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This volume contains the proceedings of a conference on Combinatorial
Theory that took place at Schloss Rauischholzhausen in May 1982 to

mark the 375th anniversary of the Universitdt Giessen. There were eight
invited lectures and over twenty contributed talks. 21 of these papers
are contained in this volume. In accordance with the aim of the con-
ference, they cover the whole range of Combinatorics. We hope that the
conference and this book will contribute to a better understanding of
the various aspects of this fast developing and diverging field, as
well as stimulate the exchange of ideas.

We would like to thank all the referees for their cooperation and, in
particular, their prompt response. We are also indebted to Frau

D. Begemann and to Frau R. Schmidt for helping with the organizational
details of the conference, and to the Hochschulgesellschaft for
financial support. Finally, we are very grateful to the secretaries of
the Mathematisches Institut; without their help, the manuscript would
not have been completed in time.

Giessen, October 1982 Dieter Jungnickel
Klaus Vedder
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CRITICAL PERFECT SYSTEMS OF DIFFERENCE SETS

WITH THE MINIMUM START

Jaromir Abrham and Anton Kotzig
Department of Industrial C. R. M. A.
Engineering Universite de Montreal
University of Toronto Montreal, Quebec
Toronto, Ontario, Canada Canada

The concept of a perfect system of difference sets has been intro-
duced in [4] as a mathematical model of the following problem in radio-
astronomy: A few movable antennas are used in several successive con-
figurations to measure various spatial frequencies relative to some area
of the sky. The distances between antennas determine the frequencies
obtained. We do not want to miss any frequency, and want to avoid re-
dundancy (repetition of the same spacing between antennas). For more

details, the reader is referred to [4] and [5].

Let ComsPyre-esPy be positive integers, let Si = {X0i<xli<"'<xpi,i}’

i=1,...,m be sequences of integers, and let D, = {in_xki’ 1<k <j£pi},

i=1,...,m be their difference sets. Then we say that the systenm
{D,,...,D_} is a perfect system of difference sets (PSDS) starting with
1 m
m m rp.+1
. v (Pi
c if ,u D, = {c,c+l,...,c-1+ ) (
=13 i=1l 2
ponent of the PSDS {Dl,...,Dm}. The size of D, is Py’ the half-size of

)} . Each set D, is called a com-

Da is r, = [pa/2] where [x] denotes the integer part of a real number x.
Then P, = 2r2+6a where 6a = 0 or 1 according to whether Py is even or

odd. This notation will be used throughout the paper. The reader will
observe that the size of a component is not the number of its elements;

. . . 1
if the size of D, is p, then D, has 1+2+...+p_ = fpa(pa+l) elements.

a
We will briefly review some earlier results concerning PSDS:
A PSDS is called regular if all its components have the same size.
A regular PSDS with m components of size p, starting at c, will be called
an (m,p,c)-system. In [4], the existence of (m,p,l)-systems has been
related to graceful numberings of certain graphs, and some relations
between m,p,c, necessary for the existence of an (m,p,c)-system, have
been obtained. Further existence studies have been carried out in [7];
one of the results obtained here is that, if an (m,p,c)-system exists,
then p <4. Without this result, a lot of time and money could have been
spent in efforts aimed at finding (m,p,c)-systems with large values of
P. A generalization of this result to the nonregular case has been ob-
tained in [9]: Every PSDS contains at least one "small"” component (a



component of size < 4). This has been further generalized in [2]:

Every PSDS starting at ¢ (c 2 1) contains at least c small components.
This follows immediately from the inequality (5) below. Proceeding from
the inequality (2) it has been proved in [1l] that, in a PSDS with m com-

ponents with the half-sizes r, <r_ <... ST it is rm:sK(/E+l) where X

is a constant, and that the aierage of half-sizes of the components of
any PSDS is bounded by a constant. The first result implies that the
number of perfect systems of difference sets starting with a given c,
which has a given number m of components, is finite. Moreover, it fol-
lows from the results in [{2] that c¢c<m. This means that the number of
all PSDS with a given number of components and all possible starts c is

finite.

Let us now denote (similarly as in [1, 27])

m

=17
n =3 ail(Zra+6a)(2ra+6a+l)
1 m
s == ) r_(3r_+28_+1)
2 421 @ a a
1 m
v = = — )
2 3 aera(ra+l), 4 n-£

and let S = {c,c+l,...,c+s-1}, L = {c+£,...,c+n-1}, M = {c+s,...,c+l-1},

_ 3k . -
Furthermore, let us put Xj+k—l,a xj—l,a = dja’ j = l,...,pa, k 1,...,
pa+l—j, a=1,...,m. Then the elements oI Da can be represented in the
form of a difference triangle
D
Pa
dla
2 2 2
dla d2a Pa-1l,a
1 1 1
dla dZa s s e s o dy g

The top (bottom) r_ rows of this triancle will be referred to as
its upper (lower) half. Then s and £' denote the number of elements in
the lower (upper) halves of all triangles corresponding to {Dl,...,Dm},
and n denotes the number of all elements in all such triangles. Accord-
ing to Proposition 1.1 in [4] we have
k p_+1-k patl-k
] a2 =% d*a, K =1,2,...,r
4=1 3 3=1 ]

Adding over k and a we get

m Ta k +1-k m Ta py+l-k

p
(1) a.? = a
aél kzl j£1 Jla LoL L ja



in words: The sum of all elements in the upper halves of the difference
triangles corresponding to Dl""'Dm is equal to the sum of all ele-
ments in the lower halves., If we replace the elements in the lower
halves by ¢,...,c+s-1 in the middle rows by c+s,...,ctf-1, and in the

upper halves by c+f,...,c+n-1, we get from (1) the inequality
c+n-1 c+s-1

I iz , i.e.
i=c+l i=¢

(2) (n+f+2c-1) (n-£) > s(s+2c~-1), or (2n-£'+2c-1)L&' 2 s(s+2c-1)

and this is equivalent to the fundamental inequality obtained in [1]
(see also [2] or [9]). This inequality has been instrumental in esta-
blishing a number of important properties of PSDS; for details and other
results on PSDS see e.g. [11, [21, [31, (51, (61, (7)1, (8], [10], [12],
[13], [14]).

In [2], the inequality (2) has been used to develop another in-
equality, easier to use, which will be useful in the proof of Theorem 3
below. Since [2] is not vet available in print we will repeat the main

steps here.

Let us consider a PSDS with m components and let ¢, denote the

number of components of size k, k22. Then m = kZZCk aﬁd we can write
n =3 k;102k(4k2+2}:) vz kzlc2k+l(4k2;6k+2)
(3) s = % k£1c2k(3k2+k) + % k§1c2k+l(3k2+3k)
Lot =3 kzlc2k(k2+k) + %kélc2k+l(k2+k)

If we denote, for any positive integer p,

w_ = 2 kpc

k51 Py 2kl

then the second inequality in (2) yields

(e,+e,tw +w2)(4c—2+3sl+7€2+4w +1lw +7m2) -

1 7271 0 1

- Ao—
(€l+382+3wl+3m2)(-c 2+el+3€2+3wl+3m2) > 0

which implies

2 2, 2 2
+ - + +4 + + + + + 2
€l 82 (L)l (.U2 26152 .€1wl 281(1)2 282(A)2 2&)0(81 62 wl (L),)) 2

(4c-2)(€2+w +w2).

1

Adding 253 to both sides we can transform the last inequality into



(e.t+e,+tw +m2)(el—e o, -w,) + 2el(e +e tw,tw,) + 2w,(e.+e o +w2) >

17271 2 71 "2 172 71 "2 071 "2 71

2
- (4c- Ac-

281 (dc 2)el+(_c 2)(€l+e2+wl+w2).

Dividing this last inequality by el+€2+ml+w3 and denoting
-2
s - el(el 2¢c+l)
c €l+52+ml+m2

we get

- - Ao~
381 52+2m0+ml w2 > 4c 2+2AC.

Substituting from (3) we can transform the last inequality into

1
4 2¢- = - .
(4) cytegte, 2 2c 1+ LS kZdzk(k 3) (c2k—1+C2k)
Furthermore,
(Zc'l)(€7+“l+“2)+€i
2oLty = — gy -
175279179
2
_ (20—2)(52+wl+w2) €l+52+wl+w2
el+62+ml+w2 el+€2+wl+m2
€ tw, +w
. 2 2 71 "2 1
It is el sel, El saz, and therefore T e Fo tus > 5.
1 72 71 72
This implies 2c-1+Acz%(2c—2)+1 = ¢, and (4) yields then
1 .
(5) cytegte, 2c + 5 kédk(k-3)(02k_l+c2k).

Since (5) is weaker than (2) it holds as a strict inequality whenever

(2) holds as a strict inequality.

Throughout this paper, we will use the symbols C C,,C, to de~

C
177277374
note the one-component perfect systems of difference sets represented

by the following triangles:

A perfect system of difference sets will be called critical if its
elements satisfy (2) as an equality. Equivalently, {Dl,...,Dm} is a
critical PSDS if the elements of L,S,M correspond to the elements in
the upper halves, lower halves, and middle rows of the difference tri-
Dm} .

angles corresponding to the components of {Dl,...,

The reader will observe that a PSDS starting with ¢ satisfying (5)
as an equality satisfies also (2) as an equality and therefore is criti
cal. A noncritical PSDS starting with ¢ satisfies (5) as a strict

inequality.

Only critical PSDS with ¢ = 1 (the minimum start) will be consi-



dered in this paper. For ¢ >1 we would get different results. The
reader will observe that the above PSDS Cl,Cz,C3,C4 are all critical
(with ¢ = 1).

Let us start our study of critical PSDS by investigating the pos-

sible position of 1. We get the following

Lemma 1. Let A = {D Dm} be a critical PSDS and let D, be its

1 1

component containing 1. Then Da also contains s and s+l1. Let dy, = 1.

If the size P, of Da is odd then i # ra+l where r_ = [pa/2]. If p, is

even then the sizes of all components of {D ,...,Dm} are even numbers.

1
Proof. To simplify the notation we will drop the subscript a; hence

hey
e.g. aj will stand for d,%_ etc. Let di = 1. If i<r+s (where

’

§ = p-2r) we have di+l = dl+dF >s+1 and d° ., <s and this implies

i i+l - i+l ©
r _ r+l _ . . i r+l _
di+l =8, di = s+l., If i2r+l we get in a similar way di—r = s,
r+1 _ . < . r _ _ Lo
di—r = s+l. If pa is odd and i = r+l we get dr+2 = dl = s and this is

impossible. Furthermore, we see from these considerations that Da con-
tains s,s+l1. If 13N is even then se¢S, s+lelL, hence M = @- there is no

component of odd size.

_ v 1 .
Let A = {Dl,...,Dm} be a PSDS and let n = dhg’ where Dg is one of
the components. Then we will say that n is represented as the dif-
r r +1
ference v-u in D_ if 1. v-u =n 2. either 4,9 =u, 4 g = VvV or
o+l h+l,qg hg
r
9 = g =
dh—rg,g u and dh—rg,g v.
Clearly, we must have u<s, v=s+l.
Lemma 2. Under the assumptions of Lemma 1, Da contains 2 and at least

one oI the numbers s-1, s+2 (in addition to the numbers 1,s,s+l). The

numbers 1,2 are neighbors in the first row of the triangle corresponding

to Da if and only if A is either Cl or C2. If 2 is represented in D,

as the difference of s+2 and s then A is either C3 or C4.

Proof. Let us denote by Db the component of A containing 2; the sub-
1

script b will again be omitted. Let us define j (1l <3 Spb) by dj = 2.

Then d?+l = 2+d% if j <r+6, d?+l =a% +2 if jzr+l. The two cases
J i+l j-r j-r

are similar (they can be transformed into each other by writing the

elements of each row in the triancle representing Db in the opwnosite

order), so only the first case will be discussed. Since d?+l > s+1,

at < s, we have either dr+1 = s+2, a4t = s or dr+l = s+lJ art = s~1
j+1 =S j r %541 3 v %941 :

This implies that ZeDa (since,s,s+leDa) and, therefore, Db = Da' In

the first case, s+25Da, in the second one, s—leDa.

Let us now distinguish the two cases (according to the way in



which 2 is represented as the difference of two elements of Da).

I. Let 2 be represented as the difference of s+2 and s. Let d; = 2,
d§+l = s+2, d§+l = s for some j<r+§. Let di = 1. If ic<r+§ we have
d§+l = s, hence i = j, which is impossible, hence i > r+l, and di_r = 55

. . . s r+l _ .,r+l _ .r 1
this implies i = j+r+l1 and pa:>2. Furthermore, di-r = dj+l = dj+1+dj+r+l
= s+1 and d§+2 = d§+d§:} = s+3, hence s+3 L and M = {s+l,s+2}, p, = 3.
Let us now denote L' = L-{s+3}, 5' = s-{1,2,s}. If L' # @ # S' there

exist a yeL' and an xeS' such that v = x+3 (since 3 must be in sone

compdnent of our PSDS), and this is impossible, as y zs+4, x<s-1. We

conclude that L' = ¢ = S' and we have a PSDS with only one component

of size 3, which must coincide with either C3 or C4.

II. Let 2 be represented as the difference of s+l and s-1. Let d% = 2,
+ .

dg L s+1, d§+l = s-1 for some j<r+8§. If di = 1 we can see as in

case I that i=z2r+l and d;—r = s, dﬁti = s+l which implies i = j+r. If

1,2 were neighbors we would have r = 1, p = 2 or 3. If o = 2, 3¢L and

1 or C2. If p = 3, 3eM and the first row of the triangle cor-

responding to Da must contain a number > 3 which belongs to S- and this

we get C

is impossible.

Lemma 3. Let A = {Dl,...,Dm} be a critical verfect system of dif-
ference sets different from each of Cl,Cq,C3,C4. Then 3EDa (i.e. 3 is
in the same component as 1 and 2). Let k be defined by dia = 3. Then

either 3 is represented in Da as the difference of s+3 and s and
k sra+ a °F 3 is represented in Da as the difference of s+2 and s-1
and k 2 ra+l.

Proof. Let us denote by Du the component containing 3; the subscript

@ will again be omitted. Let k be defined by dl

e = 3 (in Da); now we

have the following three possibilities.

r r+l

A, dk+l = s, dk = s+3 (if k < r+6)
+1 .

or di_r = s, di_r = s+3 (if k2 1r+1)
r r+l .

B. dk+l = g-1, dk = g+2 (1f k <r+8)
r +1 \

or & _. = s-1, 4> = s+2 (if k> r+l)

r e eo r+l _ <

C. dk+1 = g-2, dk = s+l (if k < r+6)
r r+l .

or dk—r = s-2, dk—r = s+l (if k2 r+l)

Under our assumptions, if Da contains 1,2, it contains s, s+l, s-1;

this means that, in all 3 cases considered here, 3eDa, hence Da = Da'



We will now show that the above case C is impossible. In case C,
if k< r+8, we have d§+l = s-2, d§+l = s+l1. If d} = 2, we have d§+l
s+l and we see that j = k which is impossible. If k zr+l we have

d;ti = s+1, hence k = r+j. According to the proof of Lemma 1 (Case I),

we have also i = r+j where di = 1, hence i = k and this is again
L)

impossible.

Let us now consider case A. If k=2r+l, we have di_r =s, Ifi

is defined by d% = 1 we have by the oroof of Lemma 2 (Case I) i = r+j,

di_r = s, hence i = k and this is a contradiction.
In case B, if k <r+§, we have d;+l = g-1; we also have d§+l = g-1
where d% = 2, and this is a contradiction acain. This completes the

proof of Lemma 2.

Lemma 4. Let A satisfy the assumptions of Lemma 3. Let j,k be defined
again by d; =2, di = 3 (j<k+8). If 3 is represented as the dif-

ference of s+3 and s then k = j-1. If 3 is represented as the dif-

ference of s+2 and s-1 then k = j+r+l.

Proof. Ve have d%+r = 1 (see Lemma 2) and d? = g, and this implies
j = k+1 in the first case. In the second case, we have d§+l = s-1 =
di_r and this implies k = j+r+l.

Theorem 1. Let A satisfy the assumptions of Lemma 3. Then A cannot
have any component of odd size.

Proof. Let us assume the opposite. Then, according to Lemma 1, Da

is of odd size. Let us consider two separate cases.

A, 3 is represented as the difference of s+3 and s.
1 1 r r+l r+l
= = = = = = +
Then dj—l 3, dj 2, dj+r 1, dj s, dj s+1, dj—l s+3, and
r+2 1 r+l

_ _ . . _ =
j-1 < dj__l+dj = g+4. This implies s+4e¢lL, M {s+l,s+2,s+3}, °, 5.

There are two possibilities for the position of s+2 in the triangle

representing Da: either s+2 = d§:i or s+2 = d?i%. In the first case,

_.r+l _ .r 1 = el 1 1 _ .1 _ .
s+2 = dj+l = dj+l+dj+r+l = s l+dj+r+l’ hence dj+r+l = dj_l 3 which
is impossible. In the second case, j = 3, d% = 3, d% = 2, dé =1,

r _ .2 _ 3 _ o _ a1 . 3 _ 2 _ _ - g2
dj = d3 = s, dl = g+2 = dl+3+2, i,e. dl = s-3, and dl = g-3+43 s d3
which is a contradiction.

