruno coefficient
= -1

G(n;ltl,t) = n! (n (k!)t(k)t(k)!) , where has weight n.
k=l

lJ

The following theorem shows the structure of the monoid Mon(T,k) of multiplicative
functions in k[[T]] and generalizes Theorem 5.1 of Doubilet,Rota and Stanley in [8].

(4.20) Theorem: Let Mon.- n {aEk[[X(H);HEP(U)]];a(O)=O} be a monoid of
UE P(A)

vectors of formal power series with componentwise substitution composition and unit

(X(U))U EP(A)" Then the map
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where aU(m) = I Aut(Ji Hs;. Um(H)U/H I =

F: Mon(T,k) I Mon
Xmf----..(L
u

is an isomorphism of monoids.
o

- {O} with supp ms;. U} )

lUI m(H)
n (TRT) m(H)!,

H <;; U

UEPtA) ,

F(s) = (exp[ L
H s;. U

IHI
TOT X(H)] -l)UEP(A) implies

F(ll) = F(s)-l = ( H UIIp(A)(H,U) +D+ log(l+X(H)))UE PtA) ,

where IIp(A) is the Mobius function in PtA). If we denote the set of all prime numbers
by P, then

IIp(A)(H,U) n (_1)o(P)po(p)(o(p)-1)/2
pEP

for U/H ';: n (I/ Ip)o(P) and some oEi'J (P), where I/ Zp is the cyclic group of
pEP 0

order p, and IIp(A)(H,U) = 0 otherwise.

(4.21) Proposition: Let (n,U) be an element of Q. Then

ll(n,U) = (_1)k-1(k_1)! n (_1)0(P)po(p)(0(p)+2k-3)/2
pEP

if n = kH with kE:N, Hs;.U and U/H n (I/Ip)o(P) for some oE:N (P)
pEP 0

and ll(n,U) = 0 otherwise.
o

Applying F(fg) = F(f)(F(g)) for f,gEMon(T,k) to the s-function,we finally get the

generating functions of B(n) and S(n,m), i.e. (4.16) and (4.17) for G abelian.

(4.22) Representations of ordered sets:
Let 0 be a finite ordered set.

A representation of 0 is an order preserving map F:O -->Pot(X), where Pot(X) is the
ordered set of all subsets of a finite set X.

A morphism from one representation F:O -->Pot(X) to another representation G:O-->Pot(Y)

is a map f:X ---Y so that f(F(o)) s:: G(o) for all oED.
Let be the category of representations of 0, let Mbe the class of all mono-

morphisms of i.e. all morphisms that are one-to-one, and take isomorphy as equiva-
lence relation on M. Then T := M/ is the free monoid of types and H:=k[[T]] a topo-

logical bialgebra.

Here G(R) := Mon(T,R) is algebraic and has a faithful linear representation by trian-
gular matrices. In the special case, where 0 is the empty set, i.e. = Setf, G(R) is

just the monoid of affine maps of the line R.
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§ 1 Introduction

Suppose that IT is a (finite, affine) translation plane, 0 is

some fixed but arbitrary point of IT , and G is a group of

collineations of IT which fixes 0 and commutes with the kernel of IT .

Then it is well known that there is a field K and a KG-module V such

that the points of IT correspond to the elements of V (with 0 corres-

ponding to the zero vector of V), and the lines of IT containing 0

correspond to a G-invariant spread of V. It is because of this

that the theory of group representations becomes im-

portant for the study of translation planes.

It is useful to alter our perspective and start with a KG-

module V. We then ask under what conditions does V support a G-in-

variant spread? This is a vast question, and certainly not one which

we shall consider here in anything like its full generality. For

example, if G is fixed, there are obviously an infinite number of

choices for V that can be made. However, taking our cue from repre-

sentation theory, it would seem to make sense to start with modules

which are "small". This does not mean that we bound the dimension of

V (though it might), instead we interpret small to mean irreducible.

This certainly makes sense from a representation-theoretic point of

view, though it is admittedly not quite clear how important such a

hypothesis is geometrically. On the other hand, since very little is

known about these questions, it seems worthwhile to persue anything

which can provide a systematic approach.

As for our choice of G, historical reasons and known examples
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suggest that taking G to be of Lie-type might prove fruitful. For more

technical teasons, we limit ourselves to quasipimple groups of type

E 6, E
7
or Ea . These are the groups associated to a root system

with a simply-laced diagram (i.e., one with no double bonds), and of

course we have

Finally, a word about the choice of K. The representation theory

of G (of Lie-type, as above) falls into two categories, distinguished

according as to whether the characteristic of K does or does not divide

the order of G. Furthermore, if G is associated with the field GF(q) ,

where q = pd with p a prime, then the first category bifurcates into

the cases charK t p and charK = p. Again, historical precedent and

known examples suggest that the latter case is of high interest, and

for technical reasons we take K = GF(q)

Thus we are led to consider the following situation. We take G

to be a quasisimple group (that is, G = G' and G/Z(G) is simple) of

Lie-type

> 1), > 4), E
6,

E
7
or E a

defined over the Galois field GF(q), where q = pd with p a prime. Then

we let V be an irreducible GF(q)G-module, which we assume supports a G-

invariant spread? Observe that our hypotheses mean that the kernel of

the translation plane represented by spread includes the field GF(q)over

which G is defined.

Anyone familiar with will recognize that the foregoing is a

restatement of the philosophy of that paper. Moreover, it was suggested

there that the following should be true.

Conjecture Let G be a group of the type described above, and let V

an irreducible GF(q)G-module. If V supports a spread, then G SL2(q)

In fact, the conjecture was proved in for the case p = 2,

and the present report is an initial attempt to extend the ideas of

that paper to the case p odd. There are two main difficulties which

appear to arise. The relative plethora of irreducible GF(q)G-modules

in odd characteristic, and the fact that the notation of a dispersive

module, introduced in ' seems to have no direct analogue in odd

characteristic.

Partial compensation for the second of these difficulties is to

be found in a theorem due to the first author, which is restated below

(Lemma 3.2) in a form convenient for us. In order to study the irredu-
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cible GF(q)G-modules, it appears useful to employ the theory of weights

in a systematic way. Indeed, though we cannot as yet establish the con-

jecture in complete generality, we thought that it would be of interest

to see how the above ideas, in particular those involving Lie theory,

can be used to gain a strong hold on the possible modules V which can

occur. The results themselves are stated in the next section.

The authors wish to acknowledge the support and hospitality of

the University of California at Santa Cruz during the winter of 1982.

The second author was also supported by a grant from the N.S.F.

§ 2 Statement of results

As mentioned above, our present results are quite modest. They

are recorded here because we believe that they may play a role in a

conclusive proof of the conjecture of § 1, moreover they have the merit

of showing how the Lie theory and results from [1J on planar collineation

groups help the analysis in a particularly clear way.

In order to state our results we need to recall some facts from

[41. First, it was shown there [4, 7.1J that the conjecture is true in

general if it can be shown that G ¢ SL
3(q).

So it suffices to assume,

by way of contradiction, that the following holds:

G SL3(q), where q d . h dd'P Wlt p an 0 prlme,

V

and V is an irreducible GF(q)G-module which supports a spread.

We assume this hypothesis for the remainder of the section.

Next, we recall (cf. [4, § 5]) that the Steinberg tensor product

theorem tells us that V can be represented as a twisted tensor product

o °V
1

1 0 ••.•. 0 V
d

d

2where each V. is one of the p so-called basic GF(q)G-modules, and
. l

V. 0 l is the "twisted" version corresponding to the field automorphism
l

0 i E Gal(GF(q)). In [3J the basic modules are constructed explicitly,

but all we need here is the well-known fact that there is a distinguished

basic module, the so called basic Steinberg module, of dimension p3 over

GF(q) .

We can now state our principle result.

Theorem 2.1 At least one of the factors Vi occuring in the

representation of V as a twisted tensor product is the basic Steinberg

module.
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There are several consequences of this result. For example we

have

Corollary 2.2 q t p

To see why the corollary is true, assume that q = p. Thus d = 1,

so that V is itself a twisted basic module. By the theorem we see that

V is a twisted version of the basic Steinberg module; in particular,

dim V = p3 is odd. However, V is supposed to support a spread, and so

must have even dimension.

As explained above, this corollary implies the validity of the

conjecture when q is a prime.

Corollary 2.3 Let V, G and q = pd be as in the conjecture. If

V supports a spread and if d = 1, then G _ SL2(p).

The theorem is proved as follows. In § 3 we show that if

a e G SL 3(q) is a non-identity root element '(a transvection), then

the fixed structure of a in its action on IT is a pth_r oo t subplane. In

particular, V is a free <a>-module. Then in §4, we show how this obser-

vation and the representation theory allow us to arrive at the con-

clusion of the theorem.

§ 3 The action of root elements on IT

If IT is an affine plane admitting a collineation a , we denote

by F(a) the fixed structure of a . If A is a group of collineations of

IT, then F(A) is the fixed structure of A.

Now assume that V is a vector space over a (finite) field of

characteristic p, which supports a spread giving rise to a translation

plane IT . If a is a collineation of order p in the linear translation

complement of IT , we shall call a uniform provided the following holds:

If a matrix representing the action of a on V is put in Jordan

canonical form then each Jordan block has the same size.

The importance of this concept stems from the following results

established in DJ . (The second is restated in a form convenient for

our present purposes) .

Lemma 3.1 3.1J If a is a collineation of IT of order p which

is planar (that is, F(a) is a subplane), then a is uniform.

Lemma 3.2 [1,4.3 and 4.5J Suppose that a and S are a pair of

commuting planar collineations of IT of order p. Assume that F(a) +W
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F(S) +W, where W = F(ed n F(S), and the restriction of a to F(S)
th -

is uniform. Then at least one of F(a) and F(S) is a p -E2£! sUbplane

of IT .

In the sequel we shall only apply Lemma 3.2 when both a and S

are conjugate inside a larger group of collineations. Thus, in our

applications of the Lemma, we shall always conclude that both F(a) and
thF(S) are p -root subplanes.

We now begin the proof of Theorem 2.1, so let G and V be as in

§ 2. That is, G SL
3(q),

where q = pd with p an odd prime, and V is

an irreducible GF(q)G-module, which supports a spread giving rise to

a translation plane IT .

We need to recall some facts concerning the structure of G. Fix

a p-Sylow subgroup P of G. Then Ipi = q3, and P is the product P = QQ

of a pair of elementary abelian p-groups Q and 6 each of order q2.

Geometrically Q can be viewed as the group of all translations with

axis a distinguished line of the desarguesian projective plane of

order q, and Q is the group of dual translations with distinguished

centre [ooJon The groups N = NG(Q) and N= NG(O) are the maximal

parabolic subgroups of G containing P; that is, the stabilizers in G

of and [ooJ respectively. The group Q is complemented in N by its

Levi-factor L, and L' SL2(q). Of course, L is just the translation

complement in N of the desarguesian affine plane with the line at

infinity. Moreover, if 2 = Q n 0, so that 2 = 2(P), then 2 has just

q+1 distinct conjugates under the action of L. These are the root sub-

groups contained in Q; that is, the elation groups corresponding to the

distinct centres on Similar comments apply to N, and we may choose

our notation so that 6 <2, Q n L> . Then 2 and 6 n L are conjugate

under the action of the Levi-factor of N .

In [4J it was shown that Q or 6 is planar on IT . We choose our

notation so that F(Q) is a subplane of IT . Certain other facts relevant

to our present discussion were also established, and these are summarized

in the next lemma.

Lemma 3.3 [4, 5.5 and 7. 1J . The fixed structure F (Q) is a sub-

plane, and the Levi-factor L acts irreducibly on F(Q). Moreover, F(P)

is 1-dimensional.

The fact that L is irreducible on F(Q) and that dim F(P)

just special cases of Smith's theorem [5] .

We need to interpolate another result from [1, 3.1J (see also

[2, 2.2]).
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Lemma 3.4 Suppose that F(Q) W< V and that W is a subplane

of IT • Then dim F(Q) divides dim W.

We are now ready to establish the main result of this section.

Proposition 3.5 If a Q with a f 1, then the following hold:
th- --

(1) F(a) is a p -root subplane;

(2) F(Q) is a proper subplane of F(a).

Proof; First assume that there exists 1 f 13 Q with F(S) f F (a} .

Since F(Q) is a subplane (Lemma 3.3) , both F(a) and F(S) are subplanes

and a is planar on F(S). Therefore a is uniform on F(S) by Lemma 3.1 .

Moreover, <a> is conjugate to <13> because L is transitive on the sub-

groups of order p in Q. In particular, IF(a) I = IF(S) I and thus

F(a) f F(S) implies F(a) f F(a) n F(S) f F(S) . Now (1) follows from

Lemma 3.2 and (2) is obvious.

If the above assumption is false, then F(S) = F(Q) for all

13 Q-{l}. We argue that this leads to a contradiction. In accordance

with the notation introduced prior to Lemma 3.3, let 1 f y QA L.

Since Q () L is conjugate to Z, we have F(O fl L) = F(y), and hence

F(P). = F(Q) n F(O f1 L) = F(a) f1 F(y).

Now choose y to commute with a . Since F(P) is l-dimensional by

Lemma 3.3, the restriction of a to F(y) is uniform (indeed, there is

a unique Jordan block). Moreover, F(a) ¢ F(y) F(a) because dim F(a)

dim F(y) 2. Thus F(a) is a pth_ r oo t subplane by Lemma 3.2 and the

fact that a and yare conjugate in G. As F(a) = F(Q) by hyp0thesis, it

follows that

dim V = P dim F(Q) (*)

On the other hand, L acts irreducibly on F(Q) by Lemma 3.3, and

L' SL2(q) has a unique involution t which is (of course) central in

L. Therefore t has a unique eigenvalue in its action on F(Q). Thus the

eigenspace W corresponding to this eigenvalue is a Baer subplane of IT

which contains F(Q) . By Lemma 3.4 we have

dim F(Q) (dim W =1/2 dim V).

This is not compatible with (*), and the desired contradiction is

reached.

§ 4 Some representation theory
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Proposition 3.5(1) implies that if a + 1 is a root element in G,

then V is free as an <a> -module; that is to say, each Jordan block of

a matrix representing a has size p. The following result is elementary,

and the reader is left to provide a proof.

Lemma 4.1 I1 X and y <a>-modules, then X @ Y is free if,

and only if, X Qf Y is free.

Applying this observation to the decomposition

provided by Steinberg's tensor product theorem, we deduce that at least

one of the tensor factors V.oi is a free <a>-module. It is now clear
l

that Theorem 2.1 is a consequence of the following result.

Proposition 4.2 Let B be a basic GF(q)G-module, where SL3(q),
and let a + 1 be a root element in G. Then B is a free <a>-module if,

and only if, B is the basic Steinberg module.

Note that Proposition 4.2 is purely a problem of representation

theory. It is possible to establish the result by directly examining

the basic GF(q)G-modules, a description of which appear in [3J . We

shall, however, use a little of the theory of weights in our approach.

Not only is an explicit knowledge of the relevant modules not required,

but we anticipate that our arguments will prove useful (when suitably

generalized) in a more general context.

Proof of Proposition 4.2;

First, if GO is the canonical subgroup of G isomorphic to SL3(p)
then we may assume that a GO . Now assume that B St, the basic

Steinberg module. Then

where BO is the Steinberg module for GO . But it is that BO
is projective as GO-module, so BO is a free <a>-module. Hence the above

isomorphism shows that B is a free <a>-module.

This proves one half of 4.2. The remaining assertion, that if B

is a free <a>-module, then B St, requires some preparation. Let us

denote by {a 1, a 2, a 1 + a 2} the positive roots of the root system

attached to G. Furthermore we take A1,A 2 to be the fundamental dominant

weights satisfying (A.,a.) <5 •• • As B is a basic module it has a
l J lJ

highest weight given by A = a 1 A1 + a 2 A2 ' for some 0.( a i.::; p-1
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We must show that each a
i

= p-l

It is convenient to adjust the nomenclature for certain subgroups

of G introduced prior to Lemma 3.3. Let X , X , and X be the
0.
1

0.
2

0.
1

+ 0.
2

root subgroups of P corresponding to 0.
1,0.2

and 0.
1

+ 0.
2

. Then we may

take

Q and Q

L2 = L' = <Xa ' X > and L
1

= L' = <X , X >
2 -0. 2 0. 1 -0.

1
If H = <h , h > is the usual Cartan subgroup of NG(P), we need to

compute .a f n fact it is a simple computation involving the

Chevalley commutator formulae that

CH(L2 ) = h >
0. 2

Now set B
2

= CB(Q) and B
1

=

computation, we find that B
i
is an

from [5J one knows the following.

and CH(L 1 ) = <hal h
2

>
0. 2

CB(Q) . Either by [5J ' or by direct

irreducible module for Li . In fact,

Lemma 4.3

weight y , then B
i

satisfying ).. - II

If By is the weight-space of B corresponding to

L B
ll

' the sum running over those weights II

ka i, for some k E

Also this implies

Lemma 4.4

B. as L.-module tells us that a
1. 1.

unique eigenvalue in its action on

Now the irreducibility of

generator hi of Hi = CHILi) has a

Bi Let this eigenvalue be 0i

Lemma 4.5

cisely B
i

The full ai-eigenspace of hi acting on B is pre-

Proof: One knows that B decomposes into a sum of weight spaces

B
ll

under the action of H, where II is a weight satisfying

).. - II = a sum of positive roots

Let II be such a weight with the property that hiB
ll

Now,as BA is a weight space contained in Bi, we have hiB)..

Taking the case i = 1 (the case i = 2 is the same), we have
2

h h , and now the foregoing equations together with the
0.
1

0.
2

of a weight-space yield

= o.B
1. II

o.B
1. II

h =
1
definition
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But if = ka 1 + £a 2 with k,£ > 0, it follows from

(ai,a i) = 2 and (a1,a 2) = -1 that 3£ = 0, so £ = 0, whence A - ka 1
and B1 by Lemma 4.3. This completes the proof of Lemma 4.5.

Corollary 4.6

is invariant under L.
.i,

The eigenspace Bi has a complement in B which

Now we can complete the proof that B St if B is free as

<a>-module . Since a is conjugate to the p-elements in each Li, and

as Bi is an Li-summand of B by Corollary 4.6, it follows that the root

elements of Li are free on B
i

. As B
i
has highest weight aiA i by Lemma

4.4, it has dimension a i + 1 P . But Bi has dimension divisible by p

since it admits a free p-element, so we get

a i = p - 1, for i = 1 and 2

As explained at the beginning of the proof, this suffices to

prove the Proposition.

§ 5 Concluding remarks

We have been able to establish the conjecture in several other

cases, in addition to those covered by Corollary 2.3 and [4] . For

example when p = 3 , or when d is even and p = 2 (mod 3).
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The equivalence classes of the Vasil'ev codes

of length 15

Ferdinand Hergert
Technische Hochschule Darmstadt
Fachbereich Mathematik AG 1

0-6100 Darmstadt, W.Germany

In this paper we determine the equivalence classes of the perfect Vasil-
ev codes of length 15: There exist 19 non equivalent Vasil'ev codes (in-
cluding the Hamming code). If we restrict the equivalence transformations
to permutations of coordinates we get 64 different Vasil'ev codes.

In 1962 Vasil'ev [4] constructed a class of nonlinear perfect single-er-

ror-correcting binary codes. His works as follows:

Let C be a perfect single-error-correcting code of length n, not neces-

sarily linear. Let g:C -> be any mapping with g(2)=0. Set

or 1 depending on whether (wt denotes the Hamming weight) is even

or odd. Then V := I , } is a perfect single-

error-correcting code of length 2n+1, which is nonlinear if g is nonli-

near.

The smallest nonlinear Vasil'ev code has length 15, it is constructed

from the Hamming code of length 7. Since this Hamming code has 15 non-

zero codewords, the above construction yields a total of 2 15 different

Vasil'ev codes of length 15.

Two binary codes C and are called equivalent if one can be obtained

from the other by permuting the coordinates and adding a constant vector,

i.e. C I £EC} = where • In this paper we want to

determine the number of nonequivalent Vasil'ev codes of length 15.

To do so, we shall use some notations introduced in [1]. We give the ba-

sic definitions here.

By an (n,k)-code we mean a binary code of length n, which is systematic
kwith respect to the first k coordinates. I.e. for every •• ,xk)EF2

there exists a unique element •. ,xk,xk+1, •• ,Xn)EC. W.l.o.g.

we shall always assume that 2=(0,0, ••• ,OlEC. Since the entries xk+ 1, •• ,xn
are uniquely determined by x

1,
••• ,x

k
we may write C in the form

C = { (x1, ... ... I ... , where

f 1, ••• ,f (r:=n-k) are mappings f. :Fk
2

-> F 2 with f. (Ol=O.
r J. J. -

Since every mapping -> F 2 can be uniquely written as a (reducedl

polynomial in variables x 1, ••• ,xk
over the two element field F 2, we shall

refer to f 1, ••• ,fr as the redundancy polynomials of C.
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Every Fl-polynomial in variables x
1,
••• ,x

k
formally looks like a (square

free) real polynomial, thus we can form the formal derivative f x. of f

with respect to the variable xi' which again can be viewed as an Fl­
polynomial.

The Jacobian of an (n,k)-code C with redundancy polynomials f 1, ••• ,fr
is defined as the rxn matrix (r=n-k)

f f f1x1 1x l 1xk
f f f

jac C lX, lXl lXk

f f f
rx, rX l rXk

Note that the entries of the Jacobian are polynomials.

In case C is a linear (n,k)-code with parity check matrix (HII r), jacC=H.

Since we assume O C the Jacobian uniquely determines the code C.

We shall use the Jacobian to characterize the Vasil'ev codes. Since every

perfect single-error-correcting code of length 7 is (equivalent to) the

linear Hamming code H3:= I with

the (linear) redundancy polynomials and

every Vasil'ev code of length 15 is composed of H3 and

a mapping g:H 3 -> Fl. But since H
3

is systematic in its first 4 coordi-

nates, g is already determined by v
1,vl,v3,v4

so that we may think of g

as a mapping -> Fl, i.e. as an Fl-polynomial in variables v 1, ••• ,v4•

It is clear that by permuting the coordinates we can transform any given

Vasil'ev code in a kind of normal form. We describe this normal form via

the Jacobian (for a proof see [l]).

1.Lemma: Every Vasil'ev code V of length 15 is equivalent to a

Vasil'ev code

V = , ••• I
l' }

in normal form. We say V has normal form (or V is a normal code)

if jacV looks as follows:

f
1 0 , 0 0 0

f 2 1 0 1 0 1 0 1 0

f
3

1 1 0 1 0 0 1 1 0

f 4 1 1 1 1 1 1 0 0 0 0
+ + + + + + + +
gx gx gx gx gz gz gz gz

1 l 3 4 1 l 3 4

Where g(v1,vl , V3,v4) G :=(9v f2) , .. ,9vi2»=Q}

and with the substitution v. :=X.+z .•
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:
001

1 ! 1
1: 0

1: 0

0:0

o
1 0

1 1 0

000

o 0

010

001

1

V
jac H4

Lemma 1 essentially says that V = I YEH 3} has

normal form if the linear code L = which

is equivalent to the linear Hamming code of length 15, has the following

parity check matrix:

r0

•

We denote this distinguished Hamming code by H4•

A second remark on lemma 1: In the original definition we had to consider

all 2 15 functions with g(Q)=O. Now the above lemma tells us that

if the polynomial g contains linear terms v. (i.e. Vg(O) + (0,0,0,0) )-
we can obtain an equivalent normal form with gEG. This can be done by

exchanging the variables (columns of jacV) x.<->z. for every linear

term Vi in g. This yields the polynomial with g(Q)=O, Vg(Q)=Q

and is linear.

Since a normal code is determined by the function gEG we call g the

characterizing function of the normal code and denote the code by Vg•

To determine the equivalence classes of the Vasil'ev codes we may now

restrict ourselveson codes in normal form. The following lemma characte-

rizes the permutations of the coordinates 1T that transform a normal code

into a normal code.

2.Lemma: Let Vg be a nonlinear normal code. Then V=1T(Vg) is again a

normal code if and only if 1T is an automorphism of H4, which fixes

the last coordinate (1T(15)=15)"

Proof: If the last coordinate is fixed, it is clear (by definition of

normal code)that 1T must be automorphism of H4" So we only have

to show that the permutation 1T fixes the last coordinate.

Since deleting the last coordinate of a normal form gives a linear

code (shortened Hamming code), we are through if we can proof that

deleting any other coordinate of Vg yields a nonlinear code. But

this follows immediately since V has minimum distance 3:
g

Every shortened code contains again all 2 11 (shortened) codewords and

therefore the last coordinate makes it nonlinear 0
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Let us define two codes C, C to be p-equivalent if there exists a per-

mutation of the coordinates such that (so this is a more re-

strictive definition of equivalence then the usual one).

We denote by IT the set of all permutations described in lemma 2. Thus

we have Vg p-eqivalent to V
h
if and only if there exists with

Furthermore lemma 2 says that IT is a group:

Since the coordinates of the Hamming code H4 can be naturally interpre-

ted as the points of the 3 dimensional projective space PG(3,2) the auto-

morphismgroup of H4 is isomorphic to the automorphism group of PG(3,2)

and the subgroup IT fixing the last coordinate is isomorphic to the

stabilizer of a point. So we get:

3.Corollarv: The p-equivalence classes of Vasil'ev codes in normal

form are the orbits of the group IT acting on the normal codes.

Furthermore IT is isomorphic to the group GL(3,2) of all inver-

tible 3x3-matrices over

Since there is a one-to-one correspondence between the normal codes and

the set of characterizing functions G, the group IT acts naturally on G

via if So to find the equivalence classes of the Vasil'ev

codes we may as well determine the orbits on G under this group.

We shall see that the group IT acting on G has a representation as a group

IT of linear transformations on the arguments of the polynomials in G,- - - - -.i.e. g (v"v2,v3,v4) = where a s an auto-

morphism of the 4-dimensional V with base «v"v2,v3,v4 » .

We indicate here, how this representation of IT can be found.

It is easy to check that the following 3 permutations of the coordinates

are automorphisms of H4 fixing the last coordinate:

(x,x2) (z,z2) (f,f2) (y,Y2)

(x2x 3) (z2 z3) (f2f3) (Y2Y3)

just means an

function g.

Since v.=x.+z. (see lemma') an exchange x.<->x.,
a J J

exchange V.<->V. of the variables of the characterizing
J

The other transpositions (f.f.), (y.y.) do not affect g.
J J

We write as a 4x4-matrix to describe the linear mapping on V:

!
000 ,
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Let us finally discuss a more complicate automorphism of H
4:

The permutation 1T 4 : (z,f 2) (x'Y2) (x 3x4) (z3z4) is an element of II. Looking

at jac H4 we find that So we

have z,=x,+f2+v3+v4+Y2' The transposition of the coordinates (z,f 2)
means that we have to substitute z, by the above expression, this yields

v, = x,+z, -> x,+(x,+f2+v3+v4+y 2) = f 2+v 3+v 4+y2.

Furthermore, because f 2 now takes the position of z" we rename f 2 into z

and so we get v, -> z,+v3+v4+Y2 •

Because of the transposition (x,Y2) Y2 is renamed into x" so

v, -> z,+v3+v4+x, = v,+v3+v4 '

and the transpositions (x3x 4)
(z3z4) result in renaming v 3 <-> v 4•

xi i together we have '" l]
1T4

An example: g (v',v2,v3,v4) = g(v,+v3+v4,v2,v4,v3)'

So it is not difficult to find a generating set for the group IT (which

is a subgroup of GL(4,2) isomorphic to GL(3,2) ). The following table

gives such a generating set:

, 0 or v,->v2

II
0 ,

;]
or v,->v3

0 0 v 2->v,
, 0 v

2->v2- -
1T, 0 , v 3->v3

1T 2 0 0 v 3->v,
0 0 v4 ->v4 0 0 v 4->v4

0 0 or v,->v, 0 0

lJ

or v,->v,+v3+v4

- 0 , v 2->v3 -
, 0 v 2->v2113 , 0 v

3->v2
1T 4 0 0 v

3->v4
0 0 v4->v4 0 , v4->v3

[;
, 0

;]
or v,->v2

- 0 0 v 2->v,
1T
S 0 , v

3->v3
0 0 v4->v,+v2+v4 (figure ,)

It is readily checked that (or ("""O)T) is a fixpoint of

every element of n=<n"n2,n3,n4 , 1T s> • Therefore taking the new base

w,:=v,+v2+v3, w2:=v2' w3:=v3' w4:=v4 the following lemma is immediate:
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IT '< ( : 0] , GLI',2) I MEGL(3,2)} be the subgroup

of GL(4,2) which acts on the vector space V with base «w"w2,w3,w4».
Then

V is p-equivalent to V
g(w"w2,w3,w4) h(W"W2,w3,w4)

if and only if there exists with

:: h(w"w2,w3,w4) •

By g:: h we mean that g and h differ only by some affine term £iwi'

£ido,n .

Finally, we want to describe the orbits of IT on G. The set of all poly-

nomials without constant term (g(Q)=O) and linear terms

(Vg(Q)=Q) is itself an F
2-vector

space. As a base we have for example

all monomials of degree ••• ,w,w2w3' ••• ,w2w3w4,w,w2w3w4»

We choose «b"b2, ••••• ,b'l» (given below) as a base of G.

b 4 : =

b 7 : =

b
lO

: =

b, :=
b 2 : =

b
3
: =

b 6 : =

b g : =

w, (w2w3w4+w3w4+w2w4+w2w3+w2+w3+w4)

w2w3w4+w3w4+w2w4

w,w3w4
w
3w4

w,w2

bS:=w,w2w3
b
S
: = w

2w3
b,,:= w,w4

(figure 2)

Now we have the follONing situation: For

Pi-
0

t1

0 t1

0 M

we get the matrix

and is some 3x3-matrix determined by

"x"-matrices by n.

where
A

denotes the outer automorphism
A " rGL( 3 ,2) -

'"1 M .....

M. We denote this

GL(3,2)

t1 := (M-')T

group of
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Now the p-equivalence classes of the Vasil 'ev codes correspond to the or-

bits of the lF2-vector space G =«b1,b2, •••. ,b 11» under Ii and we intend

to use the Burnside lemma to count those orbits. To accomplish that we

need some information about GL(3,2) •

5.Lemma: In the group GL(3,2) of all invertible 3x3-matrices over W2
for every matrix MEGL(3,2) the dimension of the fixpoint space dM
depends only on the order of M. Furthermore the elements of order 4

and the elements of order 2 are all conjugate in GL(3,2) •

number of e(lements order dM

1 1 3
21 2 2
56 3 1
42 4 1
48 7 a

E 168

Lemma 5 can be obtained rather easily via the Sylow theorems and using

the fact that GL(3,2) is the automorphism group of the projective plane

PG(2 ,2) •

To use the Burnside lemma we need to know the dimensions d; of the fix-

point spaces of elements V(n.

6.Lemma: Let MEGL(3,2), dM the dimension of the fixpoint space of M.

Then the fixpoint space of has dimension d- = 3 odM+2.

P-tn
1TM

0- I A1T =M
A

0
M

Proof: Since ord A= ord M, M and Ahave the same number of fixpoints

(lemma 5). So all we have to show is that the dimension of the fix-

point space of the 6x6-submatrix equals 2 odM•

This is trivial for M being the identity (then is the a-matrix)

and it follows for orders 3 or 7 by a theorem of Maschke since there

(ord M, char W2)=1.
Because all elements of order 4 and order 2 are conjugate (lemma 5),

we have to check only two matrices, e.g.
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ord [i 1

rJ
1 0 0

r]
1 4 1 1 0 0
0 M'= 1 1 1

0 0 1 1 1
1 0 0 0 1
0 0 0 0 0

ord[i

0

H
1 0 0

il
1 2 0 1 0 0
0

M'= 0 1
0 1 0 1 0
0 o 0 0 1
0 00 0 0

and the assertion is true in both cases 0

Now we can formulate our first main result:

7.Theorem: There exist 64 p-equivalence classes of Vasil'ev codes

of length 15.

Proof: The number of orbits b of G under rr is

b = 1 2d Tf (Burnside lemma)
IIT I n IT

So using 5,6 we have

b = _1_ (10211+21028+56025+42025+48022) 64 0
168

Since we know the group IT quite well, it is now possible to determine re-

presentatives of the equivalence classes explicitely. The arguments are

a little lengthy, so we give only the result:

8.Theorem: The following polynomials (given as vectors of the 11-dimen-

sional F 2-vector space G with base «b" •••• ,b 11 » ) are representa-

tives of the p-equivalence classes of the Vasil'ev codes:

CL 13 o 0 0 00000 0 ,
Where CL,I3 {O,l}.