B. 3 is represented as the difference of s+2 and s-1.
1 _ 1 _ 1 _ ' r+2 _
T@en dj = 2, dj+r =1, dj+r+l = 3 (see Lemma 4). We have dj
. +
d].'+dr+l = 2+s+2 = s+4e¢l, so again M = {s+l,s+2,8+3} with s+l = at l,



+ e . .
s+2 = d§+i. Ve have two possibilities for the ovosition of s£3 this

. 7 _Jr+l _Gr+l y . B - -

time: either s+3 = dj+2 or s+3 = dj—l' We observe that Py 5, r, 2
. . 1 _ 1 _ 1 _ _ <3 _

again. In the first case, dj = 2, dj+2 =1, dj+3 = 3, and st3 = dj+2

1 1 1 _ 1 . . . 1 _ _ 42
dj+2+dj+3+dj+4 = 4+dj+4 which implies dj+4 = s-1 = dj+l and we have a
contradiction. In the second casé, s+3 = d% = d% +d%+d% . Since

j-1 =1 73 “j+1
2 1,.1 1

= = +dn . = g~ 3 X = =
s dj d] d]+l we have dj+l s-2, and we conclude that dj—l 3
d§+3 and we have a contradiction again.
Remark. It has been shown in [2] that the average number of dif-

ferences in the components of any PSDS cannot exceed 21. However, the
largest average number of differences ever achieved — to the best of
our knowledge — is ten (see [11] and [12]). It was hoped that this can
be improved by constructing a (critical) PSDS with one component of
size 3 and several components of size 5 [6]. Using a computer, P.J.
Laufer attempted to construct such PSDS with up to six components of

size 5., All results were negative; Theorem 1 shows why.

To investigate in more detail the last remaining case (when all

components are of even size), let us substitute into (2) for n,s,f and

write the result as an equality (we consider critical PSDS). We get
m m m m m
272 2 2 2
(Pegd®-201lx)( 1) - (Dlrg"+2]x,=0.
a=1 a=1 a=1 a=1 a=1
m m o,
Let us put x = 2 ra, y = Z ry - Then the last equation becomes
a=1 a=1

y2—2xy—x2+2y = 0. Solving for y in terms of x we obtain (since y 2 9)

y = x-1 + /(x-1) 2+x?

. L . 2 .
Since x,y are positive integers, x must be such that (x-1) +x2 is a

perfect square. Our search (for x <120) provided the following pairs

X,y:
X =1, y =1
x = 4, y = 8
x = 21, y = 49
X =120, y = 169 .

If x =1, y = 1, we get either Cl or C2. If x = 4, y = 38, then,
= 2, However, no PSDS with 2 com-

necessarily, m = 2, and r. = r

1 2
ponents of size 4 can exist (see [7]), Theorem 4.2). For x = 21,

y = 49, our complete search revealed the following possible candidates

for critical PSDS (by ¢, we denote the number of components of size k,

k



by m the total number of components):

1. cy = 2, Cy = 5, C6 = 3, m = 10

2. Cy, = 5, Cy = 2, Cg = 4, m = 11

3. c, = 9, c4 = 2, c6 =0, 08 = 2, m= 13

4. c, = 7, cy = 2, Ce = 2, Cg T 1, m= 12

5. Cy = 11, Cy = 1, Cg = 1, cg = 0, Ci0 = 1, m = 14
6. c, = 8, Cy = 4, Cg = 0, Cq = 0, Cig = 1, m = 13,

The question is still open whether any of the above 6 possibilities
really yields a critical PSDS. At this moment, the problem seems to

be too difficult to decide even when using a computer.

The authors are indebted to the referee for pointing out that

the above search for x can be replaced by using the Pell eguation. The

equation x2+(x—l)2 = u2 is equivalent to 1 = u2—2x2+2x or 2 = 2u2—4x2+4x
or (2x—l)2—2u2 = 1 which is a Pell equation. The Pell equation
M%-20% = -1 has the general solution M = A_, u = B, where A +B /2 =

2k+1 k! k k Tk
(1+v/2) . Using this formula we can obtain the same values of x as

above.

To summarize, we have:

Theorem 2. There exists no critical PSDS, different from Cl,C2,C3,CA,
with the sum of half-sizes < 20. There exists no critical PSDS with
the sum of half-sizes equal to 21 and fewer than 10 components. There

exist no critical PSDS with the sum of half-sizes between 22 and 119.

We would like to conclude this study by conjecturing that the only
l,C2,C3,C4.

The above results yield immediately the following extension of

critical PSDS with start one are C

earlier results about the number of small components.

Theorem 3. Every PSDS with start one, which is different from Cl,Cz,
CB’C4’ and such that the sum of the half-sizes of its components is
less than or equal to 119, has at least two small components (i.e.

components of size 2,3, or 4).
Proof. If our PSDS has Ck components of size k, k=22, then it satis-
fies (5) with ¢ = 1:

(6) c,tc +c, =2 1 +

2 73 74 ) -

|

¥ k(k-3) (¢ +C
L . .
KSa 2k-1 T2k

If the PSDS in question is noncritical, (6) holds as a strict inequality,
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hence cz+c3+c4 2 2, If it is critical, then it must be one of the
above-mentioned six possible candidates. However, each of them has

at least seven small components.
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1. Summary:

The aim of this survey report is to draw attention to some recent developments which
seem to have changed the face of Coding Theory completely. While this area of applii-
cable algebra -which has strongly been influenced [3] by hard problems of communica-
tions engineering- during the last two decades has become a main part of Combinatorics,
reaching from Finite Geometries to Representation Theory [18], it has never been fully
accepted as a part of Algebra itself - the reasons for this being manifold. On the one
hand, Coding Theory can easily be mistaken for a part of Linear Algebra, while on the
other hand a non-typical feature distinguishes it from the main concept of modern and
classical algebra: The properties of codes are "basis-dependent" so that the many tools
of "basis-free" algebra are not always helpful.

Due to some very recent publications ([131,[19],[29]) this situation may be changing
very soon, as the interaction between these fields has provided new insights into both:

Results from Algebraic Geometry permit the construction of codes, which are better
than those known before, while very well-known bounds on codes in turn improve Weil's
bound for the number of points on a curve over a finite field.

On the other hand, a very recent paper [9] shows that the construction of extremely
good codes is possible by rather elementary means.

The aim of this survey report is to introduce a general mathematical audience to
the background, eventually leading to these new developments. As is usual for a survey
the author has included results from many different fields, not just from his own one.
Thus, this report hopefully is in the spirit of the classical understanding of research
- providing a collection of material which is not even contained in the most recent
book [30] on Coding Theory.

2. Introduction:

Coding Theory has been developed during the last four decades in order to improve or
secure the quality of data transmission systems, where transmission can mean to trans-
port data through space (e.g. telephone links, satellite communications etc.) or time
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(e.g. magnetic tapes, optical discs etc.). Possible threats to the quality of such
communication lines are additional noise on the line, erasures, distortions, bursts
due to fading etc.

The general model for a transmission system embodying the feature of such error pro-
tection is shown in the following figure:

. Messages
Transmitter ata > [Encoder
Channel:
noise telephone
erasure radio
distortion | —— magnetic tape
bursts . .
fading optical disc
- Messages
< Data Decoder
Figure 1.

At this point, some notation and definitions are necessary.

Henceforth, messages m are vectors of a fixed Tength k over a finite field

GF(q), i.e. m € GF(q)k.

An encoder is an injective mapping

k

E:GF(q) » GF(q)"

s

where n(zk) 1is the length of the code ¢ = im E, which consists of codewords
€= (CysenesCpq) €C.
The decoder is a surjective mapping

D: GF(q)" - GF(q)"

performing a maximum 1ikelihood decision [30] on the vectors coming out of the channel

The channel 1is assumed to be discrete and memoryless [30] with known symbol-error dis-

tribution p(x,y), x,y € GF(q), determining the channel capacity C. D maps the re-
ceived word w to the message element most 1ikely to have produced that result; for
a symetric discrete, memoryless channel this means the m € GF(q)k for which E(m)
differs from w in the fewest coordinates. - )



The practical problem now is
"How to find a good code?"

which more explicitly reads

"How to find an encoder/decoder pair (E,D) such that both can be computed

in a small number of steps, such that ¢ = im E has a high rate R = %

and the decoder D performs with a low residual error probability Perr(D)

using a small amount of time."

A beautiful - though not very helpful - partial answer to this question was given by
Shannon [27], whose famous theorem reads

For a discrete memoryless channel with capacity C, for any R (0 <R < C) and
each ¢ > 0 there exists an integer n, a code Cc:GF(q)n with Icl = qLRnJ

and a decoder D with Papr(D) < &

Here the capacity € of a discrete memoryless channel means, loosely speaking, the
maximum amount of information that can be put through the channel per symbol trans-
mitted. .

This can best be illustrated by the example of a Binary Symmetric Channel (BSC) trans-

mitting zeros and ones with the symbol error probability p of interchanging the two

symbols. Its capacity CBSC(p) is easily computed [32] to be
CBSC(p) =1+p 1ogzp + (1-p)1ogz(1—p).

Thus, for a noiseless channel (p = 0) the capacity reaches its maximum of 100%, while
in the jammed situation (p = %) the capacity is zero.

Proofs of Shannon's theorem for the simplest case of the Binary Symmetric Channel (BSC),
giving the flavour of the proof technique, can be found in [30] or [32]. It should be
remarked that this technique is based on a purely probabilistic argument so that
Shannon's theorem gives a compietely non-constructive answer to the question above in
the following sense: A random code of length n and the appropriate size with the
maximum 1ikelihood decoding rule is very likely to have a very small residual error
probability. For many reasons, though, it is desirable to be able to construct the

code explicitly.

2. Linear Codes

An immediate approach to the problem mentioned above is to consider linear codes.
A linear (n,k,q)-code 1is a k-dimensional subspace ¢ = im E, where
E € Hom(GF (q), GF(q)").
With respect to a suitable basis, the encoder E 1is given by the generating matrix

GE which maps the messages onto the codewords by E:m - EGE'
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Hence ¢ s the rowspace of G Any basis Dl”"’bn—k of the dual code ot

£
can be used to form the control matrix Hof ¢, i.e. H = [h},...,hﬁ_k]. Thus an
alternative description of the linear code ¢ 1is, therefore, given by ¢ = kerH.

Using a probabilistic reasoning applied to control matrices, one can prove Shannon's
theorem [32] in the class of Tinear codes over GF(q) as well. Yet, apart from the
problem of finding an infinite class of linear codes with rates approaching channel
capacity, the question as to how to decode linear codes efficiently is still not an-
swered.

If the discrete memoryless channel is additive, i.e. p(x,y) = u(x-y) with u(o) = p

and u(x) = é%%- for x € GF(q)~{o}, then the maximum 1ikelihood decoding principle

is equivalent to the method of minimum weight decoding, which reads:
For any u € GF(q)n define D(u) to be the codeword c € ¢ with

wgt(u-c) = min wgt(u-x),
XEC
where for z € GF(q)n the weight wgt(z) of z is given by
wgt(z) = [{ilo < i < n-1, z; + o}].

Here again it should be pointed out that the concept of weight is heavily dependent
on the choice of basis in the vector space.

Decoding by the minimum weight method means algebraically: For each coset C+u
of ¢ in GF(q)n the minimum weight vector e, the coset leader, has to be computed.
Comments on the complexity of this problem will be made later. Before doing so, how-
ever, the geometric meaning of this decoding procedure will be discussed more closely:
Defining the minimum weight d of ¢ by

d = min{wgt(c) | c € ¢~ {o}}

the code is said to be e-error-correcting if 2e+1 <d.

The geometric meaning behind this is clear, observing that a metric is defined on
GF(q)n by the Hamming distance

d(x,y) = wot(x-y) of x,y € GF(q)".
If ¢ 1is e-error-correcting the spheres Se(c) of radius e around the codewords
¢ are disjoint.
The following elementary estimate for deriving a lower bound for d from the struc-
ture of the control-matrix H of ¢ will be used throughout the rest of this report.
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Fact 1. If any 1-1 rows of the control-matrix H of ¢ are linearly independent,
then d z 1.

We now give an example.

Example 2. Let r 2 2 be an integer, gq=2 and n = 27-1. Let H be the
(Zr-l)xr-matrix the rows of which are formed by the non-zero vectors of GF(Z)r.
Then ¢ = kerH is the r-th Hamming-code with n = Zr—l, k=2"-1-r, d=3 as is
easily verified. These codes have especially attractive feature of being decodable
nicely. Suppose the received vector is u € GF(Z)n. We assume that at most one error
occured during transmission (recall d = 3). Then u has the form u = c+e, where
both the codeword c¢ and the error-pattern e, having at most one non-zero entry,

are unknown. To determine these we compute the syndrome

u-H=c-H+e-H=0+¢eH

since ¢ = kerH. Now eH is the i-th row of H if e was of the form
e=1(0,.,0,1, 0,...,0),where the entry 1 occurs in position 1i. Thus the error
is in position i and can easily be corrected (confer [31,[61).

Now it is time to come to the draw-backs of using linear codes. Decoding is gener-
ally a much harder problem - only Hamming codes are so nice. Recalling the remark about

k coset-leaders

coset leaders we note that for an (n,k,q)-linear code a table of q""
has to be stored, if this simple decoding method is used. Even though more sophisti-

cated methods can be applied in certain cases, the problem of decoding arbitrary 1lin-
ear (n,k,q)-codes is NP-complete (see [2]or[4]).

Finally, one further remark should be made here. Although Shannon's theorem holds for
the class of Tinear codes over GF(g), linear codes with given minimum distance will
generally contain fewer codewords than unrestricted optimal codes. In other words,

linear codes are subjected to quite restrictive bounds.

3. Bounds on the parameters of codes

An immediate restriction on the choise of the parameters of Tinear codes can easily
be derived using Fact 1 from the previous section.

Observation 3. For a linear code of lenght n, dimension k and minimum weight d
the inequality k+d < n+1 holds.

Codes satisfying this bound with equality are called Maximum Distance Separable
(MDS)-Codes (confer [12],[18]1,[301).
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In a later section we shall return to this special class of codes.

Another bound that can easily be derived by standard counting arguments is given
in the following:

k

Lemma 4. For a linear (n,k,q)-code ¢ the equality I wgt(c) = ng —nqk'1 holds.

ceC
The proof of this lemma is by standard double counting (the non-zero entries in
the matrix formed by the 1ist of codewords). An easy but useful consequence of this
tTemma is the socalled Plotkin bound:

(ak-1)d = na“(3hy .

For given q let A(n,d) denote the maximum possible size of a linear code
C < GF(q)n of length n and minimum distance at least d.

Using this notation two important bounds are the following:

Lenma 5 (Plotkin bound). If d > nﬂél then

A(n,d) - (d-6n) s d, where O = 9;—1

Lemma 6 (Sphere-packing bound).

d-1
7 ,
Amd) - = (el s q"
=0

The proof is again by double counting [30]. Equality in this bound is achieved
by the so-called Perfect Codes (see [18],[28],[30] ).
Whereas the above bounds are upper bounds, a powerful Tower bound has been given by
Gilbert and Varshamov [18].

Lemma 7 (Gilbert-Varshamov bound).

d-2 .
if o (") <q"K then A(n,d) > o

i=o |

Again, the proof makes use of Fact 1. One can construct a control matrix for such

a code by iteration. If 1 rows have been chosen such that any d-1 are linearly it

dependent and if, furthermore,
d-2

= (a-1)3()) < q
J=1

n_k—l, then add a new row to H.
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Important asymptotic versions of bounds are derived immediately from these finite
versions. For a Tinear code of length n, dimension k and minimum distance d let

R = %— denote the rate of the code and the ratio o6 = % the relative distance.

If the length n tends to infinity (as Shannon's theorem proposes), the asymptotic
behaviour is of considerable interest. Observation 3 and Lemma 4 yield

(3') R+6s1

A

4'y & Sél- for linear codes over GF(q) of

sufficiently large rate.

Here f Xg means f(n) < g(n){1+o(n)) as n - =,

In the same manner the asymptotic Plotkin bound may be derived.

Theorem 8: For linear codes over GF(q)
l- g 8 for el Ll

0 for 6¢ [ﬂél, 1]

Proof: Take any "Tong" (n,k,q)-code with minimum weight d. Shorten it, i.e. take
all codewords having zeros in fixed positions and omit these coordinates, to a length
n fulfilling the condition

d > n'gél of Lemma 5.
Then this shortened code still has minimum weight d. Plotkin's bound, however, gives

k

A(n',d) =< d——agT——- <d. This in turn implies qf <d-q"™ . With n > and
- ___n'
q

- no, o9 _s4a
d = 6n, we have A 6dTT' and R<1 66:T . o

The most interesting conclusion can be derived from Lemma 7 giving the Gilbert-
Varshamov asymptotic lower bound.

Theorem 9. Let 0 < &6 < ﬂll. For any q there exist linear codes c; over GF(q)

with rates Ri and relative minimal distance 61 > 6 satisfying
> -
Ri 21 Hq(éi)’
where H = -1) - - (1~ -
q(x) X 1ogq(q 1) - x logqx (1-x) ]ogq(l X) .

Proof: We may assume that q = 2.
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One can estimate partial binomial sums as follows:
let 3 <A<l Then
n no_.
zx.x.n' 5 (?) sz 2x1(?) - (1_+2x)n.

n
Thus = (?) < (2_XA+-2+X(1_A))n. For x = 1092(141) this inequality becomes

Symmetry of binomial coefficients and Sterling's formula then give
<]
;") 6n  nh,(6)
< T (5)s2

VeRs(I=5)  i=o '

Applying this to Lemma 7 for suitable values of ni’ki’di yields the assertion. o

The asymptotic form of the sphere-packing bound gives an upper bound for R wusing
the same technique [18].

Theorem 10. RS 1-H_(3).

Using tools from Representation Theory, Linear Programming and the theory of Special
Functions this bound can be sharpened to the McEliece-Rodemich-Rumsey-Welch-bound [11]
for the case g=2. This will be of importance later:

Theorem 11: For g=2 we have R X1 —Hz(%-— s(1-6) ).

Before going to the next sections, a rough sketch should provide some intuitive under-

standing of these bounds. (The true upper bound of the (hatched) region of asymptotic-
ally admissible codes will not be drawn).

R
1
g asymptotic Plotkin's upper bound
7, TSEXL McEliece (g=2) upper bound
/;%éi%;§§§§ Gilbert-Varshamov lower bound
0 [}

g-1 1
q
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Codes which are on or above the Gilbert-Varshamov bound for Targe n are called "good
codes. They exist by Theorem 9. By Shannon's theorem, however, there are much "better"
codes with respect to R and perr' These, of course, cannot have a uniformly high
minimum weight. However, there still remains the major problem of constructing good

codes which are well decodable.