CL 13 o 0 0 o 0 1 o 0 0 7
CL 13 o 0 0 00000 1 7 The second column
CL 13 o 0 0 o 0 1 1 0 0 21 gives the number
CL 13 o 0 0 1 o 0 t 0 0 28
CL 13 1 0 0 o 0 0 0 1 1 7 of elements in the
CL 13 1 0 0 1 000 1 1 7 orbit.
CL 13 1 0 0 0 1 o 0 1 1 42
CL 13 1 0 0 o 0 0 0 1 0 21
CL 13 1 0 0 1 o 0 0 1 0 21
CL 13 1 0 0 0 1 o 0 1 0 42
CL 13 1 0 0 o 0 1 0 1 0 84
CL 13 1 0 0 000 1 1 1 28
CL 13 1 0 0 1 o 0 1 1 1 28
CL 13 1 0 0 1 1 0 1 1 1 84
CL 13 1 0 0 0 1 0 1 1 1 84
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An example, how to use the list: The base «b1, .... ,b 11» is given in

figure 2. So the first coordinate stands for b 1, the last denotes b 11.
The vector (0,0,1,0,0,0,1,0,0,1,1) (8 t h row) denotes the function

g(w1,w2,w3,w4)=w1w3w4+w2w4+w1w3+w,w4 or using the original variables vi:

g(v1,v2iV3,v4)=(v1+v2+v3)v3v4+v2v4+(v1+v2+v3)v3+(v1+v2+v3)v4=
=(v1+v2)v3v4+(v1+v2)v3+v1v4+v3=(v1+v2)v3v4+(v1+v2)v3+v1 v4·

Having determined the p-equivalence classes, we shall now find the equi-

valence classes of the Vasil'ev codes.

Besides permutation of coordinates, we now have a second type of equiva-

lence transformations, the addition of a constant vector C=C+a.

kGiven an (n,k)-code C = {{x1,.·,xk,f 1 , .. ,fr(!)) !EF2}
For ... ,k} we denote by c

i
(EM) the codeword in Ci (to be defined

below) c i (x1,x2, .. ,xk)EC i where x i=1 if iEM and xi=o otherwise. If we

want to form the code C=C+C(EM) with M={io,i 1, .. ,i l_ 1},it is clear that

we can do this in 1 successive steps namely

Cj +1 . = Cj + c j (E{ i j } ) j =0 , 1 , .. , 1-1 ,

where Co=C. We then get Cl=C.

So we only need to consider addition of codewords, which have exactely

one nonzero coordinate in their systematic i.e. C(E{i}) iE{1, .. ,k}.

Given a Vasil'ev code V={ , ..

By c(xi) we mean the codeword with all systematic places zero, except the

coordinate Xi" Accordingly we define c(Yi) ,c(zi). Since every normal code

V is linear with respect to Yi i=1,2,3 (see lemma 1) , adding the code-

word c(Yi) does not change the code. Furthermore it is easy to check that

adding a codeword c(xi) results in the same normal form as adding the

codeword c(zi)' So we have to consider only 4 new transformations:

i=1,2,3,4 .

It is not hard to recognize that adding c(z.) to V results in substi-
1 g

tuting the variable Vi by v
i+1

in the characterizing function g(v1 , .. ,v4).

For example take g(v1,v2,v3,v4) = v1v2+v1v3v4' Then

g1)Jl(v1,v2,V3,V4) - g(v
1+1,v2,v3,v4)

=

(v1+1)v2+(v1+1)v3v4 = v1v2+v2+v1v3v4+v3v4 -

- v1v2+v1v3v4+v3v4 = h(v1,v2,v3,v4)EG
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Using the substitution w
1=v1+v2+v3,

w2=v2,
w
3=v3,

w
4=v4

again, we may

assume the same 4 fundamental transformations as a genera­
111

ting set for addition of codewords.

Together with the transformations

71 1 : to

715 : (w1­>w1' w2­>w1+w2+w3' w
3­>w3'

w4­>w1+w3+w4) from figure 1 we then

have a generating set for the group of equivalence transformations on

the Vasil'ev codes (in normal form).

9.Lemma: Let Wbe the group generated by

Then

­
if and only if there exists with

Unfortunately this group W is not as nice as our IT, which was isomorphic

to GL(3,2). So the following theorem was obtained by computing the orbits

in Gunder 0/ using a computer.

1a.Theorem: There exist 19 equivalence classes of Vasil'ev codes of

length 15. The followi,ng polynomials (given as vectors of the

vector space G with base «b1,··· ,b 11») are representatives of

the equivalence classes :

a a a a a a a a a a a 1 a 1 a a a a a a a a 1 56
a a a a a 0 0 1 0 0 0 7 0 1 1 0 0 0 0 0 0 1 0 168
0 0 0 0 0 0 0 0 0 0 1 7 0 1 1 0 0 0 0 0 1 1 1 224
0 0 0 0 0 0 0 1 1 0 0 21 0 1 1 0 0 0 0 0 0 1 1 56
0 0 0 0 0 1 0 0 1 0 0 28 1 0 0 0 0 0 0 0 0 0 0 16
0 0 1 0 0 0 0 0 0 1 0 56 1 0 0 0 0 0 0 0 0 0 1 112
0 0 1 0 0 0 0 0 1 1 1 56 1 0 0 0 0 0 0 1 0 0 0 112
0 0 1 0 0 0 0 1 0 1 0 168 1 0 0 0 0 1 0 0 1 0 0 448
0 0 1 0 0 0 1 0 1 1 1 168 1 0 0 0 0 0 0 1 1 0 0 336
0 1 0 0 0 0 0 0 0 0 0 8

The second column gives the number of elements in the orbit.

Although we have now classified all Vasil'ev codes of lenth 15, we are

far from a complete classification of all perfect codes of this length,

since there exists a great number of codes, which are not equivalent to

any Vasil'ev code. In [1J three examples of length 15 are constructed.
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On the new projective planes of R. Figueroa

by

Christoph Hering and Hans-Jorg Schaeffer

We define a proper projective plane to be a projective plane

whose automorphism group does not fix any point or line. Until recently

only 2 types of finite proper projective planes had been known: The

classical and the Hughes planes constructed by Hughes in 1957

(resp., in the smallest case, by Veblen and Wedderburn in 1907).

Recently a very interesting third class has been discovered by Figueroa

[1J, who obtained a plane of order q3 for each prime power q such that

q $ 1 (mod 3). We present here a slight modification of Figueroa's

construction, which works for all prime powers. Also, we investigate

the correlation groups of these planes.

Let q be a prime power, K a field of order q3, the

classical projective plane over K and a subplane of of

order q , Define e . '" {J. E n I I J. n I = i} and ';p. =

{PE II [pJ n I = i} = 0,1. (Here [pJ =l{J.E n I PE J.}.)

Clearly n '" IT u n 1 u no and U U • There is a group

G PGL(3,q) of automorphisms of fixing which is generated

by perspectivities. Let m be any permutation of u no interchanging

and no such that Xgm = Xmg for all X E U no and g E G •

Lemma. Let X,Y E 110 and X 1 Y. Then XY E n1 if and only if

X
m

n ym E •

Proof. Assume that XY E n 1 and let XY n = {P}(where XY denotes

the line joining X and Y). The group G(p) consisting of all perspec-

tivities in G with center P has order q2(q_1) and acts semiregularly

on XY n '130 • Thus G(p) is transitive on XY n and there exists

a E G(p) such that xa = Y • Let a be the axis of a • Then

a n Xm E Xm n Xma '" Xm n ym and clearly a n Xm E 'll1 • The dual argument

finishes our proof.

We now introduce the following replacement: Denote

and

*J, for J. E no

* *n IT u n 1 u no
*and consider the incidence geometry (lI,n ). Clearly

* *1IJ.I q3+1 for J.E n and I{J.E n PE J.}I = q3+1 forP

Let J., kEno and J, + k. Assume at first that there exists

E 'll • (*)
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_1
* * m m m m m mS E n k n • Then , k E S so that S = k and S

km)m is
1uniquely

determined. Hence n k* n = 1 • As

km Sm- E we have n k E by the dual of our Lemma, so that
* * * *n k n = 0 and n k I = 1 . Assume now n k n = 0 . Then

km E and, again by our Lemma, n k E • Thus once more
* *n k I = 1 .

Let t E 1

X +Y Then XY E
* n'llolS1

*and E • Suppose that X,Y E t n n and
-1 _1 m

while Xm n ym E , a contradiction. So
•* Iand therefore It n N S 2 . Thus we have

*Theorem 1. Let k + . If k, E , then Ik n S 2 . If
*k , E n u 0 , then Ik n J,! 1.

We now choose = {«(x,x,x) x E K\{O}}, where x = x q for

x E K. Then G is induced by the group of matrices of the form

and determinant + 0 , where a, b, c E K

the line corresponding to the kernel of

by matrices of the form

• Let S = «(1,0,0) and s be
t(1,0,0) • Then GS is induced

for a E K\{O}. In particular [G : GsJ = q3(q_1)2(q+1) = , so that

G is transitive on • Also, Gs = G so that there exists a permu-
mills

tation m such that S = s and s = S

a)

b)

c)

Theorem 2. Assume that SID = s and SID = S •

If J, E [SJ ,., 0 and PEs n 'Jl1 , then P J,m E 0 •
- *

) is projective plane.
*s ,., s s n U {«(0,0,1) , (0,1,0)} •

Proof a) Clearly (1,1,1)t E n so that «(0,1,-1) E s n •

As GS = Gs is transitive on s n we can assume P = «(0,1,-1) •

Because G is transitive on , there exists an element x E G such that
x x- 1 x- 1 -1

S x Here S E J, = s, so that x is represented by a matrix

X [ H J



<(C-b, ..
-C,

189

tY(1,0,0) , where

y [Hn
1

As det Y .. det X- 1 0, it follows that px- S E 20 and hence
PSx .. PSIDX .. psxm .. pJ-m E no •

'"b) If tEn 1 and t n s ii'0 rJ, then t n s n 'j) 1 .. rJ by a).
As G is transitive on no, this together with Theorem 1 implies that

'"any two different lines in 2 intersect in at most one point. By ("')
'"this implies that ) is a projective plane.

c) Let J. E [SJ n £1 0 , and suppose J,m E s • We define x and X as
above. Then SX .. Am E s, so that

where y E K. This implies that yc = ° and SX = «0,1,0) or SX
«0,0,1) .

In the following we assume that Sm .. s and sm .. S .
'"Suppose that there is an isomorphism' of (')),£1 ) onto (')),£1),

'"that is a permutation of ')), mapping n onto £1 • As is a subplane of

order q of the plane (')),£1), whose automorphism group is transitive on

such planes, we can assume that .. • Also, Aut(')),£l) induces all

automorphisms of so that we actually can assume that fixes

pointwise. If 1 is a perspectivity in G, then [1"J is an automorphism

of (,)),2) leaving invariant all points in and on each axis of 1

Thus [G,tJ = 1 . In particular, = 1, so that is one of the

3 fixed points of GS . Now the stabilizer Z of on

is transitive on the set of fixed points of GS . Therefore we can
assume .. S, and [G, ] .. 1 forces to fix all points in '))0 • As

'" '" '"Is n s n ')) 0 I 2, we have s = s and s n ')) 0 = s n 'fl0 • But thi s

implies q .. 2 by Theorem 1 c).

Let A be the stabilizer of in Aut(')),£l) and e the stabilizer

of U n in the group of correlations of (')),2). Then[e : A] = 2 and

A/Z PfL(3,q). The particular permutation m which we have chosen can

be described in the following way: If X E 'tlo , then the fixed point
structure of Gx is a triangle, and Xm is the side of this triangle

oposite to X. From this one easily derives, that C is compatible with m,
i.e. that = and = J-mg for all P E 'Po, A E £1 0 , and E C •

'" '"Thus A leaves invariant £1 • Obviously Aut(')),£l ) leaves invariant •
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by•of u n

• •Z of ) on centralizes G. Thus
•points of GS' which implies Z = Z

Also, the pointwise stabilizer
•Z leaves invariant the set of fixed

•and ) = A •
•For g E C\A we define a permutation g

for X E u u n1)

for P E

for;' E no

= E tmg =
*I!.

hand;''' E ,
•P E;' • This

• •Also, denote C = A U (C\A)

Let P E and ;. E no . If P E then ;.m E pm,..and hence ;. E = . If on the other
then ;.g E = E ;.Sm = , t m E pm and.. ..
shows that is a correlation of ). Also, C is a group

•to C and equal to the group of all correlations of ) •

isomorphic
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COUNTING SYMMETRY CLASSES OF FUNCTIONS BY WEIGHT

AND AUTOMORPHISM GROUP

Adalbert Kerber and Karl-Josef ThUrlings*

Lehrstuhl II fUr Mathematik, Univ. Bayreuth

Postfach 3008, 8580 Bayreuth, W.-Germany

Let us at first recall the basic problem of the theory of enumera

tion of symmetry classes of functions. If := {1, ••• ,m} and

n := {1, ••• ,n} denote two standard sets of orders m and n, then

we denote by the set

:= {f I f ml ,

Any permutation group P acting on induces an action on if

we put for E P

n f := f co
-1

n

(composition of mappings). This induced permutation group on

is usually denoted by

and its orbits are called of functions f E

The theory of enumeration deals with the count of such symmetry

classes. If for E P we denote by

* The authors would like to thank the Deutsche Forschungsgemeinschaft for

fincancial support under contract Ke 201/8-1.
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the number of cyclic factors of length i of TI, and if we denote by

C (TI) :=:2: (TI) ,
i

the number of cyclic factors of TI, then by the Cauchy-Frobenius

lemma, the number of all the symmetry classes is equal to

as it is well known and easy to see.

If for f E we put

-1 I -1 Iw(f} := (If [{1}]1, ... , f [{m}]},

the weight of f, then a result of Polya says that the number of

symmetry classes of functions of given weight (w1, ••• ,wm) is

equal to the coefficient of

X(w}

in the polynomial

1
n. . a. (TI)

'" "T1" ( l Xl) lTPT II X 1 + .,. + m
TIEP i=1

An example is the number 2, being the number of graphs on 4 points

with weight (4,2), Le. with 2 edges (see e v q , [1], 5.1). These
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graphs are

1• i
•

and
.-.
I

This picture shows that these graphs have different automorphism

groups so that at least in this case the count of symmetry classes

by weight and automorphism group is a refinement of the usual count

by weight. It is therefore the aim of this paper to describe a

method to solve this problem of counting symmetry classes of func-

tions by weight and automorphism group.

1. The table of marks

Double cosets in symmetric groups are the link between the theories

of enumeration of sYmmetry classes of functions and the theory of

representations of sYmmetric groups. In particular the problem of

evaluating a transversal of the symmetry classes of weight w :=

(w1, ••• ,wm) is equivalent to the problem of constructing a system

of representatives of the double cosets

(see [1], 5.1). Hence we consider first double cosets in an arbitra

ry finite group in order to present a general approach, afterwards

we shall restrict attention to our special problem.

If U and V denote subgroups of a finite group G, then the double

cosets UgV c G are obviously the orbits of the following action of

UxV on G:

(u,v)g
-1

:= ugv
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A seemingly different operation is in fact similar to this one (and

has therefore also the double cosets as orbits) and although it

looks complicated, it has the advantage that we immediately see how

it can be generalized in a natural way. It is an action of uxv on

the set GXG/6(GxG) of left cosets of GxG with respect to the dia­

gonal 6 (GxG) := {(g ,g) I g E G} and reads as follows:

1.1

Our first remark (which is easy to check) shows how one can see

that the two operations are similar:

on.to G,

.the

(ii) The 06 (gl,g2)6(GxG) .the 1.1

equat .to

UxV n

Hence the stabilizers of left cosets are uniquely determined by

subgroups of 6(GxG) and therefore we may very well ask for the

number of orbits of the action 1.1., the elements of which have
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stabilizers conjugate to W being a subgroup of G.

In order to consider this question we consider the lattice

U(G)

of subgroups

U, U', Un, .•• < G.

G acts on this lattice by conjugation:

U

in a way that the following holds:

1.3 VU, U', g(U < U' (gU) < (gU')).

The orbit of U under this action is the class

of subgroups conjugate to U.

It is not difficult to see that these orbits can be numbered in

a way that the following holds:

1.4 [U' E U1' U" E Uj' u' <Un] < j.

Having fixed such a numbering, we put (for Ui E 0i' 1 < i < d)
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:= no. of orbits of U.xU. under 1.1, the elements
). J

of which have stabilizers conjugate to

Let these numbers form the matrices

d := no. of conjugacy classes of subgroups, and define

1.5

These wi j are the so-called which already Burnside introduced

([2], p. 236) and which form a table

06 of G, which is uniquely determined up to permu-

tation of rows and columns. It forms the main tool in the enumera-

tion by automorphism group and it has the following properties

(see [2], [3]) :

1.6 (i) Q a main diagonal

o

*

06 Ui in

06 eolumn 06 06 Ui

in G:
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(ii) The 06 n the

in

if Wj ,=Cj) then A. wj w.. wj 'J. J.J

wd j

i.e. the independent) w. a
J

06 06 the Ai to the

eig W ••
J.J

In order to draw conclusions for the enumeration theory of symmetry

classes of functions, we notice that the definition of marks implies

1. 7 (i) 16 we denote by p . the en­
J.

tation 06 G induced by ui ' i.e.

Pi: = lUi t G,

then the {P 1 , ••• ,P d } the 06 all the

tially

P1 the Pd the identity

tation (by 1.3).

(ii) Each 0 a combi-
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s
\li

Keeping this in mind we consider a finite G-set, i.e. a permutation

representation o:G SM. Let Gm denote the stabilizer of m E M

and put

If furthermore

M
x j := no. of orbits of G on M, the elements of which

have their stabilizers in Uj'

then the column vectors yM and xM consisting of these numbers satisfy

1.8

Thus (uik) := the inverse of the table of marks, turns out to

be the crucial matrix for the enumeration of orbits of G by auto-

morphism group of elements. Its entries can be evaluated by Moebius

inversion on U(G) as follows.

1.5 v

U .•
vJ
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Using the notation

this shows that

or, equivalently (if denotes the Moebius function on U(G»,

This proves the equation

which should be compared with the

1.9 tv..J L
U .;;; U

i
U E Uj

following reformulation of 1.5:

1.10
ING(Uj) I

L 1.Wij IUil U .;;; Ui
U E U.

J

2. Symmetry classes of functions

We would like to apply the results mentioned above to the G-set

where g E G acts on f E as follows:

-1gf := f 0 peg) ,

p:G Sn being a permutation representation of G on

In order to do this we recall from the introduction that

n
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I -1 I -1w(f) := (f [{1}] , ••• ,If [{m}]l)

denotes the weight of f. If (w) := (w1' •.• ,wm) denotes such a weight,

Le. if wi E :IN, wi = n, then we denote by F(w) the set of func­

tions with this particular weight:

F (w) := {f E
nm­ I W(f) (w) }.

This subset of is obviously a G­subset. The number of orbits of

G on F(w) is (as we know from the weighted form of the Cauchy­Fro­

benius lemma (see e.g. [1], 5.1.15)) equal to the coefficient of

in the following polynomial arising from the cycle index ZI(p[GJ)

of p [G]:

1 n m . a. (p (g) )
ZI (p [G] I x 1+•• ­+x ) := Ti'T 11" (1r

m tGt gEG i=1 r=1

We want to refine this count by asking for the number of orbits of

G on F(w) the elements of which have their stabilizers in the con­

jugacy class Vi of subgroups of G. Denoting this desired number by

we put

rni(w) := I{f E F(w)

Then 1.8 yields
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a
v i

mV(w), if (a
i k)

:= n- 1 •
v

This gives us the following expression for the polynomial

ni(w)x(w)
(w)

(which we want to display in some detail):

2.2 a .
V1.

v

We now try to refine the inner sum of the right hand side with the

aid of the following numbers:

2.3 Lemma:

s. := no. of orbits of Pi [-Ui] ,1.

t .. := length of j-th orbit of Pi[Ui]·1.J

s t
mV(w)x(w)

v m
r ( x vj)

(w) j=1 r=1
r

This follows immediately from the fact that Ui is contained in the

stabilizer of f E if and only if f is constant on the orbits of

Let us now introduce the symbol "5" for "being conjugate to a sub-

group of" and put

o ,otherwise

k i l := no. of orbits of PilUi]' the elements of

which have their stabilizers in 5, .
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Then the following is true:

2.4 Lemma:

s
v

11"
j=1

(
r=1

t .
x v J )
r

d
If'
1=1

m
(
r=l

c k
vI) vIxr

In order to agree with this we need only to observe that in case

k vl * 0 the length of each one of these k v l orbits is equal to c vl'

Gathering up we have proved the following ([4], IV.8):

2.5 Theorem:

The numben 06 06 f E 06 weight (w)

the 06 which have thein gnoup in Vi
equal to the coe66icient 06 x(w) in the polynomial

CL •
Vl

v

d m
1r (
1=1 r=l

c k
x vI) vI
r

This solves the problem of counting symmetry classes by weight

and automorphism group. Moreover the given form of the generating

function for this problem clearly shows how far we can get with

the knowledge of the isomorphism type G of the symmetry group

EP[G] alone (for it yields both the numbers CL
v i

and the c
v l)

and what depends on the particular permutation representation

6:G S n of G on (namely the kvl)'m-

This result of Plesken together with the expression 1.9 of the

CL i k in terms of the Moebius function of the subgroup lattice U(G)

also yields the results of Stockmeyer ([7]).
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It is clear that vice versa this theorem implies POlya's theorem

which we should obtain from 2.5 by a summation over i. In order to

show this we need only to remark that for each v the following

i

holds ([3]):

2.6 Lemma: :E a .
Vl

from which it follows that

:E
i,v

1
TGT v

i.e. Polya's theorem!

Uv cyclic

Further results can be obtained by applying 1.9:

2.7 Corollary:

:E
U '';;U

Iu' IllG(U' ,U) {
o r otheJtwJ..-6 e

i
Proof: :E a .

vl 1.9
lulllG(U,U),

so that the statement follows from 2.6.

o

A further remark is implied by
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so that we get from 2.5:

2.8 Corollary: The 06 06 G on the 06

have equal to

v

llG({1
G},Uv )

ING(U) I
T

m v

i6 TV the 06 06 p [U ]
v v

3. Examples

Let us begin with the example we already mentioned in the intro-

duction: the graphs on 4 points having 2 edges.

Defining a labelled on p points as a mapping f from the set

of 2-element subsets of E (i.e. the set of pairs of points)

into 2 := {O,1}, for short:

2
.12)2 ]

f E

we regard this set as an S -set, and define a on p points as
E

an orbit of SE.

Hence in our concrete example p := 4, we have to consider the

F (4 ,2)
4 [2]

:= {f E 2-

4[2]
{f E 2-

w(f) = (4,2)}
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In order to be prepared for an application of 1.8, we take the

table of marks of 8 4 from a paper of H.O. Foulkes ([5]), who cla­

rified the ideas of J.H. Redfield on enumeration of symmetry clas·

ses by automorphism group (see [6], which was in fact the first

paper concerning this theory), and showed the connections to re­

presentation theory. This table reads as follows:

24

12 2

12 0 4

8 0 0 2 0

6 0 2 0 2

6 0 6 0 0 6

6 2 2 0 0 0 2

4 2 0 0 0 0

3 1 3 0 3 0 1

2 0 2 2 0 2 0 0 0 2

1 1 1 1 1 1

The vector yM is equal to

15

3

3

0

1

3

1

0

0

0

so that by 1.8 we get
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0

0

0

0

XM
0

0

0

0

0

which means that the two graphs on 4 points and with weight (4,2)

have automorphism groups conjugate to

U
2

:= {1,(12)},

and

in accordance with the picture drawn above.

In our next example we take

the regular representation of G, from which we get as a G-set.

This time instead of using 1.8, we prefer to consider the polyno-

mial given in 2.5. As

a
1
(p (g) )

{

l OG I, if g= 1G

, otherwise,
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we have for 1 i d

and hence

d
L

v=1
a .
Vl

m
( L
r=1

[u I IG:u I
x v) v
r

to 06 06 EP[G] G
on ,P

06 G, 06 which 06

(w) and gnoup in U
i
.

In order to interprete this result, we notice that U G
f
, f E G,

means that f is constant on the right cosets of G with respect to

U. Hence Gf must be the subgroup of G which is maximal with respect

to f being constant on its right cosets. In the case m := 2 we can

identify the set 2G with the power set

W (G) := {M I MeG}.

The stabilizer GM of such a subset M (which has to be identified

with the mapping f which satisfies M = f- 1[{1}]) is now the subgroup

U G which is maximal in the sense that M is a union of right co-

sets of U in G. Thus 3.1 yields for this particular case
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d
}:;

v=l
a .
Vl

IU [ IU I IG:u Iv v v
(xl +x2 )

L6 equal to the nurnbeft 06 !.>ub!.>et!.> M G 06 oftdeftr-6uc.h

that the maximal !.>ubg!toup 06 G 60ft whic.h M i!.> a union 06

it!.> !tight c.O-6 et -6 , lie!.> in Ui .

A numerical example is prOVided by G := 84 and

U
i

:= {1, (12), (34), (12) (34)},

which yields the polynomial

This means for example that there exist 18 subsets M 8 4 of order

20 such that M is a union of right cosets of an U E Ui in a way that

U is maximal with respect to this property of M.

(This number 18 agrees with the general formula

for the number of such subsets.)

Having considered the regular representation p of G which yields

mG as a G-set, we turn to the natural representation
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nof Sn' which yields m- as an Sn-set. As Sn is n-fold transitive,

the orbits of S on are just the subsets
n

F(w)

of functions of a given weight (w). The corresponding stabilizer

of an f E F(w) is a Young subgroup

Hence for each proper partition A of n, i.e.

where we put

n,

:=
J.

:=

Ifj I Aj=U[
m m

m-:E a.(A)
i=1 1

J<;;i<;;n

there are so many orbits the elements of which have a stabilizer

conjugate to SA (:= SA $ SA $ ••• (see [1])):
1 2

3.3 r- - - - - - m-'-'-l - - - - , if SA E 5.
xim) : = (A) I (A) I (A) I • • • 1

o , otherwise.

These xim) form the solution x(m) of the system of linear equations

3.4
(m)y ,

which corresponds to this problem by 1.8. The coefficients of y(m)

have the form
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t.
m 1 t

i:=
no. of orbits of U

i•

3.3/4/5 yield various relations in the matrix Q-1. For

if Ui is not a conjugate of a Young subgroup, we obtain from

3.4:

3.6

This implies that

L C! .
V1

v

t
vm 0, for all m 1.

n
L (L
t=l v

t =t
v

is the zero polynomial, and hence the following holds:

3.7 L C! •
V1v

t =t
v

o ,

if the sum is taken over all the U which have the same orbits as
v

has Ui• Among these there is exactly one Young subgroup, say Uk.

This group is maximal with respect to 5, and so we obtain

3.8 Theorem:

16 Ui a Young Uk and

Ui ,

For further results the reader is referred to [3].
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Summary

A necessary and sufficient condition for the existence of t-(p,k,A) designs which are

invariant under the affine group Ap = {x -> ax + b : a,b EGF(p), a * O} is given. From
this we derive sufficient criteria fUr the existence of Ap-invariant 3-(p,4,A) designs

for all primes p. These designs are simple in the case p = 5(mod 12) and A = 2. As a

corollary to our considerations, we obtain some infinite series of simple 2-(p,r,A)

designs for all primes p and certain values of A which are also invariant under Ap'

Definitions and Notations

For a set Mand r EI'J 1et = {N S M: INI=r} and V(M) be the Ol-vectorspace wi th M
n

as a basis. For r1,r2, ... ,rnEI'l and m1,m2, ... ,mnEM the vector B = L r vm. EV(M) is
i=l 1 1

called a multiset, and the ri's are the of the mi's. (Also for

N = {n1, ... ,n } c::: Mwe consider N as the vector L n . EV(M).) Furthermore, we define
n s - i=l 1

IBI = L r i and we write mE B if mE Mis a term of the sum in B.
i =1 7L

Now let l<t<k<DEI'J and AEI'J, where p is a prime. Then for B= LI3.B.EV((kP)),[3.EI'J,
7L 1 1 1

and arbitrary TE( l) we defi ne

T T [3.,ifTc:B
BT = L [3i (Bi - T) by [3i = { 1 =

o otherwise.

Such a multiset B is called a cyclic t-design over Zp (in short cSA(t,k,p)) if the

following two conditions hold:

Zp
= A for all TE ( t ), and

(2) if B = {b1, ... ,bk}EB and CEZp' then c+B = {c+b1, ... ,c+bk}E B

(If B is a set the corresponding cS). (t,k,p) is called simple.)
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It is well known that the existence of a cSA(t,k,p) implies that A is a multiple of

k-i
(t-i)

A
O

1cm { O,l, ... ,t }.

Such a A will be called putative (with respect to t,k, and p.).

Let B be a cSA(t,k,p). From now on we will assume that for all B = {b1, ... ,bk} E B

we have the following:

(1) the bi's are represented by the numbers 0,1, ... ,p-1, and

(2) b1<b2< ... <bk.
k-1

Let 2<k<pElN be as before. We write \ = {(a
1,
... ,a

k):a.EZ
..... {O}, ak=- L a

1
· } .

, p 1 P i =1
The components of the elements of T

k
are again represented as non-negative integers,p

a
i
E {0,1, ... ,p-1}.

Now for A,BE T
k

we write A 'V B iff A differs from B only by a cycl ic permutation of,p

the components. We denote the set of orbits of the equivalence relation 'V in Tk by,p

Kk,p and for (a 1, ... ,a k) ETk,p we denote the orbit of (ap ... ,a k) with respect to 'V

by lap'" ,a k]. Such alaI"" ,a k] E Kk,p is called a k-difference-cycle over Zp'

For t sN, l x t c k, and K = la 1, ... ,a k]EKk,p an element T = lb 1, ... ,bt]EKt,p is

called a t-subcycle of K iff (1) and (2) hold, where

j*
(1) for all i EZ t there exist j,j*EZ

k
with b

i
= L. a

h,
and

j* 1* h=J
(2) ifb.= L. ahandbi+1= L ah,thenl=j*+l.

1 h=J h=l

(Hence we assume the indices of the components of T and K to be elements of Zt and Zk

respectively, represented as the numbers 0,1, ... ,t-1 and 0,1, ... ,k-1 respectively).

If T is a t-subcycle of K we write T< K.

This construction yields exactly not necessarily mutually distinct t-subcycles

of a given KEK
k

. Now let K be the multiplicity of the appearence of TEKt p as a
,p T '

t-subcycle of KE K
k

. Then we denote the multi set of all t-subcycles of,p
t k t

K by K L K -T. Therefore, we have L K (t) and K EV(K
t

).
T<K T T<K T ,p



214

Orbits of Difference-cycles

The following theorem is proved in [6].

Theorem 1. If there exist 131, ... ,l3nEJ.I and 5
n t

{K1,···,K } E Kk with L: 13,'K. = ,\oK t '
n ,p i=1' ,p

o

then there exists a c5,\ (t,k,p).

(Clearly, this c5,\(t,k,p) is simple iff 131 = 132 = ... = I3n = 1.)
. n t

Now let 5 = {K1, ... ,Kn} S Kk wlth L: I3.K. = I. 0 K
t

. The c5,(t,k,p)
,p i=1 1 1 n ,p 7L "-

rem 1, belongs to this 5 is of the Form B = L: 13.5 EV( where the
i =1 1 K i

which, by Theo-

5 's are de-
K·
1

fined by the bijection <l>k:5 {5 , ... ,5 } with
K1 K

n

5 "" (K ) = <0 a (j) a (j) + a (j) a (j) > =
pc. "'k· , 1 ' 1 2' ... , <- h
J J h=1

{{l,1 +a
1
(j) , 1+a

1(j)+a2
(j) , ... ,1 + k2 ah(j)} : HZ

p}'
where K

j=
[a
1
(j) , ... ,a

k(j)].
-1 h=1

Then <l>k may be described as follows.

( .) (")
Consider an element Aj E 5K. containing 0 EZp' say Aj {O,b1 J , ... ,b k- 1 J } with

0< b
1
(j) < ... < b

k- 1
(j).