4, Codes which are well decodable: Cyclic Codes

Definition. Let n € IN, (n,q) =1 and
GF (q)[Z, 1~ 6F(q)[x] /("-1)

be the group ring Hn' An ideal ¢ « R, is called a cyclic code.

How can one determine the rate and the minimum distance of such a code? An analysis

of the structure of R, will help to answer this question. Since (n,q) =1, R,

is a semisimple ring:

Rnu

n e wnw

6F () [x] / (p; (X)),

i=1

W wn

where the p;(x) are the irreducible factors of x"-1 = pi(x). Thus a cyclic code

¢ 1s always a partial sum i=l

C= 8GF(q)Ix]/ (py(x))
i€l

for some subset I < {l,...,s}. Hence c¢(x) € R, is a codeword ¢ € C

iff c(x) = 0 mod pj(x) for each j € {1,...,s}~1,

iff c(xj) = 0 for each root o5 of pj(x), Jj¢I.

Using these basic facts almost all properties of cyclic codes can easily be derived.
In this context, a simple observation,which may be considered as a finite version of
Hilbert's Nullstellensatz, will be helpful.

Observation 12. With each cyclic code ¢« R

¢ = B GF(a)IX1/ py(x)
i€l
there is uniquely associated the set of common zeros VC = v {oa,og ...} of the code
341

polynomials in ¢. Then dimGF( )C =n- [VC] and a control matrix for ¢ is given by

q



21

o Jer .

This matrix shows the close connection to the technique of Discrete Fourier Transforms
(see, for instance, [61,[181,[21]1) which immediately yields fast and efficient decoding
algorithm (see, for instance, [3],[ 6] [32]). A rewording of Fact 1 gives an estimate
for the minimum distance of a cyclic code.

Corollary 13 (BCH-bound). Let I be the Tength of the longest arithmetic progression

of exponents of elements of Ve with a stepwidth relatively prime to n. Then the

minimum weight d of ¢ satisfies the inequality d =7 + 1.

Before discussing the consequences we give an example to illustrate the usefulness
of these observations.

Example 14. Consider the Hamming Code Hy [5]. We observe that its control matrix
consists of all points of PG(2,2) and rearrange the rows according to the Singer
group of PG(2,2). Then the set of rearranged codewords is an ideal

Hy « GF(2)[x] /- ).

Over GF(2)[x]

7 3

x'=1= (x-1)(x +x+1)(X3

+x2+1y

Since x3-+x-+1 = p(x) s the indicator function of the difference set {0,1,3} mod7,
Hy s the ideal generated by p(x). So let « be a root of p. Then

VH' = {a,uz,a4}. Hence dim Hé =7-3=4 and d=z3 as £ =2.
3

The corresponding control matrix is given by

1 100
o 010
W o a? ) 001
ol - 011
ot 110
ol 111
of 101

Decoding this code is even easier than described in Example 2 and mathematically more
attractive (confer [3] or [6]).

This short description of the properties of cyclic codes shows that they are
~ well described
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- easily designed
and, moreover,

- very practical,
as there are decoding procedures (see [3],[20],[22]) for cyclic codes of length n
requiring O(n 1ogzn) steps.
After these good properties, one has to mention the sad ones. Although some improve-
ments on the BCH-bound are known (see [7]or [23]), it is bad asymtotically as the
following theorem shows [18].

Theorem 15. There does not exist an infinite sequence of primitive BCH-codes of Tengt
n over GF(q), where primitive means n = d“-l, with & and R approaching non-zero
Timits.

Though cyclic codes may be very interesting for specific applications (e.g. the

(23,12)-GoTay code has & =é% , R= %%, so that (6,R) 1lies far above the asymptotic
Plotkin bound). Theorem 15 shows that in terms of asymptotic behaviour they do not
meet any of the bounds discussed.

Recently other constructions were proposed which do not have those disadvantages.
The first one is due to Ahlswede and Dueck {1] using random arguments. They show that

for n > o there exists an x € GF(Z)n and s “"“'R-nj €5, such that
n m M, W L
1 2 12 }

C={£sé 91(_ ]
is a code of rate R (close to capacity) with Perr - 0.
The disadvantage of this approach is clear. The proof is non-constructive and does not
give any computationally feasible decoding rule.

The second one is just being published by Delsarte and Piret [9] who give an alge-
braic construction of codes with a feasible encoding/decoding algorithm which simul-
taneously reach channel capacity and have probability of erroneous decoding tending
to zero.

This problem was a major challenge during the last few years. It may briefly be
mentioned that the construction of these codes makes use of the idea of concatenated
codes which are defined as follows:

First consider a so-called outer code,(for instance, a cyclic code over a field

GF(qm) ) consisting of codewords c = (Co""’cn-l)' Here each ¢; is a vector of
length m over GF(q) and thus a codeword of the so-called inner code. Delsarte and
Piret succeeded in designing suitable outer and inner codes to achieve their result.
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It should, however, be mentioned that this is only possible because they drop the
requirement of a least d.

On the other hand, this condition was not omitted in the investigations going back
to Goppa (see [131,[151,[19],[29]) whose results will be discussed in the sequel.

5. Codes which hopefully are better: Goppa-Codes

For the construction of Goppa-Codes one considers an extension field GF(qm) of GF(q).
Let G € GF(q")[z] be a polynomial of degree r. Let

P = {al,...,an} c GF(d“)

be a set of places in GF(qm) such that P n VG =@, 1i.e. P does not contain a

zero of G.

The Goppa-Code T(P,G) 1is the subspace of vectors ¢ € GF(q)n fulfilling the equation
n-1 c.

5
(*) Lo
j=o 27%

=0 in GF(q")[z1/ (G).

The properties of Goppa-Codes can easily be derived from this construction.

Theorem 16. The Goppa-Code T(P,G) has dimension k =z n - mr and minimum weight
dzr+l.

Proof. Consider the equation (*). By Lagrange interpolation a vector c € GF(q)n
is a codeword iff _c. G(z)-G(ay)

=0 in GF(q")[z] .
i j

Thus the coefficients of zo,...,zr'1

have to satisfy a system of Tinear equations
of rank at most r over GF(qm) and thus rank at most r-m over GF(q). Hence

dim T'(P,G) 2 n-mr. Equation (*) also shows that at Teast r+1 of the ci‘s have
to be non-zero in order to give a rational function the enumerator of which is di-

visible by G. o

The Tatter argument shows implicitly that Goppa-Codes are well decoded by the
Berlekamp-Massey-Patterson algorithm (confer [31,[20],[22]), using the approximation
by rational functions, with complexity O(n ]ogzn).

Another combinatorial observation leads to an estimation of the asymptotic behaviour
of Goppa-Codes.
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Observation 17. ([18],[30]) Let Iqm(r) be the number of irreducible polynomials of
degree r over GF(qm) and assume

d-1 m
(+%) NG CENGARRICE

Then there exists a Goppa-Code T(P,G) over GF(q) with an irreducible polynomial
G € GF(qm)[z] of degree r admitting GF(qm) and having parameters

n=4q", kzn-m and minimun weight d.

Proof. By the same reasoning as in the proof of the minimum weight bound, it is clear
that the denominator D(z) of the expression (*) for a codeword of weight w is of
degree w-1. Thus D(z) can be divided by [ﬂ%lj irreducible polynomials of degree

r. o
We can now prove the asymptotic result on Goppa-codes [18].

Theorem 18. For n -« there exist Goppa-codes asymptotically meeting the Gilbert-
Varshamow bound.

m
Proof. Observe that Iqm(r) P %(qm—(r-l)q?) (see [3]or [18]). Substitution of this
slightly sharper bound in condition (**) yields, using Lemma 7, the statement for

n - oo,

For many years this result has been believed to be best possible.

The Tast section of this report gives a short description of very recent results
which show that the final word has not been said, yet.

6. Generalized Goppa-Codes are better

During the years 1979-81 Goppa [13] pointed out that the construction of Goppa-codes
is possible over other extensionfields (e.g. function fields) and that this might

lead to better codes if one uses tools from algebraic geometry. This idea has recently
been used by Tsfasman, Vladut and Zink who give a very compressed plan of attack in
[29].

Goppa's idea is the following (see [13],[19]).

Let X be a smooth projective curve of genus g over GF(q). Let {Po’Pl""Pn}
be the set of rational points of X over GF(q).
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n

let D= X Pi and G = Zn%)Q be two effective divisors [31], where G s assumed
i=1

to be rational (i.e. mQ = Mo for all conjugates QY of Q) and of degree a.
Furthermore, the supports of the divisors D and G should be disjoint. Let Q(D-G)
denote the GF(q)-vector space of differentials w, whose divisors (w) dominate
G-D, (i.e. (w) 2 G-D).

Let 2g-2<a < n+g-1. The Tinear map

resy: Q(D-G) - Fqn, given by
w > resp(w) =(resp (w)s...,res, (w))
D P1 Pa
is injective [19], since a > 2g-2.

The generalized Goppa-code is the_§ubspace F(D,G) = 1m(resD) of Fﬁn . By Riemann-

Roch's theorem (see [31],[24]1), Tr(D,G) has the dinension k=n+g-1-a.

The weight wot(w) = wgt(resD(w)) in a natural way is given by wgt(w) =

= [{ilresy (w) # 0} being the rumber of poles of w, which is equal to the number
i

of zeros of (w) reduced by the degree of (w). Thus we obtain the following inequal-
ity for the minimum weight d: d =z a-29-2.

Remark 19. The close relation between the generalized Goppa-codes and those of section
5 can be worked out without too much efforte The similarity of the concepts becomes
clear by the residue map res which, in the case of the definition of the elementary
Goppa-codes of section 5, is just the mapping

n ¢
T

- (cl,...,cn),

i=1 27%

i

while the "disjointness" of the divisors G and D corresponds to the condition that

G(z) should have no zeros in the set {al,...,an}.

To consider the asymptotic behaviour of generalized Goppa-codes we restrict our atten-
tion to a slightly less general situation.

n
Let {P_,...,P } be the set of all rational points on X, D= £ P. and G =aP
0 n i 0
i=1 :
Then the code T(D,G) has the rate R = nt9-1-3 .n4 relative distance
n
a+2-29
62ﬁ-n_.

For the sequel of a closer look at the asymptotic behaviour of the quotient gﬁl is

is necessary. By Weil's theorem [14], the number n(X)+1 of rational points ( i.e.
GF(q)-points on a curve X of genus g(X)) is estimated by the following inequality
[19]: |n(X)-q| s 2g(XVg .
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If we define vy (X) = 9(X)-1 then (see [191,0291)
q n(x)
L 1
Y, = lim inf vy _(X) 2 —— .
¢ X q /g

A consequence of this result was observed by Tsfasman [19].

Theorem 20. The line R+6§ = 1-yq with 0 s R,s < 1-v lies completely in the
region of asymptotically admissible codes over GF(q).

Proof. Recall that a is allowed to run over the interval 2g-2 <a Sn+g-1.
Taking the 1imit over all curves X and observing that d 1is bounded from below by
a-29-2, the statement becomes obvious. o

This immediately yields two consequences. The first one is an improvement of Heil's
inequality for the cases g=2 and =3 [19].

Corollary 21. For qg=2,3 the asymptotic Plotkin bound gives Yo 2 % and Y3 2 3

Remark 22. This improves the classical Weil bounds Yy > 51—-and Y3 >

1
V2 23

Yet another observation implies a further improvement of this estimate.

Theorem 23. Y, 2 0.525.

Proof. By Theorem 20, the line R+6&6 =1 - Y, has to 1ie under McEliece's bound
(see Theorem 11). Thus vy, has to be large enough that the line R+1 =1-v, is a
tangent of McEliece's functicn HZ(%-—VSTTTST ). Differentiation gives a tangent for
Yy = 0.525... . o

For q > 3 no such simple corollaries of theorems in Coding Theory are known to yield
improvements in this area of Algebraic Geometry.

On the other hand, the tools provided so far will give a contribution to Coding
Theory improving the Gilbert-Varshamov lower bound. These results are due to Zink and
Vliadut [29] and Thara ([15],[16]).

Theorem 24. For q = p2, P a prime, there are families of curves X over GF{q)
1

Vi-1

satisfying 1lim y_(X) =
x @
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Corollary 25. Let S, <S, be the solutions of the equation H (S)-S =_L1 .
S 1 2 q V-1
For q = pz, pz 7, there are generalized Goppa-codes over GF(gq) which asymptotic-

ally "lie" on the line-segment connecting (SI,H(Sl))and (SZ’H(SZ))' Thus they are
clearly above the Gilbert-Varshamov bound.
72

Proof. Observe that for q =z the straight line R+S =1 lies above the

Gilbert-Varshamov bound, for all S € (SI,S

1
Va-1
2)-

7. Conclusion

The results from the last section show that generalized Goppa-codes are better than
all other known families of codes: The reader should note that they only exist for
relatively large alphabets. No easy approach for the interesting case ¢=2, which in
most practical application is of major interest, seems to be known [19]. Besides, for
generalized Goppa-codes it is necessary to compute the genus of a given curve as well
as a basis of the space of differentials. In principle this can be performed by Coates
algorithm [8]. Nevertheless, the question of efficient decoding algorithms is not
settled [19]1. Although Goppa [13] refers to Mahler's p-adic approximation algorithm
[171, a general method has not been developed yet.

Finally it should be pointed out that the Delsarte-Piret approach [9], cf.Sect.5,
seems to be far more promising, as they construct codes achieving capacity (which is
far beyond all bounds discussed so far) by dropping the requirement of a uniform
minimum weight.

It should be a challenge to all coding theorists to use this approach to construct
codes lying above the Gilbert-Varshamov bound by elementary means.
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GENERALIZED SCHUR NUMBERS

Albrecht Beutelspacher and Walter Brestovansky

Fachbereich Mathematik der Universitdt,

Saarstr. 21, D-6500 Mainz, West Germany

An n-partition of a set X is a set 1w = {Al""'An} of subsets of X such
that any element of X is contained in exactly one element of 7. The n-partition
m o= {Al""'An} of a set X of integers is said to be m-sum free, if in no component
Ai of m there are m (not necessarily distinct) integers areeeiay with the pro-
perty that a +...+a . =a_ (i € {t,...,nH.

Issai SCHUR [4] proved in 1916 that, for a given n, there is an integer v such
that no n-partition of {1,...,v} is 3-sum free. More generally, using RAMSEY's theo-
rem, one can show that this is true for an arbitrary integer m 2 2. (See for instance
HALDER and HEISE [3], p. 142.) The smallest number v such that no n-partition of
{1,...,v} is m-sum free will be denoted by v = o(m,n). These numbers o(m,n) are
called SCHUR numbers. It is easy to check that for any number v' 2 o{(m,n), there is

no m-sum free n-partition of {1,...,v'}.

SCHUR numbers have been thoroughly investigated (see e. g. [5]). In this paper
we shall first determine the SCHUR numbers o(m,2). Moreover, in Section 2, we shall

give new lower bounds for the numbers o¢(3,6) and o(3,7).

Afterwards, we define generalized SCHUR numbers for arithmetic progressions in an
obvious way. Here, an interesting phenomenon coccurs: There are generalized SCHUR num-
bers which are not finite. Therefore, in Section 3, we look for conditions which assure

that these numbers are finite (or, infinite, respectively).

Finally, in Section 4, we shall give an explicit formula for the generalized

SCHUR numbers with n = 2.

1. SCHUR numbers

In this Section we are concerned with the ordinary SCHUR numbers o(m,n). Clearly,
o(m,1) = m-1 and o(2,n) = 1. Therefore, we shall always suppose m 2 3. Our first
tool is to determine o(m,2). In order to do this, the following general lemma is use-

ful.

1.1 LEMMA. o(m,n) 2 m*o(m,n-1) - 1.

Proof. It is to show that there exists an m-sum free n-partition of the set

{1,...,m0c(m,n-1)-2}.
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By the definition of o = o(m,n-1), there is an m-sum free (n-1)-partition

{Al""'An—l} of {1,...,0-1}. Let us define the following sets:
a = {o,041,ee., m=1o - 1}, Y = {(m-1)o,...,mo - 2}.

Moreover, the sets B,,...,B are defined as follows:

1’ n-1

(m—1)0—1+s€Bj P sEAj (j € {1,...,m=1}).

We claim that = = {A1 U Bise-esA Us, I’An} is an m-sum free n-partition of
X ={1,...,mo-2}.
For: Obviously, m is an n-partition of X. In order to show that m is m-sum free

we distinguish the following cases:

1. cen
Case Let al, ,am_1

- e . i . - - +.o. ot
m-sum free, a1+ +am_1 ¢ Aj Moreover, since a1+ +am_1 £ (m-1) (o-1), a, am_1

be elements of Aj for a j € {1,...,n~1}. Since Aj is

is no element of Y.