"" -1(5 ) = [b (j) b (j) - b (J) p-b (j)J = [a (J) a (j)J
"k K. l' 2 l' ... , k-1 l' ... , k Kj.

J
We define a multiplication of an element yEZ-....{O} with an element

k-1 k-1
L: a1 > =<O,yal'y(a1+a2), ... , y L:

1= 1 1=1

The above construction yields the following

o

With respect to this multiplication the set K consists of orbits and we writek,p

<K> = Iy-« : y EZ <, {O}} for KE K
k

. Hence, if c is a primitive root modulo p we canp ,p

write <K> = {si oK : i = 1,2, ... ,p-l}. Therefore, I<K>I :>p-1 and I<K>I is a divisor of

p-l. Now 1etKEKk,p such that aol<K>1 =p-l. Then, sXoK=SYoK iff x '" y (mod

Furthermore, let Kt
r
L: xh'h withxhEJ.landbhol<'h>1 p-l. Thenwe
h=1
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have L (C1K)t

i=l
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r
L x

J
'

j=l

This yields

Lemma 2. For Kt =

t
K =

q
L
j=l

r
L xhTh the indices of the sum may be chosen in such away that
h=l
r2
L XjTj+ ... +j=r1+1

o

<T1> = <T2> = ... = <T
r 1>,

:T
r 1+1>

= <T
r 1+2>

= ... = <T
r2>,

<T
r f_ 1+1>

= <T 2> = ... = <T >, and <T > * <T > if i *j.rf- 1+ r f r i r j

Furthermore, let I<K>I = and I<Tr >1 = for n = 1,2, ... ,f.
n n

Then, putting ro = 0, the following holds:

(p,l)/a i t f b. r j
L (c K) = L (-1. L
i=l j=l a i=r. 1+1

J-

(p-1)/a
Instead of L (ciK)t we write <K>t. As a consequence of Lemma 2 <K>t is a multi-

i=l
setover<Kt > = {<T>ITEKt }.,p ,p

Using Theorem 1 and Lemma 2,we obtain the following

Theorem 2. There exists a cSA(t,k,p) which is invariant under the multiplication with
r

elements from Z ..... {O} if and only if there exists a multiset r = L 13.<K.>,I3. EJIl
P i=l 1 1 1

of orbits of k-difference-cycles over Z with r = A' <Kt >.P ,p
(Clearly, if r is a set, the corresponding cSA(t,k,p) is simple.)

o

We denote the multiset cSA(t,k,p) with the properties given in Theorem 2 byaSA(t,k,p).
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Now we state some properties of the sets Kk,p:

Firstly, since (p,k) = 1 we have IKk I = • p-1,p

In order to obtain an important classification of the elements of K we introducek,p

the following definition.

Let K = [a1, ... ,a k]EKk,p' If [a 1, ... ,a k] = [a1,ak,ak_1, ... ,a2] we call K symmetric.

We denote the set of all symmetric k-difference-cycles over Ip by sKk,p' Futhermore,

we write s*Kk Kk -SKk . By looking at the corresponding definitions, one can,p , p ,p

prove, using elementary tools, the following

Lemma 3. KESKk if and only if K= (-1). K.,p Q

Lemma 3 implies that the cardinality of the set of symmetric difference-cycles over
I

lp is the same as the cardinality of the orbits in under the group

Dp = {x --> ax+b : aE{+l,-l},b E Ip}' We can, therefore, apply Polya's counting-theo-

rem to determine this cardinality. But this requires some calculations which we omit.

So we just state the

I sKk I,pLemma 4.

following

p-1
-2-

(If a E R, then La] = max {ZEI : Z a}.)

A proof of Lemma 4 can be found in [2].
Q

Lemma 5.

(i) If KESKk,p then I<K>I P;l ,

(ii) If KEKk and I<K>I = E..:.l then KESKk ',p 2 ,p

(iii) If KEsKk,p and K'E< K> then K' ESKk,p' Q

Finally, we introduce the following notation. We write

<sKk > = {< K> : KEsKk } and <s*Kk > = {< K> :KE s*Kk l .,p , p , p ,p

The Sets K3 and K4,p , P

In the previous chapter we defined for K = [a1, ... ,a k] EKk,p and YElp" {a} the ele-

ment s : Kt Kk,p using the bijection <!>k' Now we ask if it is possible to write s : K

without making use of <!>k' In general,we have
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-1 k-1 -1
1>k « 0, ya 1, y(a1 + a2),···,y· L al > ). In order to apply 1>k the

k-1 1=1
y(a 1+a2), y. L a

l
have to be ordered regarded as nonnegative inte

1=1

gers. (Without this ordering [ya 1, ... ,ya k] is sometimes not an element of Kk,p' We

call this ordering the reduction of [ya 1, ... ,ya k].

Remark 1. For K= [a,b,-(a+b)]E K
3

and yEZ <, {O} we have,p p

(i) yK = [ya,yb,-y(a+b)], or

(ii) yK = [y(a+b),-yb,-ya].

Proof: It is YK = «O,ya,y(a+b») = [ya,yb,-y(a+b)], if ya+yb+(-y(a+b)) = p over I'L

Otherwise we apply reduction and obtain « O,y(a+b) ,ya > ) = [y(a+b) ,-yb,-ya]. 0

Similarly we obtain:

Remark 2. For K = [a,b,c,-(a+b+c)] E K
4

and yEZ <, {O} we have:,p

(i) yK [ya,yb,yc,-y(a+b+c)] , or

(ii) yK [ya,y(b+c),-yc,-y(a+b)] , or

(i i i ) yK [y(a+b),-yb,y(b+c),-y(a+b+c)] , or

(iv) yK [y(a+b),yc,-y(b+c),-ya] , or

(v) yK [y(a+b+c),-yc,-yb,-ya] , or

(vi) yK [y(a+b+c),-yc,-yb,-ya].
0

We now investigate the sets K3 and K4 in detail.,p ,p

P-lLemma 6. (i) There is exactly one class <K> E <K3,p> with I<K>I= -2-'

For this class we have <K> = <sK
3

> and K = [1,1,-2] is a representative.,p

(ii) If p'" 5 (mod 6), then S*K3,p splits into classes <K> with I<K>I = p-1 in

each case.

(iii) If P sa 1 (mod 6), then S*K3,p spl its into classes <K> with 1<01 = p-1 in

each case and one futher class <K'> with I<K'>I = p;l. In the latter case, <K'>

can be represented by K' = [l,y,i] with i + y + 1 = 0 in Zp' up to a reduction.

Proof: We have sK
3

= {[a,a,-2a] : aEi2: <, {On and a ::; P2- 1--- ,p p

On the other hand, if a, a'E{l,2, ... , Pz:1} and a*a', then [a,a,-2a]*[a',a',-2a'J,

Hence IsK3,pl = Pz:1 and [1,1,-2] is a representative. This proves (i).

In the following we consider the general case KE K3 . Here we have I<K> I < p-1 if,p

and only if there exists a YElp <, {O,l} with K = yK.
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Let K = [a,b,-(a+b)] = y[a,b,-(a+b)] E K
3

with yEZ ,{O,l}.,p p

Remark 1 implies [a,b,-(a+b)] = [ya,yb,-y(a+b)] or [a,b,-(a+b)] [y(a+b,-yb,-ya].

Now we calculate:

(i ,i) ifa = ya, b = yb, -(a+b) = -y(a+b) then y = 1 which was excluded,

(i , i i ) if a = yb, b -y(a+b) , -(a+b) = ya then / + y + 1 = 0,

(i , iii) ifa = -y(a+b), b = ya, -(a+b) = yb then / + y + 1 = 0,

(i i , i ) if a y(a+b), b = -yb, -(a+b) = -ya then y = -1,

(i i , i i ) ifa -yb, b = -ya, -(a+b) = -y(a+b) then y = -1,

( ii, iii) ifa -ya, b = y(a+b), -(a+b) = -yb then y = -1.

o

In the case y = -1, however, K is symmetric by Lemma 3. For KES*K
3

we have,p

I<K>I <p-1 iff K = yK with /+y+1=0 in Zp' and /+y+1=0 in Zp has a solution

in Zp iff P ,,1 (mod 6). This proves (ii).

Now assume p" 1 (mod 6), and let K' [a,b,-(a+b)] E K
3

with K' = YK' and /+y+1=0,,p

hence i = 1 with Y*1. Here we have a = -y(a+b), b = -y(a+b), -(a+b) = ya or

2 2
= yb. Therefore, K' = [yb,b,y b] E<[y,a,y l > or

2 2 2 2Since -y[y,l,y ] = [l,y,y ] we have <[y,l,y]> <[l,y,y]

*1 that I<K'> I - p-1- --3-

a = -y(a+b), b = ya, -(a+b)

2 2K' = [a,ya,y a]E<[l,y,y ]>.

It follows from y3 = 1 with Y

This concludes the proof.

p-1
In particular, Lemma 6 shows that for each KE K3,p we have I<K>I E O,2,3}. Similarly,

p-1
for each KEK4,p we have I<K>IE{l,2,3,4}. To be more precise:

Lemma 7. If P sa 1 (mod 12), then

(i)

(i i )

SK4,p consists of exactly one class <K> with I<K>I = P;l (here

2 2y . 2 p-5
K = --] wlth Y = -1 up to a reduction) and further ---4 classesy-J. -y

. p-I
<K> wlth \<K>I = --2--' and

s*K
4

consists of exactly one class <K> with I<K>I = P3-
1

(here
,p 2

K = with /+x+1=0 up to a reduction) and further-x x-
(p-1)(p-7) classes <0 with 1<01 = p-l.

4!

If P " 5 (mod 12), then

(i)
p-1 2 2y

SK4,p consists of exactly one class <K> with I<K>\ = --4--(here K
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with y2 = -1 up to a reduction) and further classes <K> with I<K>I = PZ1, and

(ii) s*K4 consists of exactly one class <K> with I<K>I = P4- 1 (here
,p 2

K = [1,x'lx_x'X=l] with i+x+1 = 0 up to a reduction) and further (P-1)4!(P-7)

classes <K> with I<K>I = p-1.

If P = 7 (mod 12), then

(i) sK4,p consists of exactly classes <K> with I<K> I = PZ1, and

(i i ) S*K4 consists of exactly one class <K>,p

with i +x + 1 = 0 up to a reduction) and

with I<K> I P- 1.

p-1 i 1with I<K>I = -3- (here K=[1,X,r=x'x:T]

further (p-1)(p-7) classes <K>
4!

If P ss 11 (mod 12), then

(i)

(i i )

sK4,p consists of exactly classes

s*K
4

consists of exactly (p-3)(p-5)
,p 4!

<K> with I<K>I = PZ1 , and

classes <K> with I<K> I = P - 1.

Proof: We proved Lemma 6 by elementary calculations in 1 , using Remark 1. In the same
p

way, the proof of Lemma 7 proceeds by calculations in Zp' using Remark 2. As this is

rather straightforward we present only one of the 24 cases as an example.

If K = [a,b,c,-(a+b+c)] = yK = [ya,y(b+c),-yc,-y(a+b)], we obtain (e.g. if

a = -yc, b = -y(a+b), c = ya, -(a+b+c) = y(b+c)) b = -::y and c = ay, with y2 -1.

-y -y 2Hence KE < [1, T+Y'y, l+Y] >. Now for y = -lone has

[1 = [1 _2_ 1 lL], l+y'y, l+y l+y 'y-1" 1-y .

This yields I<K>I = for y2 = -1 and K = yK. On the other hand, y2 -1 holds for

YEZp iff P = 1 (mod 4). Since p is a prime number we have p = 1 (mod 4)

iff P = I, 5 (mod 12).

The other cases can be treated in a similar way.
o

As an immediate consequence of Lemma 7 we obtain the following result, where as\(t,k,p)

denotes an S\(t,k,p) invariant under the affine group Ap'

Theorem 3. For all prime numbers p there exists an aS12(2,4,p) and an aS6(2,4,p). For

p =1 (mod 6) there exists an aS4(2,4,p), and for p =1,5 (mod 12) there exists an

aS3(2,4,p).
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Proof: Since A = {x .... ax-b : a,bEl , a to} is sharply 2-transitive on lp' each
-- p p

<K> of <K
4,p>

represents an a\(2,4,p) with>. = 3 .By Lemma 7, the

assertion follows.
[J

Sufficient Conditions for the Existence of an as>. (3,4,p)
o

Firsly, we state two useful remarks.

Remark 3. If [a,b,-(a+b)] E K
3

' then < [a,b,-(a+b)] > contains at most six 3-diffe-,p

renee-cycles having 1 at least once as a component. These are:

II-ex -ex
[1,ex,-(ex+l)], [1,;X'-(;X+ 1)], [1'ex+l' - (ex+l + 1)]

[ ( ll-ex-ex
1,- ex+l) .cl, [1,-(;X+ 1) ';X], [1'-(ex+l + 1), ex+l],

where ex E l is defined by ex =
p a

Proof: It follows from Remark that

x[a,b,-(a+b)] = [xa,xb,-x(a+b)] or x[a,b,-(a+b)J [-xa,x(a+b) ,-xb].

F 1 t b t f [ b ( b) ] h t b f + 1 + 1 + 1 Thior 0 e a componen 0 x a, , - a+ , x as 0 e one 0 - a:' - b' - a-b ' 1 s

yields, using the two equations of Remark 1, the listed six 3-difference-cycles, whicl

are not necessarily mutually distinct.
[J

Remark 4. If [a,b,a,-(2a+b)] EsK
4

' then < [a,b,a,-(2a+b)] >contains exactly two,p

4-difference-cycles having the entry 1 in two non-consecutive components. These are

-ex ex+2 b
[1,ex,I,-(ex+2)] and [1'ex+l,I'ex+l]' where exElp is defined by ex = a:'

Proof: Let K = [a,b,a,-(2a+b)] E sK
4

. Considering yK we see that the cases (ii) and,p

(vi) of Remark 2 cannot occur.

1 1
Now, looking at case (i) of Remark 2, we must choose y=a: and get [1,ex,I,-(ex+2)

1The same result is obtained in case (vi) by putting y = - a:o In case (iii) one gets

II-ex 1 ex+2
a+b • K= [ 'a+r' , -ex+l]

-1
putting y = a+b' [J

1for y =a+!J' and we obtain the same result in case (v) by
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Now we can prove

Lemma 8: L < K> 3
KESK4,p

2 • sK
3

+ 3 • s*K .
,p 3,p

Proof: Let KESK
4

. Then, by Remark 4, <K> contains the elements [1,a,I,-(a+2)]--- ,p
-a a+2 3.

and [1'a+T,I, - a+l]. Hence <K> conta i ns 2· sK3,p iff a = 1. In this case we have

3<[1,1,1,-3] > = 2· SK3,p + < [1,2,-3] > . No element KE (SK
4,p'

< [1,1,1,-3] » con-

tains TE sK3 as a 3-subcycle. On the other hand, each T = [a,b,-(a+b)]Es*K
3,p ,p

occurs in exactly 3 symmetric 4-difference-cycles as a 3-subcycle. We have to prove

this only for those T

Let T = [1,a,-(a+l)].

E s*K
3

having 1 as the first component.,p

Then we have T E K3 with KE sK
4

iff one of,p the following

cases occurs:

(i) K = [1,a,I,-(a+2)] , or

(ii) K = [1,a-l,I,-(a+l)J, or

(i i i ) K [1,a,-(2a+l) .a l ,

This proves Lemma 8. o

It is now appropriate to define a

G denotes the set of vertices of.p

graph G = (G ,G ) for allp -p v-p

G and G the set of edgesp -p

prime numbers p> 7 (here

of G ) in the following
p

way:

and-o } -1 }}- (a+l + 1) : aEZp ,{O,I,-I,-2, 2 '

aE<a> and b E <13> with a = b ± 1.

G = {<a> = {a (a+1) 1 (1 + 1) -a• p , - , ex ' - ex ' a+1 '

{<a>,<13>}EG if and only if there exist-p

Using these definitions we state a few theorems; examples for these will be given in

the last section.

Theorem 4: Let p = 5 (mod 12). Then for each putative A, there exists an aSA (3,4,p)

if Gp possesses a I-factor.

These designs are simple for A= 2.

the existence of an aS
2(3,4,p)

forms an aS2(3,4,p).

Proof: For t=3, k=4 and p = 5 (mod 12) we have A
o=2.

Therefore, it is sufficient

to prove that the existence of a I-factor in Gp implies

By Theorem 2 and Lemma 8,we know that L K <K>3's*K
3K E s 4 ,p,p
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Therefore,we show that the existence of a I-factor in Gp allows us to choose a subset

3
A from <sK4,p> such that <0 S*K3,p' We proceed in the following way: For

<ex> E G we can identify <ex> with <[1,cx,-(ex+1)] > E<sK
3

>. Given {<ex>,<I3>} EG ,•P , P -p

there are [1,a,-(a+1)JE< [1,ex,-(ex+1)] > and [1,a±l,-(a±1+1)]E<[1,I3,-(13+1)] >.

This means that [1,ex,-(ex+1)] and [1,13,-(13+1)] are contained in [1,a,l,-(a+2)] as

3-subcycles. A I-factor in Gp therefore,to an AS SK4,p with

L 3
KEA <K> = S*K3,p'

[J

We have a similar criterion in the case p = 11(mod 12) according to the following

Theorem 5. Let p 11(mod 12). Then for each putative A, an aSA(3,4,p) exists, if the

graph G', arising as an induced subgraph of Gp on G' = G -...{<2>}, posesses a I-facto)
p -p -p

Proof: For t = 3, k = 4 and p = 11(mod 12) we have A
O

= 4. Hence we will construct an

aS4(3,4,p). Again by Theorem 2 and Lemma 8, L E K <K>3+ 2' SK3 +s*K3 is an
K s 4,p ,p,p

aS4(3,4,p). Hence we must choose a multiset A from sK4,p satisfying

L
EA

<0 3 = 2'sK
3

+s*K
3

. Therefore, we define A =<[1,1,1,-3] > + B with a certain
K ,p,p

Be SK4 . Since<[l,1,1,-3] >3 = 2. sK
3

+< [1,2,-3] > we must have,p ,p
3B<K> = s*K3,p -...<[1,2,-3 ] » , The same consideration as in the proof of Theorem 4

shows that a I-factor in G' corresponds to such a B.p

The cases p = I, 7 (mod 12) are a little bit more complicated.

Theorem 6. Let p = 7 (mod 12)

induced subgraph of G on G*
p -p

**induced subgraphof G on Gp -p

aSA(3,4,p) exists, if either

and y EZ with /+y+1 = O. Let G* = (G*,G*) be thep p •p -p
1 ** ** **= G -...{<y>,<3>, <-;-:-r>}, and G = (G , G n ) be the-p y-l P -p -t'

= G -...{<y>,<2>, for each putative A an
'p y-

* **
Gp or Gp possesses a I-factor.

Proof: For t = 3, k = 4 and p = 7 (mod 12) we have A
O

= 4. Hence we wi11 construct an

aS4(3,4,p). We have L <K>3 = 3'S*K
3

-"'<[1,2,-3]>
KESK4 -...:<:[1,1,1,-3]> ,p,p

On the other hand, K' [l,y, i-:, s*K4,p with I<K'>I = Hence

L <K>3 + <K,>3 + <[1,1,2,-4]>3 +
KESK4 -...<[1,1,1,-3]>,p
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forms an aS4(3,4,p), if the multiset Baver SK4,p satisfies

_ 2 1 -y
<[l,y,y ]> + <[1,3,-4]> + <[1'---1'---1]>' But such a B is definedy- y-

multiset B* over sK4 is chosen,p

L <K>3 = s*K
KEB 3,p

by a I-factor in

Similarly, <[1,1,1,-3]>3 + <K,>3 + L <K>3 + L <K>3 is an aS4(3,4,p), if the
KESK4 KEB*,p

**such that it is defined by a I-factor of Gp ' D

[1,y-1,1,-(y+1)]

[1, 1 1 2y-1]
y:T' , y:r

2 -Theorem 7. Let p'" 1 (mod 12) and YElp with y +y+1=0. Let Gp be the induced

subgraph of G on G = G <, {<y>,<y-1>,<y-2>, <.,.J.., >}. Then for each putat ive x an
p -p -p y-1

as;\(3,4,p) exists, if Gp possesses a I-factor.

Proof: For t=3, k=4and p"'l (mod 12) we have\=2. Hence we will construct an

aS2(3,4,p). Therefore,we define

i 1K' [l,y'l_y'y:T]

K1 [1,y-2,1,-y]

I<K2>1 = p;l and \<[1,y,-(y+1)]>1P-1This gives \<K'>I= -3-' \<K*>I = I<K1>1

Now we can calculate,using Lemma 2:

<K,>3 = <[1,y,-(y+1)]> + <[l,y -l,-y]>,

<K*>3 = 30<[1,y,-(y+1)]> + <[1,y-1,-y]>,

<K1>3 <[1,y-1,-y]> + <[1,y-2,-(y-1)]>,

3 1 2y-1<K2> <[1,y-1,-(y+1)]> + <[1,y:T' y-1 ]>.

1 -y(The latter follows from [1,y-1,-(y+1)] E< [1'-:-:--1' ---1]>')y-1 y-

_ p-1
- -3-'

Since

L <K>3
K E SK4, P

20sK3 + 30S*K3 the multiset,p ,p

forms an aS2(3,4,p), if a multiset Baver sK4,p satisfying



Proof:

224

L <K>3 = s*K - <[l,y,-(y+1)]> - <[l,y-1,-y]> -
KEB 3,p

exists. But such a B is represented by a I-factor in Gp if P *13.

Many details concerning the structure of the graphs Gp can be found in [5].

The case p < 100

Now we apply Theorems 4,5,6 and 7 and showthat,for "small" primes, the necessary con-

ditions for the existence of an aSA(3,4,p) are also sufficient. Thus we prove the

foll owi ng

Theorem 8. For all primes p with 11 p 97 there exists an aSA(3,4,p) if and only

if A is a putative parameter and p * 13.

In the case p = 13 we have

<K3 > = <[1,1,11]> + <[1,3,9]> + <[1,2,10]>,,p

<sK4 >= <[1,1,1,10]> + <[1,4,1,7]> + <[1,2,1,9]> and,p

<s*K4 >= <[1,2,6,4]> + <[1,1,2,9]> + <[1,1,4,7]> + <[1,1,3,8]>.,p

After having made the following calculations

3 20<[1,1,11]> + <[1,2,10]><0,1,1,10]>

3 <0,2,10]>,<0,4,1,7]>

3 30<[1,3,9]> + <[1,2,10]>,<[1,2,1,9]>

3 <[1,3,9]> + <[1,2,10]>,<[1,2,6,4]>

3 40<[1,1,11]> + 30<[1,3,9]> + <[1,2,10]>,<0,1,2,9]>

3 20<[1,1,11]> + 30<[1,2,10]>, and<[1,1,4,7]>

3 20<[1,1,11]> + 30<[1,3,9]> + 20<[1,2,10]>,<[1,1,3,8]>

one sees immediately, using Theorem 2, that there does not exist an aS2(3,4,13).

A further case must be treated separatly, too: the graphs G61 posses <16> as an isolated

vertex. Therefore,there is no I-factor in G61. Nevertheless one can construct an

as?(3,4,61) in the following way.
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Since <K3,61> = <[1,1,59]> + <[1,13,47]> + <[1,16,44]> + <[1,21,39]> + X

with X ={<[l,i,-(i+1)]> : i = 2,3, ... ,8} ,

there is a multiset Lover <K4,61> which represents an aS2(3,4,61). This is

L = <[1,10,1,49]> + <[1,6,1,53]> + <[1,7,1,52]> + <[1,8,1,51]> + 20<[1,15,1,44]> +

<[1,20,1,39]> + 20<[1,4,9,47]> + <[1,2,3,55]>.

Indeed, this multi set L defines an aS2(3,4,61) as one can see by considering Theorem 2

and the following equations

3<[1,10,1,49]> <[1,5,55]>,

3<[1,6,1,53]> = <[1,6,54]> + <[1,7,53]> ,

3<[1,7,1,52]> = <[1,7,53]> + <[1,8,52]> ,

3<[1,8,1,51]> = <[1,6,54]> + <[1,8,52]> ,

320<[1,15,1,44]> = 20<[1,3,57]> + 20<[1,16,44]> ,

3<[1,20,1,39]> = <[1,2,58]> + <[1,21,39]> ,

20<[1,4,9,47]>3 = 20<[1,13,47]> + 20<[1,4,56]> , and

<[1,2,3,55]>3 = 20<[1,1,59]> + <[1,2,58]> + <[1,5,55]> + <[1,21,39]>.

In all other cases the graph corresponding to the prime p has a I-factor. This can

easily be seen by applying one of the Theorems 4,5,6 or 7 to the figures below.

Gil Gi9 = G17 <2> <3>

<8>

GZ3 • • G29 =
<3> <4>

<2>

Gh G37 • •
<2> <11> <5> <7>

<12> <11>

G41
I 1 ,
<2> <3> <4> <5>
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• •
<4> <9> <2> <8>

<9> <10>

<3>

<5> <5>

<10> <11>

<2> <4>

<3> <5>

<7> <6>

<5> <6>

•
<18>
_

<3> <8>

<4> <7>

+<2:>, • •
<13> < 2 >

<6> <9>

<20> <15>

<22>

<5> <6> <7>
<21>

<16> <3>
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<15> <16>

<14> <4>

<13> <5>'

<14> <7> <8>

G** 1'\ I I79 • • •
<3> <4> <5> <6> <11 > <27> <28>

<8>

<28> <12>

<13>

Ga 9 <24> <2> <6>

<16>

<3> <4> <5>
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Arcs and Ovals in Steiner Triple Systems
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and
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F.R. Germany

Several constructions of Steiner triple systems (STS) with ovals are

given. For every 3 or 7 mod 12 there are STS's with hyperovals,

for every 1 or 3 mod 6 there are STS's with ovals, and for infinitely

1 or 3 mod 6 there are STS's without ovals. The ovals may be

classified by their complementary sets, the so-called counterovals.

Several questions remain open.

1. Introduction

up to now arcs and ovals were mainly investigated in projective

planes. In classical projective planes of odd order the famous theorem

of B. Segre holds that each oval is a conic [13], [7]. Of course these

concepts make sense in linear spaces resp. in partial linear spaces.

A partial linear space is a finite incidence structure (V,£) with

point set V and line set at most one line through any two

points and at least two points on every line. It becomes a linear

space if every unjoined point pair is considered as a new line. We

write v for Ivi and b for

Examples of partial linear spaces are the so-called group divisi-

ble designs (GOO), where the points are partitioned into classes such

that two points are joined iff they are in distinct classes; in par-

ticular the transversal designs (TO) with k >2 classes such that every

line intersects every point class. It is well known that then each

class has exactly g points and there are g2 lines. Such a TO is called

a TO[k;g]. The existence of a TO[k;g] is equivalent to the existence

of k - 2 mutually orthogonal Latin squares. In the sequel we assume

that in a partial linear space at least one line has more than two

points.
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Definitions: An arc in a partial linear space is a point set

which intersects no line in more than two points. Obviously every arc

is a subset of a maximal arc. For any point set B a line L is called

a

Subline}
secant

tangent

passant

of B if IL n B I

ILl
2

1

O.

An arc is called a hyperoval if it has no tangents, and an oval if

there are tangents but at most one through any point of it. Let r be
p

the number of all lines through a given point p. If B is an arc and

p E B, then the number of tangents of B through p is r - IB I + 1. If
p

H is a hyperoval and x (H, then there are exactly IHI /2 secants through

x, and the number of tangents in a point p E H is 0 = r - IH I + 1, i. e.
p

r =IHI-1.
p

An oval B in a linear space can be extended to a hyperoval only if

each point x E B is on exactly one tangent and all these tangents have

a point in common.

If r p is independent of p (e.g. in Steiner systems S(2,k;v) with exact-

ly k points on every line, or in GDD's GD[k,g;v] with exactly k points

on every line and g points in every class, in particular in case v = kg,

i.e. in transversal designs TD[k;g]), then each point of an oval is on

exactly one tangent. The number t
B
(x) of tangents through a point x ( B

is odd iff r = r = IB I is odd, and even otherwise. In a Steiner system
p

S(2,k;v) it is well known (e.g. Hall [5 ]) that

( 1 • 1) v> 1 b =2E. = y (y- 1 )
r=k_l' k k(k-l)

There is a huge literature on Steiner systems S(t,k;v), see the

book [9] edited by Lindner and Rosa, in particular the bibliography by

Doyen and Rosa (in this book [9]) with more than 700 titles. In case

k= 3 we get a Steiner triple system (STS) with r= (v-1)/2, b=v(v-1)/6.

Let STS be the set of v E IN for which an STS (v) exists. It is well

known that STS = 6JNo + {1, 3}.

In this paper we shall show that for each v .. 3 or 7 mod 12 there are

STS 's with hyperovals, for each vESTS there are STS' s with ovals, and for

for almost all v ESTS there are STS's without ovals. The proof of the

last two assertionswas considerably improved by several remarks of

w. Piotrowski [12].
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2. Hyperovals in Steiner Triple Systems

Theorem 2.1: An STS(v) has a hyperoval iff it has a sub-STS(r)

with r= (v-1)/2 points. H is a hyperoval iff V <, H is a sub-STS(r).

Proof: I. Let U be a subspace of order (= number of points) r, and

p (£ U a point. Each line L:3 P intersects U, since otherwise there would

be at least r + 1 points x (U U {p} on the r lines through p, hence

v » 2r + 1, a contradiction. Hence V <, U is a hyperoval.

II. Let H be a hyperoval and U : = V <, H. As H has no tangents, any

line through two points of U is contained in U, i.e. U is a subspace

of order v - IHI = r. IJ

Theorem 2.2: An STS(v) with a hyperoval exists iff V;5 3 or 7 mod 12.

Proof: The necessity of the condition V;5 3 or 7 mod 12 follows

from the fact that r must be odd. The sufficiency can be shown by seve-

ral classical constructions. In the sequel we shall present three of

them.

Construction 2.1: Let Kr + 1 be the complete graph with r + 1 vertices

(=points). It is well known that Kr + 1
can be factorized. E.g. put the

vertices into the centre and the corners of a regular r-gon. Then each

parallel class consists of one side S of the r-gon, the (r-3)/2 dia-

gonals parallel to S, and the radius from the centre to the remaining

corner. For the number of possible factorizations see Lindner-Mendel-

sohn-Rosa [10]. Now add a new point Pi to each parallel class

(i=1, ... ,r) such that p. forms lines together with the egdes of
1. 1. i

Moreover form an STS(r) on the new points, say U. Thus we have con-

structed an STS (2r + 1) with a subspace of order r, i. e. with a hyper-

oval. IJ

Construction 2.2 (doubling construction): Given the incidence ma-

trix M of an STS(r), replace the three 1's in each column by the

auxiliary matrices

(2.1) A= ( 1 1 0 0 B = (1 0 1 0 ( 1 0 0 1 ) or else (0 1 1 0)
0 0 1 1 ) , 0 1 0 1 ) , C= 0 1 1 0 1 0 0 1

and zeroes by matrices

a GD[3,2;2r] which is

which forms new lines

o 0 0 0
(0 0 0 0)· Thus we get the incidence matrix of

completed to an STS (2r + 1) by a new point 00

together with the r point classes. IJ

If the original STS(r) has a hyperoval, say in the first (r+1)/2
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rows of the incidence matrix (then r" 3 or 7 mod 12), then the r + 1

first rows of the large new matrix form a hyperoval in the constructed

STS (2r + 1). In this case we have a lot of free choice in our construc­

tion: for each of the r(r­1)/6 columns of M there is free choice bet­

ween (1 0 0 1) and (0 1 1 0) for C.
0110 1001

Remark: Cons. truction 2.2 works in case V" 1 or 9 mod 12 too.

The first, third, .•. , (2r­ 1)th row of the large matrix form a sub­STS,

say U, isomorphic to the original STS(r), together with the first,

fifth, ... , (4r ­ 3) th column, if for C always (6 6) is chosen.

This doubling construction extends each line of the original STS(r)

to a subspace U' of order 7, containing 00. The intersection H' of U'

wi th the hyperoval H : = V' U is a quadrangle, i. e. a hyperoval in U' .

Deleting a point p E H' yields an oval B := H' {p} whose intersection

with U' is a triangle, i.e. an oval in U'.

Theorem 2.3: An STS (v) with V" 3 or 19 mod 24 has at most one hy­

peroval.

Proof: By a well known lemma of Doyen [3] any two subspaces of or­

der r have an intersection of order (r­1)/2, but (r­1)/2 is not the

order of an STS. Hence there are no two subspaces of order r, i.e. no

two hyperovals. o

Corollary: For each V" 3 or 19 mod 24 there are STS (v) 's with exact­

ly one hyperoval. For V" 7 or 15 mod 24 there are STS (v ) 's with more

than one hyperoval as the doubling construction shows.

Lemma 2.1: Let v = 3u ­ 2w, and let (V,$) be an STS (v) with two sub­

spaces U, U' of order u such that IU n u ' I =w < u , Then the complementary

set U" of (UUU')'(UnU') is a third subspace of order u .

Proof: If pEU'U' then each line L(p,x) through p and a point

x E U' 'U contains a third point z l£ U UUI. As there are only v ­ IU Uu: 1=
= u ­ w such points, every line through a point z l£ U UU' intersects

both subspaces U,U' or none of them. The assertion easily follows. 0

Theorem 2.4: If an STS has two hyperovals then it has at least

three hyperovals.

This follows from theorem 2. 1 and lemma 2.1 with u = r, w = (r­1) /2. 0

Next we consider a third classical construction which yields STS's

with hyperovals and which will be needed in the sequel several times.
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Construction 2.3 (tripling construction): Let an STS(u) with a sub­

$TS (w) be given (w < u, hence w < u/2). By the theorem of Doyen and

Wilson ([4], see also [14]) this is possible if u,w EO STS and w < u/2.

But we will also include the case w = 0 where no subspace is considered.

First we construct a transversal design TD[3;u­w], using a Latin

square Q of order g = u ­ w. This is well known and works as follows.

Every Latin square Q defines a quasigroup operation 0, say on the

set {l, .•• ,g} such that the number xoy appears in the x t h row and

yth column of the square Q. The point set of the desired TD[3;g] is

{ 1 , •.• , g} x { 1 ,2,3} = {xi : x EO {1, ... , g} and i EO {1 ,2,3} } .

Lines of the TD are the triples {x
1'Y2,(xoY)3}.

On the other hand it

is easy to reconstruct the Latin square from a given TD[3;g].

Now one forms an STS(u) with a subspace W of order w, which is pos­

sible by the Doyen­Wilson­theorem. First assume w;;:: 3. Let

(2.2)

be the incidence matrix of this STS(u), and N the incidence matrix of

the subspace W. Then the submatrix M has at most one 1 in each column.

Let

(2.3)

be the incidence matrix of a TD[3; g], where the g x g ­submatrices

F,G,H satisfy the equations (I is the g­rowed unit matrix and J is an

all­one matrix)

FF T = GGT = HHT = g. I ,

FG
T = GF

T = GH
T = HGT = HFT = FH

T = J.

Then the matrix

(2.4) X=

F L 0 0 0

G 0 L 0 0

H 0 0 L 0

0 M M M N

is an incidence matrix of an STS (3u ­ 2w) with three sub­STS (u) 's
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pairwise intersecting in a cornmon sub-STS(w).

In the exceptional cases w = 0 and w = 1 let L be the incidence ma-

trix of an STS(u) resp. of a GO[3,2;u-1]. Then

(2.5)

F L 0 0

G 0 L 0

H 0 0 L

is the incidence matrix of the desired STS(3u) with three sub-STS(u) 's

resp. of a GO [3,2; 3u-3]. In the latter case the desired STS (3u - 2) is

obtained by introduction of a new point. 0

Now we apply this construction to the problem of finding STS(v) 's

wi th hyperovals. Assume wESTS, u = 2w + 1, v = 2u + 1 = 4w + 3 = 3u - 2w.

Then construction 2.3 yields an STS(v) with three subspaces of order

u=r= (v-1)/2, hence with (at least) three hyperovals. Of course

v .. 7 or 15 mod 24.

In these cases the tripling construction yields many distinct STS's

with hyperovals. The number of distinct such STS(v) 's obviously exceeds

the number L(g) of Latin squares on 1, .•. ,g, and it is well known that

(2.6 ) ag 2
L(g) >g ,

moreover

where a > 0 is a positive number which can be found in Wilson's paper

[15]. Note that the value of a has been improved by Egorychev's proof

of van der Waerden's conjecture on the permanent, see Knuth [8].

3. Steiner Triple Systems without Ovals

Oefini tions: For each vESTS let be the set of STS (v) , and

for each 1) E J'(v) denote by

a (ro ) the minimal si ze IB I of a maximal arc B,

13 (:D) the maximal size of a (maximal) arc,

(3.1) a(v) : = min{a ( 'J) ) : Xl E j' (v) } ,

(3.2) a' (v) := max l o (:D): J) E .:!(v) },

(3.3) 13' (v) : = mi n { 13 ( ;D ) : J) E J (v ) } ,

(3.4) 13 (v) : = max { 13 ( dJ) : :D E .j' (v) } .

Examples: a) By theorem 2.2

(3.5) 13 (v) v+ 1 for v .. 3 7 mod 12.=-.,- or
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v-l
b) In this section we shall prove that (3' (v) < -2- for infinitely many

vESTS, and in the next section that

(3.6) v-ls tv) =-2- for all v '" 1 or 9 mod 12.

c) Obviously a(7) =a'(7) =(3'(7) =(3(7) =a(9) =a'(9) =(3'(9) =(3(9) =4.

In [16] it was shown that (3'(13) =(3(13) =6.

d) (3.7) for nE:IN .

In affine n-space AG
n(3)

over GF(3) the 2
n
points (x 1 ' ••• ,xn )

wi th Xi * 0 for i=l, ... , n form a maximal arc. Note that three points

in AG
n(3)

are on a line iff their sum is the zero vector. D

e) For vESTS

(3.8) a (v) 2 + a (v) 2v.

Proof: An arc B with a points has

there must exist a point p which is on no

an arc and B is not maximal. This implies

a
secants. In case v> (2) + a

secant of B, hence B U {p} is

the assertion. D

f) This example is important for the sequel [12].

(3.9) (3' (27) 9.

Proof: Let 'J) = AG
3
(3). Then we shall show that

(3.10) (3('J)) =9.

In order to show this, let B be an arc through two points x,y. There

are four planes containing x,y. Each of them contains at most two points

of B--{X,y}, hence (3(J));:;> 10. Assume IBI = 10. Among three parallel

planes each must contain at most four and at least two points of B,

and one of them at most three points, among them x,y (w.l.o.g). Now

the same reasoning as above yields (3 ('J)) :;; 9. The existence of an arc

B with 9 points is shown by the example [write xyz for(x,y,z)]

B={OOl, 002,010,101,102,110,210,221, 222}. D

g) (3. 11 )

(3.12)

(3 (AG
m
+
n
(3) ) (3 (AG

m
(3) ) . (3 (AG

n
(3)) ,

2(3 (AG
n
(3)) ;;l (3 (AG

n
+
1
(3)) s 3(3 (AG

n
(3)).

in particular

Proof [12]: If A resp. B are arcs in AGm(3) resp. AGn(3), then

AxB is an arc in AG
m(3)

xAG
n(3)

aoAG
m
+
n(3).

D
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h) Our knowledge of S(AGn(3)) for n>3 is unsatisfactory, e.g.

(3.13) 18 ;;0 S (AG4 (3)) iii 24 .

Proof: The first inequality follows from (3.10) and (3.12). Now

let B be an arc in AG4(3).

Case 1: Every plane cOntains at most 3 points of B. Then the

number of planes containing 3 points of B is and does not exoeed

1170, the number of all planes. Hence IB j 20.

Case 2: There is a plane E wi th IBn E I = 4. There are exactly four

hyperplanes containing E. Each of them contains at most five points

of B'E. Hence jBj ;;04+4·5=24. 0

Lemma 3.1: If v"'O mod 27, then there is an STS(v) which is the

disjoint union of v/27 sub-STS(27) 'so

Remark: If an STS(v) is the disjoint union of sub-STS(27) 's, then

each of these sub-STS's may be replaced by an STS(27) isomorphic to

AG
3(3)

(in many ways) and we have got an STS(v) which is the disjoint

union of affine 3-spaces AG
3(3).

Proof of lemma 3.1: Let the incidence matrix of a TD[3i9] be given

by (2.3) with g = 9, and let D be the 9 x 12-incidence-matrix of an

STS (9) .

Set u : =v/9. It is well-known that there is an STS (u) which is the

disjoint union of u/3 lines, e.g. a Kirkman system of schoolgirls. In

the incidence matrix M of such an STS(u) replace the three 1 's of

each column by the auxiliary matrices F,G,H, and the zeroes by

9 x 81-zero-matrices. The result is the incidence matrix of a GD[3,9iV]

which may be completed to the desired STS(v), e.g. as follows. Write

a u-rowed unit matrix I to the right of the original incidence matrix

M, replace each 1 in this matrix by D and each 0 by a 9 x 12-zero-

matrix. 0

Corollary: If v'" 0 mod 27, then

(3.14)

Proof: By lemma 3.1 there is an STS(v) which is the disjoint union

of sub-AG3(3) 's. Each of them contains at most 9 points of an arc,

which implies the assertion. 0



u E STS there is an STS(u) which is

u > 7 such an STS cannot have a hyper

and (3.15) implies the assertion. 0

237

Conjecture: For almost all vESTS there are STS(v) 's without ovals, i.e.

13' (v) < (v-l)/2 for almost all v E IN.
By (3.14), this is true if 27 divides v. It is also true for v IBn + 9, n > O.

This follows from

Lemma 3.2: If v is divisible by 9, then there is an STS(v) which is the disjoint

union of v/9 sub-STS(9) 's.

The proof is analogous to that of Lemma 3.1, only more simple.

Corollary: If 9 divides v , then 13'(V) 4v/9.

Lemma 3.3: Let u E STS and w E {0,1,3}. Then

(3.15) 13' (3u - 2w) 313' (u).

Proof: The tripling construction 2.3 yields an STS(3u-2w) which is the union of

three STS(u)'s. Since the intersection of an arc with a subspace U is an arc in

U, the assertion follows. 0

Corollary 1: If u E STS'U,3,n, then 13'(3u) < (3u-l)/2.

Proof: Doyen [3] has shown that for each

generated by each of its triangles. In case

oval, by theorem 2.1. Hence 13'(u) (u-l)/2,

Corollary 2: If u E STS and 13'(u) < (u-l)/2, then 13'(V) < (v-l)/2 for

v = 3u-2 and v = 3u-6.

Hence it is easily seen that 13'(V) < (v-l)/2 for v = 54n + 3,7,9,21,25,27,45.

But these examples do not suffice to prove the above conjecture. Moreover, some addi-

tional information on the function 13'(v) would be very desirable.

4. Recursive Constructions of Steiner Triple Systems with Ovals

Theorem 4.1: For each vESTS there is an STS(v) with an oval.

The proof will need a few lemmas. Note that in case v 5 3 or 7 mod 12 the theorem

follows from theorem 2.2.

Definitions: Let P be the set of all

with an oval. The assertion is P = STS.
empty set.

VESTS for which there exists an STS(v)

By an oval in STS(I) we understand the

An OSTS (v)
u

with an oval B
is, by definition, an STS(v) with a subspace U,IUI = u,

such that U n B is an oval in U, i.e.

and



[u n BI = (u-1)/2.

exists.
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Let P be the set of vESTS for which an OSTS (v)
u u

Examples: a) Obviously P 1 = P.

b) (4.1)

Proof: Let B be an oval in an STS(v) and U a tangent of B. Then

U n B is an oval in U. 0

c) The remark after construction 2.2 shows that

d)

(4.2) 12n + 3, 12n + 7 E P 7

13 E P follows from [16 J .

for all n E lN •

Lemma 4.1: If u E P then P P .
w u w

Proof: Assume u E P and v E P • There is an OSTS (v) , say 'J) = (V,$) ,
--- w u u

with an oval B and a subspace U, Iu I = u, such that B' : = B n U is an oval

in U. Because of u E Pw we can replace the lines in U by other lines

such that U has a subspace W with IWI = w, B I remains an oval in U,

and' B' nW= B nW is an oval in W. This was to be shown. 0

Lemma 4.2: If u '" 3 or 7 mod 12, then 3u E P u

Proof: We use construction 2.3 with w = 0 and a special Latin square

Q or order g = u, such that the first (u-1)/2 =: m rows and columns of Q

form a Latin subsquare of order m, say with entries 1, ... ,m. This is

possible, see Denes-Keedwell [2J. At the right of and below this sub-

square only the entries m+1, ... ,2m+ 1 appear. As an arc in the TD[3iU]

of construction 2.3 we define the set of points

(4.3)

xl (x=1, ,m),

y 2 (y = m+1 , ,2m + 1) ,

z 3 (z = 1, ••• ,m) •

Then never z=xoy, hence B is an arc in the TD[3iU). Now the construc-

tion of the STS's on the point classes can be done in such a way that

the points in the three rows of (4.3) form arcs in the respective

STS(u) 's, i.e. ovals in the first and third one and a hyperoval in the

second one. Thus B becomes an oval in the constructed STS(3u), and the

intersection of B with the first sub-STS(u) is an oval in this sub-

space, q.e.d. 0
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Example: 21 E P 7' moreover

(4.4) 36n + 9, 36n + 21 E P7 for all n E IN.

Proof: For u = 12n + 3 resp. 12n + 7 lemma 4.2 implies 36n + 9,

360+21 EPu' By (4.2) and lemma 4.1 the assertion follows. n

Lel1U1la 4. 3: If u E Pwand u > w > 0, then

(4.5) 3u - 2w E P n P •
u w

Proof: Again construction 2.3 is applied. Set

g := u - w = 2m.

We use a Latin square Q of order 2m consisting of four Latin sub-

squares of order m:

(4.6) Q=
D C

[I

W.l.o.g. C has the entries 1,2, ... ,m, and D has the entries m+1, .•• ,2m.

The rows with numbers m + 1 to 2m, 3m + 1 to 4m, and 5m + 1 to 6m of

the incidence matrix of the TD[3;g] of construction 2.3 form an arc A

in this TD, since for x,y,z >m always z '!oX oy.

The completion of the TD to an STS (3u - 2w) by construction 2.3

can be achieved as follows. By the hypothesis u E Pw the submatrices L,

M,N in (2.2) can be chosen such that N is the incidence matrix of the

subspace W, and the (u-1)/2 rows with numbers m+1, ,2m, .•. ,2m+Y

form an oval in the STS (u) , Then the rows 2m + 1, ,2m + W;l form an

oval in W (which is empty in case w= 1). Now the matrix (2.4) yields

the desired STS (3u - 2w), with an oval B in the rows m + to 2m, 3m + 1
w-lto 4m, and 5m+1 to 6m+-2-. Hence v:=3u-2wEPunPw'

Examples:

u 9 13 21 25

w 1 3 1 3 1 3 7 1 3

3u - 2w 25 21 37 33 61 57 49 73 69

If 12n + 9 resp. 12n + 13 E P, then 36n + 25 resp. 36n + 37 E P (Lemma 4.3

with w=1) and 36n+21 resp.36n+33EP(w=3).

If 12n+9EP7, then 36n+13EP7 (w=7).
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These not quite sufficient for the proof of theorem 4.1.

We need one more lemma.

Lemma 4.4: If u E P and u 2 7, then 3u - 6 E P 7 .

Proof: In case u = 3 or 7 mod 12 the assertion is true by (4.2).

Now assume u = 1 or 9 mod 12. By hypothesis and by (4.1) there is an

STS(u) with an oval A and a line W such that [w n x] = 1 (Le. W is a

tangent of A). The incidence matrix of this STS(u) is given by (2.2}

where

We may assume, w.l.o.g., that the oval A belongs to the rows no.

m+1, ... ,2m, 2m+ 1 with m=U;3 . Consider the lines through the point p
d m-lin the last, Le. (2m+ 3)r row. Since m is odd there are at most -2-

such lines G '* W with both points of G' {p} in the oval A and at most
m-l
-2- such lines G ,*W with both points of G' {p} outside A UW. The to-

tal number of lines G '* W is r - 1 = m, hence there is a line {p, a, b }

with a(AUW and bEA'W. We may assume, w.l.o.g., that {a,b,p} be-

longs to the rows no. 1, m + 1, and 2m + 3 of the matrix (2.2).

Now proceed as in the proof of lemma 4.3, construct the TD[3;2m]

with incidence matrix (2.3), and complete it to the STS(3u-6) with

incidence matrix (2.4).

Since the first and (m + 1) th rows and columns of the Latin square

(4.6) form a Latin subsquare of order 2, it is easily seen that the

7 rows no. 1, m + 1, 2m + 1, 3m + 1, 4m + 1, 5m + 1, 6m + 3 form a sub-

STS(7) whose intersection with the oval B is a triangle, i.e. an

oval in the STS (7), corresponding to the rows no. m + 1, 3m + 1, 5m + 1.

This was to be shown. 0

Corollary: If 12n+13EP, then 36n+33EP
7

(nElli U{O}),

in particular 33, 69, 105 E P
7.

Proof of Theorem 4.1: Assume the theorem to be false. Then there

is a smallest v= 1 or 9 mod 12 with v(P. By (4.4) and the examples

to Lemma 4.3 v 2 85, and

v=1, 13,25, or 33 mod 36.

The cases v = 36n + 25, 33, or 37 are covered by the examples after

Lemma 4.3. Hence only the case v = 36n + 13 remains open. By (4.4) and

by the corollary to Lemma 4.4



(4.7)
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12n + 9 E P 7 for all n E IN .

Again by the above examples (Lemma 4.3 with w = 7) 36n + 13 E P,

a contradiction proving the theorem. 0

It may be worthwile to seek more information on the sets P
w
' w;;: 7.

5. Counterovals

The above existence proof does not give any information on the

question whether distinct STS(v) IS with given ovals are isomorphic,

and of characterizing the isomorphy classes of STS(v) 's with ovals.

In this generality the problem appears hopeless.

In [16] it was shown that for v = 13 there are exactly three isomor

phismen classes, and that the complementary structure of an oval in

an STS(13) always has one of the two structures

with 7 points, 5 lines, and 6 secants. We generalize this observation

as follows.

Definitions: A partial Steiner triple system (PSTS) is a finite

incidence structure with at most one line through any two points and

with exactly three points on every line. A PSTS with v points is a

PSTS(v) , and a PSTS(v) with s secants (i.e. unjoined pointpairs) is

a PSTS(v,s). We shall prove the following lemma.

Lemma 5.1:

PSTS(r+ 1,r). If

structure, then

The complementary set of an oval in an STS(v) is a

an STS (v) contains a PSTS (r + 1 ,r), say A, as a sub­

the complementary set B : = v <, A is an oval.

Hence we define a counteroval as a PSTS (r + 1, r), regardless of

the question whether it can be embedded into an STS (2r + 1). By r
v- 1

always ­­2­ is meant.

Examples of counterovals: a) r = 4, v = 9: A counteroval consists

of 5 points on two intersecting lines.
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b) We shall show that the counterovals are exactly the PSTS(v) 's
r 2-rwith exactly --6-- lines.

c) If V" 3 or 7 mod 12 and if an STS (v) with a subspace STS (r ) is

given, then this STS(r) together with an arbitrary additional point

is a counteroval.

The first part of lemma 5.1 is easily proved. Let B be an oval

and A : = V <, B. Then IAI = r + 1. The number x of unjoined point pairs in

A is the number of tangents of B, i. e. x = r.

For the second part we need some notation. Let be an STS(v),

and A,BeV with B=V-"'A. Denote by

lA (x) the number of sublines of A through a point x E V,

sA(x) the number of secants of A through a point x E V,

tA(x) the number of tangents of A through a point x E V,

PA(x) the number of passants of A through a point x E V,

and analogously for B instead of A. Obviously

(5.1) etc.

Moreover denote by

lA = PB the number of all sublines LeA

s = t the number of all secants of A,A B

t A = sB the number of all tangents of A,

p = 1 the number of all passants of A.A B Obviously

(5.2)

(5.3)

(5.4)

(5.5)

(5.6)

(5.7)

2S
B

= I s (x),
xEB B

21
B
(x) + SB (x) = ] B I - 1

lB (x) + sB (x) + t B(x) = r

1 +s +t +p =b=v(v-l)
B B B B 6'

for xEB,

for xEB,
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Hence 3PA=31B= L (r-sB(x)-tB(x))= L (r-jB!+1+21B(x)-tB(x))
xEB xEB

= IB I (r - IB I + 1) + 61
B

- t
B

,

and similarly(5.8)

(5.9)

31B = t
B

- IB I (r - IB I + 1) ,

3PB = 31A =tA -IAI (r- IAj + 1) =sB + (v- IBI) (r-IB!).

Using (5.7) and the equality vr = 3b, a short calculation yields the

equations

(5.10)

(5.11 )

t B + SB = 3 (lB + PB) + IBI(r-IBI +1)-(v-IBI)(r-IBI),

1B + PB = r ( r
6
- 1) + i (IB I - r) ( IB I - r - 1) •

We note some consequences of (5.11): If IBI =r+1 and

then PB=lA=O, i.e. A=V'B is an oval. If IBI =r+1 and sB=r, then

by (5 •5), (5 . 2), and (5. 3)

(5.12 )

(5.13) 1 =r(r-l)
B 6 '

2
= r + r,

hence A is an oval. This proves the second part of Lemma 5.1. D

Note that the equation

holds for every partial Steiner system B regardless of the question

of embeddabili ty into an STS (2r + 1). In case IB I = r + 1 this means

(5.14 ) - 1 =r(r-l)
B 6

Hence counterovals PSTS (r + 1,r) can only exist for r!! 0, 1 mod 3.

Moreover (5.11) implies

(5.15) lA = PB r (r
6-1)

+ IB I - r ) (IB I - r - 1)

= r (r
6
- 1) + i (IA I - r ) ( IA I - r - 1) ,

with equality iff B is an arc.

Now the question arises which counterovals can be embedded into

STS (2r + 1) 's. We are quite unable to give an answer. A few examples
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will follow in section 6.

The existence of PSTS (r + 1, r) I s for any r '" a or 1 follows from

the literature, e.g. Hanani [6], last chapter, using the obvious fact

that a PSTS(r+ 1,r) is obtained from a PSTS(r+ 1,s) with s <r by

deleting some lines such that r(r;l) lines remain, see (5.14). An

easy and elementary eXistence proof for counterovals works as follows.

From an STS(v) delete at most two points together with the lines

containing them, and perhaps some more lines. This works in case

r '" 0, 1 or 4 mod 6. In case r '" 1 or 3 mod 6 a counteroval is obtained

by adding an isolated point to an STS(r).

Of course the oval constructions of sections 2 and 4 also yield

counterovals. Since apparently there is an abundance of counterovals

we note a few other constructions.

Some more constructions of counterovals

a) A given counteroval A can easily be transformed into another one.

If {a,b} and {a,c} are secants of A and if L = {b,c,d} is a line then

replace L by {a,b,c}. But if band c are not on a line, replace an

arbitrary line of A by {a,b,c}.

b) The complete graph K
2m

with 2m vertices can be extended to a

PSTS(2m+s) by adding s new points u 1, ... ,us such that u
i

forms a line

wi th the edges of the parallel class -T. (i=1 , ... , s ) , of course
l

s :;;; 2m - 1. Then more lines on the s new points may be formed, yielding

a PSTS (s) .

Examples: c ) 2m=6,s=5, and the PSTS(5) has two lines. Thus we

obtain a PSTS(11) with 17 lines. By deleting any two of them we get

a counteroval.

s) Construction 2.1.

c) The difference method may be used to construct counterovals too.

Set V := :1
16

U {oo}. Then the 40 lines

{oo,0,8},{0,2,5} , and {0,1,7} mod 16

form a PSTS(17,16).

Similarly V:= U {oo} with the 15 lines

{oo,0,5} and {0,1,4} mod 10

forms a PSTS(11,10),
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and V := 7 12 with the 22 lines

{00 ,0, 6 }, {O , 4 , 8}, and {O , 2 , 5} mod 12

forms a PSTS(13,12).

d) The last few examples can be generalized. Each base line {O,a,a+b}

in li'm corresponds to a difference triple (a,b,c) with 0 < a,b,c s V;l
and c = a + b or c = m - a - b, and each difference triple of this kind

gives rise to a base line {O,a,a+b}. Hence it is convenient to de-

scribe STS(v) 's and related structures with a cyclic automorphism

group by their difference triples instead of their base lines. Of

course this is well-known.

Examples: a) m= 12n+ 10, V= 2
m

U {oo}. The base line {00,0,6n+ 5}

and the 2n + 1 difference triples

(1, 5n + 3, 5n + 4) ,

(3, 5n + 2, 5n + 5) ,

(2, 3n + 1 , 3n + 3) ,

(4, 3n , 3n + 4) ,

(2n+1,4n+3,6n+4), (2n,2n+2,4n+2)

generate (2n+1).(12n+10)+6n+5=(12n+10)6(12n+9l lines, Le.

a counteroval.

S) m=12n+4, V=:iZmU{oo}. The base line {oo,O,6n+2} and the 2n diffe-

rence triples

(1,5n+ 1,5n+2)

(3,5n,5n+3)

(2n - 1, 4n + 2, 6n + 1)

( 2 , 3n , 3n + 2)

(4, 3n - 1, 3n + 3)

(2n,2n+ 1,4n+ 1)

generate 2n (12n + 4) + 6n + 2 = (12n+4) (12n+ 3) lines, L e. a counteroval.
6

y) m=12n+6. The base lines {oo,0,6n+3} and {0,4n+2,8n+4}, and

the 2n difference triples

(1,5n+ 2,5n+ 3)

(3,5n + 1 ,5n + 4)

(2n-1,4n+3,6n+2)

generate 2n (12n + 6)+ (6n + 3)+ (4n + 2)

a PSTS ( 12n + 7, 12n + 6) .

(2, 3n, 3n + 2)

(4, 3n - 1 , 3n + 3)

(2n, 2n + 1, 4n + 1)

(12n+6) (12n+5)
6

lines, i.e.
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is) m=12n+12. The base lines {oo,O,6n+6} and {O,4n+4,8n+8} and

the n + 1 difference triples

( 1 , 3n + 2, 3n + 3)

(3, 3n + 1, 3n + 4)

(2n + 1, 2n + 2, 4n + 3)

gene;rate a PSTS(12n+ 13,12n+ 12).

(2, 5n + 4, 5n + 6)

(4,5n+ 3,5n+ 7)

(2n, 4n + 5, 6n + 5)

For each rESTS'{9}, R. Peltesohn [11] found an STS(r) with Zr as

an automorphism group by the above difference method.

Adding an isolated point yields a PSTS (r + 1, r) with if
r
as automorphism

group.

6. Construction of Steiner Triple Systems from given Counterovals

T. Given a counteroval one can try to extend it to a

Steiner triple system (V,$) with A c V, fi c!B as follows. Let

A={O,1, ... ,r} (w.l.o.g.). It has exactly r secants {x,y}, which we

denote by x instead (or y). These r secants are the tangents of they x
desired STS (2r + 1), and they can be identified with the points of

the oval B = V, A, since each oval point q E B uniquely determines

its tangent. Hence V consists of A and the r unjoined pairs

and the tangents of the oval B are triples for which is a

secant of A. The problem is to find the secants of B. These se­

cants are triples {x,z,p} with pEA'{x,y,z,u}. One can proceed as
y u

follows by trial and error: A B
Let B be the set of secants (2)' For each pair E (2)

find a point p(x,y,z,u) =p(y,x,z,u) =p(z,u,x,y) = ..... such that

always

(6.1) z z'u*u' =-> p(x,y,z,u) *p(x,y,z',u').

Whether this choice is successful we do not know in general. If

it succeeds then it yields distinct lines such

that no two of them have a point in common. Together with the given
r(r­l) Li , h 1 d h f B ('6 t e counterova A an t e r tangents 0

secants of A) the total number of lines becomes

r(r­l) r ',2r+l)2r
­ 6 + r + (2) = ­'­­­""6,­­'­­­­
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hence each point pair is on exactly one line and the desired

STS (2r + 1) with oval B is constructed.

Since we cannot give a general answer to the question whether the

search for the p (x, y, z, u) 's works let us present two examples.

Example a) For r = 7 let the counteroval A be given by the figure

Distinct rows contain distinct

solutions, all of them are found

by trial and error.

0111222
Then B = {3' 3' 6' 7' 3' 4' 5} •

The points p(x,y,z,u) are in one

row of the following table whereo

2

6

we write xz
yu

x z
instead of {y'u} .

01 01 01 02 02 02 11 11 12 12 12 11 1? 12 1? 1 2 12 12 22 22 22
33 36 37 33 34 35 36 37 33 34 35 67 63 64 65 73 74 75 34 35 45

2 4 5 1 6 7 5 4 6 7 0 2 7 0 3 0 3 6 5 4 1

4 2 5 1 6 7 5 2 6 7 0 4 7 0 3 0 3 6 5 4 1

7 5 2 4 1 6 2 5 6 0 4 4 7 3 0 0 6 3 5 7

5 2 4 6 7 4 2 0 7 6 5 7 0 3 6 3 0 5 4 1

4 2 5 7 6 5 2 0 6 7 4 6 0 3 7 3 0 4 5 1

Note that each point x E A occurs exactly lA (x) times as a PO) nt

p(x,y,z,u) in any solution. Indeed sB(x) =tA(x), and subtraction

of (5.6) from (5.5) [with A instead of B) yields

Example b) For r = 0 let the counteroval A consist of the 11 points

00,0, 1 ,2,3,4,0' , 1 ' ,2' , 3' ,4' and the 15 lines {oo, 0,0 I }, {O, 1 I ,4' } ,

{0 , 2 ' , 3 '} mod 5 l L. e .

{1,2',O'}, •.. ].

{00 , 0 , 0' } , {00 , 1 , 1 ' } , {oo , 2 , 2 ' } , .... , {O, 1 ' , 4 ' } ,

The oval B consists of the 10 pOints; (x,yE {0,1,2,3,4}). The oval

secants (found by trial and error) are the following 45 triples.
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{oo,
0 0 0 1 0' } {2 3 0' }
1 ' 3' } {4 ' 4 ' 4 4 '

0 1 0' } 0 1 0' } 0 2 0' } mod 5.{3' 2' {2 ' 3' { 1 ' 3'

0 0 3) 1 2 3) 0 1 3){2' 4' {4 ' 4 ' { 1 ' 2 '

II. It is also possible to construct STS(v) 's with ovals by the

difference method, although we can only give a few examples, no

general result. We begin with an example for v = 25, r = 12. The point

set V consists of two copies Z12 and of the cyclic group of

order 12, and one more point 00, with the usual rules 00 + x = 00 + x'

for x E Z'1 2' x ' E Z i 2

The points of with the 22 lines

{00,0,6}, {0,4,8}, {0,2,5} mod 12

form a PSTS(13,12), i.e. a counteroval A. The points of form

the oval B=V'-A. The 12 tangents of B (Le. secants of A) are the

triples {0,1,1'} mod 12. The 66 secants of B are the triples

{00,O',6'}, {O',1',2}, {O',2',8}, {0',3',7}, {0',4',9}, {O',5',3}

mod 12. That we have indeed constructed an STS(25) with the counter-

oval A and with the automorphism group Z'12 is checked by Bose's

method of pure and mixed differences [1J.

Three similar examples:

Counteroval A: {00 , 0 , 8 }, {0 , 4 , 5 }, {O, 3 , 9 } mod 16 .

Tangents of B = V '- A: {0,2,O'} mod 16

Secants of B: {00,O',8'}, {O',1',12}, {O',2',3}, {0',3',7},

{0' , 4 ' , 10 }, {0' , 5 ' , 13 }, {0' , 6' , 15 }, {0' , 7' , 5 } mod 16

b) V= Z'24 U U 00.

Counteroval A: {00,0,12}, {0,8,16}, {0,1,6}, {0,2,11}, {0,3,7}

mod 24, of course on the point set '1:
2 4

U {oo} •

Tangents of B: {O, 10, 12} mod 24

Secants of B: {00,O',12'},{O',1',2},{O',2',8},{O',3',3},{O',4',14},

{O' ,5' ,4 } , {O' ,6' ,21 } , {O' ,7' ,20} , {O' ,8' , 19 } , {O' ,9 ' , 18} , {O' , 1eJ, 17} ,

{O',11',16} mod 24.
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Counteroval A:

mod 28.

Tangents of B:

{oo,0,14}, {0,4,10}, {0,3,8}, {0,7,16}, {0,2,13}

{O, 1 ,0 '} mod 28.