Case 2. Suppose b1 € Bj and Ayreeesd € Aj for a 3 € {1,...,n-1}. Then there
exists an element a, in Aj with b1 = (m=-1)o -~ 1 + a- It follows
+ +oat = . - - 1.
b1 a, a1 a1+a2+ +am_1 + (m-1)o 1
Since Aj is sum free, a1+...+am_1 ¢ Aj; consequently b1+a2+...+am_1 ¢ Bj.
Case 3. Let b1 and b2 be elements of B, and c3,...,cm 1 be elements of
5 -
Aj U Bj (3 € {1,...,n-1}). Since m 2 3, it follows
b, + + +... 2 - >
1 b2 c, +cm_1 P b1 + b2 2{m-1)o mo,

b, +b_+c_+...+ .
hence 1Py *ey St ¢ Aj UB,

Case 4. If a_,...,a

, are elements of A , then
1 m-1 n

+.. .+ z (m-1
a, a1 (m-1)0,

a, +...+ .
[1e] 1 am_1 $ An

Together we have shown that © is m-sum free.[]

Since o(m,l) = m~1, the above Lemma implies immediately

1.2 COROLLARY. o(m,n) 2 m® - (n '4...+m+1).0

1.3 THEOREM. o(m,2) = m® - m - 1.

Proof. In view of 1.2 we have only to show that o{m,2) = m2—m-1 holds. Assume on the

contrary that there exists an m-sum free 2-partition {Al’Az} of {1,...,m2—m—1}.
Without loss in generality we can suppose 1 € A This implies (m-1)+1 & A

so m-1 € AZ' Therefore {(m~1)+(m-1) ¢ A2, hence (m-l)2 € Al' Now,

miome1 = @e2)1 4 11 ¢ A

consequently mz-m-l S a,.
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Consider now the number m. If m € A1, then

m-1)% = @-2)m + 141 § A

if me€ AZ' then

mz—m—l (m-2)*m + 1+{(m-1) $ A2:

in both cases a contradiction. O

2. The SCHUR numbers o¢(3,6) and 0(3,7)

On the SCHUR numbers o(3,n), the following is known (see 1.3, [1] and [2]):

0(3,2)

5,

g(3,3) = 14,
c(3,4) = 45,
0(3,5) 2 158.

With the aid of a computer we could show the following

2.1 THEOREM. o0(3,6) 2 476 and o(3,7) 2 1430.
(Note that 1.1 implies

0(3,6) 2 3*0(3,5) -1 2 473, and

2
g(3,7) 2 3+0(3,6) - 1 2 1427.)

The above Theorem implies in particular (cf. [5]):

n-7
2.2 COROLLARY. o(3,n) 2 3252—35———i—1 for n 2 7.0

pProof of Theorem 2.1.
(a) The following 3-sum free 6-partition {Al""’AG} of {1,...,475} shows
0(3,6) 2 476. For each integer a S 475 and any i € {1,...,6} it holds

a EA, e 476-a £ 4,.
i i
So, we list only the integers less than 239.

A, : i, 4, 10, 16, 21, 23, 28, 34, 40, 43, 45, 48, 54, 60, 98, 104, 1lo, 113, 115,
118, 124, 130, 135, 137, 142, 148, 154, 157, 159, 181, 203, 227, 232, 238.

a2, 3,8, 9,14, 19, 20, 24, 25, 30, 31, 37, 42, 47, 52, 65, 70, 88, 93, 106, 111,
116, 121, 127, 128, 133, 134, 138, 139, 144, 149, 150, 155, 156, 161, 167, 184, 195,
218, 224, 230, 235.

A,: 5, 11, 12, 13, 15, 29, 32, 33, 35, 36, 39, 53, 55, 56, 57, 59, 77, 79, 81, 99,
101, 102, 103, 105, 119, 122, 123, 125, 126, 129, 143, 145, 146, 147, 153, 163, 169,

171, 173, 193, 213, 215, 217, 233, 237.
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A,: 6,7, 17, 18, 22, 26, 27, 38, 41, 46, 50, 51, 75, 83, 107, 108, 112, 117, 120,

131, 132, 136, 140, 141, 151, 152, 160, 221, 222, 231.

A : 44, 49, 58, 61, 62, 63, 64, 66, 67, 68, 69, 71, 72, 73, 74, 76, 78, 80, 82, 84,
85, 86, 87, 89, 90, 9t, 92, 94, 95, 96, 97, 100, 109, 114, 212, 219, 225, 226, 229,
234, 236.

Ag: 158, 162, 164, 165, 166, 168, 170, 172, 174, 175, 176, 177, 178, 179, 180, 182,
183, 185, 186, 187, 188, 189, 190, 191, 192, 194, 196, 197, 198, 199, 200, 201, 202,

204, 205, 206, 207, 208, 209, 210, 211, 214, 216, 220, 223, 228.

(b) The following 3-sum free 7-partition {Bl""’B7} of {1,...,1429} shows
0(3,7) 2 1430. For i € {1,...,6} it holds A, S B, . Moreover, for i€ {1,...,7}

and any integer a € 1429 we have
a EB, e 1430~-a € B,.
i i
Therefore, we list only the integers a with 476 £ a £ 715.

Bl: 477, 499, 521, 545, 550, 556, 562, 567, 591, 613, 635, 637, 640, 646, 652, 657,

659, 664, 670, 676, 679, 681, 684, 690, 696.

B,: 479, 485, 502, 513, 536, 542, 548, 553, 559, 564, 570, 571, 576, 599, 610, 627,
633, 638, 639, 644, 645, 650, 655, 656, 660, 661, 666, 667, 673, 678, 683, 688, 701,
706.

B,: 481, 487, 489, 491, 511, 531, 533, 535, 551, 555, 557, 561, 577, 579, 581, 601,
621, 623, 625, 631, 641, 647, 648, 649, 651, 665, 668, 669, 671, 672, 675, 689, 691,

692, 693, 695, 713, 715.

B4: 478, 539, 540, 549, 563, 572, 573, 634, 642, 643, 653, 654, 658, 662, 663, 674,

677, 682, 686, 687, 7it.
B,: 530, 537, 543, 544, 547, 552, 554, 558, 560, 565, 568, 569, 575, 578, 582, 680,
685, 694, 697, 698, 699, 700, 702, 703, 704, 705, 707, 708, 709, 710, 712, 714.

B6:

B,: 476, 480, 482, 483, 484, 486, 488, 490, 492, 493, 494, 495, 496, 497, 498, 500,
501, 503, 504, 505, 506, 507, 508, 509, 510, 512, 514, 515, 516, 517, 518, 519, 520,
522, 523, 524, 525, 526, 527, 528, 529, 532, 534, 538, 541, 546, 566, 574, 580, 583,
584, 585, 586, 587, 588, 589, 590, 592, 593, 594, 595, 596, 597, 598, 600, 602, 603,
604, 605, 606, 607, 608, 609, 611, 612, 614, 615, 616, 617, 618, 619, 620, 622, 624,
626, 628, 629, 630, 632, 636.0
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3. SCHUR numbers of arithmetic progressions: Finiteness conditions

Let a and d be non-negative integers; by Na g ve denote the arithmetic pro-
.

gression

Na,d = {a,a+d,a+2d,...}.

If there exists an integer v € Na a such that no n-partition of {a,a+d,...,v}
’

is m-sum free, then we denote the smallest such integer by aa d(m,n). If there is no
’

such integer, we put 9, d(m,n) = ®, In other words: 9, d(m,n) = », if there is an m-
I ’
sum free n-partition of N .
a,d
Clearly, 9, 1(m,n) = ¢o(m,n). Moreover, it is easy to check that for any v € Na a
’ 1

with v 2 Ga d(m,n) it holds that no n-partition of {a,a+d,...,v} is m-sum free.
r

In this Section we shall deal with the question, whether oa d(m,n) = o holds or

'
not.

3.1 LEMMA. Let a,,...,a
—_— 1 m—-1

only if d@ divides (m-2)a.

be elements of N . Then a,+...+a €N if and
a,d 1 m—~1 a,d

Proof. By definition of Na a’ there exist non-negative integers with

S, pe-esS
’ 1777 m-1

a, =at+ dsi (i € {1,...,m-1}).
It follows

).

+oot = + - R
a a a (m-2)a + d(sl+ Shn-1

Thus, a, +...+a is in N if and only if (m-2)a is a multiple of 4.0
1 -1 a,d

3.2 COROLLARY. If d / (m-2)a, then o, gmm) = =0
r
The following Lemma shows that it is sufficient to consider arithmetic pro-
gressions N with gcd(a,d) = 1.

a,d

3.3 LEMMA. Let g be a common divisor of a and 4. Then

ca’d(m,n) = g'oE S1_(m,n).
g'g
Proof. For a subset A of Na a ve define % = {§-l x € A}. Clearly, m = {Al""’An}
’
A A
is an n-partition of {a,a+d,...,a+td} if and only if I {—l,...,—ﬂ& is an n-par-
Cas a a+d a+td . g g g T
tition of {Ey—g—,-.., g ¥. Moreover, 1 is m-sum free if and only if 5- is m-sum

free.O
Remark. For an integer g we define w+g = g*o® = o and « + g =g +» = o,

From now on, we suppose always that a, d, m and n are positive integers with

nz22,m23 and 4 I (m-2)a. Denote by k the positive integer with dk = (m-2)a.
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The proof of the following Theorem is analoguous to 1.1 and will be omitted

here.

> me - -
3.4 THEOREM. ca,d(m,n) 2 m Ga d(m,n 1) a.Od

’

3.5 PROPOSITION. If m is even and %k 1is odd, then I, d(m,n) = o,
—_— ’
Proof. In view of 3.4 it is sufficient to prove the assertion for n = 2. Define

A = {a+sd | s odd} and A, = {a +sd | s evenl.

Then {a,,A } is an m-sum free 2-partition of N_ _.
1% a,d

Namely: If a+s 'd,...,a+sm

1 d € Al' then

-1

ats,-d + ... + ats cd =a+ (m2)a+ (s,+...4s )da
1 m-1 1 m-1
=a+ (k+s +...+s )d.
1 m—-1
Now, sl+"'+sm-1 is the sum of an odd number of odd summands; since k is supposed
to be odd, k + sl+...+sm_1 is even. Thus a + (k + sl+"'+sm—1)d ¢ Al'

Oon the other hand, any sum of m~1 elements of A2 is in Al.

This shows © (m,n) = «.0
a,d

3.6 THEOREM. Suppose
(i) a is not a multiple of & (in particular, d # 1) and
(ii) n 2 m-2.

Then Ua’d(m,n) = ®,

Proof. Again, by 3.4 it is sufficient to show 5, d(m,m-2) = o, In order to do this,
14

we define for 3 € {1,...,m-2}:

A, = {a + sd | s =3 (modm-2)} ={a+sda| s €N, }.
J j,m=2

We claim that {A1""'Am-2} is an m-sum free (m-2)-partition of Na a
’
Namely: Let ajreeean be elements of A, (j € {1,...,m-2}). Then there exist
- J
non-negative integers t .,tm_ with

170 1

a; =a+ (5 + ti(m—2))d (1i€e{1,...,m1}.
It follows

a + ... + a
m

1 -1

) (m-2) 1d

a+ (m-2)a + [(m-1)3 + (B +..tt
=a+ [k + (m-1)3 + (¢, +...4t_ ) (m-2)]4.
1 m-1

If this element were in Aj as well, it would follow

k+3 = k + (m=-1)3 + (t1+...+t

Y (m=-2) = j (mod m-2), or
m-1

k = 0 (mod m-2).

(m-2)a

Thus m-2 would be a divisor of k = 3

, which forces a to be a multiple of
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a contradiction to the assumptions of our Theorem.O

3.7 THEOREM. o (m,n) € a (m,n).
_— a,d

e
1,4
Proof. Without loss in generality, we can suppose that 9y d(m,n) is finite.
r
Denote by 1 = {Al,...,An} an arbitrary n-partition of {a,a+d,...,a-01 d(m,n)}
r

(Note that o (m,n) €N so a*g (m,n) €N .) It is to show that 7 is not
1,4 1,4 a,d

1,d’
m-sum free. For this purpose, consider the following n-partition T, {Bl,...,Bn}

of {1,1+d4,...,0 (m,n) }:

1,4
B, = {1+sa | a + as-d € Aj} (3 € {1,...,nH.

By the definition of (m,n), in at least one component B of LIS there are

9,4 h
elements bl,...,bm_1 with b1+...+bm_1 S Bh' If bi =1 + si-d, then

a + asi'd c Ah (1 €{1,...,m1})
and

d+ ... + at = P .
a+as1 a asm_ld a(b1+ +bm_1) S Ah

Thus 7 1is not m-sum free. Consequently, Ua d(m,n) < a-o1 d(m,n).E
14 r

Remark. The above Theorem says among other things: If is finite, then o

o
1,4
is finite as well. However, the converse is not true: 3.3 and 1.3 imply

a,d

(4,2) = 2+0 (4,2) = 2-0(4,2) = 22.

92,2 1,1

On the other hand, by 3.6, ¢ 2(4,2) = o,
’

1

4. The SCHUR numbers o (m,2)
a,d

The aim of this Section is to prove the following Theorem:

4.1 THEOREM. Denote by a, & and m positive integers with 4 ‘ (m-2)a and m 2 3.
Then

(m-2)a

i dd
3 is o

©, if m is even and k =

c (m,2) =
d 2 .

ar a(m“-m-1) otherwise.

This Theorem will be proved by a series of Lemmas.

4.2 LEMMA. © (m,2) > a(m2—m—1) - 4.
—=—" "a,d

Proof. It is to show that there exists an m-sum free 2-partition of the set X =

{a,a+d,...,a(m2—m—1)—d}. Define

B, = {a,a+d, ..., (m~1)a-da},
B, = {@m=1)a, (m-1)a+d, ..., (m-1)a-a},
B, = {(m—l)za,(m—1)2a+d,...,(mz—m—l)a-d}.
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Since (m-2)a is divisible by d, the sets X, B ,, B and B3 are subsets of

1 2

Na q- Bs in the proof of 1.1 one can show that {B1 U B3,B2} is an m-sum free 2-
’

partition of X.O

4.3 LEMMA. Suppose that one of the following conditions holds:
(i) m is o0dd, or
(m-2)a

(ii) m and k = —g  are even.

Then o _(m,2) S a(m-m-1).
a,d

Proof. Assume that there exists an m-sum free 2-partition {Al'Az} of X =

2
{a,a+d,...,a(m2—m—1)}. We can suppose a € A . Then (m-1)a € A2, so (m-1)"a € A
Consequently,

(mz—m—l)a = 1-(m—1)2a + (m=2)+a € A2.

Since m 2z 3, the integer z = a + 2(m-2)a = a + 2kd is an element of X. We claim

that 2z is in Al. (Otherwise, we would have

am’-m-1) = (m=2)+(m-1)a + 1z & A:
a contradiction.)
(i) since m-1 is even, it would follow

2 m-1 m-1
(m=1)"a = Sa vz ¢ A

a contradiction.
‘s . . . k c s
(ii) since k 1is even, the integer y = a + Edd is in X. Moreover,

(m—3)*a + 2°y = a + 2kd = z € A1

implies that y € Az.
Consider now the element x = (m2-3m+3)a = a + (m-1)k@ of X. On the one hand,

we have
k
x = (m=3)+(m-1)a + 2+(a + +d) & a,.
But, using that m is even, we get from

m-2 m-2
= l*a + —/—a +
b4 a 3 >

- (a+2kd) & A,

that x 1s no element of A1 either.O
By 3.5, 4.2 and 4.3, Theorem 4.1 is proved.
We conclude with the following Corollary to 4.1:

4.4 COROLLARY. Suppose m 2 3. If d is odd, then
o] (m,2) = ( 2_ -1)
a,a™ m -m-1)a.

In particular, oa 1(m,2) = (mz—m—i)a.
r
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Proof. Suppose that m is even. Then from dk = (m-2)a it follows that dk is even
as well. So, if 4 is odd, k has to be divisible by 2. Now, 4.1 implies that

oa’d(m,z) is finite.O
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Description of Spherically Invariant Random Processes by Means of
G-Functions
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Spherically invariant random processes are generalizations of the well
known Gaussian process. Their joint probability densities are functions
of a non-negative definite quadratic form, but there is no exponential
dependence from the argument as in the Gaussian case. Though some spe-
cial relations between these densities themselves and the characteristic
function of the process are known, in most cases explicite notations

in terms of familiar functions are not available.

The use of G-functions, which form a class of higher-transcendental
functions, yields comprehensive explicite notations. Thus, quantitative
solutions of problems, where spherically invariant random processes are

involved, can be achieved easily.
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1. Introduction

A random process &(t) is completely characterized, if the joint proba-
bility density function (PDF)is known for each random vector, taken

from the process by sampling its amplitudes at arbitrary values of the
parameter t. Because the number of the elements of such a random vector
should not be limited, one has to know all higher-order PDFs.

An equivalent characterization is given by means of the characteristic
function (CF), defined as the Fourier-transform of the PDF, whenever

all higher-order CFs are available.

As an example we refer to the well known Gaussian process with normally-

th

distributed amplitudes. In this case all the n -order PDFs as well as

the CFs are given by the exponential function exp(—q2/2) of an argument

q2 , that is a non-negative definite quadratic form of n variables.

Spherically invariant random processes (SIRPs) were introduced as ge-
neralizations of the Gaussian process or under equivalent points of
view. Their PDFs and CFs are only functions of such a quadratic form,
too, but there exists no exponential dependence as in the Gaussian
case,

The earliest work in this area was done by Lord (1954) [1] and Kingman
(1963) {2] in connection with the classical "random-flight-problem" and
by Vershik (1964) [3], who discovered that an ergodic SIRP necessarily
has a normal distribution. In consequence of this result Blake and
Thomas (1968) [4] uttered some doubt on the physical significance of
non-normal SIRPs.

Independently McGraw and Wagner (1968) [5] looked at random processes
with concentric ellipses as contour-lines of their second-order PDFs.
This feature reveals a necessary but not sufficient condition, that
the process under consideration is a SIRP.

The work of Picinbono (1970) [6], Kingman (1972) [7], and Yao (1973)
[8] yielded representation theorems asserting, that each SIRP is equi-
valent to a univariate randomization of a Gaussian process. The randomi-
zation has to be performed over a variable, that multiplies the co-
variance function of the normally distributed process. These theorems
are based on properties of completely monotone functions, earlier
(1931 - 1938) evaluated by Bochner [9-12], Schoenberg [13-15], and
Widder [16].

So far it had become obvious, that a SIRP is completely characterized
by its mean value, its covariance function, and (in addition to the

Gaussian case) likewise by its univariate PDF or CF. Higher-order PDFs
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are Hankel-transforms of the CF, they also can be obtained by differen-
tiating functions, that are closely related to the univariate or bivari-
ate PDF, respectively.