Secants of B: {oo,O',14},{0',1 ',21},{O',2',14},{O',3',6},{O',4',8},

{O',5',2},{0',6',16},{O',7',24},{O' ,8',23},{0',9',22},{O',10',21},

{0',11',20},{0',12' ,19},{O',13' ,1B} mod 28.

7. Problems and Open Questions

Section 2: Find STS's with hyperovals and large automorphism groups.

Section 3: Determination resp. estimation of the numbers a(V),

8' (v), in particular

inf
vESTS

log a(v)
log v

lim inf 8' (v)
v

v-+ oo

8' (v)and lim sup -----
vv"",oo

Let n(v) be the number of non-isomorphic STS(v) 's and no(v) the

number of non-isomorphic STS(v) 's with an oval. Is

lim no (v) In (v) = O?
v-+ oo

The analogous question for hyperovals.

Are there STS(v) 's without ovals for v= 15,19,21,25?

Section 4: Are there STS(v) 's with ovals and with point-transitive

automorphism group ? Of course some examples are known such as the pro-

jective spaces over GF(2). Are there STS(v) 's (for given v) with a lot

of ovals? Find precise answers to this question. Get more information

on the sets Pw' w E;; 7.

Section 5: How many non-isomorphic counterovals PSTS(r+1,r) are there

for given r" 0 mod 3? Are there counterovals with large automorphism

groups?

Section 6: Which counterovals PSTS(r+1,r) can be embedded into

STS (2r + 1) 's? All of them? Find more STS (v) 's with ovals by direct

constructions such as difference method.
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ON DEDEKIND NUMBERS

by
Heinz LUneburg

For n E IN we denote by n{n] the set of all prime divisors of n. If Xl Tf(n),

then n(X) = n/TTpEx p. With these conventions we define the Dedekind numbers D(n,q),
where nand q are integers 1, by

D(n,q) = (lIn) LXlTf(n) (_I)lx 1qn(X)

If q is a power of a prime, then D(n,q) is known to be the numer of monic irre­
ducible polynomials of degree n over GF(q), the Galois field with q elements (see

e. g. [7, Satz 6.5, p. 33]). As Dedekind was the first to prove this (Dedekind [3]),
we call these numbers Dedekind numbers.

On the other hand, if F is the free group on q generators and if F(I) = F,
F(2), '" is the lower central series of F, then F(n) IF(n+l) is a free abel ian

group and D(n,q) is its rank, as was proved by Witt in [10]. Witt found this coinci­
dence "merkwUrdig", but this noteworthy coincidence is not accidental, as we are

going to show. we shall also that the explanation of this coincidence

yields at the same time an algorithm producing all irreducible polynomials of degree
n over GF(q),given GF(qn), i. e., given one irreducible polynomial of degree n.

Let A be a non­empty alphabet and denote by A+ the set of non­empty words over

A and by A+ the set of all words of length n. If C is the cyclic group of order n,
n + n

then we let Cn operate on An by the rule

a1···an a2···ana1·
We have the following well­known theorem (see e. g. Cohn [2, p. 296]) the author

of which I don't know.

THEOREM. I6 IAI = q, numben 06 06 n 06 Cn on equal
D(n,q) .

Proof. Let T be an orbit of Cn on Then n = [Cnl = IT! I(Cn)a l , where (Cn)a
denotes the stabilizer of a E T. Furthermore, if [T! = t, then ai = ai+t for all i,
where the indices have to be reduced modulo n. This yields that a is equal to us,

where u = a1... at and s = nit. It follows immediately that there is a bijection of
the set of all the orbits of lenqth t of C on A+ onto the set of all orbits of• n n
length t of Ct on for all divisors t of n. Therefore, if a(t,q) is the number of
orbits of length t of Ct on we have

qn = Ltln ta(t,q).
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Mobius inversion yields

\' nita(n,q) = (lin) Ltln ,

where denotes the Mobius function. Hence a(n,q) = D(n,q), q. e. d.

COROLLARY. D(n,q) numben 06 06 n oven GF(q).

Proof. There exists a normal basis of GF(qn) over GF(q) (see e. g. Jacobson
[4, vol III, p. 61]). Let bl, ... , bn be such a basis indexed in such a way that

b{ bi_ l for i = 2, ... , nand bi = bn. If x E GF(qn), then x = xib i with

x,. E GF(q). Moreover xq = I x.bg = I x.b. 1 with bO = b , i. e.,
l= " l= ,,- n

x
q

xi+lb i with xn+l = xl' Hence, if we set A =GF(q), the Galois group

Aut(GF(qn):GF(q)) induces the operation of Cn on described above. Therefore, the

orbits of length n of Cn on are in a one-to-one correspondence with the orbits of
length n of Aut(GF(qn):GF(q)). As each of these orbits is the set of zeros of an irre
ducible polynomial of degree n over GF(q) and as GF(qn) is the splitting field of

each irreducible polynomial of degree n over GF(q), we see that D(n,q) is also the
number of irreducible polynomials of degree n over GF(q), q. e. d.

This proof gives an algorithm to compute all the irreducible polynomials of
degree n over GF(q) which can roughly be described as follows:

1) Determine an irreducible polynomial of degree n over GF(q).

2) Construct a normal basis bl, ... , bn of GF(qn) over GF(q) using f.

+3) Determine a representative for each orbit of length n of Cn on An where A = GF(q).

4) Compute the minimal polynomial of x = xib i for all the representatives
(xl' ... , xn) determined under 3).

Algorithms to achieve 1) and 4) are to be found in Berlekamp [1]. Jacobson's

proof of the Normal-Basis-Theorem for Galois fields yields a good algorithm for 2).
Here we shall say more only about 3).

Let q E IN and A = {O, 1, ... , q}. (The number q has now another meaning. The
old q is one larger than the new one.) Order lexicographically, i. e., if

a, b E then a < b, if and only if there exists an i E {I, ... , n} such that

aj = bj for j = 1, ... , i-I and ai < bi. If T is an orbit of length n of Cn, then
pick the largest element of T as a representative of T. Given a E A+, then it is

n
easily checked whether a be larger than all its cyclic conjugates. If a is larger
than all its cyclic conjugates, then a representative has been found. In order to
find all the representatives, one need not check all the a E for, if a is larger
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than all its cyclic conjugates, then a1 ai for i = 2, ... , n - 1 and a1 > an' as is

easily seen. Therefore, given a1 E {I, ... , q}, one has to check only those a1·· .ann-2with a2... an E {D, ... , a1} x {D, ... , a
1
- 1). Hence the number of words to be

checked is If=1 i(i + 1)n-2, still a lot. The words in {D, ... , a1}n-2 x {D, ... ,

a1 - I} can be generated by a Gray-code. If one uses the one described by Joichi,

White and Williamson in [5], then the last word is a2... an = a1... a1(a 1 - 1) if a1
is even, and = a1D... 0 if a1 is odd. This follows easily from [9, Satz 1 and Satz 5].

(Here we operate on Gray-codes from right to left instead of from left to right as

we did in [9].) Therefore a1... an is a representative in either case. This yields

that the following procedure will generate recursively all the representatives in

This procedure is written in PASCAL. The calling program has to provide the type

vector = array[l .. t] of integer where t is a constant n. The variable a will assume

the representatives, whereas s is needed for the generation of the Gray-code as de-

scribed in [5] or [9]. Moreover, type menge = set of 1.. t. The variable x is also

used for the Gray-code algorithm. The function reg tests whether a is a re-

presentative or not. Everything else explains itself provided one knows enough about

Gray-codes.

procedure regwort(var a, s: vector; var x: menge;

var q1, p: integer; q, n: integer;

var anfang, anfgray, ekm: boolean);

function reg(var a: vector): boolean;
var i, k, ipk: integer;

rg: boo1ean;

begin k := D;

repea t i : = 1; k := k + 1; i pk := i + k;

while (a[ipk] = al t l) and (i < n) do

begin i := i + 1; ipk := ipk + 1;

if ipk > n then ipk := ipk - n

end;

rg := a[ipk] < ali]

until (not rg) or (k = n - 1);

reg := rg

end; (* reg *)

procedure neuanf;

var i: integer;

begin q1 := q1 + 1; all] := q1;

for i := 2 to n do

begin ali] := D; sri] := 1 end;
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x := [1];

for i := 2 to n - 1 do x := x + [i];

if ql > 1 then x := x + [n];

p := n;

while not (p in x) do p .- P - 1;

anfgray := p = 1;

end;

procedure gray;

var i: integer;

begin alp] := alp] + s[p];
if (n > p) and (ql > 1) then x := x + [n];

i := n - 1;

while i > P do
begin x := x + [i];

i := i-I
end;
if (a[p] = 0) or (a[p] = then

begin x := x - [p]; s [p] : = -s [p] end;

if (p = n) and (a[n] = ql - 1) then

begin x := x - [n]; s [n] := -s [n] end;

p := n;

while not (p in x) do p := p - 1;

anfgray := p = 1;

ekm := (p > 1) or (q > ql)

end;

begin if anfang then

begin anfang .- fal se;

anfgray .- true;

ql := 0

end;

if anfgray then neuanf

else repeat gray until reg(a)

end; (* regwort *)

There is another way to produce all the representatives or regular words as

they are called. Let be a linearly ordered alphabet. We extend the ordering

to A+ in the following way. Let a = a1... as and b1... bt be words in A+. Then a < b,

if and only if one of the following conditions is satisfied:

a) There exists c E A+ such that a = bc.
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s) There exists r s, t such that ai = bi for i = 1, ... , r - 1 and ar < br.

This ordering is really strange: beggar occurs earlier in the dictionary than beg. On

the other hand, the restriction of this ordering to yields the lexicographic orde-
ring.

Next we consider G(A) the free groupoid on A. We denote the elements of G(A) by
(u). If all parentheses are removed in (u), we obtain a word in A+ which will be

denoted by u, i. e., if (u) = ((((a1)(a2))(a3))(a4)), then u =a1a2a3a4. We define
standard products in G(A) recursively on the length of the words as follows:

1) Products of length 1, i. e., elements (a) E G(A) with a E A are standard
products.

2) Let (a) = ((b)(c)) be a product of length n. Then (a) is a standard product,
if and only if either b E A and (c) is a standard product with b > c or (b) and (c)

are standard products, (b) = ((u)(v)) with b > c v.

Now, if (a) is a standard product, then a is a regular word, and conversely, if

b is a regular word, then there exists exactly one standard product (a) such that
a b (see e. g. Cohn [2, Lemma 6.1, p. 291]). It is an interesting exercise in dyna-

mic programming to write a program which produces all the standard products and hence
all the regular words of length n on an alphabet with q letters. Such a program

involves less computations than the former one, but it has the disadvantage that it
requires a lot of storage: One has to have at hand all the regular words of length

n - 1 in order to compute the regular words of length n.
Let R be a commutative ring with 1 and denote be R[A] the free groupoid algebra

and by LR[A] the free Lie-algebra on A over R. Then there exists an epimorphism of
R[A] onto LR[A]. Let J be its kernel. Then Sirsov has proved (see e. g. Cohn [2, Thea

rem 6.2, p. 292]) that {(a) + JI (a) is a standard product in G(A)} is a free basis of

the R-Modul R[A]/J = M. Hence {(a) + JI (a) is a standard product of length n} is a
free basis of the n-th homogeneous component Mn of M. Moreover, if R = ll, then Mn is
isomorphic to F(n)/F(n+l), as was proved by Witt [10]. Therefore, the rank of

F(n)/F(n+l) is equal to the number of regular words which is D(n,q) if F is genera-

ted by q elements. These considerations show that there is a common source for the
two theorems on the number of irreducible polynomials of degree n over GF(q) and the
rank of F(n)/F(n+l).

Finally a word about the computation of D(n,q). As

D(n,q) = (l/n) LXIn(n) (-1) IX!qn(XI

one has to determine n(n) wich does not offer any problem, as n is small for all
D(n,q) within our reach. Given n(n), one has to produce all the subsets of it. This

can be achieved by the binary reflected Gray-code (see e. g. [9]). Set EX = (_I)!XI.
Then E

0
= 1. Let XI be the successor of X. Then there exists a prime p such that
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X' = X - Ipl or X' = Xu {p}. In either case IX'! = Ix] + 1 mod 2, whence EX' = -EX'
If X' = X - {pl , then n(X') = n(X)p, i. e., qn(x ) = (qn(X))p. If X' = X u Ipl , then

n(X') = n(X)/p, i. e., qn(X') = (qn(X))l/p. The well known multiplication algorithm

of the Russian peasant is a good algorithm to compute (qn(x))p. The question is

whether there is an algorithm to compute (qn(X))l/p as easily.

PROPOSITION. Le;t a, p E IN w-U:h p 2. Then [( (p - l)a + [d/aP-1])/p] [d
1/ p]

60ft

ail. d E IN.

Proof. Assume that [((p - l)a + [d/aP-1])/p] < [d1/ Pj. Then

((p - l)a + d/a P-1 )/p '" [d1/ p] + (p - l)/p < [d1/ pj, It follows [d/a P-1] <

p[d1/ p] - (p - l)a. Moreover d/a P-1 '" [d/a P-1] + (aP-1 - 1)/aP-1 < [d/aP-1] + 1.

Hence d/aP-1 < p[d1/ p] - (p - l)a '" pd 1/ p - (p - l)a. This yields

((p - l)a + d/a P-1)/p < d1/ p. On the other hand d1/ p", ((p - l)a + d/a P-1)/p by

the inequality between the geometric and arithmetic means (see e. g. [8, Satz 9.1,

p 68]). This contradiction proves the proposition.

PROPOSITION. Le;t a, d, p E IN. 16 a > [d1/ pJ, then [( (p - l)a + [d/aP-
1])/p]

< a.

Proof. Assume [((p - l)a + [d/aP-1])/p] a. Then ((p - l)a + d/a P-1)/p a. It

follows d/a P-1 a and hence d1/ p a > [d1/ p]. This contradicts the fact that
d1/ p _ [d1/ p] < 1.

Using these two propositions, we get the following result.

THEOREM. 16 d, a, p E IN and a d1/ p, then

repeat w := a;

a := ((p - l)*w + d div wp-1) div p

until a w;

At the ex-U: 06 the ftepea;t-{oop we have w = [d1/p ] .

If one starts with an a between d1/ p and ((3p - 2)/(2p - 2))d 1/ p, then the

number of times the statement in the repeat-loop is executed is bounded by

2 + l092((1/p)lo92d - lo92((P - l)/p)).

If one starts with an a between d1/ p and 2d1/ p, then this number is bounded by

2 + pln 2 + lo92((1/p)lo92d + l/((p - l)ln 2)).

This can be proved with the methods described in [6].
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Abstract. The paper presents a classification of quasi-symmetric

2-designs, and sufficient parameter information to generate a list of

all feasible "exceptional" parameter sets for such designs with at

most 40 points. The main tool is the concept of a regular set in a

strongly regular graph.
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1. Regular sets in strongly regular graphs

Throughout the paper, all graphs are finite, undirected, without loops

or multiple edges. A graph r is strongly regular (see e.g. [9], [11],

[16]) if (i) every vertex is adjacent with exactly k other vertices,

and (ii) the number of vertices adjacent with two distinct vertices x

and y is A or depending on whether x and yare adjacent or not. Re-

lated to a graph is its adjacency matrix M = (mxy)' indexed by the

vertices, with m = 1 if xy is an edge, m = 0 otherwise. If I,Jxy xy
denote the identity and the all-one matrix (of suitable size) then a

graph is strongly regular iff its adjacency matrix satisfies

MJ = kJ, (1)
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The adjacency matrix of a connected strongly regular graph has just

three distinct eigenvalues k (valency), r s the eigen­

value k is simple and has the all­one vector as an associated

eigenvector. In terms of r, s, and the other parameters of a

strongly regular graph can be expressed by

v = k = A (2)

where v denotes the total number of vertices. The multiplicity of the

eigenvalue r is given by

f
k(k­s)(­s­l)

)l (r ­ s ) (3)

Now let f be a strongly regular graph with parameters (2). A nonempty

set B of vertices of f is a regular set with valency d and nexus e if

the number of vertices of B adjacent with a point x E f is d « n) or

e (> 0), depending on whether x E B or not. We call a regular set

positive if d e, and negative if d < e. It is easy to see that the

complement of a regular set is also regular, with same sign, valency d

and nexus e', where

d' =k­e, e' = k­d. (4)

Also, a subset B of f is regular iff the subgraphs induced on Band

its complement are both regular. In the terminology of Delsarte [6],

a regular set is a 1­design in f, and the pair (B,f'B) is a regular

bipartition of f.

Denote by M1 the adjacency matrix of the graph induced on a regular

set B of f. Then the adjacency matrix of f can be written as

M

and the properties of a regular set imply

(k - e)j

(k ­ d)a ej
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These relations imply that the vector

(
(k - )

-e

is an eigenvector of M for the eigenvalue d-e < k. Hence d-e E {r,s},

and we have

Proposition 1

The parameters of a regular set B satisfy the relation

e = d-r

e = d-s

if B is positive,

if B is negative. o

In particular, if a strongly regular graph contains a regular set then

the eigenvalues are integers.

Proposition 2

The number of vertices of a regular set B of valency d is

K

K

(k-s) (d-r) III

(k-r) (d-s) III

if B is positive,

if B is negative.

Proof. We count in two ways the number of edges xy with x B, Y E B

and get (v-K)e = K(k-d), whence

K = vel (k-d+e) .

Now use Proposition 1 and equation (2) and simplify. o

(5)

Examples. 1. If r is a disjoint union of cliques, a positive regular

set is a union of classes (e = 0, d = k), and a negative regular set is

a set with e points from every class (d = e-1) .

2. If r is a complete multipartite graph, a positive regular set is a

set with i points from every class (d = e =K-i), and a negative regular

set is a union of classes (e = K, d = K-m) .

3. In the Petersen graph, the 12 pentagons are positive regular sets
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with K = 5, d = 2, e = 1, and the 5 cocliques of size 4 are negative

regular sets with K = 4, d = 0, e = 2.

4. In the lattice graph L2(n), the union of e parallel lines form

I
II

I I
I

I
I I
I

I I
I I
I

n=4

positive regular sets with k = en, d = n+2-e, and the union of t

disjoint transversals form examples of negative regular sets with

K = tn, d = 2t, e = 2t+2. For t = 2, the polygon indicated in the figure

is one of several possibilities.

5. If B is a positive (negative) regular set of size K, valency d,

and nexus e in r, then, in the complementary graph f, B is a negative

(positive) regular set with valency d and nexus e given by

d=K-1-d, e=K-e.

This explains the similarity in the first two examples.

6. Many examples of regular cliques (d = K-1) are given in Neumaier

[13]. Regular cliques are always positive. Complementarily, regular

cocliques (d = 0) are always negative.
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Regular sets can be viewed as extremal cases of induced regular sub­

graphs:

Proposition 3

Let B be a set of vertices such that the graph induced on B is regu­

lar of valency d. Then the number K of vertices of B satisfies the

inequality

(k­s) (d­r) III < K (k­r) (d­s) Ill. (6)

The lower (upper) bound is attained iff B is a positive (negative)

regular set.

Proof. For x B, denote by ex the number of vertices of B adjacent

with x. Counting in two ways the number of edges xy with x B, Y E B

gives

e = K(k­d),x

and counting in two ways the number of paths zxy of length 2 with

x B, y,z E B, Y f z gives

(7)

Kd(A+1­d) + K(K­1­d)ll. (8)

Here the sum is over all x B. Using (2), (7), and (8) gives

K211 ­ K(d­r) (d­s) .

From (7), the averave value of ex is

K(k­d)
e:= v­K

and we compute

(9)

(10)

K211 ­ K(d­r) (d­s) ­ 2eK(k­d) + e 2(v­K)

­K (IlK­ (k­r) (d­s) ) (IlK­ (k­s) (d­r) ) I (u (v­K) ), (11)

where we simplifies with (2). Now the sum of squares is nonnegative,

whence ilK must lie between (k­r) (d­s) and (k­s) (d­r). But

(k­r) (d­s) ­ (k­s) (d­r) = (r­s) (k­d) > 0, whence (6) holds. If equality

holds in (6) then = 0, whence ex = e for all x B. Therefore,
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B is a regular set, and from (2) and (10) we find e = d-r (resp.

e = d-s) if the lower (resp. upper) bound is attained. 0

Note that this proof contains a matrix-free proof of Proposition 1

and 2.

2. Semiregular partially balanced designs

A partially balanced design (with two associate classes) is a pair

consisting of a connected strongly regular graph r (whose v

vertices are now called points) and a collection of subsets of r

(called blocks) such that (i) every block contains K points (2 v-1),

(ii) every point is in R (> 0) blocks, and (iii) two distinct points x,y

are in q or p common blocks (p q) depending on whether x,y are

adjacent or not. For other, equivalent definitions see e.g. [2], [15].

Associated with a partially balanced design is its incidence matrix

A = (ax B) indexed by points and blocks, with a B = 1 if x E B, a B = 0
T x x

otherwise. The vxn-matrix N = AA has three nonnegative eigenvalues,

among them the simple eigenvalue A = RK. A partially balanced design

is called semireqular (in [2]: special) if det(N) = 0, i.e. if A = 0

is an eigenvalue of N. The results of Neumaier [12; Section 3] imply

that every - design with two connection number p and q « R) is a

semiregular partially balanced design; the converse follows easily

from the following result of Bridges and Shrikhande [2]:

Proposition 4

A partially balanced design is semiregular iff there are numbers d

and e such that every block is a regular set with valency d and

nexus e. 0

Proposition 5

If r is a rank 3 graph then the orbit of every regular set is a semi-

regular partially balanced design.

Proof. The automorphism group of r is transitive on vertices, edges,

and nonedges. This implies (ii) and (iii) in the definition of a



264

partially balanced design. Obviously, automorphic images of a regular

set are regular sets with the same parameters; this provides (i) and

semiregularity. 0

Proposition 6

The parameters of a semiregular partially balanced design can be

written in terms of d and e as

b
R(k-r)
d-r t R(k-d)

k(-s-l )
, p R+st, q R+(s+1)t (12 )

if all blocks are positive, and as

b
R(k-s)
d-s t R(k-d)

k(r+1 )
, p R-rt, q R-(r+1)t (13 )

if all blocks are negative. In particular,

p < q

p > q

iff the blocks are positive,

iff the blocks are negative.

(14 )

Proof. For fixed z E r, we count in two ways the number of pairs

(x,B) with x E B, resp. with x,z E B, x adjacent with z, resp. with

x,z E B, x not adjacent with z, and obtain

Kb Rv

Rdkq

(v-1-k)p = R(K-1-d) .

( 15)

Now assume that the blocks are positive. Then e = d-r, K = (k-s) (d-r)/ll

by Proposition 1 and 2, and with (2) we find K-1-d = -(r+1) (k+ds)/ll,

v/K = (k-r)/(d-r). From (2), we also find v-1-k = k(r+1) (-S-l)/ll,

whence by (15),

b
R(k-r)
d-r q-R Rd _ R = -R(k-d)

k k
(s+l)t ,

p-R -R(k+ds) _ R
k(-s-l)

Rs(k-d)
k(-s-l) st

This implies (12). Since d < k, s and R > 0 we have t > 0, hence

p < q. The case of negative blocks follows by interchanging the eigen

values rand s, and replacing t with -to 0
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Remarks. 1. Since t = ±(p-q), the number t in (12) resp. (13) must

be a positive integer.

2. If (r , is a partially balanced design and r is not complete

multipartite then r is connected, whence (r, (8) is a partially ba-

lanced design with p and q interchanged. Hence for the proper choice

of r we will have p < q, and all blocks are positive.

Proposition 7

In a semiregular partially balanced design with positive blocks, the

number b of blocks satisfies

b f+1, (16 )

where f is given by (3). Equality holds iff any two blocks intersect

in the same number of points.

Proof. This is a special case of a theorem for 1i - designs given in

Neumaier [12]. 0

In the terminology of statisticians, b = f+1 characterizes the linked

designs. If we dualize a linked design we obtain a 2-design with only

two intersection numbers p and q, i.e. a quasi-symmetric 2-design.

This is the topic of the next section.

3. Quasi-symmetric 2-designs

A 2-(v*,k*,A*)-design consists of a set P of v* points and a collection

18 of b* blocks such that each block consists of k* points and every

pair of points is in A* blocks. Then every point is in a constant

number r* of points, and the relations

b*k* = r*v* , r*(k*-l) = A*(V*-1) (17)

hold (see e.g. Raghavarao [15]). A 2-design is called quasi-symmetric

if any two blocks have either p or q common points, p < q, and if both

possibility occur. Goethals and Seidel [7] showed that the graph r
whose vertices are the blocks, adjacent if they have q common points

(the block graph) is strongly regular. We denote its parameters as in

Section 1.
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Proposition 8

For each point x E P, the set S(x} := {B E I x E B} is a positive

regular set of the block graph with valency d and nexus e given by

d=«k*-l} (A*-l}-(r*-l) (p-1}}/(q-p), e=(k*A*-r*p}/(q-p}. (18)

Proof. Fix x E P. For each block B, denote by e B the number of blocks

through x adjacent with B. We count in two ways the number s(x,B} of

pairs (y,C) such that x,y E C, Y E B, Y # x, C # B. If B E S(x} then

x E Band eB (q-1) + (r*-l-eB) (p-'l) s (x ,B) (k*-l) (A*-1) whence

e B = (k*-1) (A*-l}-(r*-1) (p-1)/(q-p). If B (l S(x) then x (l Band

eBq+(r*-eB}p = s(x,B) = k*A* whence e B = (k*A*-r*p}/(q-p). Hence each

set S(x} is a regular set with valency and nexus given by (18). By

Proposition 4, the dual of a quasi-symmetric 2-design is a semiregular

partially balanced design. Hence, since p < q by definition, S(x} is

positive by Proposition 6. 0

Proposition 9

The parameters of a quasi-symmetric 2-designs can be expressed in

terms of the parameters of the block graph as follows:

v* f+1, k* (f+1) e/ (k-r), p k*+st, q = k*+(s+l}t, (19 )

b* = v r* = ve/(k-r} , A* r*-(r-s}t, d e+r (20)

with a positive integer

t
k*(k-r-e}
k ( s 1)

(21)

Proof. The results of the last section apply with

v = b*, b = v*, K r* , R = k*. (22)

By Proposition 7, v* b = f+1 since the dual of a quasi-symmetric

2-design satisfies the equality condition. If we solve the first

equation of (12) for R and substitute (22) we find k* = ve/(k-r}

(f+1}e/(k-r) and obtain (19).

From Proposition 1 we have d = e+r. From (17) we find r* = b*k*/v* =

vk*/(f+1} = ve/(k-r} and (v*-1) (r*-A*) = r*(v*-k*) = ve(f+1) (k-e-r)/
2(k-r) = tvk(-s-1)/(k-r} = tk(k-s} (-s-1)/1I = t(r-s}f = t(r-s) (v*-1),

using (2) and (3), whence r*-A* = t(r-s}, A* = r*-t(r-s}. Therefore

(20) holds.
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Substitution of R = k* and d = e+r into the second equation of (12)

gives (21). Finally, t = q-p is a positive integer. 0

For further reference we note the formula

v* f+l (k-r) (jl+s (k-s»
(r-s)jl

(23)

which follows from (3) by a simple calculation.

Proposition 10

For a quasi-symmetric 2-design with connected block graph,

b* <

Proof. For connected strongly regular graphs s < -1 whence q < k*, so

a result of Cameron and van Lint [5; Prop. 3.4] applies. 0

Proposition 11

The complement of a quasi-sYmmetric 2-design is again a quasi-symmetric

2-design; the corresponding block graphs are isomorphic.

Proof. The new blocks are the complements of the old blocks. Two

adjacent old blocks have complements intersecting p = v*-2k*+p points

two nonadjacent old blocks have complements intersecting in

q = v*-2k*+q points. Since p < q the two block graphs are isomorphic.

We now consider some particular classes of quasi-symmetric 2-designs.

Class 1. Multiples of symmetric 2-designs. In a symmetric 2-design,

every block contains k* points and any two blocks intersect in A < k*

points. The design consisting of m > 1 copies of the blocks has inter-

section numbers p = A and q = k*, hence is quasi-symmetric; the block

graph is a disjoint union of cliques.

Class 2. Strongly resolvable 2-designs. A 2-design with v* points and

b* blocks is strongly resolvable if the blocks can be partitioned into

(the minimal of) b*-v*+l classes such that every point occurs in

the same number of blocks of each class. By a theorem of Hughes and

Piper [10], strongly resolvable 2-designs are quasi-symmetric, and the

block graph is a complete multipartite graph.
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Class 3. Steiner systems with v* > k*2. A Steiner system S(2,k*,v*)

is the same as a 2-(v*,k*,A*)-design with A* = 1. Since two points

are on a unique block, two blocks intersect in 0 or 1 point. Hence

Steiner systems are quasi-symmetric. Their block graphs are the Steiner

graphs, cf. [11]. The excluded Steiner systems with v* k*2 are

affine planes (v* = k*2) belonging to class 2, projective planes

(v* = k*2_k*+1) with only one intersection number, and the designs

with only one block (v* = k*) with no intersection number.

Class 4. Residuals of biplanes. By results of Hall and Connor [8;

Lemma 4.1, Thm. 3.2]' every 2-design with parameters v* = (n), k*=n-1,
n+1 2

A* = 2, r* = n+1, b* = ( 2 ) is quasi-symmetric with intersection

numbers p = 1, q = 2, and is the residual design of a unique biplane

(= symmetric 2-designs with A = 2). The block graph is the complement

of a triangular graph T(n+1). The known biplanes (see Cameron [4])

realize the cases n = 3,4,5,6,7,10,12, 14, sometimes with several non-

isomorphic solutions. The Bruck-Ryser-condition for biplanes excludes

infinitely many values of n, starting with n = 8,9,11,13, ...

Theorem Q

(i) A quasi-symmetric 2-design with disconnected block graph is of

class 1.

(ii) A quasi-symmetric 2-design with complete multipartite block

graph is of class 2.

(iii) A quasi-symmetric 2-design with p

(iv) A quasi-symmetric 2-design with p

a 2-(5,3,3)-design.

0, q

1, q

is of class 3.

2 is of class 4, or

Proof. (i) A disconnected strongly regular graph is a disjoint union

of 2 cliques of the same size m. By Example 1 of Section 2, positive

regular sets have d = k. By Proposition 8 and equations (14), (20) we

hence have kq = Rd = k*k, or q = k*. Therefore, adjacent blocks contain

the same points, and the blocks of the design form copies of another

2-design Since two nonadjacent blocks intersect in the same num-

ber p of points, lB' must be a symmetric 2-design.

(ii) This is Part of Theorem 5.3 of Beker and Haemers [1].

(iii) P = 0, q= 1 implies that two blocks have at most one common point.

But two distinct points are in A* 1 blocks whence A* = 1.
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(22) ,

1, q
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2 then (19) implies that t 1, k* 1-s, and using

e = (k-r) (l-s) = (s-l) (r-s) j,l
f+1 j,l+s(k-s)

(24)

Now (20), (2) and (24) imply that e+sr* = e+sve/(k-r) e+s(k-s)e/j,l =

(j.!+s (k-s)) e/j.! = (s-l) (r-s) whence e '" -r mod s . Hence for a suitable

integer i,

e = -si-r, d = -si.

Equation (21) implies = (l-s) (k-d)/k(-s-l) whence k(-s-l)

( 1- s) d , 2k d ( 1- s), and by (2 5) ,

(25)

(l-s)k-

k (26)

If we insert (25) and (26) into (24), observe that j.!

and simplify, we find the relation

k+rs (by (2)),

(2r+s (i-1)) 2 (i+1) (2i-s 2 (i-1)) . (27)

Now (26) implies that i > o.
If i = 1 then by (27), (25), (26), (23), and (2) we find

r = 1, s = -d, e = d -1, k = (d; 1 ), u = f +1

whence by (19) and (20),

* = (d+2) k*
v 2' d+1, A* 2.

Therefore, the design is of class 4.

If i > 1 then (27) implies 0 < 2i-s2(i-1) whence (s2-2) (i-1) 2. This

is only possible if i = 2, s = -2. In this case we obtain as before

r=l, s=-2, e=3, k=6, j.!=4, f+1=5, v=10,

v* = 5, k * = 3, A* = 3,

which is the second alternative in the statement. 0

Note that there is a unique 2-(5,3,3)-design, consisting of 5 points

and the 10 possible point triples. Its complement is of class (iii).
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4. Exceptional quasi-symmetric 2-designs with few points

We call a quasi-symmetric 2-design Q3 exceptional if neither QS
nor its complement is in class 1, 2, 3, or 4. There are fairly many

feasible exceptional parameter sets with a small number of points.