Further work on SIRPs, concerned to detection problems, was done by
Picinbono and Vezzosi (1970-72) {17, 18] and by Goldman (1974-76)

[19, 20] starting with the assumption, that higher-order PDFs should be
known in principle. A similar understatement was made by Leung and Cam-
banis (1978) [21], who gave an expression to calculate the Shannon Lower
Bound for Rate Distortion Functions.

Recently (1978) some new results were obtained [22], stimulated by ex-
perimental studies on speech signals, performed by Wolf and Brehm (1973)
[23]. These signals were found to be realizations of a SIRP [24 - 26]
under a certain constraint, that reveals to be not restrictive in most
cases of practical interest. Motivated by this important result, the
work [22] discovers, that one has to become acquainted with G-functions
in order to achieve a mathematically treatable description of SIRPs.
This statement stems from the fact, that in most cases higher-order
PDFs cannot be expressed by commonly used functions despite a new and
likewise simple relation between their densities, given in terms of

Laplace-transforms.

Now we will view at the essential parts of the work reported here. In
the following section we shall deal with the properties of SIRPs, re-
ferring especially to Yao [8] and some additional results, that are
given in [22]. We will start with the assumption, that the first-order
PDF explicitely is prescribed or known from experimental data. Further-
more it should be certified, that the concerned process is a SIRP, as
may be deduced from measured second-order PDFs under certain further
assumptions. At first we will see, that multivariate PDFs of an odd
order can easily be obtained from the first-order PDF only by means of
differentiations. Because of the fact, that PDFs have to be non-negative
valued functions of their variables, we then will find an unique solu-
tion of an integral equation, using a representation-theorem for com-
pletely monotone functions due to Widder [16]. This solution yields a
new relation between the first-order PDF of a SIRP and its higher-or-
der ones, expressed in terms of Laplace-transforms. Though this trans-
formation is commonly considered to be very familiar, results are not
easily obtained, as will be illustrated by examples. In the case of a
Gamma-distribution, which is of great importance in the fields of speech
processing, multivariate PDFs of even order can explicitely be given

only by means of G-functioms.
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As may be expected, the properties of these higher-transcendental func-
tions are not well known., Therefore we should look at them in some more
detail. Consequently, in the first part of the third section we shall
introduce the G-function by its definition as a Mellin-Barnes-integral
and list up those properties, that are referred to in the following. As
will be seen, the special interest in these functions is due to the fact,
that they form a set, closed under the operations of differentiation,
integration, and commonly used integral-transformations. The values of
each G-function, dependent on its argument and some parameters, can be
calculated by means of an algorithm given in {22]. In the second part

of this section we will show, how to express all quantities characteri-
zing a SIRP, e.g. CF or especially higher-order PDFs in terms of G-func-
tions.

Finally, in the fourth section there are given some illustrations, how
to apply the obtained results in cases of practical interest. Referring
to experimental data, received from bandlimited speech signals, we will
describe their first-order PDF in terms of a G-function. Then we will
present some higher-order PDFs, calculated by means of the algorithm
mentioned above. Furthermore we shall present and evaluate an explicite
expression for the Shannon Lower Bound of Rate Distortion Functions,

which are of great interest in the fields of information theory.
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2. Spherically Invariant Random Processes

At first we will agree upon some notations and definitions, that are

used in the following. We shall deal with random vectors

£ = col(g1, ey gn) whose elements gv = g(tv) are random variables,
taken from a stationary random process £(t) by sampling its amplitudes

at arbitrarily chosen instances tV, v =1, ..., n, Ordering the same
elements in a row constitutes the transposed vector g?. We will interpret
X = (x1, ey xn) as a vector, too, or only as a collection of n ordinary
real variables. A = (aik) is a quadratic matrix with real elements a
and det(a) = A.

ik

It is well known, that the matrix A is non-negative definite iff the
inequality concerning the quadratic form of the variables
T

X" Ax =1 a;

X, X, > O holds for each choice of the vector x.
ik i “k = X

th

Thus, we will use a shorthand notation pg(g) for the n "-order probabi-

lity density function (PDF) pg _(x1, «++.s X,) of the random

vector g§. An expectation value1&iii.iiigwise be noted by
J dx g J dxn g(x1, ey xn) = J dx g(x) = <g{g)>. Finally an equation
like pg(g) =f(§T A x) will indicate, that the PDF is given by a function
f(-), the argument of which is solely a quadratic form of the variables

collected in x.

Now, starting with a definition of a spherically invariant random pro-
cess (SIRP) we will outline those properties of SIRPs that are of common
interest, especially in the fields of communication engineering. Without
any loss of generality we will assume, that a given stationary random
process £(t) has zero mean and unit variance. For convenience we further
assume, that each pair of different random variables, taken from the
process by sampling its amplitudes, is uncorrelated, i.e. <£i £k> = Sik
with Kronecker's delta. Thus, £(t) constitutes a SIRP iff all its higher-
order PDFs are spherically invariant functions of their variables. Con-
sequently, these PDFs can be given in the form

- ﬂ-n/2 £ (xT ﬂ—n/2 £(xT

X) = X; n) ., (2-1)

P, (x) nlE X (x" %y

£

The type of the functions introduced here by the notation fn(-) = £(+; n)
depends on n, the order of the PDF. These functions have to be properly

determined for each prescribed univariate PDF.
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Obviously the well known Gaussian process is a SIRP according to the

relation

n/2 ﬂ-n/2 -n/2

pg(g) = (2m)" exp(—§T x/2) 2 exp(-§? x/2),

i.e. £(s; n) = 22 oyp(-s/2). (2-2)

In this special case the type of the functions f(s; n) is exponential
-n/2

and affected by n, only due to the simple term 2
The assumptions made above concerning zero mean, unit variance, and
decorrelation are not restrictive at all, because the PDF of a random
vector, which is generated by linear mapping n = A £ + y is easily ob-
tained [31]

1/2 | _-n/2 -1

P (y) = M £(g®; n) withq® = (x -9 ¥ (¥ ~ ¥ (2-3)
from (2-1). The mean value of the new variables is i and their covari-
ance matrix is given by M = A éT. In the case of a second~order PDF con-

tour-lines, i.e. lines of equal height, are concentric ellipses.

Now, the problem is to calculate higher-order PDFs from the univariate

PDF, which may be given in terms of a mathematically treatable function,
i.e. we assume to know f(s; 1) according to rel. (2-1). In general, this
problem has no unique solution. On the other hand it is well known, that

the order of a PDF can be reduced by integration, which results in

o0

-n/2 2 _ ﬂ—(n+2)/2

n £(r?;n) ay, J ay, f(r2+yf+y§;n+2) (2-4)

—o0

8§ —— 8

an expression, that shows how to calculate f£(:; n) from £(-; n+2). In-
troducing spherical coordinates (p, ¢) and substituting r2 = 8,
s + p2 = x we obtain

f(s; n) = [ dx £(x; n+2) for 0 < § < = (2-5)
=3

and after differentiation with respect to s

zd

Is f(s; n) = £(s; n+2) . (2-6)
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Thus, all multivariate PDFs of an odd order can easily be calculated

m
miﬁ £(s; 1) (2-7)

ds

f(s; 2m+1) = (-1)

by differentiating the function f(s; 1) closely related to the univaria
te PDF. Likewise all multivariate PDFs of an even order can be calcula-
ted from m

d

f(s; 2m) = (D™
dsm

f(s; 0O) (2-8)

if the formally introduced function f(s; O) is known.

This function may be determined in accordance to rel. (2-4). But a
straight-forward handling is prevented by the fact, that a resultant
integral equation cannot be solved uniquely without some proper assump-
tions. Because we look for PDFs, all functions f(s; n) in egs. (2-7,8)
should have non-negative values. This statement is equivalent with the
restriction, that both the functions f(s; 1) as well as f(s; O) must be
completely monotone. Consequently [16] there exists a unique represen-
tation of f(s; 1)

f(s;1) = J at e St o(t) = [ {(¢(t);s); s 20 (2-9)
o}

as the Laplace-transform of a non-negative valued function #(t). This
expression is closely related to "Yao's representation theorem". Based
on relation (2-9) we can proceed to calculate f(s; 0) by integrating
f(s; 1) in accordance to (2-4). Starting with

£(r?;0) = 47 1/2 J dy £(rl+y?;1) (2-10)

-0

we obtain

o0 o0 2
f(s;0) = n_1/2 J dy J dt e—(s+y )t d(t)
i 5
-1/2 T -st 1 - 2t
=1 Jdte ¢(t)deey
. ° T (2-11)
= J at e 5t (7172 4y
[e]

£(5;0) = L(t72 g(t);s)
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Because of the fact that £(0; 0) = 1 according to a normalized univaria-
te PDF, all integrals do exist. Furthermore we conclude that f(s; Q) is
completely monotone as Laplace-transform of the non-negative valued func-
tion t—1/2 ¢(t). The ultimate result is, that all higher-order PDFs of a
SIRP may be calculated

- 2, -
fisin) = L™ D727 gm0 it)ss)
(2-12)
P, (x) = n7P/2 F(r’in); rl =
i 3
from the univariate PDF only by means of the familiar Laplace-transfor-

mation.

The procedure to be performed may be illustrated by an example. The
(two-sided) Laplace-distribution is defined by its first-order PDF

P, (x) = 27V2 o (-7 2x]), —w<x < = (2-13)
Thus we have

£si 1) = D2 exp-2"2 7%, 05 ¢, (2-14)
and the inverse Laplace-transform is found [32] to be

o(t) = 271 £73/2 expr-1/ 2001, (2-15)

a non-negative valued function. From this we conclude, that a univariate
Laplace-distribution is consistent with the assumption, that the random

process in gquestion is a SIRP. We now refer to [32] again and find

f(s;n)

L(% tn/2-2 e-1/(2t);s)
(2-16)

il

(25)—(n/2_1)/2 Kn (21/2 51/2)
5—1
an expression in terms of modified Bessel-functions Kv, which guarantees

a comprehensive formulation of all higher-order PDFs.

Another distribution described by a special Gamma-PDF

1/2
p,(x) = T3 s71/2 7S with s = 3V/2 |x|/2 | (2-17)
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which is a consistent first-order PDF of a SIRP, too, is of outstanding
interest in the fields of speech processing. In this case a comprehen-
sive formulation of higher-order PDFs only may be given in terms of
G-functions. Therefore we conclude that higher-order PDFs may be calcu-
lated by means of the very familiar Laplace-transformation, but we have
to keep aware of the fact, that in available tables results are either
not listed or only given in terms of higher transcendental functions,
whose properties are commonly unknown.

At the first glance one may argue, that each univariate PDF, found by

an experiment, requires the acquaintance with a new class of higher
transcendental functions. Fortunately, as will be seen in the following
sections, this is not true, because the use of G-functions will allow to
describe a large variety of random processes. This statement should sti-
mulate the interest in the properties of G-functions, that will be trea-
ted in the following section.

Before doing so, we will look at another definition of SIRPs related
to the univariate CF of the process under consideration. By definition

we have for the nth—order CFr

[

n
c (v = n n/2 J(_n1dxj) X ey with £2 = ] x2 (2-18)
% 3= j=

The complexity of this formula considerably reduces because of the sphe-
rical symmetry (1] of pg(§). For convenience we assume again, that the
process £(t) is uncorrelated with zero mean and unit variance. At first
we find, that the CFs are not affected by their order n. They depend only
on the sum of the squares of their variables

C.(v) =g v. (2-19)

From this result we may deduce another definition of a SIRP, sometimes
used in the literature. Obviously a random process E(t) is a SIRP iff
the type of all higher-order CFs does not depend on the order n. This
definition seems to be more straight-forward. However it is of lower
practical interest, because no facilities are introduced to measure the
CFs of a random process. Nevertheless, we can calculate higher-order
PDFs from the CF by means of the Hankel-transformation as it is known
from [1] in cases of spherical symmetry. With CE(V) = g(vz) we obtain

an expression
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{zn/z r(n—1)/2 f(rz;n)} _

«© (2-20)
J ds{s(n_”/2 g(sz)} (rs)”2 I (rs)
o 2
from which we see, that
s(n=1)/2 g(sz) and 2n/2 r(n—1)/2 f(r2; n) (2-21)

form a pair of Hankel-transforms.
Though a lot of formulas are available [34], we should not be surprised
about the fact, that comprehensive solutions avoiding the G-functions

cannot be found in the case of the Gamma-distribution.

Another interesting feature of SIRFs is, that the random variables

Ppr $qr <+-rd,_q, defined by
n-1 n-k
€4 = Pp T sind, o+ & = pp OS¢ ,qq 1 sincpj
=t =1 (2-22)
for ke{(2,n-1)
En = o, cos<1>1 ,

are mutually statistically independent. The functions f(r2; n), charac-
terizing a SIRP, do not affect the PDFs of the new variables

bqr o merr bnge
variate PDFs

Therefore a SIRP is completely described only by the uni-

p, (x) = ﬁ P Er?n), 0<r <o (2-23)
n

depending on n.

Sometimes, as we will see later on, it is more convenient to look at the
PDFs of other random variables, defined by 9h = n_1/2 ont which can be
interpreted as estimation-values of the standard deviation of &£(t).

These PDFs are given by

p =025 w"%5n,0<r< (2-24)
n °n -7

an expression, which should tend to §{r-1), i.e. to Dirac's delta-func-
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tion centered about r = 1 in the limit n »- «» , if the process under con

sideration has to be ergodic. However, the limiting PDF
po(r) = lim P, (r) (2-25)
n-o n

differs from the delta function for all non-Gaussian SIRPs, as will be

seen in the following section.
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3, G-Functions

3.1 DEFINITIONS AND PROPERTIES

The G-functions, which were introduced by Meijer in 1936, are generali-
zations of the hypergeometric functions. Here, we will restrict oursel-
ves to listing definitions and those properties of the functions, that
are needed to describe SIRPs later on. For detailed information the rea-
der should consult original research documents by Meijer [27], Erdéelyi
et. al. [28], Luke [30], and Brehm [22]. In special cases G-functions
can be expressed in terms of other higher transcendental functions,
which might be more familiar to the reader. A listing of such corres-
pondences is given by Luke [30].

In the literature G~-functions are named in different, but equivalent
forms

a a
mn mn a mn 17°°"'"p
= = . 3-1
Opq (2) qu(z|bg) qu(z|b1,-.-,bq) (3-1)

They are functions of the complex variable z and depend furthermore on
two sets of complex parameters ap = (a1, ey ap) and bq = (b1,...,bq),

which are ordered into four groups

Gmn [ ) \ a1,...,an I an+1,...,ap (3-2)
Pq byre-cib_ | B ;... :
m m+1 g

The non-negative integers m, n, p, g obviously refer to the number of
elements in the different groups. Within any group the elements may be
interchanged, as becomes evident from the definition of the G-function

in terms of a Mellin-Barnes-integral

m n
Nr(b.-s) HF(1—aj+s)
Goa(zlgp) = (2ni)™ fds 2° 1] = . (3-3)
d T (1-b.+s) 1T (a.-s)
j=m+1 j=n+17

If a group contains no elements, the corresponding empty product in the
integrand is interpreted as unity. Because of the factor

z® = exp (s log z) the G-function generaly is a multivalued function

of the complex variable z. The well known Gamma-function T (s) is ana-
lytic in the whole s-plane, except for the points s = 0, -1,-2, ...,
and s = =,

Therefore, each parameter bj € (b ey bm) gives rise to an infi-

1!
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nite number of simple poles at the points, where bj - s is a negative
integer or equal to zero. The same holds for each parameter

a, € (a1, ooy an) at those points, where 1 - ay + s equals a negative
integer or zero.

Poles resulting from any bj must not coincide with those resulting from
any a, . but there may occur poles of higher order, if at least two ele-
ments bj1' bj2 differ by an integer or zero.

The path of integration goes from o - i» to ¢ + i= so that all poles of
I‘(bj -s), =1, ..., m, lie to the right of the path, whereas all po-
les of T(1 - ak +8), k=1,
of the integral depends on several relations between the numbers m, n,
P, g9 and on other constraints, that may be omitted here.

.., n, lie to the left. The convergence

If g > 1 and either p < g or p = g and |z| < 1, the path may be bent to
a loop beginning and ending at +«, as illustrated below for three para-
meters ag, b1 and b2.

a;—4 a;-3 a;-2 a;-1 a)
NN N
« / \ . [ \ G]/ \1;1 ) jen)
T ET—E B—=
b bi+1 by+2 b;+3 b,+4 bi+5
= b, = bo+1 = by,+2 = b,+3

The integral can be evaluated as a sum of residues. Under the restric-
tion, that all poles are simple, the result is a weighted sum of hyper-
geometric series, as given by Luke [30]. In the case of second-order
poles, one may proceed using L'Hospital's theorem, as done by Luke [30],
but the resultant formulas exhibit a considerable increase in complexi-
ty.

A rigorous approach to the evaluation of the integral as a sum of resi-
dues in the case of higher-order poles is involved with some formal dif-
ficulties, because there have to be made differentiations of the inte-
grand, that is represented as a product of functions, divided by another
product of functions, all of them depending on the variable s. A general
concept for an evaluation based on the logarithm of the integrand has
been given by Brehm [22]. It has been transferred into an algorithm,
designed to be implemented on a digital computer. Thus, values of the
G-functions can be computed, using sums of series even in the case of
higher-order poles.
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Limiting forms of the G-functions for small arguments can be derived
from those series representations. The dominant part of these forms is
destined by that bT, which shows the minimum real part of all elements
b1, ey bm. The result is

m n
* ) 0 T(1-a.)
I F(BJ) : ( a]

b
GoCzlpp) vz © S for z + O (3-4)
q T r(1-g,) T Tlay)
m+ 1 J n+1
with R(b ) = min R(by), Je(l,m); oy = aj7bri By = byb,
bj—bk + integer , J*k: J.ke(1,m).