By Proposition 11 it is sufficient to consider designs with

k* < lv* and a list of all possibilities with 2k* __< v* __< 40 was
= 2 '

compiled as follows. Using the necessary conditions given in

Neumaier [11], [14], we calculated the possible parameter sets for

strongly regular graphs with f (= v*-1) 39 which were connected

and not complete multipartite. For each "graph" obtained we checked

whether there are one or more values of e such that the parameters

resulting from Proposition 9 are integral, and 2k* v*. Then the

designs belonging to class 3 and class 4 were deleted. To rule out

some of the remaining 36 "designs" two further existence tests were

applied; they can be considered as analogues of the Krein condition

[16] and the improved absolute bound [14] for strongly regular

graphs.

Proposition 12

The parameters of a quasi-symmetric 2-designs satisfy the inequality

where

B(B-A} AC, (28)

A (v*-l) (v*-2), B = r* (k*-1) (k*-2), (29)

C = r*d(q-1} (q-2}+r*(r*-1-d) (p-1) (p-2). (29)

Equality holds in (28) iff any three distinct points are in a con-

stant number of blocks.

Proof. For distinct points x,y,z, denote by A the number ofxyz

blocks containing x,y, and z. Now fix a point x, and take the follo-
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wing sums over all pairs (y,z) with x f y f z f x. By counting

suitable configurations in two ways we find I = A, I' A - B,
L xyz

I AxYZ(Axyz-1) = C, given by (29). Hence the average value of Axy z

is A = B/A, and 0 I(A _I)2 = (C+B)-2IB+I2A = C+B-B 2/A
xyz

(AC-B(B-A))/A, from which the assertion follows. 0

Proposition 13

If for a quasi-symmetric 2-design

1b* = "2v*(v*-1)

then (28) holds with equality.

(30)

Proof. By a result of Cameron and van Lint [5; Prop. 3.6], equa-

tion (30) implies that the design is a 4-design. In particular,

the equality condition of Proposition 12 is satisfied. 0

Proposition 12 is quite powerful, and eliminates 12 of the 36 cases.

As an example, for the parameter sets

v* 27, k* 7, A* 21, r* 91 , b* 351 ,

P 1 , q 3, d 60, e 28,

equation (30) holds but (28) is satisfied with strict inequality.

Unfortunately, all parameter sets with b* < lv*(v*-1) pass Propo-2

sition 12. But one of them,

v* 19, k* 7, A* 7, r* 21, b* 57,

p 1 , q 3, d 18, e 14

is impossible since no strongly regular graph with corresponding

parameters

v 57, k 42, A 31, lJ 30, r 4, s =-3



No. Ex? v* k* A* P q V k A )l d e

1 ? 19 9 16 3 5 76 45 28 24 25 18
2 ? 20 10 18 4 6 76 35 18 14 21 14
3 ? 20 8 14 2 4 95 54 33 27 27 18
4 ? 21 9 12 3 5 70 27 12 9 15 9
5 ? 21 8 14 2 4 105 52 29 22 26 16
6 yes 21 6 4 0 2 56 45 36 36 15 12
7 yes 21 7 12 1 3 120 77 52 44 33 22
8 ? 22 8 12 2 4 99 42 21 15 21 12
9 yes 22 6 5 0 2 77 60 47 45 20 15

10 yes 22 7 16 1 3 176 105 68 54 45 28
11 yes 23 7 21 1 3 253 140 87 65 60 35
12 ? 24 8 7 2 4 69 20 7 5 10 5
13 ? 28 7 16 1 3 288 105 52 30 45 20
14 yes 28 12 11 4 6 63 32 16 16 16 12

N 15 ? 29 7 12 1 3 232 77 36 20 33 14r-
N 16 31 7 7 1 3 155 42 17 9 18 7yes

17 ? 33 15 35 6 9 176 45 18 9 27 15
18 ? 33 9 6 1 3 88 60 41 40 20 15
19 ? 35 7 3 1 3 85 14 3 2 6 2
20 ? 35 14 13 5 8 85 14 3 2 8 4
21 yes 36 16 12 6 8 63 30 13 15 15 12
22 ? 37 9 8 1 3 148 84 50 44 28 18
23 ? 39 12 22 3 6 247 54 21 9 27 12

Table 1. Quasi-symmetric 2-(v*,k*,A*)-designs with intersection numbers p,q
and block graph parameters V,k,A,)l; subgraphs induced by a point have valency
d and nexus e in the block graph.
The list covers all designs with 2k* v* 40 not characterized by Theorem Q.
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exists (see Wilbrink and Brouwer [17]). There remained 23 para-

meter sets, listed in Table 1. The entry 'yes' under the hea-

ding 'Ex ?' indicates that a quasi-symmetric 2-design with the sta-

ted parameters is known.

The designs No.6, 7, 9, 10, 11 are well-known classical designs,

related to the binary Golay code (see Goethals and Seidel [7]).

Examples 9 and 11 must be the unique Steiner systems S(3, 6, 22) and

S(4, 7, 23) constructed by Witt [18]; indeed for No.9, 10, and 11,

relation (28) is satisfied with equality, whence we have 3-designs,

and a counting argument similar to that of Proposition 12 shows that

No. 11 must be a 4-design.

Designs No. 14 and 21 were constructed by Peter Cameron (personal

communication) from the symplectic group Sp(6,2), and design No. 16

was realized by Andries Brouwer (personal communication) as the set

of all planes in the projective space PG(4,2); in fact, these are

the first members of 3 infinite families of quasi-symmetric designs.

For No.4, 17, and 23, no designs are known, but the block graphs

of Steiner triple systems with 21, 33, and 39 points, respectively,

have the parameters needed for the block graphs of No.4, 17, and 23.

Perhaps this can be used for a construction.

It is hoped that Table 1 will challenge some readers to construct

a few more quasi-symmetric 2-designs, or to devise new existence

tests which eliminate some of the undecided cases.

Finally, we mention one more interesting feasible parameter set:

v* 56, k* 16, A* 6, r* 32, b* 77,

p 4, q 6, d 6, e 4.
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The block graph has parameters

v*=77, k*=16, 1.*=0, ].1* = 4.

These are the complementary parameters of the block graph of

S(3, 6, 22), which might be a good start for a construction.
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Abstract. The paper considers a special chapter of the theory of asymptotic methods

in enumeration. While the general theory has been covered by an excellent exposition

of Bender [1], we mainly consider relative frequencies for relational systems of a

special kind within a general class of configurations. We give a survey of results

and try to emphasize the intuitive ideas behind the formal results.

Contents
1. Introduction.

2. Parametric conditions and Blass-Fagin properties.

3. Compton's theory for slowly growing numbers.

4. Systems with a priori structures and Lynch's theory.

5. Further results on asymptotic 0-1 laws: Random graphs.

6. Conclusion.

1. Introduction. Let {cn}n be a sequence of natural numbers, where cn is interpreted

as the cardinality of a set c(n) of configurations with parameter n. The general pro-

blem is to determine the behaviour of c for n = .
n

The special problem is to compare c(n) with a set B(n) of basic configurations which

are counted by a sequence {bn}nEfi' and to determine cn with the help of bn. In

particular, we are interested in the quotient qn = cn/bn. If the limit of qn exists

for n = and is equal to 0 or 1, we say that c(n) fulfills an asymptotic 0-1 law in

the basic class B(n), and in the I-case we write for short c as usual.n n
In some applications, bn is easily computed. Then an asymptotic 0-1 law yields infor-

mation on the growth of cn' It determines the order of growth in the case of a I-law

and gives at least an upper bound in the case of a O-law. Thus, we are not ambitious

enough to calculate cn via bn up to an additive error; we only expect first approxi-

mations for cn with respect to quotient behaviour. On the other hand, it is our aim

to find general results for a wide range of basic configurations and - given a class

B(n) - for as many types of configurations C(n) in B(n) as possible.

In general, we assume that B(n) is determined by some characteristic property or basic

condition and that c(n) is defined by what we call a special condition or . The

results will depend on the growth of bn which can be measured by properties of gene-

rating functions. By

8(z) L b zn
n=O n

and b(z) L
n=O
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now we cannot even fit corollaries of their result into the general proof method

which we want to describe here. In the following sections we shall investigate,

whether (and if yes how) these examples of asymptotic 0-1 laws fit into a more

general framework.

2. Parametric conditions and Blass-Fagin Properties.

It has been proved that the asymptotic equal ity B b is correct for a large classn n. n
of basic properties; here bn and Bn mean the number of labelled and unlabelled basic

configurations, respectively. Example 2 can be generalized to the so-called basic

parametric conditions.

In order to keep things simple, we only consider configurations over one k-ary relatiol

R with k 2. As an example of a parametric condition for a basic property in the

language of one binary relation we take

This condition means that R is an ordinary graph.

Another example is the following one for tournaments.

In general, by a parametric condition (cf.Oberschelpl17 J,p.298) we understand a con-

junction of universal formulae

" es ",xlMl (xl)
A vxlvx2( * (Xl,x2) .... M2(xl ,x2))

A A vxlvx2",V)/r( * (xl'x2' 'xr) Mr(xl'x2' 'xr))

A A vxlvx2 ... vxk(*(xl'x2' ,xk) Mk(xl'x2' ,xk))·

Here each Mr is a purely propositional formula in atomic expressions Rx. x.... x.
11 12 1 k

such that for the sets of variables we have

{x, , ... .x , } = {xl' ... ,x }
11 1 k r

Furthermore, * (xl"" ,xr) is an abbreviation for the formula expressing that all the

variables xl" .. ,xr have different values. The properties of being a direct graph,
tournament, m-graph, plex etc. can be expressed by parametric conditions. The idea

behind this concept is the following. A parametric property defines a class of re-

lations which can be determinded by theindependent choice of values (parameters) in
fixed regions of the adjacency array. Thus, for instance, a directed graph, possibly

with loops, (i.e. a binary relation) is determined by fixing one of the values 1 or 0

in each position (xl) of the diagonal (which means, that x is a loop or not) and one
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we understand the ordinary and the exponential generating functions for the sequence

{bn}n ElN' It is well-known that - if the radius of convergence of the indicated power
series of the complex variable z is greater than zero - the function theoretic be-
havior of B(z) and b(z) yields information on the growth of bn.
We start with three examples.

Example 1:

Let B(n) be the set of all binary relations over a finite domain N, say N= {I, ... ,n}.
Define c(n) to be the class of those binary relations which fulfill the special
condition

.tsa VX3y Rxy.

Formally and systematically the condition for the basic property is the empty con-

dition in the language of one binary relation symbol R. Obviously, we have
2

bn = 2n , and it is easy to see that cn (2n - I)n,

since in every row of the nx n adjacency matrix of R there are z'' - 1 choices of zeros
and ones - the only forbidden row is the row consisting of zeros only. Furthermore,

it is easy to see that for the special condition

-;:; .. 3xVy Rxy
2

the number of conf tqura t ions is c(n) = 2n - (2n - n"
For instance, for n = 10 we have

b 1. 26765 1030n
1030c 1.25533

-n 1030.c 0.01233n

In our terminology, c(n) fulfills a I-law and c(n) fulfills a O-law in the basic set
of binary relations.

Example 2:

We consider the so-called asymptotic counting problem for binary relations,

graphs, tournaments and other simple types of basic configurations. In other words,
we are counting isomorphism types.

For instance, let B(n) be the class of isomorphism types of binary relations, and let
C(n) be the class of those isomorphism types which are invariant only under the trivia'
vertex permutation E. Those structures are sometimes called rigid. It is well-known

that here again we have an asymptotic I-law (cf., for instance, Oberschelp [16], Wright
[19] and Harary-Palmer [10] ).
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The problem of enumerating unlabelled structures deserves a special comment. The so­

lution is usually given by Polya's counting theory which interpretes B(n) as the set

of orbits of a permutation group f acting on the class of all labelled basic configu­

rations. We will denote the unlabelled numbers by capital letters.

The well­known Frobenius­Burnside­Lemma, which is the heart of Polya's theory, counts

the number of those orbits according to the formula

1B
n

L f
1
(g ) ,

If I g E r
where f

1(g)
is the number of unlabelled basic configurations which remain fixed under

g. In this example, we cannot evaluate Bn directly. In order to prove the asymptotic

I­law we show as a central proposition that

1. TIT f 1( t:)
11m
n ..... co n

This means that the first term (corresponding to the trivial element t: of f) of the

Frobenius­Burnside formula for B determines as a main term the asymptotic growth of
n

Bn· Here bn = f 1(t:) is of course the number of labelled basic structures (in this

example bn=2
n2), since each basic structure is fixed under the trivial permutation,

and If I is n!.

It is easy to prove the asymptotic I­law using (*). We note that

n l
n!Cn +y(Bn ­ Cn) bn,

since applying the group f to one of the B ­ C t somorpb sm types, which are invariant
n n

under some nontrivial elementof f, yields at most differently labelled basic con­

figurations. This is equivalent to

b
nCn n. n or

b
n2­;;­rs ­ 1.

n. n

For n­>oo the right side tends to 1 by (*), and, since Cn£Bn, we have Cn Bn.

As an example for (*) we note for the case of binary relations that

B8 4.582971 1014, while 1 we have the valuefor ill bn

264 4.575085 1014.8T

Example 3:

As a further example for the technique of getting information on the growth of bn via

the order of growth of cn we mention the famous theorem of Kleitman and Rothschild

[11] on the asymptotic behaviour of the number b of partial orders. They count partia
n

orders of a special kind by cn and show that almost all partial orders are of this

special kind. There is a lot of ingenious ad hoc argumentation in their proof; up to
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of 4 values in each upper right position (x1,xZ). Each value codes one of the 4 possi­

bil ities

RX1Xz1\ RXZx1
or RX1Xz1\ , RX Zx1
or , RX1Xz1\ RXZx1
or ­t RX1Xz1\ 1 RXZx1

The figure shows the two parameter regions for binary relations.

...... ".' ...... .: • I • \.. ; ... ", .. , "" '"'.- " . .­.. , ­, ,
'.

., ..
". , . '. :,

' .. .... .' ..; .. ,.. , .' t<.
.' .' '..,
" . v

..
,

Figure 1

Parameter regions

If we consider ordinary graphs or tournaments, the parameter regions remain the same.

This time, however, we only have one choice in the diagonal and two choices in the

right upper half. Though the two choices in the second parameter region have different

meanings in the caseof graphs and tournaments, we have essentially the same combina­
torics for the number of ordinary graphs and of tournaments.

A simple counterexample, which is not parametric, is a formulation of transitivity,

which is needed to define partial orders for

Here the atoms such as Rx1xZ do not contain all the variables of the prefix. In gene­

ral, no quantifier sequence which is longer than the place number of the relation R

can fulfill the condition for parametric properties.

1Theorem 1: If £ris parametric, then Bn n. n

Proof: See Oberschelp [17]. a

According to this theorem, relation (*) of section 1 holds. We have, therefore, again
the result that almost all parametric relations are rigid. Moreover, we can calculate
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bn explicitly from a certain normalization of condition , as explained in the proof.

As a generalization of Example 1 we consider the following situation.

Definition:Let jj. be a basic property. If for each condition $, written in the

language of first order logic with identity, there is a 0-1 law, i.e.

c
1 . n1m bn .... co n

exists and is 0 or 1 ,

then $ is called a Blass-Fagin property, or BF for short.
Here we understand by cn the number of models with n vertices for the condition t A$,

i.e. we restrict ourselves to basic configurations. Blass-Harary [2] and Fagin [9]

have shown among other results the following

Theorem 2: The empty condition, the graph condition, etc., considered as basic property,
are BF.

In the light of this result, the 0-1 theorem in Example 1 is a corollary since the

conditions and used there are of first order. Thus BF-properties are a good source

for getting asymptotic approximations. If 1 im qn =1 (this can even be decided effec-
tively), then we have approximated cn and bn by each other.

As a generalization of the results of Blass-Fagin we have

Theorem 3: All parametric conditions, considered as basic properties, are BF.
The proof is sketched in Oberschelp [18].

o

It is plausible that not every condition $ , written in the language of first order

logic with identity, can be BF, since the spectrum of those values n which are cardi-

nalities of models for can be very irregular. As an example - admittedly usually

not written in the language of one single relation - choose as the conjunction of

the axioms for the theory of fields.

As an aid in the search for more BF-properties beyond the class of parametric con-

ditions let us now note some properties of parametric conditions 'fj .

(i) In all non-trivial cases the numbers b of (labelled) n-vertex models for are
n

strictly increasing. Moreover, the functions bn are growing very fast such that the

convergence radius of the generating series

B(z)

and even of the exponential generating series
b

b(z) L zn
n!
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is zero. In fact, it from the explicit formulae for bn mentioned above that
bn grows at least as Zcn to infinity for some c > O.

that(ii) The growth of bn is monotonically regular in the sence
bn+In • -b- tends to zero.

n

Thus there are no essential breaks in growth rapidity.

(iii) Models for $ are always closed under induced substructures. This means that
we can remove vertices of models with their adjoining "edges" without violating pro-

perty . This fact follows immediately from the definition type for parametric rela-

tions via universal quantifiers alone.

(iv) Configurations with a parametric property fulfill a condition of "internal rich-

ness". What we understand by this notion is explained best by analyzing Blass's proof

of the graph property being SF. In order to show that almost all models of also have

property t:, we try to give a constructive proof of .t: from 'h. We try to succeed by

elimination of quantifier changes of the form

'v'X l· .. 'v'xn3Yl' .. 3YmC(xl" .. ,xn'Yl" .. 'Ym)

within the condition t , beginning with the inner parts. If we could always do this,

we would obtain after a finite number of such steps a quantifier-free kernel which

could be decided in the usual way. Now we can show that in almost all models of a pa-

rametric condition any statement of the form given above is true. This means in the

special case of graphs that, for any selection of n vertices xl" ",xn there are m

vertices Yl"" 'Ym in the graph which have the interconnection pattern (among

xl, ... ,xn and Yl'."'Ym) which is expressed by the kernel C(xl, ... ,xn'Yl'.'.'Ym)' It
can be shown that richness conditions are highly probable if t is big enough.
Interestingly enough, it is difficult to give explicit examples for graphs which ful-
fill richness conditions. The so-called Paley graphs are essentially the only known

models with such a behaviour, which is true for big "random" graphs. As an example,
we consider the Paley graph with 17 vertices and i(l;) = 68 edges. Here two vertices

are joined if their differer.ce is a quadratic residue mod 17. The graph in Figure Z

fulfills the richness conditions

and

This was shown by Exoo [8].
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Figure 2:

Paley graph of

order 17

It is only fair to remark that also negations of richness conditions would suffice to

prove an asymptotic 0-1 law, since we could try to refute JC dually and would then

end up with an asymptotic a-law. Thus we can summarize: the validity of either a
richness or a poorness condition is the key to success in proving that a condition

$ is SF.

theory of slowly growing numbers. We have extracted the properties (i)
to (iv) in the last section, since it is our feeling that properties of this kind
could lead to SF properties. On the other hand they characterize what we would like

to call an elementary data structure. Such structures should be available in big
numbers (cf. property (i) and (ii)), they should be highly resistant against structure

manipulations (like property (iii))and they should - if big enough - also be rich
enough to contain almost always all types of interconnection patterns between vertices

(as explained in (iv)). Thus we should like to maintain the working thesis that ele-
mentary data structures are exactly those configurations, which fulfill a SF con-

dition. It is in the spirit of this program that we try to find a complete characteri-

zation of SF properties under assumptions such as conditions (i) to (iv). In particular,

we would like to di>cover BF-conditions beyond the parametric relations.

In a remarkable paper by Compton [5]an explanation of this kind is given. Compton



284

considers those first order basic properties $ which obey some weak forms of the

above conditions. He assumes, as a generalization of (ii), that lim always

exists. In this case, the limit gives the radius R of convergence of the exponential
generating function

bn n
b(z) = L nT z

If R>O, or if b(z) is an entire function, then deep methods of the theory of functions

(like Tauber-theorems and famous theorems of Darboux and Hayman (cf. Bender [1] pp.498

and pp.506)) can be used to determine the growth of the coefficients bn. Here we simpli-
fy the situation by assuming that the growth of bn is known from sources whatsoever.

Furthermore, Compton assumes a special closedness under substructures namely under

removal of connectivity components (cf.(iii), see also (v)).

Finally, he assumes a manipulation property, which is not necessarily true for para-

metric relations but gives the theory a special touch with respect to decomposition:
(v) There is a natural notion of connectedness in parametric relations, and each class

defined by is closed unter disjoint union of connectivity components: We call ver-

tices x and y directly connected if there is a relation tuple of R containing x and
y. Then arbitrary connections between two vertices are defined using the reflexive

and transitive closure of the direct connection relation; finally, the equivalence

classes arising from connectivity are caned the components of a parametric configu-
ration.

The results of Compton characterize a basic property is- as BF in terms of a radius of

convergence of b(z). In the proofs there appear analogues of richness-poorness con-

ditions in the sense of condition (iv). They are needed in proof-refutation attempts
for .t and turn out to be almost always true. But in contrast to the situation in

parametric relations, the theory of Compton only works for slowly growing coefficients.
It is, therefore, not surprising that the instances of condition (iv) which occur in

the proofs appear to be poorness conditions. They state that for a certain type l
of finite connected substructures with condition , there are not exactly j compo-
nents in the structure, for which we want to prove or disprove condition There is

a lot of technical model theoretic argumentation in the proofs which are behind this
idea.

The main result of Compton can thus be summarized as follows.

Theorem 4: Let the assumptions be as above. If the radius R of convergence of b(z)

satisfies R>0, then

'Jj. is BF if and only if R

Before giving examples, we comment on the appearance of the exponential generating
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function in this proposition. At first glance the trick of dividing by the factorials

seems to give just the right measure to bring the growth of bn and the SF-property

into proper coincidence. Sut inherent in the proofs is also always the well-known
exponential theorem, which counts under manipulations - right in the technique of

exponential generating functions - the numbers bn of models of a given cardinality

via the numbers dn of connected models as follows (cf.Harary-Palmer [8], p.8 for

graphs and Compton [5], p. 19 for the general case):

Theorem 5: If b(z)
bn n

L nr z and d(z)
dn n

LIZ, thenn.

A corresponding technique is not available for ordinary generation functions.

Theorem 4 covers the case of labelled enumeration. We mention that for unlabelled

enumeration there is an analogous theory and an analogous concept of SF-property,

which uses ordinary generating functions. 5ince the numbers Sn are positive integers
from their combinatorial meaning, an ordinary generating function

in this field can never have a radius of convergence 5 greater than 1. Again we get

a characterization using the shortest possible growing order with respect to conver-
gence radius.

Theorem 6: Let the assumptions be as above.

If the radius 5 of convergence of S(z) satisfies 5> 0, then

tr is unlabelled-SF if and only if 5 = 1. 0

The application of Compton's theorems yields essentially negative results: If the

number of basic configurations is growing not too fast (i.e. R>O or 5>0), only the

case of slow growth (i .e. R = = or 5 = 1) yields the BF-property. In the labelled case,

for instance, the range of applicability of Theorem 4 begins somewhat beneath the region

bn = 2nl og n 0(1) there is no appl ication to the case of partial orders,

where b is about 24 (this follows trivially from the Kleitman-Rothschild result
n

mentioned in Example 3). The question, whether or not the basic property of being a
partial order is BF, cannot be answered by the general theory so far. Nevertheless,

Compton has announced (private communication) that he has proved the BF property of
partial orders directly, using the results of Kleitmann-Rothschild and the methods of

Blass-Fagin.
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Neither can the BF-question for various types of trees and forests be answered posi-

tively by Compton's theorems. Either the growth of bn is irregular such that assumption
(ii) fails (cf. for instance,[5], example 1.9), or the growth is regular but the num-
bers b are growing too fast. The latter is the case for rooted trees, where R is posi-

n
tive and finite. Note that the asymptotics for tree enumerations are well-known since

the fundamental work of Polya and Otter (cf. [1] sections 7.2 and 7.4). Thus,by Theorem

4, we have definitely no BF-property in these cases.

One of the few new BF-properties is the case of equivalence relations (partitions of

a finite set). Here the b - known usually as the Bell numbers - are growing just fast
n

enough to guarantee that R = 00 (as is well-known from work of Moser and Wyman [15]).

Here there is a clear indication of poorness in B(n), since we have only one type of

connectivity components for every cardinality; from this only few models arise in the
general non-connected case by the exponential theorem (Theorem 5).

For the unlabelled case, we have here the numbers Bn (usually named Pn) of partitions
of the number n. It is also well-known that in this case S= 1, i.e. the power series

p(z) =z p zn has radius of convergence 1, sincen

p(z) = _1__
n(l-z n)
n

In fact, by Ramanujan's work it
1 (TIR

follows that Pn e 3
4nVJ

Vii)

Thus, by Theorem 6, we have an asymptotic 0-1 law for every first oder property of par-

titions. This result is weak, but general. Of course, the deep properties of parti-
tion theory are not first order. One applicable condition would be to postulate a

fixed number of components; to postulate an even number of components would, however,
not be an application.

4. Systems with a priori structure and Lynch's theory,

There is another possible extension of the situation in section 1, where we asympto-

tically counted (binary) relations which fulfill an additional special first order
condition Now we assume that the vertex domain N = {I, ... ,n} has,a priori.a

certain structure which is described by the diagram of some relation S. We allow

to be written with the additional use of this relation S.

Example 4: Let S be the (trivial) relation which is true for all x,y. Then any con-
dition L using S can equivalently be written without using S. Since the basic set of

binary relations is BF, we have an asymptotic 0-1 law for each condition i V

•
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Example 5: Let S be the cyclic successor, i.e., Sxy means y=x+1 mod n.

Consider a condition such as

J:, .. V X 3Y(Sxy 1\ Rxy).

General problem: Under which assumptions on S does a 0-1 law exist for every condition

t in the first order language of Rand S7

For the special example .c, the relative frequence of the number of relations which

f'ul f i l l Z' in the class of all relations is q = 1.- which tends to zero.
Thus we have an asymptotic O-law for this £ .

Example 6: We take S to be the natural =:;-relation on Nwith smallest element 1 and

largest element n. An easy computation shows that the relative frequency for the same

;; has the value q = n(l--l:-). This converges to a limit 0.288787... different
n 2'

from 0 and 1.

In this case we cannot have an asymptotic 0-1 law for each first oder condition .

Lynch [13] has given an explanation for these different situations with respect to

0-1 laws. More specific, he gave a sufficient condition for the validity of a 0-1 law

in the situation described above (cf.[13], Corollary 5.10). Lynch defines a notion of

k-extendibility of the structure S. This condition is rather technical, but there

seems to be a clear intuitive background. The successor is a poor structure which
could be realized by few interchanges in different ways. On the other hand, for linear

orders the so-ca 11 ed Ehrenfeucht game cannot be won (by the second of two players).

This game means intuitively that the second of two players triesto answer to vertex-

choices of the first player in such a way that two isomorphic structures of k vertices

(where k is the number of quantifiers in the prenex normal form of I: ) have been created
in the end. The rule is that the first player can always decide which of the two
structures in progress he wants to complete, while the second player has to work with

the other structure at this step. Roughly summarized: The validity of an asymptotic

0-1 law for all £ appears as a consequence of the fact that here is a large stock of

choices with respect to the problem of finding many isomorphic substructures.

5. Further results on asymptotic 0-1 laws: Random graphs.

The results on asymptotic 0-1 laws reported so far keep the range of within
the first order conditions and try to be as general as possible for basic properties

In this section we specialize on graphs.
Let us first keep the class of all graphs as the basic set of configurations. There

are special conditions ,t which cannot be formulated in first order language, but for

which there is an asymptotic 0-1 law; for instance, connectedness , hamiltonicity
(cf. Moon [14]) and rigidity l( (cf. Harary-Palmer [10] and the remarks about Example 2)
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While the result can be proved with respect to J as an implicational consequence from
the analogous first order result for connectedness with diameter two (cf. Blass-Harary

[2], Corollary 13), it can be proved that the properties and at, are not impl ied by

any first order condition at with an asymptotic I-law. Therefore, no direct application

of the Blass-Fagin theory is possible (cf.Blass-Harary [2], chapter 3). Thus there are
positive asymptotic results which have been proved by special methods only.

Secondly, we turn to the most important field, where general first order arguments

have failed so far. This is the theory of random graphs, which was introduced by Erdos

and Renyi [6]. It is not our aim to give an exposition of this beautiful theory. For a

summary we refer to Bollobas ([3], pp. 144). We only want to give some indications how

the results of this theory fit into the framework for asymptotic 0-1 laws which we have
developed.

Usually, in random graph theory, the basic configurations for a given vertex cardinali-

ty n are the graphs with M=M(n) edges. Therefore, the edge function M(n) characterizes

the class B of basic configurations. The class of all graphs with n vertices and M(n)

edges is denoted by G (n,M(n)).

Some edge functions are of special interest in this theory. In we define

Ma(n) =La nlog nJ for a fixed number a.

Other edge functions such as lanJ or are also common in the theory of random
graphs.

For several of those basic structures there are again asymptotic 0-1 laws with respect

to single special conditions.

We consider the following example:

has a a-law in the basic set G(n,M 1 (n))
"2

J has a I-law in the basic set G(n,M1 (n)).

This is a corollary from early observations of Erdos and Renyi who located the exact
threshold where the probability of being connected jumps from a to 1. It can also be

proved directly by using richness arguments (cf. Bollobas [3],p.139 and exercise 13,

p.143) .
The same proposition with condition J instead of } can be deduced as a corollary

from recent results of Korshumov (cf. Bo l l obas, [3] pp. 141).
The introduction of edge numbers into the notion of basic configuration means to look
for asymptotic spectral a-laws. The former results with the basic class of all graphs

appear as integrated statements and thus as corollaries of spectral laws.
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The figure shows the number of graphs for n= 17 according to the edge number Mand
indicates that connectivity and hamiltonicity happen to begin in a region given by
M(n) Rl}lOgnRl24, where there are relatively few graphs with such a low number of edges

M

Looking at the present state of randam graph theory it seems that our terminology for
asymptotic 0-1 laws is not fine enough to express directly all the information which
has been obtained by ad hoc methods. But beyond the desire for a uniform terminology
we should like to obtain general explanations, for instance,for the fact of threshold
which seems to occur for all graph conditions l , which are monotone increasing (in
the sense that by adding edges to a given graph a monotone condition can never get lost).

We give an illustration of such a threshold situation by the following model, which
has been described by many authors in randam graph theory anal ogously. Consider a big
number Nof big graphs with n vertices, where n is also big. We start with all the
graphs consisting only of isolated vertices. Then we add to each of the N graphsone
more edge at random. Thus all the graphs are in a process of evolution. Now we test
for a fixed monotone increasing property t (like connectedness or hamiltonicity) and
let a bell ring if this condition is fulfilled for one of the graphs. Then we should
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expect a theory which explains generally why ,within a narrow bandwidth (depending

on l),almost all the bells begin to ring.

Finally we mention that even for conditions which are not monotone increasing,

asymptotic 0-1 laws occur. The theory of random graphs again presents those results
within an impressive collection of asymptotic 0-1 laws for various basic properties

and specific conditions. In order to cover those results by our terminology, it might

be necessary to introduce conditions and properties which make use of the cardinality

of the vertex set or of the edge set and will, therefore, in general not be of first

order. We try to formulate an outstanding example in this manner:

Let us consider the condition ,[ = j; which says: For a graph <1 in the class G (n),n,p if p
which contains all graphs with n vertices and relative frequency pof edges, the size

of the maximal clique of is Ld(n,p)j or fd(n,p)l, where d(n,p) is the positive real

solution of the equation d()
n (nz'p)

(d(n,p)) . p 1.

It follows from results of Bollobas and Erdos [4] that there is an asymptotic I-law

for t;. This means in particular, that, if we check a big store of big graphs, all

with edge-probability p, what the size S ot the biggest clique might be, then in al-
most all cases the guess that s is in close proximity to d(n,p) is correct.

Again, for the case n= 17 the following table shows d(n,p) for selected probabilities:

p d(n,p)
1/136 = 0.007353 2.00

0.1 2.91

0.25 3.85

0.333 4.39
0.5 5.685

0.8 9.93
0.9 12.81
0.95 14.81

1 17

Table

The most probable clique number for graphs

with edge probabil ity p and n =17.

The methods of random graph theory are not easy to classify. But the hint that there

are often techniques for approximating the binomial by the poisson distribution and
for using the central limit theorem does not lead into the wrong direction.

6. Conclusion.
We do not believe that there will ever be a uniform theory for getting asymptotic

0-1 laws in combinatorics which will cover all results, which are proved sometimes
with deep and laborious ad hoc methods. However, it should be an inspiring field of
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research for the future to develop uniform patterns of argumentation in this field
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Abstract

Let V be a set of cardinality v, vE IN. We are looking for the minimal number of

k-sets (i.e. subsets of V having cardinality k), such that every t-set of V, t s k, is

covered by at least A of these k-sets. This special covering problem is called the

generalized block design problem with parameters V,k,t,A. It is equivalent to the

problem of Turan [16] and also to the generalized covering problem [4]. Therefore,

the known bounds for these two equivalent problems are also bounds for the generalized
block design problem and vice versa.

Using some type of greedy algorithm, we will compute an approximative solution for

an optimal generalized design with arbitrary parameters. The number of blocks in

such an approximation will be at most the optimal number of blocks.
This result depends essentially on a theorem of Lovasz [11].

Introduction

Let A and B be finite sets and R a binary relation, R Ax B. The triple (A,B,R)

is called a covering structure or incidence structure. A subset A' of Awith the

property that there exists for every bEB an aEA such that (a,b)ER is called a

"cover of B". The aim is to find a so-called optimal cover of B, this is a cover

of minimal cardinality.

For example, the set-cover-problem [3] and the lottery-problem [12] are such

covering problems. There are several similar problems in the theory of Information
Retrival [13] and Operations Research [19].

A special case of these general covering problems are incidence structures of the
form ([V]k, tvi', R). Here V = {l, ... .vl , t;;; ks v, [V]k and rvi' are the sets of

all k-sets and t-sets respectively of V, and at-set b is incident with a k-set

a if and only if b is contained in a. A k-graph A' is a subset of [V]k and an ele-

ment of A' is called a block. A k-graph A' is called a block design with parameters

(V,k,t,A) if and only if V,k,t,A E IN, v > k > t, and every t-set of v is contained
in precisely A blocks. For further detail s see Hall [5].
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A recent survey is contained Lindner and Rosa [10]. For an existence theory for
the case t =2 see R.M.Wilson [17].

Generalized Block Designs

Definition 1 Let V= {l, ... ,v}, with t s ks v. A k-graph A'::; [V]k is called
a generalized block design with parameters (V,k,t,A) if and only if every t-set
of V is contained in at least Ablocks of A'. Thus every block design is a generalized
block design.
Definition 2 Let t s ks v, and let c(V,k,t,A) denote the class of all k-graphs Gover
V. The problem: "Compute c(V,k,t,A) =min{IGI : GET(v,k,t,A)}" is called the
generalized covering problem (GCP).

Definition 3 Let t < k < V. T(v,k,t,A) is the class of all t-graphs G over V,

so that there exist at least Aedges T1''' "\ of Gwith K, 1 2 i A, for any
k-se t KE: [V]k. The problem: "Compute ,(V,k,t,A) =min {IGI : GET(v,k,t,A)J" is
called the generalized Turan problem (GTP).

We have:
(1) The generalized block design problem (GBDP): "Find an optima-l GBD" is equivalent

to the GCP.
(2) c(V,k,t,A) =,(v,v-t,V-k,A).

This means that all inequalities and bounds for Turan- or covering-numbers
are also approximations for the numbers of blocks in an optimal GBD.
Therefore, we can deduce some bounds for the number of blocks in an optimal GBD
from the following inequalities:
(3) (Schonheim [15])

,(V,k,t,A) > r __v _
- v-t r v-I r r k+2 A(k+1)

v-t-l . " K=t+Z r r-::t+r 11 ... 111 ,

where r 1 denotes the upper Gaussian brackets.
(4) (Katona,Nemetz,Simonovitz, see [4])

v k v k-1 1-t
(t)/(t) 2 ,(v,k,t,l) 2 (t)' (t=T)

(5) (Spencer, see [4] ).

v t k-1 1-t
,(V,k,t,A) .:: Cr) . (1=1)

Further intensifications can be found, for instance, in Gutschke [4].
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In most cases it is impossible to find an optimal GBD (or a generalized covering etc.
Therefore, we are looking for a good approximation. There are many possibilities to
find an approximative algorithm for the problems mentioned. However, not all of them
run "fast enough".

We try to fi nd an algorithm whi ch runs in polynomi ally, i n v, bounded time and is best
possible.
Some alternatives are perhaps:
(i) "brutal algorithm" : Check all possible GBD's and take the optimum
(not polynomially bounded);
(ii) Choose the "nearest" exact block design having parameters (v' ,k,t,A),
v'> v or v':: v, and introduce dunmi es (if necessary);
(iii) A kind of greedy algorithm with a special optimization function.

We will follow the third possibility, since it looks quite simple and there is
a good approximation for the number of blocks of the approximative design.

Remarks:
(1) Algorithms of type (ii) and certain types of (iii) can be found in [13].
In all the computations I did, the type-(iii)-algorithm which I will present
in the next chapter produced the best results.

(2) Perhaps one can associate with the GBD-problem a special NP-complete problem
and it may be possible to reduce it to such a problem. This may be a justification
for choosing an approximative algorithm for the GBD-problem. I looked for such
a reduction, but I did not find an approximate NP-complete problem. In [14] one
can find a lot of arguments and motivation for solving the GBD-problem with an
approximative algorithm. There is also mentioned another criterion of intractability

which is applicable to the GBD-problem (as well as to Ramsey-numbers etc.).

AGreedy Algorithm for the Generalized Block Design Problem

The general greedy heuristic can be described as follows:
The greedy algorithm computes stepwise a "nearly" optimal solution. In each step
it chooses the best possible "subsolution" by a given optimization criterion.
The solution is thus the union of all subsolutions.

Remark 3: If the class of the considered problems has a matroid-(or, more generally,
a greedoid-) structure [7], then the greedy algorithm produces an optimal solution.

Unfortunately the class of the GBD-problems has not such a matroid-structure.
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The greedy cover algorithm (for hypergraphs):
Let H be a hypergraph. We denote the set of vertices by V(H), the set of edges by

E(H) .
Problem: Compute a minimal subset C=V(H) with the following property:

for all e EE(H) there exists acE C such that c Ee.
"Solution": In each step choose a point v in V(H) having maximal degree relative
to the rest of the hypergraph (maximal rest-degree = optimization criterion).
Eliminate this point and all edges incident with it. The algorithm stops if the
rest-graph is empty.

Now consider a special kind of hypergraph Hb:
Let the set of vertices V(H b) be [V]k. The set of edges is defined as follows:

Two k-sets of V(Hb) are in the same edge if and only if their intersection contains
at-set TE [V]t.

It is clear that there is a I-I-correspondence between the edges of Hb and the
set of all t-sets. We have, therefore,the following

Theorem 1. The greedy cover algorithm, applied to the hypergraph Hb, produces
a GBD with parameters (v,k,t,I). For a hypergraph Hb with multiple edges (each
multiplicity = A) it produces a GBD with parameters (V,k,t,A).

For analysing the greedy cover algorithm we will use a theorem due to l.ovas z [11].
For this reason we introduce the notion of p-matching.

Definition 4: Let H = (V(H), E(H)) be a hypergraph and let p be any integer.

(i) Ap-matching Mof H is a (multi- )set of edges, such that each vertex x belongs
to at most p edges of M.
We write vp(H) = max {# edges in M: Mis p-matching of H}.

(ii) Ap-Matching Mof H is called simple if and only if every edge occurs at most
once in M.
We write = max {# edges in M : Mis a simple p-matching of H}.

Now we can consider the following result of Lovasz.

Theorem 2. Given a hypergraph H. The greedy algorithm may produce b covering points

Then

where d(H) is the maximum degree of the vertices of H.

Proof: Let bi be the number of steps in which the algorithm chooses a point of
maximum rest-degree i.
(Note that the rest-degree of the point which is selected in the j-th step is
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greater than or equal to the rest-degree of the one which is chosen in the (j+1)-st

step) .

Let ci

9
L b. , d = d(H),

J
j=i+1

and let Ei(H) be the set of all those edges of Hwhich are not covered by any of the
prevailing chosen points. Finally, let V(Hi) be the set of points incident with the

edges of Ei(H) and define

By the construction it is clear that the maximum degree d(Hi) of Hi is at most i,
since the point which is chosen in the (ci+1)-st step of the greedy cover algorithm
has maximum rest degree i (compare the definition of ci).
Therefore,we have

(6)

IE(H.)I > would imply that E(H.) contains more edges than a maximal i-matching
1 1 1

of H. This is a contradiction, because each edge of E(Hi) contains at most i points.
In each of the next bi steps the algorithm selects a point which covers i new
(i.e. not yet covered) edges of E(H i). In the following bi-1 steps each of the
selected points covers exactly i-I new edges and so on. These arguments imply

(7) IE(Hi)1 = ib i + (i-1)bi_ 1 + ..•. + 2b2+b1
and, by (6), we have

ib i + ... +2b2 + b1 :5 ' 1:5 i :5 d.

Multiplying the i-th of these inequalities, 1 :5 i :5 d-1, by 1/i(i+1) gives
'V

i 2 1 vi
(8) Tfi+T)bi + ... + + Tfi+1T b1:5 1Tf+IT' 1:5i s d-1;

and by multiplying the d-th inequality by lid we obtain
'V

1 2 1 vd
(9) + ... + + :5 a- .

The summation over all the left sides of (8) and the left side of (9) yields
d-1 i d d-1 'V 'V

L ( L j b ) + L i b · :5 L
Vj

+
'Jd

i=l j=l Tfi+1T j j=l J j=l TIJiT) a

This is equivalent to
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11 11 22 22
b1 (R + -z:j + .•. + crrcr-n + a ) + b2 ( -z:j + j:4 + •.. + Cffcf=T) + a ) +

i
... + bi ( T(T+IT +

'V 'V

\/1 \/2
5 y:z- +"2-3 + ...

iIi
(i +1)( 1+2) + ... + crra=TT + a ) + ... + bd

'V 'V

"e-i \/d
+ crra=TT + a

Since the coefficients of the bi's are all equal to 1 (by using associativity),
we finally obtain

'V 'V

\/d-1 \/d
+ crra=TT + d

This is exactly the assertion of Theorem 2. D

In the case of the GBD-problem (see above) we have for the special hypergraph Hb:
k(10) d(Hb) = d = (t) , and

(11) for a simple p-matching the equality

Consequently it follows that

Now Theorem 2 implies
d

b 5 / L f 5 / • (1 + ,
i =1

i.e. , b 5 1+l0g(k
t
)bopt

Using the equalities

(12 ) and

(13) 'V v v-t\/p = (k) - c(v,v-t,v-k'(v_k)-P), respectively,

we can derive better evaluations
for the by the inequalities
Turan- or covering-numbers).

for , and also for b, if we replace the estimationsp
(3), (4) or (5) (or perhaps by better bounds for



Analogous considerations

( 14) b 2: L
j=1
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Remark 4

a) The algorithm and the results above are still valid for A> 1. This follows by

a simple transformation.

b) The result 1 + log gives an upper bound for the number of
opt

covering blocks in the greedy cover algorithm. The average case behaviour of the
algorithm may be much better, but it is not easy to compute. Several computations

showed that the solutions of the greedy cover algorithm diverge at most by 50%

from the optimal solution for a GBD-problem.

c) The complexity of the greedy cover algorithm is in O(vt +k), thus polynomially

bounded in v when t and k are fixed.

Generalizations and Concluding Remarks

Definition 5 A generalized partial block design (GPBD) with parameters

(v,f,t,A) , A = (Al, ... ,A ), A. E1'I , 1 i s (tv), is a set of k-sets
'" '" 1

of V = (1, ... ,v}, called blocks. such that for every jE (1 .... the t-set of V

labelled j is contained in at least A
j
blocks.

as in the case of = (A •...• A) yield the following result

In this case upper bounds for the value of b are very hard to compute because they

depend essentially on the parameters Ai' 1 i Some results are known in the

special case, where AiE: (A,Hl} for some H1'I, for all i =1, ... This is the
case of the regular generalized partial block designs (see, for instance, [2]).

Let us finally illuminate this generalized problem from another point of view.

Sometimes it may be useful to describe the GPBD-problem as an LP-problem (Linear

Programmi ng- proo 1em) •
v vLabel the (t) t-sets by T1,· .. ,T v and the (k) k-sets by K1,···,K v

ttl (k)

Define the incidence-matrix A between the t-sets and the k-sets by

n m J1 ; TiC: Kj
A = (ai j) i=l,j=I' ai j = to ; otherwise
With this notation the GPBD-problem can be described as follows.
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Find an optimal cover x = (xl"" ,x ), Xl' eN
O
' 1 s i :$ (tv),such that Ax A'" a) '" '"

i.e. min L xi
i=l

(P)

s.t.
X 0 ,X integer.
'" '" '"

If there is an optimal solution for (P), we can find one by using methods of

Operations Research (cf. [19]). Unfortunately the required algorithms are in general,

not polynomially bounded in v.

Another point of view may also be of interest.

Consider the dual problem of (P):

max L AiYi
i =1

Aty s A

'" '"
( DP)

s.t. y 0 ,v integer.
'" '" "v

(DP) is a weighted generalization of a problem of Brown, Erdos and 50S [1] and

equivalent to a generalized packing problem (see, for instance, [4] ). If we replace

by (A, ... ,A), AeNo' we have (P) as the GBD-problem and (DP) as the original

problem of Brown, Erdos and 50S. With a duality theorem in LP we obtain the following

Theorem 3. If the problem (P) (this is the GPBD-problem) has an optimal solution,

then (DP), the weighted form of the B-E-5-problem, has the same optimal

solution, and vice versa.

This means that the problems are essentially the same.
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AGraphic Theory of Associativity and Wordchain Patterns
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Abstract

The problem of deciding whether a partial binary operation, a "bin"l),can be

embedded in a semi group is the associativity problem (for general bins). It is

known that it is equivalent to the word problem for (semi)groups and thus unsolvable,
even for the class of finite bins. This paper establishes a close association between

bins and their wordchains and 3-connected 3-regular planar graphs, or, equivalently
convex 3-regular polyhedral nets (skeletons). This permits a constructive approach

revealing the combinatorial depth of the associativity problem in detail and leads

to a naturally enumerable hierarchy of standard wordchain patterns, of universal
bins, and of associative laws. Each bin is a superposition of homomorphic images,
i.e. "colourings" of edges, of universal bins. One side result is a purely algebraic

equivalent of the 4-colour-theorem. The obtained results open further ways for an
efficient search by computer for simplest non-associativity contradictions. It is

hoped that they lead to solutions of the associativity problem for further subclasses

of bins, further insightinto the structure of partial binary operations and of
polyhedra and will yield precise measures of presentations for associative systems
and their classifications.

O. Introducti on

The complexity of the general concept of associativity of partial binary operations
could hardly be better hidden than by its collapsing into the simple elementary
formula (xy)z = x(yz) for the all-important, yet still very special case of closed.

(i.e. complete) operations. Furthermore, the veil of deceptive simplicity is not
lifted by the first encounters while reconnoitring the wilderness of partial operations.
However, some dents have been lately made in this "terra incognita", and, hopefully,

some headway may be started here. As further motivation for this pursuit may serve

1) The term bin has been proposed by K. Osondu in his thesis (Buffalo N.Y., 1974)
and can be used, when wanted, with "partial" or "full", similarly to "partial" or
"1 i near" order.
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the fact that partial operations have come in their own right in recent electronics

circuitry when parts of the function (mathematical and technical) are prescribed

while others are left open (oral remark by Professor Dexter).

1. Roots of this Research

The following is a brief, admittedly subjective, account going back to the problem

of extending a cancellation semi group S to a group (indeed rather rings without zero­

divisors to fields or division rings).
It was discovered

a) that this problem is best understood as the ordered superposition of two distinct

ones, the first of which is the (usually easier) symmetrisation problem leading in

general, but not always,to a part.i al bin. The symmetrisation sym(S) is followed by

the usually more difficult problem of completion of sym(S) to a group, and

b) that sym(S) need not be associative and that its associativity is the sufficient

(and of course necessary) condition that it can be completed to a group.

Since the semi group generated by sym(S) (or even by sym(P), where P is any

presentation of S=S(P)) is by itself already a group, it seemed advantageous to look
at the problem as a special case of the more general one of embedding bins in semi­
groups. It is indeed much more general in view of the fact that any presentation of
semi groups or groups can be standardi zed to a bi n. However, in spite of so much more

generality the new problem turns out to be not more difficult. Indeed, it is simpler

in the sense that the new "associative laws" are simpler, more immediate in form
and in concept, than the famous n. and s. conditions of Malcev for the embedment of
semi groups into groups. A posteriori, these are but a special­purpose adaption

for a special case; and so too are, more than a decade later, the simultaneous but

independent results of Lambek and Tamari, precursors of this present work. Malcev

of course, was the precursor of all. (A more objective report would have to start
with Hamilton, Cayley and continue with Dyck,Thue, Dehn. Magnus, Etherington, 8ruck,

Coxeter, Moser, Lyndon, Schupp and many others).

For more details about basic concepts underlying this theory and for historical

background the reader is referred to [6] (in particular §§ 1, 2) and to [2] (§ 1).

2. Basic Concepts

A bin B (or partial binary operation, partial groupoid, monoid, multiplication

table with "holes") is essentially a conjunction of ternary relation statements

(li' r i; Pi)' usually written li r i =Pi (li' r i, Pi EB). B is called associative
if it can be embedded in a semigroup S; or, more specifically, if the canonical map
k: B...S(B) from B into the semi group S(B) generated by B as a set of generators and
defining relations, in brief as a presentation, is injective, or in other words,



304

if the distinct generators (i.e. the elements of B) will still represent distinct

elements of the semigroup 5 ("generator problem").

Algebraists describe the "generation" of 5(B) as a "quotient constructiorl'

5(B)=F(B)/EB, where F(B) is the free semigroup over the alphabet B, i.e. the set of

words with concatenation as multiplication, EB the equivalence relation induced in
F(B) by the relations of B (EB is in fact a congruence in F(B)); k assigns to each

element bE B the equivalence class of words containing the one-letter word "b".

This is unfortunately, but unavoidably, in general, an ineffective definition.

No suitable collections of semi groups nor details of their generation (even not
that of single elements as infinite equivalence classes of words) are generally

accessible for constructive inspection to see if there exists an embedding semi group,

or that no distinct elements of B become equivalent (mod EB) under k - except in

special cases. Indeed one knows that the decision problem of associativity for the
class of finite bins is equivalent to the word problem for finitely presented

(semi)groups and, therefore, unsolvable. Furthermore, every finite presentation of a
(semi)group can be standardized to a finite bin. Thus bins are universal standard

presentations of binary operations (even non-associative ones). (For details of

standardization see, for instance, [6](§2)).

5till, these equivalence classes of words have some general and yet definite,
genuinely constructive features, namely so-called wordchains. These are finite,

linearly ordered sets of words, each one obtained from its neighbour by one of the

substitutions of the given presentation (an equation representing two substitutions),
in our case a bin. Each equivalence class is a set union of its chains.

Wordchains "progress" or transform inside equivalence classes from one word to the
next by the standard bin substitutions

li r i Pi' the binary multiplication, contraction or fusion

(5): Pi li ri, the binary factorisation, expansion or split 5i,
one only at each step. Hence at each step the length of a word changes by +1 or -I.

These wordchains are referred to as standard wordchains. If such a wordchain begins

and ends with a single letter word, say "a" and "z"; it is called a special standard
wordchain, denoted by Ca. The inverse chain of Ca is denoted by Cz. The total numberz z a
of their constraction steps, say n, must equal that of their expansion steps, and thus
the number of all steps is 2n, that of all words, including "a" and "z", 2n+ I.

At each step three letters "act" making a total of 6n individual actions; each letter,
except a ana z, acts twice: appears and disappears in the chain at distinct steps. This
makes a total of 3n+l letters in the chain, 3n-l "full-l ife" letters called "edges"

and the two "half-edges" a and z ,
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3. Wordchain Patterns and their Associated Prototypes pn

Every wordchain can be visualized as "physically" written on a sheet of paper

and thus as a planar figure. More specifically, one identifies in successive words
letters repeated without any other action on them as successive parts of one and the
same segment or edge, or, if one wants so, as the repeated name of such an edge. One
further identifies the changes by substitution (i .e. applying the multipl ication table)

even when preserving one or the other letters, as vertices into which edges enter
from former words and end disappear), and from which new edges originate and
proceed to later words. As there would be no point in repeating the same whole word
one has exactly one vertex between each pair of successive words. Thus the standard
wordchain has become a planar 3-valent or 3-regular graph except for its ends. However,
special standard wordchains can be closed if one can identify the two end letters,
to become one edge - otherwise one has a "contradiction" to associativity. The whole
figure becomes a planar 3-regular graph or, equivalently, a 3-regular division of the
sphere or polyhedral net. From Euler's formula (Descartes's rule) one obtains

for their number v of vertices, e of edges and fof faces, where
n (1) , 2, 3, .. is a parameter called degree. There is a minor point of beauty
well fitting the system in keeping graphically as well as algebraically, by
starting with general ternary relations; see A1, the first in the list of examples.
Some statements,however,will obviously only hold for n >1. (There is perhaps even
a point for starting at

Each vertex has 3 edges as well as 3 faces, each edge 2 vertices and 2 faces,
and each face fg (g-gon, g ;<:2) g vertices and g edges sides). Vertices or faces
with a common edge, or edges with a common vertex, are called neighbours; vertices or
edges with a common face are "vertices and sides respectively of that face". For
n >1 each vertex has 3 vertices as neighbour, each edge 4 edges as neighbour and

each g-gon g faces as nei ghbour (g > 2).

In the construction of special standard wordchain patterns and their associated
associative laws, or in the search for "contradictions" to associativity, one progresses
in natural order with the parameter n from shorter to longer chains. To avoid tri-
vialities, juxtapositions repeating already encountered cases of wordchain patterns,
one imposes also 3-connectedness on the graphs. i.e. their separation into two
disjoint graphs requires the (omission) of at least 3 edges. We shall refer to planar
(or spherical) 3-regular and 3-connected graphs (or nets) as prototypes pn of degree n.
(The term "prototype" comes from the author's thesis (Paris 1951) where it is used in
a less general context, while Lambek uses "polyhedral condition" with a somewhat
different meaning). By a classical theorem of Steinitz they are indeed equivalent to
the nets of convex 3-regular polyhedra. One has thus associated with each essentially
new special standard wordchain pattern a convex 3-regular polyhedron pn with all edges
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directed and one distinguished as the closure edge.

4. The Converse Construction

Conversely, every prototype pn with vertices vI"'" v2n and edges eo'''' ,e 3n =eo
can be associated with a special standard wordchain and with couples of so-called

universal bins (An,Bn) by a judicious directing and labelling of the edges which
become the elements of a bin An as well as, with a slight modification, those of
a bin Bn. This is done by linearly ordering the 2n vertices such that

1) "i and v2n are vertices of one edge eo=e3n =a=z=(vl'v2n), and

2) each vertex vi' l<i < 2n, has at least one of its 3 edges coming from an earlier
vertex and one going to a later one. This means that all edges become naturally

directed by the indices of their endpoints-except perhaps (v1,v2n) - and that the
neighbour relation of vertices in the plane (or on the sphere) is preserved to some

degree by this projection on the index line "i": a vertex Vi(l< i< 2n,l<n) remains
surrounded by most of its neighbours by falling between some couples of neighbours.
The ordering and labelling of the vertices, of the edges with their induced directions,

and of the faces can be done in a finite number of distinct ways as follows:
First one obtains an open net Nn from a prototype pn by choosing any edge, say

eo=e3n=(vl'v2n)' cutting it into 2 halfedges or sticks "a" and "z", and pulling them
apart, say a to the top, z to the bottom. It has n bounded and 2 unbounded faces.

It is convenient to visualize Nn as spread out in the plane from left to right and
from "a" at the top to "z" at the bottom. Nn remains 3-connected in its interior.

However its "ends", i.e. a with vI and z with v2n' are only 2-connected, and so are
parts of Nn containing an end. No pn contains a pm, m< n,since pm would be disconnec-

ted (i.e. O-connected "with") from the remainder of r". Nor does pn contain any Nm,

m < n, since Nmwould be only 2-connected to the remainder of pn through its half-
edges "a" and "z". Hence no Nn contains any Nm, mc n. Thus no pn nor Nn, n c- I

contains a "2-side" (i .e. digon), nor, for n > 2, two adjacent triangles because they
constitute the bounded faces of an J, an N2, etc. respectively.

For convenience of reference the following construction proceeds in a Cartesian
number plane. Nn becomes an ordered (open) net or wordchain model or pattern On as

follows: Stretch Nn between vI and v2n giving the vertices vI distinct natural number

ordinates Yi=i, i=I,2, ... ,2n, such that each vertex vi' 1< i < 2n, gets (at least)

one neighbour vertex with lower index and one with higher index. This means that the
neighbourhood relation between vertices remains reflected in the indices by projection
on the vertical line as an "interior" or "between" relation. Thus all edges descend
strictly, i.e. pass any ordinate (i .e. horizontal line) at most once and no edges

ever meet except in vertices. Thus each vertex becomes a tripod with one edge to

one side, either up or down, and 2 edges to the other. This permits 1) to distinguish
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the two arrows simultaneously entering or simultaneously leaving the same vertex

as a left and a right factor, 2) to order all edges after a=eo as e1,e2, ... , ej,
... , e3n=z in this linear order by their starting vertices and when needed from

left to right.A different way would be 3) to order all edges meeting one and the same

ordinate from left to right as letters of one word, and 4) to order, similarly as

in 2), the faces fo,f1.... , f k, ... , fn,fn+1, fo the unbounded "polygon" to the left,

f n+1 to the right, both derived from the two faces of the "cut" edge, while each

other polygon fk has a distinct vertex vi at its "top", i k a strictly increasing
k

function of k and, dually, another at its well as a left and a right "side"
(=sequence of edges).

Each vertex vi' i =1,2, ... , 2n, is ei ther a split (factori sati on, expansi on, or

top of face) into which a so-called product arrow ej=Pi enters and from which 2 factor

arrows, a left one ej* =l i and a right one ej*+l =ri, j< j*, exit; or a fuse
(multiplication, contraction, or bottom of face) into which 2 factor arrows li and r i
enter and from which one product arrow Pi exits. Denote by si(ti) the number of splits

(fuses) among vl'v2' ,vi and observe that si >ti for i < 2n, but s2n=t2n=n,
si+ti=i, 5 1=1, and for n 2: 2 s2=2, etc.

The edges, including the sticks, presented by segments or arcs meeting any ordinate
at most once, are also called letters, elements, generators, variables or indetermina-
tes. The sequence of letters encountered by any ordinate between vi and vi+1 is well

determined and is the word

The sequence of 2n+1 words Wo=a, WI' , W2n=z associated with the ordered model
On is its wordchain, the sequence Ai its profile:

\ =O=A2n' ""Ai =Ai +I-Ai =:: 1, Ai 2: 1 for 1s i S; 2n-1.

5. The Universal Bins

To each vertex vi belongs a triple (1 i ,ri ;Pi) of letters "active" in the trans-

formation or transition Ti: Wi- 1 Wi with

Ti: Pi 1iri or Ti: ril i Pi' depending on vi being a split or a fuse.

The collection of these triples written as a binary oparation relation liri=Pi'
in particular, their tabulation into a partial multiplication table, defines the free
or universal bin Bn associated with On.

Once an ordering has been fixed each of the 3 edges, or rather half-edges at each
vertex receives a unique natural interpretation as one of the three components -
left factor, right factor or product - of 2n ternary relations or table entries of
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a bin An or Sn. Thus each of the 3n edges of An and the 3n-1 edges of Sn respectively

plays two roles which mayor may not differ - one at its beginning vertex, one at its

end vertex; but the half-edges a,*, z E: e" play only one product role. Thus the bin a"
is the same as the bin An, except for the chosen "start-end" or closure edge of

pn eo =e3n .wnich wi 11 be "cut" with the resul t that PI =a oF z =P2n in s''. Thus An
is obtained from e" by identifying a and z; in other words one has the "near-identity"
epimorphism e: s'' ... An. Sn is, evidently, non-associative, while An is easily proven

to be associative. Thus An is the greatest associative homomorphic image of Sn. An An
may belong to several Sn; a pn to several An; the number of pn rises steeply with

1arger n.

6. A Homological Definition of Associativity

One can now state the following

Proposition. A bin S is associative if and only if every morphism 13: s"... S splits
into the epimorphism e: Sn... An and a morphism a: An ... B.

This statement can also serve as a "homological" definition of associativity.

It can be turned constructively to supply an enumerable hierarchy of independent

associative laws. The totality of these can be expressed in a "metaformula" of

implications

a=z

where the hypothesis Sn is considered the conjunction of the 2n bin (ternary relation)
statements of Bn, for all universal bins.

Anticipating later results (section 15) subclassifying the An and Sn for n > 1

one writes with more detail

( A ) '* a = z, where 1 :0; m< n .

Here m is the number of letters of which possess two factorizations, i.e. they
appear twice as products inside the multiplication table including the one special

letter a =z E: , while the "primes" are those letters which have no decomposition

into factors, i.e. they do not appear inside the multiplication table.

admits a more compact and more exp1i cit "normal" form val i d for n > I
n(Am ) : Mq MI , I:o; k < m< n , '* M = M

k qk a z

where the hypothesis of k-1 equations is empty if m=l, and where the Mare monomials,

i.e. full binary bracketings in the n+m primes of the universal bins. These primes

serve as general variables of indeterminates like, e.g. x, y, z in (xy)z=x(yz) to
express the ordinary associative law, which is just the first instance of an

namely The q1' ... ,qm-1' are the m-I twice directly factorizable letters
common to an associated couple of universal bins An, Sn, while q =a =z in An only.m m m m
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The monomials Mq indexed by the qk are the couple of their prime factor de­

compositions the couple of their entries in the multiplication table,

Ma and Mz the unique prime factor decompositions of a and z.

Corresponding to the mmonomial equations above the polyhedral net belonging to

decomposes into m regions, each one a binary double tree ­ a pair of binar.Y trees
with a common root, Father like a natural tree ­ generated from the root by successive

binary factoring (splitting) as long as possible, i.e. till one is stopped when all
last components present are primes. Each prime belongs to the extremes of two distinct

such double­trees, except the case that it may belong to Ma and Mz' The totality of
primes constitutes the common boundary regions of these double­trees whose common

roots are just these elements with double factorization. The corresponding open nets

and wordchain patterns belonging to decompose in the same way, but rather into m+1

regi ons: m-I double trees Mk =Mk, I kc m, and the 2 trees Ma and Mz with roots

a and z. The two appearances of each of the primes are in the same order, but no

couple of monomials has any pair of brackets in common. This is the equivalent of

3­connectedness for monomial systems.

7. Types and Characters of Letters in Wordchains and Universal Bins

Each letter, except "a", originates (starts, appears, begins) in a vertex vi' and

each one, except "z", ends (disappears) in a vertex vi" i c i', in one and only one

of three possible ways: either as a left, or as a right factor, or as a product.
This yields the nine types indicated by the following self­explanatory symbols:

(u,v), u,v E {l ,r,p}, u being the letter character at the start vi' v that at the end

vi' .
Each letter has a natural number L= i '­i as its life­span in the chain during which

it participates in the wordchain.

The universal bins An and a" are rather "lean" and very special. Both have only
2n entries in their multiplication table of size (3n)2 and (3n+I)2 respectively,

the diagonals are empty. All elements are used exactly twice as left (1) or right

(r) factors (f), or as products (p), except the two special distinct ones (a * z)
in Bn. This produces 9 possible types (u,v) of elements with u,v =1,r, or p; one may

say that "a" is of type (­,p) and "z" (p,­). The nine, or even eleven types are
conveniently grouped into three principal types pi, i =O,I,2,where i is the frequency

of the character p in their type (u,v). Thus po comprises four types without p, the

already mentioned primes, of which there are altogether n+m, the same in and
pI also comprises four types (u,v), those with exactly one single p of which there are

altogether 2(n­m) elements in An and 2(n­m)+2 in Bn adding the two special elementsm m
a and z; finally p2 comprises one single type, the already mentioned twice factorizable

elements of which there are, by definition,m in but only m­I in
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(I) m I: In An there is at least one p2-element a =z.