If there are more elements with minimum real part, one has to distin-
guish whether some of them are equal or not. In the case of real para-

meters and b1 = ... = bu = min (b1, ey bm), there exists a logarith-~

mic singularity at the origin, according to the limiting form

b u-1

3#*
~(-1)¥
60 (zlpe) v Ty 2 (log 2)
q

m n
0 r(g.) I r(1-a.)
u+ I )

for z + O (3-5)

q P
I Tr-g.) I T'(al)
mt 1 ] n+1 ]

with w* = u - 8.
1 J
a, = a.-b
3 u
= b.-b
&y i om
R(b) = min R(bj), je(1,m).

The asymptotic behaviour of the G-functions is either exponential, lo-
garithmic or algebraic, depending on the given grouping of the parame-

ters. In the special case n = O and m = g, occurring in section 4, we

have
a (c=1)/2 o
q o p _ (2m) 1/0,_© -k/o
z ) (z)= == expl=-oz 1z M, z
Gp q( bq N HPrq ) 01 2 P kzo k
for |z| + =, |arg z| < (o+e)nw-6, § > O. (3-6)
o, ©, M, are constants not depending on z.

k
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For a detailed information, especially in the remaining cases, the rea-
der may consult Luke [30] or Brehm [22].

Before we look at some further properties of the G-functions, we first
have to agree upon notations concerning the sets of parameters.
With

a,ap] - a,a1,....,an!an+1,...,ap ]
bq,a - b1,...,bm|bm+1,...,bq,a (
3-7)
ap,a ] i} a1,...,an Ian+1,...,ap,a ]
a,bq a,b1,...,bm|bm+1,...,bq

it is indicated, how to adjoin a new parameter o to two positions of
the four parameter groups. Likewise
a_+o (a,+a) ,0.., (a_+a)

bp—e] | (618 (b, -8) (3-8)
q 1 rener by

means, that the value o has to be added to all parameters ap and the
value B has to be subtracted from all parameters b

Now, there exist two rules to change the order of G-functions (i.e. to
diminish or enlargen the values of m, n, p, q) by deleting or adjoining

common parameters in corresponding groups

o,a
m n+1 "“p _ mn a
Gp+1 q+1(z|b ,(X) - qu(zlbp)
q q (3-9)
-9
+1 n 8pr¢ mn,_;a
Gy (z| ) = Gue(zlgp)
p+1 g+1 a,bq jole] bq

A power of the argument may be extracted from or included in the G-func-
tion itself according to

0 p~mn a mn ap+c

z qu(ZIbg) = qu(ZIbq+c) . (3-10)

In the discussion of the G-functions, we can without loss of generality
suppose that p < g in view of the important relation

1-b

Gon(zlgp) = Gop(z"'1,,Y) arg(z ') = -arg(z) .  (3-11)
q P

So far, we have gathered some interesting properties of the G-functions,



which can be derived from the definition (3-3). The outstanding impor-
tance of these functions for describing SIRPs, however, stems from the
fact, that differentiations, integrations, and especially integral-trans

formations can be performed within the class of G-functions.

In the following we will give a listing of and some comments to those

relations.

Differentation
d mn a m n+1 0,a
~x|6pg (2RI | = Gpiy qur (Z|p k) (3-12)
q q’
e dt 6™ (2T %y | = 1k g M BTN 1k (3-13)
dzk jolef bq p+1 g+t q
3
d i -b mn a _ _.—(1+b,) ~mn a
dz[z 1 qu(zlbg) = -z 1 qu(2|1+b1'b2g..',bq) . (3-14)

Here we see, that differentiation can easily be done by formal altera-

tions in the set of the parameters.

Integration

The indefinte integral

I

X
F(x) [ dy G:g(XYYlgp)

0 ! (3-15)

il

< m a
F(=)- [ dy Goo(ray'12p)
X rq b
d
is solved within the class of G-functions by

=1 =Y e _)'

F(x) = F(e) -y A o+ q+1(Xx ‘o (b +1 ) (3-16)

Thus, if it is possible to express either the cumulative distribution
function or the corresponding density function in terms of G-functions,
then it is possible to do this for both of them.

Integral-transformations are based upon the so called "master formula”

already given by Meijer.
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O 8

mn a V C
dx qu(XXIbg) . Gf,T(mXIdch) -

N R m+v[ w I “PrrCyi Cooyr Pgem ]
- x - s - 3-17
X Mg+o p+t| X an’du’ dr—u’ a,_n ( )
- 1 Gm+\) n+ul A ‘ an’_du; _dT~u’ap—n ]
w "p+T gtol w bm’_cv’ -C__ q- .

Specializing one of the two G-functions in the integrand yields the fol
lowing transforms.

Laplace Transforms

With the familiar definition

L(f(x);s) = [ ax f(x)e % (3-18)
o
we have
A T B WET NG
L qu * bg is T q p+1*A'0,-a
(3-19)
= 1 m n+1 A o’aP )

a relation, that also may be read in the reverse direction yielding

L7 6™ s 13 ix) = ~ 62 ™ (il_bq ) (3-20)
jole} bg )= X Ug p+1 3 -a_,0

the formula for the inverse Laplace transformation.
Fourier Transforms

The Fourier-transformation may be splitted into the Fourier-Cosine-

and the Fourier-Sine-transformation

Fc(f(X); y) = [ dx £(x) cos (xy)

o

© (3"21)
Fs(f(x); y) = [ dx £(x) sin(xy) .

o

In the case of G-functions we have
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- 1/2,a_,0
FC(Ggg(xx2|gp);y) o g2 n+1(__ /202,10,
q

p+2 g
(3-22)
1/2-b
. n1/2 n+l m (Xil / qd )
21727 q p+274R 0,1/2—ap,1/2
1/2
m n+1 ’ap'
mn,,_ 22, . _ L1/2 —16 o2 ( b )
Fs(qu(Xx Ibg),y) q q
(3-23)
1/2-b
ﬂ1/2 n+1 m 2 /

d
720 a pr2(dxl1/2,1/2-2],0)

Because a SIRP has a first-order PDF, that is an even function of its ar-

gument, the corresponding CF is twice the E,-transform of the PDF.

C
Hankel Transform
With the definition
JK(f(X);y,k) = J ax (xy) /2 Iy (xy) £00 (3-24)
o

we get
-1

J G 0 20y sy,5) = (202 6NN (Y vl I )
g \9pg ¥ bg iYeR) = q p+2'4X|1+2k 1 1-2k’ .

T '7 %1
Thus, it is possible, starting with a first-order PDF expressed in terms

(3-25)

of a G-function, to calculate the corresponding CF and then to determine

higher order PDFs as Hankel transforms.

Mellin Transform

This transformation, defined by

M(E(x);z) = J ax x*7 1 £(x) (3-26)
o}

results in terms of Tr-functions
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m n
T (by+z) NIL1-(ag+z) ]
mn a_., . _ 1 1
UCSTIIRIES. .
I T[1-(b.+2)] I T(a.+z)
m+1 n+1 J

(3-27)

It is a powerful tool, to determine all the moments of a prescribed

distribution.

In all cases there might exist some constraints concerning the number or

values of the parameters. Details are listed in Luke [30] or Brehm ([22].

3.2 COMPLETE CHARACTERIZATION OF SIRPs BY MEANS OF G-FUNCTIONS

In this section we will aim at a complete description of a SIRP using
MEIJER's G-function. Therefore we start under the assumption, that the

first~order PDF of the process is prescribed or well fitted by

pE(x) = A Gmn(kx2|§p) for - £ x £ @ (3-28)
Pq q

i.e. by a G-function, whose parameters are properly chosen. The special
dependence on the square of the variable x is not necessary but recom-
mended, because the PDF is an even function. Naturally we have to cer-
tify, that G(s) is completely monotone in order that the representation
(3-28) is consistent with the properties of a SIRP. This may be done in
several ways, that are discussed in detail in [22]. Likewise the norma-

lizing factor

M T(3-by) T T(z+ay)

A = A1/2 m+ 1 n+1 (3-29)
meo nooy
T1I F(-§-+bj) 2{ F(f—aj)

must be finite. In this expression the constant X yields unit variance,

if it is chosen equal to

+h.)

=
—_
[T
[}

(3-30)

>
[]
—
i
—
~
(o]
-

ﬁ\
[T

+a.
aj)

W=l o=a

(SN
—_

€ =n - (g-m),
In cases of infinite variance (e.g. Cauchy-distribution) we may choose
A = 1. Obviously both results have been obtained by means of Mellin-

transformation according to (3-27), which also yields all
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moments of the distribution

<52k+1> =0 q 4 with
H(7+bj)k
s = (- aThHE 1 : ¢ ol (3-31)
P
1 _ T (a+k)
Tragly )y = Ty
and k = 0, 1, 2, ... .
Looking at (3-15, 16) we find, that the
Cummulative distribution function
A 1 a +1/2, 1)
m
P.(x} = 1- 1 2 G +1 +1(Ax lO b +1/2
& /2 "ptl g q (3-32)
PE(~x) = 1 - Pg(x) both for x =2 O

is given by another G-function with slightly changed and two additional
parameters. Because the PDF is an even function, FC—transformation (3-22)
leads to the

characteristic function

2 1/2-b
1/2 Tr1/2 Gn+1 m

q

(3-33)
£

and likewise by means of the rules (3-19, 20) concerning Laplace-trans-
formation all

higher—order probability density functions (PDFs)

5(5) -v/2

[

Y2
m f(s;v) ; s =} X,

(3-34)
1-v
1/2 2 m+1

. P
with £(s;V) As Gp41 q+1()‘5| (\)—1)/2,bq)

1]
B

are obtained without any further calculations. Finally, and this com-
pletes the characterization of the SIRP, we will list the
PDFs of the random variables ey and o, defined by (2-23, 25)

1/2 ,O
Tr m+l n P . 0 £ r £« (3-35)
= A !
Py (r) 2A I p+1 q+1( * ‘._l b)
v 2 2 a
(¢}
- 1/2 2|%p’ -
po(r) = 2(27) Gm+1 q(2)\): bq ), 0 < r <o, (3-36)

Referring to these results, comprehensive notations are available, that
may be the basis of further calculations.
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4, Applications
4,1 SPEECH AS A REALIZATION OF A SIRP

As mentioned above, an application of the theory outlined in the prece-
ding sections must be based on results of experimental studies. Firstly,
one has to find a proper fit to the first-order PDF of the random pro-
cess in question, and secondly, one has to verify that this process is

a SIRP.

Therefore, experimental studies with speech signals were performed [23].
This was done in the time domain, i.e. the signals were sampled and the
relative frequency of the occurrence of quantized amplitude values was
measured. Thus, it had been assumed, that the random process, whose rea-
lizations were examined, is stationary as well as ergodic. At the first
glance, this assumption might appear to be very restrictive. However,
for most applications it is not, as recently has been stated again by
Abut et. al. [35].

Measurements were done with speech signals, bandlimited to the frequency
range from 300 to 3400 Hz, according to the requirements of telephone
channels. The number of evaluated samples was 106 or 107 in the first-
or second-order case, respectively. In consequence statistical varian-
ces are small enough to guarantee, that the measured relative frequen-
cies are fairly good approximations to the corresponding PDFs. In a lo-
garithmic scale fig. 4.1 shows experimental points of the first-order

PDF versus amplitude values, normalized to unit variance.

10!

-
%!
C:
o
=3

1

10~1 7

/] AN

107 / \ .
A T

107*
-8 -5 -4 -2 0 2 4 — B 8
X

Fig. 4.1: Experimental points of the first-order PDF, fitted by
)Ko-, and (

(=== ) Laplace~-, ( ) Gamma~distribution
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Together with the measured points there are drawn three curves repre-

senting the following PDFs

Laplace pg(x) = 2-1/2 exp(—21/2|x|) (4-1)

X, p,x) = 77K (Ix]) (4-2)
J1/2 0 [4172 BEERNARVE

Gamma pg(x) = 2—775 5 Ix| exp|\— [x]). (4=3)
™

It can be seen, that the best fit is achieved by the Gamma-PDF. Never-
theless there even may exist another PDF, that yields a significantly
better fit. This question will be discussed later on.

One may ask, whether it is recommended to look for an optimum fit, be-
cause the PDF might vary for different speech signals considerably. How-
ever, measurements have certified, that the first-order PDF of bandli-
mited speech is almost unaffected by the personal characteristics of the
speaker as well as the used language.

For the following it is of great importance, that measurements have pro-
ved, that the type of the distribution remains unchanged by linear fil-
tering, a typical feature of SIRPs.

The shape of the second-order PDF depends on 1t , the distance in time be-
tween the relevant random variables £(t) and £(t+7), i.e. on the statis-
tical dependencies between these variables, which are essentially affec-
ted by the personal characteristics of the speaker. Experimental results
are illustrated in fig. 4.2, where four maps of contour-lines are given,
referring to the four PDFs in perspective view, for special values of rt.
The experimental points corresponding to values of equal height are well
fitted by concentric ellipses in the cases 1t = 0.25, 0.75, and 1.0 msec.
For 17 = 50 msec statistical independence is achieved, which results in
diamond-shaped contour-lines.

On the basis of these measurements we now conclude, that bandlimited
speech signals are realizations of a SIRP under the constraint r < 5 msec,
i.e. the joint distributions for random vectors, whose elements are sam-
pled amplitudes of speech signals, are spherically invariant whenever

the distance in time between each pair of elements is less than 5 msec.

As already mentioned in section 2, the Laplace-distribution as well as
the Gamma-distribution is consistent with the assumption of spherical
invariance. Following our general concept we now have to look for a re-

presentation in terms of G-functions. With the relation
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(b,+b,) /2
20 17°2 1/2
G55 (2| ) =2 2 K. _, (2 z ) (4-4)
02'%'b,,b, b,-b,

given in Luke {[30] we have the common representation for both distribu-
tions

P (%) A 620 (rx

2| )
by/by
with (4-5)
1 2 1/2

ro= 3 1 7
F(§+b1)r(5+b2)

1 =
5 b)) (5 +b,) and A =

which even includes the Ko—distribution, as can be seen from the corres
pondences listed below.

b, b, A A Py (%)

o o (2m) /4 1R (x])

1/2 0 (2m) ~1/2 172 27 2exp (=212 x])

1/4 -1/4 (3/2)1/2(47r)—1 3/16 i14;5(2;13|x151/2exp(_3;/2ixl)
™

Because the parameters b1, b2 can be varied continuously, there may
exist continuous transitions between those distributions. Consequent-

ly an even better fit of the PDF might be achieved by appropriate modi-

fications of b1 and b2.

The type of the functions given by (4-5) depends on the choice of the
parameters b1 and b2, as discussed in detail by Brehm [22]. Here, we
only will give the main results referring to fig. 4.3, where the para-
meter plane is drawn. Because the parameters are interchangeable the

figure is symmetric relative to the line b2 = b1.
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%/ Bo / / B/{/
%/ Kox / / by

b, for

Fig. 4.3: Unshaded Area indicates possible combinations of b 2

1’
20
GO2 PDF

Though the functions Ggg(xz) show an exponential decay for large argu-

ments according to (3-6) they cannot be normalized, if b1 < -1/2 or

b2 < =-1/2. This stems from singularities in the origin and may be de-
duced from the identity.

2b
0 2 20,2
Géz(leb1,b2) = X Goa(x I(101- bz),o) (4-6)

and the limiting forms (3-4, 5) for small arguments. On the other hand,

Ggg(s) is not completely monotone, if b1 > O and b2

first-order PDFs for SIRPs are only given in the nonshaded area. Here

> 0. Therefore

we find the generalized Laplace-distributions for b2 =0 and -1/2 < b1,
which tend to the Gaussian-distribution in the limit b1 + «, Another
well known class of distributions, whose members are the generalized
Gamma-distributions, is found along the line b2 = b1 ~-1/2, from which
only a subset may be identified with first-order PDFs of a SIRP.

It should be mentioned here, that representations of first-order PDFs
of SIRPs are not restricted to the subclass Ggg of the G-functions. An
unlimited number of further subclasses, from which Gé?, Gfg, G?%

only a few examples, are found following a strategy given by Brehm {22].

are
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In order to achieve a complete description of a SIRP, whose PDF is given
by (4-5) we specialize all formulas of interest in the foregoing section

tom=g=2and n = p = 0. As an example we obtain for the PDF of the

radius
1/2 0
p (x) =2~ 639(nr? )i 01 <o, (4-7)
ey rey 13 e B
2 27 T T2
an expression, that can be reduced to
1/2
p_(r) = 2a T 629 (a2 ) ;0<r < e (4-8)
P \ 02 V=1
v F('z') 2 7 b1

i.e. to modified Bessel-functions,under consideration of eq. (3-9), in
the case of generalized Laplace-distributions. Not only for the sake of
a more convenient scaling of the drawings it is recommended to look at
the equivalent PDF pon(r), where now in the notation the subscript n is
chosen instead of v. In fig. 4.4 results are shown for the three distri-

butions of interest here with values n = 1, 2, 4, 8, and n = o,

At first we recognize, that in each case the limiting PDF pG(r) do not
agree at all with Dirac's delta-function §(r-1) centered at the value
r = 1, they even do not approximate it. This behaviour challenges the
question, whether non-Gaussian SIRPs really might be proper models

for processes, that are delt with in practice and for which ergodicity
has to be assumed. A positive answer will be given in the following
section based on the observed relatively fast convergence to the

limiting PDF pc(r) with increasing n.

At last we should pay attention to the fact, that, dependent on the type
of the distribution, significant dissimilarities occur for small values
of the argument. These dissimilarities will have considerable influence

on the results to be presented later on.



107

Kq-Distribution

B
Wonon oy

S S NI

555
i
3

"~

1072
0

L0

Gamma-Distribution

saza>
R
g@aN

1.0 20 3.0 ——

40

65

Laptace~Distribution

32 2330
P womaw
g @

20 30 — 40

Fig. 4.4: PDFs 1 (r) correspon

n
ding to first-order

Laplace-, Gamma-, and

K -distribution. (For
o
definition of p, see

(2-24)). n



66
4,2 RATE DISTORTION FUNCTIONS FOR SIRPs

As a further application of the results, outlined in the last section,
we now will discuss and solve a problem, that is of great importance in
communication engineering.
In accordance with techniques of sampling bandlimited signals, we assume
that there exists a source of a signal, that is discrete in time and con-
tinuous in its amplitudes. Thus, the source realizes a random series {Ek},
that is characterized by its higher-order PDFs. We will further assume,
that the series is stationary and ergodic and that its elements are iden-
tically distributed with zero mean and unit variance. At last there
should be no correlation between different elements, i.e. <E; B> = 5ik
with Kronecker's delta, as a realistic consequence of prediction tech-
nigues, most commonly used in signal coding and decoding. Now, the pro-
blem is to determine the minimum rate R of information, which has to be
provided to ensure, that the receiver may reconstruct the signal with a
distortion not exceeding a prescribed quantity D. The distortion measure
can be defined in several ways. Here, we decide for the mean square cri-
terion

D = <(g, - n)°> (4-9)

applied to the differences between the elements of the source and the
reconstructed series {nk} . The mathematical treatment leads to a vari-
ational problem with certain constraints, as discussed in detail in
Berger [36]. Thus, the reguired minimum rate is dependent on the statis-
tical properties of the source, but beyond that it is only a function of
the distortion quantity D. In the case of a Gaussian source the result
is

R(D) = R®(D) = -(log D)/2 . (4-10)

If we now look at other sampled SIRPs, we need to consider that decorre-
lation does not imply statistical independence as in the Gaussian case.
Consequently mathematical difficulties increase to such an extend, that
the problem has not been solved up to now. Nevertheless, a formula is
known to calculate the "Shannon Lower Bound" {SLB) RL(D) to the rate
distortion function R(D) in the case of SIRPs. According to the nomen-
clature the relation RL(D) < R(D) holds for each value of D and RL has
been found to be very tight to R, esp. for values D << 1.
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The SLB is expressed in a limiting form

R (D) = (D) - lim C(n) (4-11)
n->w
cm) =2 rm/217" [ ar 7 £(?; n) logtn ™2 £(r?; n)1 (4-12)
(o]

with a term lim C(n) correcting the Gaussian case.

n-o>w
Now, we will show, how integration as well as the limiting process can
be performed for all SIRPs which are characterized by G-functions. We
introduce the PDF pc(r) and obtain the following sum

n
C(n) = C1(n) + Cz(n) + C3(n) with
Cym) = 3 log(2ne) + & loglx ™ ? rtn/2) a7 2/2)
Cz(n) = % f dr P, (r) 1og[pU (r)] (4-13)
o] n n
Cyln) = lﬁﬂ [ ar p, (r) log r .
o n

Interchanging the order of integration and limiting process, we obtain
C1(w) = O from the asymptotic behaviour of the I-function and Cz(m) = 0
because the integral is bounded for each value of n. The remaining addi-
tive term -

Cyl=) = - g dr p_(r) log r , (4-14)

contains the PDF pg(r) defined by eq. {(2-25). Now integration is done
by parts. Because of the fact, that we can express po(r) in terms of
G-functions, the indefinite integrals

X

x
hy(x) = [ ar p, (1) hy(x) = [ ar (]

h1(r)] (4-15)

are principally known as well and the general result is

| x = 0
C(=) = {-h1(x) log x + h2(x)} . (4-16)
X = o

Specializing this result for pg(x) = A Ggg(xxz'b1, bz) leads to

Cl=) = JIx( +3) + x(b +5) = x (3] (4-17)

under consideraticn of the behaviour of the G-functions for large and
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small arguments respectively. To achieve a simple notation the abbre-
viation x(z) = log z - P(z) has been introduced, where
v(z) = d log I'(z)/dz is the digamma-function tabulated e.g. in [33].

Quantitative results are given in fig. 4.5. As could be expected, the
rate decreases in the non-Gaussian cases on account of the remaining
statistical dependencies after decorrelation. The significant differen-
ces between the curves emphasize, that it is an essential point, to have
an optimum fit of the first-order PDF.
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Fig. 4.5: Shannon Lower Bounds for Rate Distortion Functions of SIRPs

with Gaussian-, K, = Laplace- and Gamma-distribution

One may argue that there have been obtained results, which cannot be
applied to problems arising in the fields of speech processing, because
the assumption of spherical invariance has to be restricted to a fini-
te number of successive signal samples. Referring to pulse-code-modula-
tion- (PCM)-systems, that are in use for the processing of bandlimited
speech signals at a sampling rate of 8 kHz, we conclude that the re-
striction 1 < 5 msec is equivalent to the constraint n < 40. Thus, the

results might become meaningless in the limit n » «., On the other hand
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we have already recognized that the PDFs pcn(r) rapidly converge to
po(r) with increasing n. In order to justify a quantitative statement
the integral (4-12) has been evaluated numerically for finite values of
n avoiding the limiting process. The results shown in fig. 4.6 certify,
that for n = 40 the limiting values are reached up to about 9%90% in each
of the three cases. Consequently we conclude that the assumption of in-

variance does not imply a severe restriction.
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Finally it should be emphasized, that the solution to this complex pro-
blem which never has been worked out so far, has been found now, be-
cause higher-order or equivalent PDFs could be given explicitely. We
achieved this without detailed knowledge of the features of special
G~-functions used in intermediate steps of the calculation. We only needed
a proper fit to the first-order PDF in terms of a G-function and then

we have used some common relations between those functions, their inte-
grals, and transforms. By further consideration of the behaviour of the
G-functions for large and small arguments an expression for C(=) has
been obtained, the evaluation of which can be performed by means of a
pocket calculator. Of course the computation of C(n), requires an algo-
rithm to calculate values of several G-functions. If, however, the al-
gorithm given in [22] once is implemented on a digital computer, there
arises no problem at all. Altoghether, these facts should strengthen the
conviction that G-functions are highly recommended to achieve new re-
sults of theoretical as well as practical interest in any field, where
SIRPs are of importance as for instance in communication theory and

speech processing.
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5. Conclusions

SIRPs are generalizations of the very familiar Gaussian random process.
They are of great importance, especially in the fields of communication
engineering, because signals are treated there as realizations of ran-
dom processes. For these SIRPs a complete characterization by means of
higher-order PDFs has been obtained in an utmost comprehensive notation
using Meijer's G-function.

Though these higher-transcendental functions are commonly not used, they
are highly recommended for the solution of problems with spherical sym-
metry, because they form a set of functions, that is closed under opera-
tions like differentiation, integration, and some integral-transforma-
tions. Therefore, as has been shown, all higher-order PDFs are explici-
tely available under the assumption, that the first-order PDF of a SIRP
is expressed in terms of a G-function.

These results have been applied to bandlimited speech signals, from
which it is known, that they are realizations of a SIRP under a certain
constraint, which is not restrictive in most cases of application. For
convenience there have been evaluated some higher-order PDFs, referring
to a univariate Laplace-, Ko—, and Gamma-distribution. In order to cal-
culate the values of the G-functions, an algorithm implemented on a di-
gital computer was used, which had been developed from an integral-
representation of the G-function.

Finally, the solution of a problem of great interest, arising in the
fields of information theory, has been found due to the fact, that ex-
plicite expressions for PDFs even of unlimited order are available now.
The Shannon Lower Bound for the Rate Distortion Function of a decorre-
lated SIRP has been determined, referring to a limiting form of G-func-
tions, only by means of a pocket calculator. By this result, the recom-
mendation of the G-functions for a convenient description of SIRPs is
emphasized essentially.
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GEOMETRIES FOR THE MATHIEU GROUP M

12

F.Buekenhout*
Département de Mathématique CP 216
Université Libre de Bruxelles
1050 Bruxelles - Belgium

1.Introduction.

In our search towards a geometric interpretation of the sporadic
simple groups which would be close in all respects to the theory of
buildings of Tits [13], [1], [14] it is necessary to introduce restric-
tions if we want to avoid the paralyzing effect of hundreds of objects.
On the other hand, restrictions which would be made too soon could
have a paralyzing effect as well or just mislead us, Therefore, it
may be appropriate to explore in a fairly broad sense, a small group
Our choice of M

like the Mathieu group M rather than M11 is moti-

vated by several observaéions, in particulaizthe presence of outer auto
morphisms of order 2 to explain and so a potential existence of geome-
tries admitting polarities.

There is no attempt towards formalization and a complete classi-
fication of all geometries satisfying given axioms. Nevertheless, our

search is systematic enough to prepare such classifications.

2.5ubgroup structure,

6 33.5.11.

For basic facts about this group such as the character table, the list

We shall work with the simple group M), of order 95040=2

of maximal subgroups and their structure, the action of these sub-

groups on the dodecadsleft invariant by M inside the larger group

My, we refer to Llineburg [9], Conway [H]?ZFischer—McKay [5], McKay [10]
and their bibliography.
In the natural action on 24 points mentioned already, M12 has two
orbits of 12 points, which is denoted by [12;12}, while the automor-
phism group M12.2 of M12 is transitive on the 24 points with two
blocks of imprimitivity of size 12. This is summarized by [122]

There are 11 conjugacy classes of maximal subgroups in M of

12

which six appear in pairs fused by M 2. Here is a description of

12°
* .

This research was partially carried out at Ohio Shate University and
at the Technische Universitit Braunschweig,
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these subgroups together with their index, their permutation character

and the subdegrees of the corresponding permutation group, when avai-

lable. The conventions are those of W1, [s],

[1,11;12]
M1

[12;1,11]

[2,10;6°]
Myg-2 ,

[6%52,10]
y [3,9;3u]

S
9,73
=32.21+2.S
A 3
[3733,9]

Mg.S5, [4,8;4,8]

:21+“.83=c(2A)

2 x5, [6x2;6x2]

=C(2B)
2

Aqxs3 [ 4x3;U4x3]
=N(2%)=N(3p)
L2(11) [12;512]

12

66

220

495

n=1+111

12=1+11
ﬂ=1+112
ﬂ=1+111+54

66=1+45+20
n:1+112+54

w=1+111+54+553+99
220=1+12+27+72+108
n=1+112+5u+553+99

+2.54+466+99+14)4

495=1+6+16+24+2,32+
+2.,48+3.96

m=1+11 +112+55

1 3

396

2 .23.83=N(22) [42;47) 495 21416, +16 445+ 495=1+6+1642U+2,32+42 .48

+2.54+66+99+11] +3.96

1320 n=1+161+162+2.u5+2.54
+553+2.66+2.99+2.12O
+2.144+176

144 n=1+161+162+45+66 144=142,11+55+66

Comments 1. The notation A.B describes a group with a normal subgroup

A and a quotient group B. Notations such as 3
1+4 21+2
3

abelian groups and 2

respectively.

2. The subdegrees for M

numbers are easily obtained from the action of M

13,9334 .

2,23 are for elementary

for extraspecial groups of orders 32 and 8

9.S3 given in [5] are not correct. The right
1o o0 3-sets, inside

3. In ZXSS, tx2 means that a grid consisting of 6 blocks of 2 points

and 2 blocks of 6 points is invariant. The permutation character

given in [ 5] does not seem to be correct. This holds also for the
character of L,(11),
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3.Geometric terminology.

We are using freely the terminology, notations and results of
Buekenhout [2]. In particular, we shall denote by T a geometry of
finite rank n, over some basic diagram A and we shall assume that M12
is a flag-transitive group of A-automorphisms of I'. We assume that T
has the properties (SC)(strong connectivity) and (IP)(intersection
property). Since it turns out that we shall only have to consider
linear diagrams, T can be seen in two dual ways, as a set of points
together with distinguished subsets such that any intersection of
some of them is still a member of their family.

Whenever we have to deal with a rank 2 geometry, we shall describe

it by a picture of the following shape

g,do’dl
o——————0 B
s+1 t+1
v b
Po—[C] .D P =[E].F

This is read as follows: O and 1 are labels given to the elements of
the geometry and we call O-elements (resp.l-elements) points (resp.
lines); g is half of the girth in the incidence (bipartite) graph i.e.
half of the elements in a shortest circuit; dg (resp.dl) is the
greatest distance which can be achieved in the incidence graph, from
a point (resp.line); s+1 (resp.t+1) is the number of elements incident
with a given line (resp.point); v (resp.b) is the number of points
(resp.lines); PO (resp.Pl) denotes the stabilizer of a point p (resp.
line) in M12 and C is the normal subgroup fixing each line incident
with p; finally B denotes the Borel subgroup or stabilizer of a
maximal flag in T which may also be identified with Py N P,

The most common of these pictures will be replaced by abbrevia-
tions inspired by those used in [1] such as : o—o for oéiéiéo, O===0

for oﬂlﬂiﬂo, o o for 02’2’20,0 C o for 03,3,40 (complete graph),

3,34 . 2 2
0=2=2—0 (affine plane of order n).
n n+1

When it is available (and non trivial), we shall also give a
picture of the incidence graph itself using a O-element (or 1-element)
as starting vertex and concentric circles with respect to it. This is
inspired for instance from [3].

To describe a rank 3 geometry, we use similar conventions, for
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instance g’do’dl 1 gt d d1 2 ]
r+i s+1 t+1
Yo V1 v2
Po Pl P2

where PO is the stabilizer of a O-element, v, is the number of O-ele-

ments, the residue of a 2-~elements is a rank 2 geometry with a diagram
g,d_,d
971 o ;91 and the residue of a O-element is likewise related to the

parameters g',dé,di.

4,Variations on the Steiner system S(5,6,12).

When looking for a geometric interpretation of M the most

s
obvious idea is of course to consider the Steiner sységm S$(5,6,12)
invariant by M12, consisting of 12 points and 132 blocks of 6 points
such that every set of 5 points is contained in a unique block.

From our viewpoint, it is natural to consider the blocks as
hyperplanes of our geometry and to accept their intersections as
elements of the geometry. This leads to a rank 5 geometry which is
conveniently described by the following diagrams where we list only

the most useful residues.

C AT
M, 8 3 8 3 § B2
2 2 2 3 4
12 66 220 Lgs 1%2
My Mge2 M9 s3 [4.4, Sy Sg
o Af c
M, d—8 -3 8 s 8 3 3
2 2 3 i 6 15 20 15 (1)
11 55 165 66 S S) .2 8,x3, [2]8
5 4 373 L
Mg M9.2 [214 s3 55
My, 804 ALl w, GAL
05 3 Y 9 3 y
10 45 30 9 12
M9 [214.2 Sy (4.4 53

We observe that the parabolic subgroup PH:S6 is the only one which is
not maximal in M12. It is of index 2 in an M
to P,.

10.2 which 1s not conjugate
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5.Truncations of the Steiner system.

When T is a geometry of rank n over the set of indexes
{0,1,...
truncation.

,n-1}=A we can get a new geometry from it by the procedure of
A'
This may look a little strange

Therefore we choose a subset of A and we keep only
the elements of T whose type is in A'.
since we left with the Steiner system which corresponds to A'={0,4}
in (1) and we wanted to avoid it in order to get (IP). Actually (IP)
may still hold in the truncation., For this it is necessary and
sufficient that A' be connected in the diagram structure on A. Taking
only the non trivial cases where 2 < |A'| < 4 this gives us 9 distinet
truncations to study.

Here they are.

The nine truncations of (1) having rank > 2 and (IP)

(2) $ 5 S 3 pon (3) 25 C 3 AL 50
2 2 2 9 3 2 3 L
12 66 220 Los 66 220 L95 132
M, M2 M9.s3[2.h] 5), M ge2 MgeSy [2]14814 S¢
C
(L) —4 =5 B=M9 (5) ?366r—’—2———%-——5—f——g B=2.s3
2 2 10 N 3 L
12 66 220 220 kg5 132
M, M2 [Mg.s3 My.Sg [2]4s), S¢
(63 é—D—g—C—é B=2.k4.2 (1) 8——C—é B=M,
3 2 9 2 11
66 220 495 12 66
Mige2 Mg.5g [“2.1;].3,4 M (M, 2
(8) 4222262 BeM_ .2 (9) 5—Ta8 3 poo s (10) 332228 % pos
9 3 3
3 10 b 9 15 b
66 220 220 495 495 132
M2 [MJS?’ My.8q [2.4s, [2.4s, s

Mast of these structures are easy to work out
some more time to get a good control over the
the parameters given in the diagram. The most
which we could work out fairly easily, from a
from a point should be more interesting if we
based on the examples listed in [ 3].

for oneself. It may take
incidence graph, beyond
delicate here is (10)
line. The development

refer to our experience
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Among the geometries (2) to (10) a major role is played by (4) which
appears as a residue of a less trivial geometry for the Conway group
C1 and which is a member of a family including other sporadic groups.
In it, we observe that the characteristic 3 of the "ground field"
appears clearly in all parameters (2,10 are equal to a power of 3 plus
one) and in the structure of the local parabolic subgroups. This holds
also in the residues of the geometry which we did not list, In this
respect, (4) appears as optimal: it is the most complete (less trunca-
ted) geometry having such a good behaviour with respect to a prime

number, namely 3.

6.Looking for guadrangles.

Let us observe all geometries obtained so far, in particular their
rank 1 residues which are residues of flags F having r-1 elements,
where r is the rank of the geometry. The stabilizer of F which we call

a rank 1 parabolic subgroup acts transitively on the rank 1 residue

of F. A non trivial observation is that in all but one cases, this
group turns out to be doubly-transitive. The exception occurs in (10)
with the action of S6 on a line of 15 points. Here we remember that
S6 o SPM(Z) which is acting on a generalized quadrangle of 15 points.
Therefore, our lines of 15 points bear each a structure of generalized
quadrangle with lines of 3 points or 3-lines. Let us look more closely
at these 3-lines and their geometric structure.