(II) I {po-elements of 1= I{po-elements of 1= n +m:
In 2m of the 2n entries in the multiplication table are of the m p2-elements;

there remain 2(n -m) unique entries of pI-elements. Therefore, the number of primes

is 3n - 2(n - m) - m=n +min
In one has only one p2-element less, but two pI-elements a * z more, with no change

of primes.

PII) All three principal types must be present in a universal bin except that p2

may lack in Bn (namely in It suffices to prove that m< n , i.e. that elements
pI must always be present. Indeed, the first two substitutions must be splits "s ",

i.e. b=e l, or c=e2 of type ss (see below), therefore pl. There must be at least two
distinct pI-elements and at least one ending in z which is of type ¢¢ (see below).

Denoting by ¢ the fuse type of a vertex and s the split type one gets 2x2=4 other
edge types. Only pp becomes ¢s, all primes become s¢ and the pI become either ss or

¢¢.

8. Normalization

The classification of vertices in a chain as splits s and fuses ¢ suggests

classifications of edges into 4 classes ss, s¢, ¢s, and ¢¢. As a chain is equivalent

to its dual by inversion of directions which interchanges the sand ¢ characters of

the vertices, the edge characters ¢s and s¢ are each one invariant, indeed identical
wi th p2=¢s and pO=s¢, and thus ss U¢¢ =pl. So far nothi ng is new. However, the s-¢

characterization is useful for the normalizition of wordchain patterns, to weed out
some irrelevant but "annoying" vertex order changes by delaying all fusions unti 1 after

execution of all already destined future splits of all letters present at any time of

this process, i.e. including also iterated splits. In other words, one gives absolute
priority to expansion as long as possible. One could not do this with fusing because

the cofactor for fusing a present letter need not yet exist in the chain and will

only be produced by a later split. However, there is total symmetry between splits and

fuses as they must finally balance out, fuses becoming prominent in the second half
of the chain.

Among simultaneously possible splits one could fix a priority, say from left to

right in a word, but need not; one could also shorten chains by decreeing multiple

simultaneous splits as far as possible, but does not. The already introduced partial

normalization has certain consequences: in each "narrow" or "bridge", i.e. a word
of locally minimal length in a chain, there must be a p2-letter with lifespan I,

which means that it appears in this minimal word only. One does not need to go into
further detail because the normalization adopted here is automatically taken care of



311

by the monomial equations presentation (see sections 6. and 15.) which takes also

care of the essentials of the vertex ordering and which will be studied further.

9. General Discussion of Remaining Problem

The preceding description of the systems of monomial equations, the universal bins,
and the standard wordchains are not yet sufficient for their complete direct alge­

braical­combinatorial construction and enumeration independent from the con9truction

of their polyhedral graphs. This can certainly not be an easy problem in the general

case because its solution would, conversely, resolve the long outstanding problem

of an effective closed construction and enumeration of convex polyhedra to start
with the 3­regular ones, or at least a recursive construction not requiring individual

inspection of each newly constructed polyhedron for identification. However, some

dents have been made in this problem as we show in the following section.

10. The Case m=1

This is the so­called contraction­associativity. It has beencompletely resolved in

earlier work, including the enumeration of the associative laws by a complicated

formula of recur­rence; for n =2, 3, 4, 5, 6 their numbers are 1, 5, 34, 273, 2436

respectively. For further details the reader is referred to [4J (Resume p. 70, and

§ 8, p. 80), where these numbers are denoted by D(Pn­l) (0 for "diagonals"). Although

the enumeration is by recurrence, the construction of the themselves is quite
explicit and simple. This is also evident from the monomial form of (An); a single

m
unconditional identity in 2 disjoint bracketings over the same sequence of n+l letters
However, cases with m > 1 seem never to have been considered but even for m=1

one has not yet evaluated what could be learned about convex polyhedra from what one

knows about the

11. The General Case, the Successor Operation

For general 3­connected planar graphs, including especially 3­regular ones, only

relatively little seems to be known. This is quite surprising considering the fact
that simple 3­connected polyhedra, in particular 3­regular ones, are the most ele­

mentary "furniture" of ordinary 3­space in which we live, "the stuff from which

things small and large are made", from which Descartes had to start to build his
material world. Thus one can know little from this source about ordered nets, standard

wordchain patterns, universal bins, and associative laws. However, there is a simple
redursive construction leading from prototypes pn to all protottypes pn+l and,

therefore, to the whole infinity of prototypes P, startin g with the singl e pI, the

trihedron, or if one wants with the single p2, the tetrahedron, or even with the

single p3, the pentahedron, better known as the triangular prism. The construction
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of the pn+1 from the pn is by insertion of just a new edge dividing a face and any

two distinct edges of it. This creates two new vertices, three new edges and one new
face, resulting often, but not always, in several distinct pn+l depending on the face

and its edges chosen to be divided. The big differencefrom the successor construction

of the naturals N which can also start indifferently, say with 0, or 1, or 2, etc.,

is of course that after n=3 the P-construction bifurcates and then "polyfurcates"
more and more, and what is worse, in both directions; i.e. the binary (predecessor -

successor) relation becomes highly many-to-many with growing n. As the P-construction
becomes so quickly impractical and is certainly well-known it will not be treated
here further. Its algebraical interpretation is probably new, but this by itself will

not change the situation and will be treated elsewhere with a closer look at the

details of the successor operation.

12. The Closed Ordered Model

The closure condition a=z, also called an associative law An of degree n,

reproduces from a given ordered model On its parent prototype pn enriched with a
cyclic ordering of its vertices, which mayor may not be a Hamiltonian circuit, and,

more importantly, with a consistent labelling and "colouring" of the edge with their

character types giving them and the vertices a meaningful algebraical interpretation.
Or, conversely, one has provided a combinatorial-geometrical meaning of general

associativity. The prototypes thus enriched are called closed ordered models. The
principal letter types pi, i=O, 1, 2, are preserved under the dualities of top-bottom

and left-right direction inversion which were arbitrarily determined by the choices

of VI' and thus of v2n' of the cut-edge, and of e1 and e2 as left and right. Each edge
wi 11 s ti 11 get one of the above 9 types. The closure edge eo =a =z =e3n wi 11 be of
type p2, or, equivalently, ¢s, whatever its direction.

13. The Uniqueness of the Cut-Edge

This remains preserved under closure even if the closed On has several letters of
type p2, i.e. m> 1. To see this consider the directions of the sticks a and z and

the characters of the vertices VI and v2n. It was understood that VI is a split with
the product "a" directed into it, while v2n is a fuse and the product "z" directed
away from it. This gives the closure edge the direction v2n VI' The formerly un-

bounded faces f 0 and f n+1 have now become bounded by thi s common edge and cycl i cally

oriented, say fo clockwise and fn+l anti-clockwise. All other faces fl' ... , f n
keep their top and bottom vertices and retain their left and right sides ("sides"
in the sense of "sequences of adjacent edges") parting at the top and meeting at the
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bottom. Thus is singled out as the only edge between the only two cyclically

oriented faces. One can imagine a global map of "ocean currents" parting and meeting

around "islands" in fl'fZ' ... , f n, but circling the two "continents" in fo and f n+1
in opposite directions which thus are joined in the "channel" along the closing edge.

One could, however, decide otherwise. Indeed, one must invert the direction of the

current in the "continental channel" making vI the only source (all 3 edges going out)
and vZn the only sink (all 3 edges coming in) in order to preserve generalisability

of (equational) associativity to (quasi-ordered) semi-associativity, for instance,

the references [3] to [6] in [4],or [3] , [3Z] in [6]) in which transitivity without

symmetry imposes direction vI .... vZn for the closure edge. This again singles out this

couple of vertices (and their edge) among all others which remain splits or fuses.

14. The Vertex Ordering

The hypothesis Bn of An is a conjunction of bin statements. Therefore,it has to be

independent of their order. From this point of view the vertex ordering is only a

convenient auxiliary construction for the derivation of the associated wordchain.

On the other hand, the vertex ordering induces the arrowing of the edges instrumental

in obtaining Bn. What really matters is the characterization of the three halfedges

at each vertex as 1, or r, or p in a manner consistent with the general flow picture

described above. This could "a priori" be achieved on the polyhedron in various ways.

Once this has been done and the universal bin Bn has been constructed it is not

difficult to recover the associated vertex ordering except for irrelevant indeter-

minacies. This will be done in the next section by the method of monomials. One will
thus also obtain conciser and more familiar expressions for the associative laws An.

15. Monomials and Binary Trees, the Prime Factor Decomposition

One can considerably reduce the number of letters and statements required for an
An by using the classical bracket notation or any equivalent device. This will also

eliminate parasitic bugs in the vertex ordering. One pays by complicating the state-
ments. One starts with the "extremes" a and z, the only elements used only once in

the multiplication table. Substitute according to the multiplicate table of Bn a by

its factorization e1eZ and, similarly, z by eje 3n_1 or e3n_1ej, where ej is the

cofactor of e3n-1. For each p-type letter among the el,eZ,ej,e3n_l substitute its
factorization included in a pair of brackets according to the applicable formula

Pi .... (llri)' Repeat this procedure as long as possible, i.e. as long as there are stil
p-letters in the compounded expression. At the end all letters present must be of

pO-type, i.e. primes. Denote by M and M the thus obtained final monomials (thea z
complete binary bracketing expressions). Ma =Mz will serve as the new consequence
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replacing a =z, while one has erased in the multiplication table all used statements.

Note that in the process no pp-letters have been used as each substituting letter had

to have an l-type or r-type.

If this exhausts Bn one has finished, and An is reduced to the unconditional

identity Ma =Mz. Both are monomials without common brackets in the same n+I letters,
namely all the primes of Bn, appearing on both sides in the same order, while the

eliminated 2n letters were all the entries inside the multiplication table. That Ma
and Mz are two disjoint bracketings over the same word follows from the 3-connectedness
and the fact that each pO-letter "born" in a -s bc-s '" --> M must join its equal in M

a z
in order to disappear in the contracting chain Mz --> '" -->z. In fact, one has done

nothing other than reconstituted the wordchain leading from a to z, perhaps with some

"improvement", namely normal ization which in this case reveals the simple "I-mountain"

profile which may not have shown itself in the original form.

The graphic equivalent of this procedure is the "growing" of 2 binary trees from

the roots a and z in opposite directions by following up all uninterrupted sequences

of splits starting from a and similarly for fuses starting from z (indeed coming from

z the original fuses appear as splits). If this exhausts Bn then the crowns of these

two trees completely overlap and form a zone composed of primes only. One may call
these trees prime-leaved trees and denote them by their monomials Ma and Mz which

determine the trees completely. But what if there remain entries in Bn?

Indeed, each letter (edge) of Bn, say e, is root of its well determined binary

pr-ime-Leaved tree Me' If e is a prime Me =e is its own such tree and monomial. If e
is a pI-letter it also uniquely determines its prime-leaved tree by binary factoriza-
tion. The first one is uniquely determined and so are the later ones since all appearing

letters come from factorizations, thus they cannot be p2, and are, therefore, either
primes or pI-letters.

Moreover, as e is pI it must have at the "other" end a cofactor, say d. Then
de=g or ed=g, where g is a p-letter, too, d either a prime or a pI-letter, i.e.

also having a uniquely determined tree Md' One has, therefore, a tree Mg=MdMe or
MeMd and Mg is larger than Me' If g is p2 it cannot have a cofactor and Mg is a
maximal tree; if not it is pI and itself contained in a larger tree. Continuing
with comultiplication as long as one can one must finally be stopped at a p2_type

letter determining a maximal tree, say M. Of course if e was already p2 one would
q

already have such a q. Thus among the remaining entries there must be at least one

such q and, therefore, even at least two entries. Hence one can conclude:

If Bn is not yet exhausted there must be entries and relations of the form

e e*=q=qI=e'e" for q=qI and, possibly, other p2-letters q2,q3' ... , each one to
be treated twice as a and z have been treated before. This means that e, e*, e', e"
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have to be treated as e1, eZ' ej, e3n-1 (or e3n- 1, ej) before, by replacing each still

present p-letter by its two direct factors enclosed in brackets, till one is stopped

when one has arrived at two prime-leaved trees Mq and which may be of different
length. Similarly, one obtains M , M' , etc. till an is completely exhausted. One has

arrived at a collection of

en: Mq1= MqZ= ...

theirconjunction constitutes the new hypothesis and the implication An: =Ma z
the monomial equations form of an associative law. One can provide a further subscript

m indicating the total number of equations. This system is, in general, non-homogeneous:

its monomials may have different degrees; they must have all letters different in each

equation except Ma =Mz; they form a completely disjoint system of brackets, i.e. all

submonomials are distinct, although each prime, and primes only, just appear twice in

the whole system. The associated wordchain profi le is more pitted wi th "valleys", each

one having under its bottom a short-lived pZ-letter. M and M are now monomials overa z
distinct words, namely the first and the last "peaks" (= Ai having a local maximum)

of the wordchain, although they may have some common subwords. Each letter of Ma, Mz'
M , Mq must finally join its equal in some other monomial in a consistent order

also a well defined direction in each double-tree. The whole wordchain will

be recomposed from these pieces like some picture puzzles or a planar wiring system

from such subsystems by joining end-wires without overcrossing to their single

correspondents in other subsytem terminals. It will be easy because they correspond

in whole segments in which words overlap.

16. Homomorphic Images of Bins or "Colourings"

By closing the special standard wordchain into a circle, or rather on a cylinder

mantle, i.e. by imposing An, the Z extremal pieces Ma and Mz melt into one double-

tree Mz- ... -z=a - ... -Ma and one may consider a=z=qm' By imposing on its
one obtains a new universal bin An, a homomorphic image of Bn, indeed its greatestm m
associ ati ve homomorphi c image with I I =3n: every associ ati ve homomorphi c i mage of
Bn is also a homomorphic image of this An.m m

One is also interested in the non-associative homomorphic images of Bn, i.e. those

which still "separate" a and z .
The concept of homomorphism for general bins, even that of universal bins, needs

special attention. This is an important topic, indeed a crucial one for further

applications of this theory, which one must leave open here for a later occasion,

except for some simple but enlightening examples. By calling the image elements under

a bin homomorphism "colours" one puts in evidence that the concept of bin homomorphism

generalises that of edge colouring in a certain sense. In such "colourings" adjacent
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edges may, or may not have the same colour, but colours wi l l compose

according to a bin, i.e. constitute a "colour-bin".

The following interesting remark gives a new, purely algebraical equivalent to the

famous 4-colour conjecture. (Or should one rather say "theorem" after the recent

"proof by computer"?)

It is well-known that the general 4-colouring of faces (F
4)

reduces to that for

P and is equivalent to 3-colouring of edges (E
3),

(see, for instance, [1] pp.267;

the author is obliged to Professor G. Dirac for calling his attention to this theorem).

However, E3 is obviously equivalent to the existence of surjective homomorphisms

En: An --> C, C the "colour bin" of colours, say X,Y,Z, with the relations

XY=YX=Z, XZ=ZX=Y, YZ=ZY=X. (One may remark that C is a "truncated" 4-group, i.e.

with its identity element excised.) One has thus

17. The Prototypes pn

As already mentioned, there is only one prototype for each of the lower degrees

n=1, 2, and 3. They and some of higher degree are well known.

n=l: the trihedron pI has three digons (i.e. biangles or twos i des t-

Think of three meridians trisecting the globe. Its two vertices

are the poles. It is 3-valent and 3-connected.

Remark: No digon (=f2) can appear for n > 1 because of 3-connectedness.

n = 2: the tetrahedron p2 has four 3-angl es: 4f3.

n=3: the pentahedron p3, better known as triangular prism, has two 3-angles and

three 4-angl es (2f3 + 3f4) .

n = 4: There are two hexahedra p4:

(a) the 4-angular prism, for brief the "cube" 6f4, and

(b) the pentagonal "ha If-pri sm" 2f3 + 2f4 + 2f5 of two pentagons wi th one

common edge and two triangles and two quadrangles between them.

Remark: The tetrahedron is a triangular half-prism, the triangular prism a quadran-

gular half-prism. For n 4 the n-gonal prism and the (n+l)-gonal half-prism are

distinct.

n = 5: There are five heptahedra p5, two successors of the cube (which admits only

two distinct stroke operations ):

(a) the pentagonal prism 5f4+2f5,

345(b) truncated cube (truncated by cutting off a tetrahedral corner) If + 3f + 3f .

We note that (a) and (b) are also successors of the pentagonal half-prism,

while the 3 following ones, each with hexagons, are successors of the pentagonal
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halfprism only:
3 4 6 6(c) the hexagonal halfpri sm 2f + 3f + 2f , the two f with a common edge

and 2 less wellknown polyhedra
(d) 2f3 + 2f4 + 2f5 + 1f6, and

(e) 3f3+ 3f5: 1f6.

With increasing n the number of prototypes increases steeply: card pn for n =6,7,8

are 14,50,233. (The next two numbers (for n =9,10) are not sure and beyond they are

unknown [3]) .The "polynomial" notation IC/ i = (c3,c 4,c5 ... ) becomes insufficient

because of the existence of allomorphic polyhedra, i.e. combinatorially distinct

polyhedra, with equal numbers ci for all r". the first instance being also the only

one for n =6, namely two distinct octahedra (2,2,2,2). One has two adjacent 4-gons

separating two 5-gons, the other one has the two 5-gons adjacent and the two 4-gons

separated and different and lesser symmetry. For larger n allomorphy becomes the

usual thing. Similarly, completely asymmetric polyhedra become more and more frequent.

18. The First Associative Laws and some Higher Degree Examples

For the associative laws the situation is similarly deceptively simple for degrees

and 2 - no surprises because essentially well-known:

n =1: There is only one 01, the digon with its two sticks. It yields only one AI,

namely (b,c;a), (b,c;z) => a = z , i.e. the well-known law of
--I

uniformity of binary operations; in other words Al singles out

I bins among ternary relations. One can now take Al for granted and

c I can write, as usual, the relations as equalities. Should a digon

! appear in a wordchain it will be replaced by a simple segment and

I the number of vertices reduced by two, the number of edges by three

_I arid the number of faces by one.

n =2:

n =3:

All edges of the tetrahedron are homologuous and there is only one open net,

namely two adjacent triangles with two sticks, or, even simpler,

divide the 01 above by a "stroke" of the successor operation and

obtain 02. Either v2 is at the left and v3 at the right or vice

versa, depending on the inclination of the stroke: or even better,

as one wishes to direct the stroke. Because of duality this does

not matter and one obtains only one associative law:

A2: a=bc, c=de, bd=f, fc=z => a=z, or, by substitution b(de)=(bd)e,

z the ordinary associative law. From now on we take A2 for granted,

and replace two adjacent triangles in a wordchain by a segment reducing the

number of vertices, edges and faces by four, six and two respectively.

p3 has two kinds of edges, six 3-gon sides and three edges separating 4-gons

yielding two open nets N3: either (a) a 4-gon between two 3-gons, or (b) a
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3-gon between two 4-gons; or, even quicker, by the "stroke" operation applied
to N2, say to the upper triangle (this suffices by symmetry) to obtain N3; or

similarly, a conveniently arrowed stroke applied to an 02 yielding an 03. The

reader may draw the two N3 (a) and (b) and their five orderings Of yielding the
well-known five AI written out in former work. We remark that the unique self-

dual Af : ((fg)e)c = f(g(ec)) derived from N3(a), the four others from N3(b).

New are the fir st two instances of m > 1. They are derived from N3(a) which

yields two dual and the corresponding

bd = gh => b(de) = g(he)
ec = gh => (de)c = (dg)h.

The difference between Oi(a) and the two is in the arrowing of the quad-

rangle between the two triangles: In of (a) its left and its right side (= se-
quences of edges) have both edges. In one side has 3 edges, the other one

edge; the exchange of left and right yields the two dual cases. Again, all 7
A3 now granted, no N3, i.e. adjacent sequences # # or will be admit-

ted for n > 3.

=4: There is no need to write out the 34 Ai listings the 34 couples of disjoint

bracketings out of the 14 binary bracketings over 5 letters. One observes that
both p4 admit cycles entering and leaving each country f k once and only once

through distinct edges, starting, say, in fo and returning to it by passing from
f n+1. The "tour" corresponds to a Hamiltonian circuit in the dual graph (a
simplicial or triangulated polyhedron) and divides the "globe" into 2 henispheres,

say a northern and a southern. It induces an orientation in all edges passed, say

from north to south, and also in the remaining edges according to the rules.

It distinguishes also the northern end of eo = e3n separating fo from f n+1 as
the "North Pole", the other as the "South Pole".

For the remainder the reader is referred to the listed examples of associative

laws with indication of their prototypes. The reader is encouraged to draw let-

tered figures of the ordered models and to tabulate their bins. This is easily

done from their monomial expressions following the conventions, except that one
has replaced for convenience e1,e2,e3, ... by b,c,d .... It should not be too

hard to complete some of these lists of associative laws, with or without the

help of prototypes. Indeed, one can first construct associative laws as systems

of monomial equations and then derive their prototypes.

4.Two AI' ((ij)(fg))c
( ({jk)h)e)c

i((jf)(gc))

j(k(h(ec)))

(0,6) (="cube")

(2,2,2) (="pentagonal halfprism")
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(0,6)

1(2,2,2)

(2,2,2,1)

(di )(jg)
(( di )j)g

(de)c = j(kh)

bide) = (gj)k

(de)(fg)

d(e(fg))
jk =>

jk =>

gc (lm)k => (d(fg))c = ((df)l )(mk)

gc ij, fi = 1m => (d(fg))c = d(l(mj)) 1(2,3,0,2)(hexagonal halfprism)

bd = gh, he = jk, gj = mn => bide) =

ef = i j =>

ef = i j =>

ec = gh, dg

bd gh, he =

One

One

One

One

Six

Two

b(df) = jk, kg=(op)n => b(d(fg))=((jo)p)n (2,2,2,211allomorPhic polyhe­
dra, both with f6jf6

bd=g(ij), je=lm, g(il )=pq => b(de)=P(qm) (2,2,2,2l-z "cut".

bd=(jk)h, he=lm, kl=op => b(de)=j(o(pm)) (2,2,3,0,1)

ec=gh, dg=(mn)k, kh=op => (de)c=m((no)p)1(2,3,1,1,1)
ec=gh, dg=jk, kh=m(op) => (de)c=(j(mo))p

ec=gh, dg=j(lm), 1(mh)=pq => (de)c=(jp)q 1(3,1,2,1,1)
ec=g(lm), dg=jk, (kl )m=pq => (de)c=(jp)q )

The last two p6 are the smallest (completely) asymmetrical planar simple (i .e. 3­va­
lent) and 3­connected graphs (octahedral) in which no two edges are homologuous. This

was first remarked by R. Frucht (Compositio Math. 6 (1938), 239­250); communicated

by A. Hill, London). Thus each of their 18 edges to a distinct N6.
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1. Introduction:

consider properties P of subsets X of a t-element set T(t E IN). Imagine that

such a property P is given and that there are two players A("Algy") and C("Con-

structor") playing the following game: ft, asks C questions of the form: "Is x EX?"

about a hypothetical set X T. The prupose of those questions is to determine
whether or not the evolving set X has property P. A wants to minimize the number of

questions he asks and C wants to force A to ask as many questions as possible by pro-
viding very inconvenient answers. The number of questions which are asked in the game

if both players play optimally is called the complexity of P and we denote it by

c(P). P is called if c(P) = t. If you think of P as a Boolean function
you recognize immediately that "c(P) is a lower bound on the time any algorithm rec-

ognizing P must take in the worst case, on any model of machine where no two operations

can take place at the same t.imev lRv l . A very important special case occurs if T is

the set of two-element-subsets of an n-element set V, that is, the set of edges of
a complete graph Kn. We are then asking for the complexity of graph properties. Most

graph properties which are investigated in practice contain with a graph G each iso-

morphi c copy of G. I want to call such graph properti es i nvari ant. (In what follows
we always identify a property with the set of sets X T having this property.)

call a proper-ty P mO:iotonic if P or its complement contain with a set X all its
subsets. P is non-trivial if P t 0 and P = p(T). For the rest of this paper we

assume every property to be non-trivial. At any moment the situation of the game can

be characterized by a pair (E,N) with E T, N T and E n N= 0. We think of

E as the set of elements of T which are known to be elements of X, and of N as the
set of elements of T which are known not to be elements of X. An algorithm is a

function which chooses for each such pair (E,N) with E u N* T an element of
(E U N)c, the complement of E U N, which we interpret as the next probed element.

A strategy is a function, which assigns to each pair ((E,N),x) with (E,N) as
above and x E (E U N)c one of the pairs (E U {x},N) and (E,N U {x}).

an algorithm and a strategy we denote by c(P; the number of questions

which are asked in the game if A uses algorithm and C strategy Let

c(P = mi n{c(P; I algorithm J. Obviously,we have c (P) = max{c(P; I strategy}
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2. Dual ity:

* * cFor any property P we define the dual property P by P = {X '= T I X E P}.

(Notice that this definition differs from the notion of duality in [BBL]). We obvious­
**ly have P =P. Furthermore, the following lemma holds.

*Lemma: c(P) = c(P).

*Proof: For any strategy define a strategy by
*((E,N),x) = (E U {x},N) .. = E,N U {x}).

Let be any algorithm and assume that the game for testing P ends with the pair (E,N)

if A uses and C uses have c(P; IE U NI and

v X (E s Xs NC .. XE P) (1)
or

v X (E >; Xs NC X¢ P) (2)

* *By using and in the game for testing P , we get the following situation after

IE U NI questions: Our characterizing pair is (E',N') with E' = Nand N' = E. Now
suppose that E' '= Ys N'c. Taking complements we get N' >; y

C '= E'c or E y
C '= NC•

If (1) is true we get
v Y (E' s Ys N'c YE P*)

and if (2) is true we have
v Y (E I >; Y>; N'c Y¢ P*).

In any case the game is finished. So
* *c(P; ;0; c(P ; )

for all C and and, therefore,
c(P) ;0; c(p*) c(p**) = c(P).

3. Some important Results:

In 1973 Rosenberg [R] conjectured that there is a y > 0 such that for all (non­

trivial) invariant graph properties P
2c(P) ;0; 't : n

In [BBL] you find some counterexamples to this conjecture the first of which was con­

structed by Aanderaa (for directed graphs). Aanderaa and Rosenberg then formulated
together the following conjecture:
There is a y > 0 such that for all monotone, invariant graph properties P we have

c (P) ;0; Y. n2 .

Their conjecture was proved in 1975 by Rivest and Vuillemin [RV] with y = 1/16.

Kleitman and Kwiatkowski [KK] improved the value of y to 1/9 if n is large. It is con­

jectured that all monotone, invariant graph properties are elusive ([BBL],p.4). There
is even a more general conjecture of Rivest and Vuillemin [RV]: If P s p(T) is in­
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variant under a transitive permutation group on T and {0,T} P and {0,T} pC then

P is elusive.

Rivest and Vuillemin proved their conjecture for IT[ a prime power. In fact, this re­

sult is the most important step in their proof of the Aanderaa­Rosenberg­conjecture.
There are also some results proving the elusiveness of some special properties:

A theorem of Hopcroft and Tarjan shows that planarity is elusive ([BBL],p.7). A result

of Bol l obas [Bl] shows the elusiveness of the properties "cl(G) r" and "x(G) r",
where cl(G) and x(G) are the clique number and the chromatic number of G, respective­
ly.

4. The "Simple Strategy":

Let us define a strategy 1J!0 by 1J!0( (E,N).x ) = EU {x},N) "* 3XEP(EU {x},;; X NC).

In [MW 1,2] and [B2], pp.406­407, this strategy is discussed and it is claimed that

for T ¢ P 1J!0 is winning strategy for C (i .e. c(P; 1J!0) = t) if and only if P satisfies
the following condition:

V X E P Vx E X 3 Y E XC 3 YEP ( (X <, {x}) U {y} Y) (3 )

Now this condition is indeed sufficient for the elusiveness of P but not necessary.

We have to change it a little in order to obtain necessity, too. The right condition
is:

VXEP VxEX ((X'­{X})EPq3yEXC

3 YE P((X'­{x}) U {y} V))

The restriction that T ¢ P is unnecessary.

(4)

Theorem 1: 1J!0 is a winning strategy for C iff P satisfies condition (4).

Proof. The proof is almost the same as the one given in [B2].

Sufficiency: Let us suppose that the game ends after s < t steps with the character­

i zmq pair (E,N). Then one of the conditions (1) and (2) must hold. Since P is not
empty it follows immediately from the definition of 1J!0 that (1) must hold. So, if we
define X = NC and choose x E X'­E we have that XE P and X'­ {x} E P. Now condition (4)

impl ies that there are yEN and YEP with (X'­ Ixl ) U {y} Y. But then it is impos­

sible that 1J!0 chose y to be a non­element, a contradiction.
Necessity: Let us suppose that (4) does not hold. We get X E P and x E X with
X'­ {x}E P such that for all y E XC and all YEP (X'­ {x}) U {y} %Y. Now Algy first
probes the elements of X'­ Ixl and then those of Xc. This results in the pair (E,N)

= (X'­ {xl , Xc) after t­L steps. Obviously the game "{and therefore the proof) is
finished.

also want to write down the dual form of Theorem 1 which is not completely obvious.

We have:

= (E,N U {x}) "* 3 X E P(E X (N U {x})c).
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* *Theorem 1 : Wo is a winning strategy for C if and only if P satisfies the following

condition:
V XE P V Y E XC (X u {yl E P ,*:J X EX:J YE p((X u {y})'-{x} 2 V)). (5)

We can use Theorem 1* to prove the following generalization of a theorem of Bollobas

and Eldridge [BE]:

Theorem 2: Let P be invariant under a transitive permutation group on T. If P satis-

fies the following condition (6) then P is elusive:

*Proof: Let us assume that our strategy fails for otherwise the assertion holds.

Negating condition (5) impl ies that there exist X E P and y E XC with X u {y} E P,

but (X u Iyl ) <, {x} does not contain aYE P for all x E X. Since P is invariant under

a transitive permutation group we can assume that the first probed element is y. We

choose y to be not an element and from now on choose each probe z to be an element

if and only if z E X. It is now easy to see that (by condition (6)) the constructor

wins.

5. 2-connectedness is elusive:

In [B2], Theorem 1,2 (vi), it is claimed that P = "2-connectedness" is an elusive

graph property and that this could be proved by applying Wo to P or its complement.

It is easy to see that this not the case. It is the purpose of this final paragraph

to present a strategy showing that P is elusive. Here it is:

\)Jl((E,N),x) = (E,N U {xl) # x closes a cycle in the graph with edge-set E U {Xl

in which not all diagonals have been probed yet.

Theorem 3: \)J1 is a winning strategy for the constructor C.

Proof: Suppose on the contrary that C looses in time c = c(P; WI)' (E,N) being

the characterizing pair of the game at that time.

(i) If condition (1) holds, the graph Gwith edge set E is 2-connected. Let

e = {u,v} be an unprobed edge. It follows from the 2-connectedness of G

that there is a cycle in G containing u and v. Hence e is an unprobed

diagonal in that cycle which is impossible by the definition of
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(ii) So let us assume that condition (2) holds. It is easy to see that G is

connected. Note also that no block of G contains unprobed edges by the

same kind of reasoning as in (i). Consider two blocks Band B' of G ha­

ving the same cutvertex w. Denote by V(B) and V(B') the vertex sets of
Band B', respectively. We show that there is an unprobed edge joining
nodes in V(B),­{w} and V(B'),­{w}. This shows that we can add edges

from (E U N)c to G to obtain a 2­connected graph, a fact which obviously

contradicts condition (2). Suppose that no such edge exists. Then all
edges between V(B) <, {w} and V(B')'­ {w} are in N. Let e = {u,v l be the

last probed edge in V(B) U V(B'). (All edges in this set are probed at

time c).
By symmetry there are only the following two essentially differend cases:

Case 1: u E V(B)'­{w}, v E V(B'),­{w}. \)J1 would choose e to be an edge,

a contradiction to e E N.

2: u, v E V(B). Since e is the last probed edge in V(B), \)J1 chooses e
to be an edge. Now imagine that Algy asks the edges in the same order as be­
fore but that he omits e. Amoment's thought shows that with this modification

the characterizing pair (E',N') at time c­1 satisfies

NI N (and therefore E' :::: E'­ {e}).

But then tho game is finished which contradicts the minimality of c c(P; \)J1)

The proof is complete.
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