Let Q,, be the set of 12 O-elements of (1). Here the points of
the geometry we want to study, are the 3-elements of (1) i.e.all

subsets of 4 points of @ On the other hand, each such set is the

set of fixed points of alinique involution of M, 5 which can be seen

in the parabolic subgroup 2.4.84. Such an involution is called central
in M12. Let us examine pairs of commuting central involutions whose
product is central i.e. pure subgroups 22 of central type. These fall

into two conjugacy classes namely:
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A whose members have 3 involutions with disjoint sets of fixed points
in 912;
B whose members have 3 involutions whose sets of fixed points intersect
pairwise in 2 points and all of these sets of fixed points cover a
L-element of (1) i.e. a block of the Steiner system.

Let A € A, Then C (A) has order 25. If B € B, then C
Mo Mio
23. Therefore M12.2 acts on A and on B. This has intersecting geometric

(B) has order

consequences.,
Now,let p,q be central involutions such that <p,q> € B. Then CM (D),
D=<p,q>, 1is elementary abelian of order 22 and it contains exclusivelslz2
central involutions. Exactly one of these, say p *q has the property
that <p,p *g> and <q,p ¥ g> are members of B while p * q#pq. Clearly
p* (p *q)=q. Therefore <p,q,p *qg> and its transforms under M12’ is a
good choice for a line of 3 points on the set QHQS of all central
involutions. It can be checked that these are the lines of the gene-
ralized quadrangles of 15 points obtained from (10). Our analysis shows
that M12.2 acts on these lines of 3 points while it does not act on the
quadrangles. This means that there are 264 quadrangles (instead of 132
so far) on which M12.2 acts. Hence we get the following geometry
for M 2

12+2:
Q346,62 553 5
3 % 2
(11) m,,.2 495 1980 264k
[23]84.2 [2?2332 Sp, (2)
Spy, (2) Q3 [214 s, 1,4:6,6 3
3 3 3 2
15 15 12 8

3
[2%85 1298,

In the last residue we recognise a truncation of the cube namely

O Qee———p)
2 2 2
6 12 8

On this geometry (11), has two orbits on the 2-elements and so we

M
12
expect a phenomenon similar to that arising from the Dynkin diagram Dn

We indeed get 132 S6
o

(12) M 3 3 = B=27
12 495 R

X Sy, 3 132 Sg
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25553

which admits polarities, but in which (IP) fails since a o—2=2<—-0o
3 3
contradicts (IP). 4 4

A1l polarities of (12) are conjugate. They admit 15 absolute points
and their centralizer in M12 is 2 XA5.
We did not analyze truncations of (11).

7.More on central involutions.,

The following geometry is produced by Ronan and Stroth [12]; it
arises implicitly in the work of Goldschmidt [6].

(13) 9 8,12,12 1 p=o1t4
3 3
435 495
1+ >
133

3
2 27,2718
[ [ I3,
The incidence graph, seen from a O—el%ﬂent, is as follows

3 3 6 12 24 4g 96 192 192 192 96 48 16
3 2 1z % R ] 7] ) P F ES

M12.2 acts on this geometry which is close to a classical generaliged

polygon over F2, by the fact that B is a 2-Sylow subgroup of M12.

8.Further with central involutions.

Let us consider as points now, the 132 blocks of S(5,6,12) and
take as adjacency the fact that two blocks intersect in 4 points of
5(5,6,12). Then we get a graph as follows
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The group M884 has 2 orbits of 4 points in this graph and these orbits
are cliques, Indeed, in S(5,6,12) MgS) has an orbit of 4 points and
one of 8 points. The first determines 4 blocks on it and on the second,
there is an invariant pairing such that any 3 pairs in it constitute
a block. This gives our two orbits of U4 points of M8‘SM in 9132.
Taking these two families of lY-cliques as elements of a geometry, of
different types, we obtain
3495 [27)8,

(14) 132 2 B

Spy(2) 3 495 [271s,

"
n
N

.2

which satisfies (IP). The group M 2 does not act on the points and

12°
80 1t provides no dualities. Could there nevertheless be dualities?

Assume a is one. Then it must centralize M and therefore it fixes

12
each point in (14), Then it fixes also each 4-clique. Hence there are

no dualities. Two of the truncations give (10) again. We did not ana-
lyze the third one.
We can slightly modify our construction. Instead of 132 points we

take 66 points or cosets of some M 2, or pairs of points in the

10°
Steiner system. Here M8.Sq has an orbit of 4 points consisting of the

4 two-cycles of its central involution on @ By intersections,

12°
these sets of 4 points give also sets of 2 points and we can analyze
this situation to get

(15) o 8

2 3 2
66 1485 495

M52 [2.412.2 [2.1415,4
:Spu(2).2

o) B=2.4,2

O

The relation between (14) and (15) is clear: identifying all hyper-
planes in (14) we get the same diagram as in (15) and very likely, a
covering of (15).

We did not analyze truncations here.

9.Another geometry of Ronan.

Ronan [personal communication] and G.Glauberman have observed the
following geometry which is remarkably close to a generalized polygon



(16) 0—2:06 B=31%2 o2
4 L
220 220

2 2
[3 218, [3°.9 Sy

It has polarities with 20 absolute points. Here is the incidence
graph, seen from a point (G.Glauberman and A.Katz, personal communi-
cation).

10.The lonesome L2(11).

It is striking that maximal subgroups L2(11) do not interfere
very much with the other maximal subgroups of M12. This is perhaps
not completely hopeless for the smaller maximal subgroups, which we
did not analyze much. Anyway L2(11) has an interesting 1ife on itself.
Let us recall that there are 2 classes 01,02 of subgroups L2(11)
in M

12° The members of 01 are maximal. Each element of 02 is in a

unique subgroup M of each of the two classes of such subgroups. In

11
M12.2, C1 and 02 are invariant and the normalizer of a subgroup

L2(11) is now PGL2(11) which is maximal in M12.2, in both cases.
1o On the 144 cosets of some L2(117.

Since the degree 144 is small and since an element of order 11 fixes

Consider the action of M

a point, it is not hard to show that the subdegrees must be 1,11,11,55
and 66. The group M,,.2 acts on the 144 points and fuses the two
suborbits of degree 11 since PGL2(11) cannot act on 11 points.

Let a plane be any subset of degree 11 which is a suborbit of a
point stabilizer. Together with its transforms it generates a semi-
biplane in the sense of D.Hughes [7].

(17) ) o o B=S3
2 10 2
(18)  Jhy 2960  1hY

L,(11) [3*2]2.2 L,(11)
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These two geometries are non isomorphic. We do not know whether there

are polarities. Truncations were not analyzed. The group M,.,.2 acts

on the points with PGL2(11) as point-stabilizer., It does nég act on
the planes but rather on 288 planes whose geometry will not be further
studied here.

Let now M, act on the 144 points. This is a transitive action
and it must necessarily lead to 12 blocks of imprimitivity of size 12.
Consider such a block as a hyperplane. Its stabilizer is a subgroup
L2(11) of M11 which is 2-transitive on the 12 points of the block. By
intersections, this generates another semi-biplane which was disco-

vered by D.Leonard [8].

(19) o) 0 o) B=5
2 11 2
144 4752 14k
L,(11) (51 2.2 L,(11)

Here the stabilizer of a point is maximal and the stabilizer of a

plane is not. Hence there are noc dualities. However the action of M11

provides a parallelism on the planes which 1s invariant by M and

12

since there are 2 classes of subgroups M there are 2 invariant

11?2
parallelisms. These two parallelisms are interchanged by M12.2.

We did not analyze truncations.

11.Some other interesting situations.

If we dualize (9) on 495 points and if we let M 2 act on it

12°
we get 440 (instead of 220) lines of 9 points and a geometry having

(IP):

B’dosdl
(20) M .2 O 0 B=2.4.5,
9 8
4gs5 Lo
[2.4] 8)p2 My.Sy

We did not determine the parameters d,.dy-

The following are also given in such an incomplete way.

b, ,d,

3 10
396 1320
2 85 [a A ]x53

(21) Mo B=2x3



(22)
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4,4 ,d
O____.O__lo BzAMX2
8

3
495 1320
2.4.8,  [Ay) xSg
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Orbits and Enumeration

Peter J. Cameron
Merton College, Oxford OXI 44D, U.K.

1. Introduction

Sequences of natural numbers feature prominently in almost all parts of mathematics,
as well as many areas outside the traditional boundaries of the subject. Neil Sloane's
“Handbook of Integer Sequences" [11] bears testimony to this fact. It is a list of
2372 sequences, in lexicographic order, drawn from a wide range of topics. The only
criteria for inclusion of a sequence of natural numbers in the Handbook are that
enough terms should be known to distinguish it from its neighbours, and that somebody
must have found it interesting enough to commit it to print in the scientific litera-
ture.

The sequences discussed in this article arise in the following way. G is a group
of permutations of an infinite set X, having the property that G has only finitely
many orbits on the set of all k-element subsets of X, for each natural number k; we
Tet nk(G) denote the number of these orbits (with the convention that nO(G) = 1).

For example, if G = S, the symmetric group on X, then nk(G) =1 for all k, and
G realizes the sequence (1,1,1...) (which, for technical reasons, does not appear in
the Handbook). If we take instead for G the direct product of two copies of S, acting
on the disjoint union of the corresponding sets, then nk(G) = k+l, since a k-set
contains £ points from the first G-orbit (for some £ € {0,1,2,...,k}), and the orbit
containing the k-set is completely specified by the value of £. Thus G realizes the
sequence (1,2,3,4,5,...) of natural numbers (#173 in the Handbook).

This can be described concisely using generating functions. For any group G of the

type we are considering, let fG(t) denote the formal power series X nk(G)tk.
k=0
An easy argument shows that foH(t) = fG(t)fH(t), where the direct product acts on

-1

the disjoint union of the two sets. Since fs(t) = (1-t) *, we have fsxs(t)=(1-t)_2,

from which our above observation follows by the binomial theorem. More generally, we

have f m(t) = (l—t)ﬂn, so that nk(Sm) = (mgﬁil); thus the groups 53,54,...
S

realize the sequences of triangular, tetrahedral, and higher figurate numbers
(#41002, 1363, 1578, 1719, 1847, 1911, 1976, 2013, 2046 and 2073). (From now on, #N
refers to Sequence number N in the Handbook.)
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Looked at another way, nk(Sm) is the number of partitions of k into m parts (of
which some may be zero), where the order of the parts is significant; that is, the
number of ways of placing k identical objects into m distinguishable boxes. We see
that there is an enumeration problem intimately connected with the group. In this ar-
ticle, I shall examine which enumeration problems are connected with groups in this
way, and what it tells us about an enumeration problem to know that it determines
(nk(G)) for some group G. Sections 2-4 treat the first topic, giving constructions
of groups (and sequences) using wreath products, ultrahomogeneous models, and ad hoc
methods. Section 5 discusses model-theoretic generalities about the sequences (nk(G)),
while section 6 examines the question of rate of growth of such sequences. The final
section introduces a further sequence associated with certain groups G, in terms of a
graded algebra AG; this sequence enumerates "connected structures" of the type con-
cerned.

Of course, more than one group can realize a given sequence. As well as S, the
group A = Aut(Q,<) of all order-preserving permutations of the rational numbers
satisfies nk(A) =1 for all k. However, whereas there is an element of S mapping a
given k-tuple to another given k-tuple in any order, in A we may map only in one pre-
scribed order. We say that S is highly transitive, and A is highly homogeneous but not
highly transitive. We will exploit the difference in the next section.

2. MWreath products

The wreath product provides a means of constructing new groups (and hence new se-
quences) from old ones, that is considerably more flexible and subtle than the direct
product construction mentioned in the preceding section. Among the sequences we will
meet here are the Fibonacci sequence and the partition function.

Let H and K be permutation groups on sets Y and Z. We set X = YxZ, regarded
as a family of copies of Y indexed by Z. The wreath product G = H ¥r K s generated
by (i) the cartesian product of 1Z| copies of H, one for each element of Z, where the
copy of H indexed by z € Z acts on the copy of Y indexed by z and fixes all the
others pointwise, and {ii) elements of K, permuting the copies of Y among themselves
according to their given action on Z.

Examples. (i) Let Sm be the finite symmetric group of degree m. Then an orbit
of G =5 Wr Sm on k-sets is determined by a partition of k into m parts, some possib-
1y empty, where the order of the parts is irrelevant; so nk(G) is the number of ways
of placing k identical objects in m identical boxes, with generating function

fo(t) = (1-t)Ta-t8)h L
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For m = 3,4,5,6, we obtain sequences ##186, 229, 237, 243.

(i1} Similarly, n (S HrS) s the number of partitions of k into parts of size
at most m; by the familiar duality of partitions, this is the same as above.

(111) nk(SWr S) s the number p(k) of partitions of k (#244), with generating
function .; (l—ti)'l.
i=o0
Example. Recall the group A = Aut(Q,<). An orbit of G = SZWrA on k-sets is de-
termined by a partition of k into parts of size 1 or 2, where the order of the parts
is important; that is, an expression for k as a sum of ones and twos, in order. It

is well-known that this implies that nk(G) = Fk’ the kth Fibonacci number (#256).

This example shows that (n (GWrH)) s not determined by (n (G)) and (nk(H));
we require more information about H, which can be summarized in a formal power series
in countably many indeterminates (see [2 III] for details).

The cycle index of a finite permutation group G is the polynomial in the indeter-

minates 31,52,..., given by
7(6 ) 1 ni{g) n,(q)
5575505 0.) = T s s cees
1°=2 IGIgEG 1 2

where ni(g) is the number of cycles of lenght i in the cycle decomposition of g. If
G is any permutation group with nk(G) < for all k, select representatives
Xl’XZ"" of the G-orbits on finite sets, and let Gi be the (finite) permutation
group induced on Xi by its setwise stabilizer. The modified cycle index of G is
defined by

Z(G;sl,sz,...) = ? Z(Gi;sl’SZ"")'

(Our convention is that the cycle index of the "group of degree zero" is 1.)

~

If G is finite, then 2(G35955y,...) = Z(Gssy+1, sp+1,...).

Let Nk(G) be the number of orbits of G on ordered k-tuples of distinct elements,

and FG(t) = ; Nk(G)tk/k!.The next result summarizes properties of the modified cycle
k=0

index and its connection with our problem.

(t) = 2(6;t,t%,t5,...).

(1) Fglt) = Z(6;
(111)  Z(GxH) = Z(6)Z(H).

Theorem 2.1. (i) f
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(iv)  Z(GWrH) is obtained from Z(H) by substituting Z(G3s»spyssgys---)-1

for each occurrence of Sk for k = 1,2... .

~

(v) If G is transitive, then Z(Gx) = 5?— i(G), where GX is the stabilizer
1
of x, acting on the points different from x.
I~ 2 3
Corollary 2.2. fGVH~H(t) = I(H 5f5(t)-1, f(t )-1, fo(t7)-1,...).
Example. The group A has a single orbit on k-sets for each k, and the group in-
duced on a k-set is trivial. So Z(A; 51’52"") =1 + Sp sf +... = 1/(1—51).

2

We have fo (t) =1+t + t2, so f (t)=1/(1 - t - t°), the well-known gene-

Sy Sohr A
rating function for the Fibonacci sequence.

In the same way, we see that the sequences realized by SmWrA for m = 3,4,5,6
are the tribonacci, tetranacci, pentanacci and hexanacci numbers (##406, 423, 429,
431); while if G is the iterated wreath product of m copies of A, then G realizes
the sequence of powers of m (for m = 2,3,...,9,11, these are ##432, 1129, 1428, 1620,
1765, 1874, 1937, 1992 and 2054).

The modified cycle index of the infinite symmetric group S is a bit more compli-

cated, but familiar manipulations (see [8] p.52) put it in the form exp = (Sj/j).
J=1
Further manipulation shows that, if n (G) = m, then
- J -LTIJ'
t) = 17 (1-tY)
J=1

faur sl

(This is easily proved directly.)

Taking m; = 1 for all j, we obtain the generating function for the partition
function p(k). Taking my = p(j), we see that SHrSWrS realizes #1019 in the
Handbook, studied under the name "functional determinants" by Cayley. Sequences pro-
duced by further iteration do not appear in the Handbook.

Any non-trivial wreath product is imprimitive, in the sense that there is a proper
equivalence relation left invariant by the group. Conversely, any imprimitive group
can be embedded in a wreath product. The techniques of this section are useful in
studying (and finding Tower bounds for) sequences realized by imprimitive groups. In
the next two sections, I give some constructions which yield primitive groups.

Incidentally, I do not have any example of a sequence realized by both a primitive
and an imprimitive group.



90

3. Ultrahomogeneous models

The countable random graph T (see [6]) has the property that any isomorphism bet-
ween finite induced subgraphs of T can be extended to an automorphism of I'. Moreover,
every finite graph occurs as an induced subgraph of T'. Thus, if G is the automorphism
group of I', then nk(G) is the number of isomorphism types of graphs with k vertices.
So G realizes the sequence (1,1,2,4,11,34,...) (#479).

This is a special case of a very general phenomenon. Call a structure T ultrahomo-
geneous relative to an isomorphism-closed class C of finite structures if (i) every
finite subset of T carries an "induced substructure" in C, and every member of C is
isomorphic to an induced substructure of T; and (ii) any isomorphism between finite
induced substructures of T can be extended to an automorphism of T'. Thus, if G is the
automorphism group of I', then nk(G) is the number of k-element structures in C, up
to isomorphism. Furthermore, the modified cycle index of G (if it exists) is the sum
of the cycle indices of the automorphism groups of all C-structures.

In what follows, it will be convenient to talk of classes of structures containing
infinite as well as finite members (e.g.graphs). Necessary and sufficient conditions
for the existence of a unique countable ultrahomogeneous structure in C (corresponding
to all the finite members of C) are as follows:

(a) C has only countably many finite members, up to isomorphism;

(b) any finite subset of a C-structure carries an induced C-structure, and
inclusion maps behave well (so that restricting to Y and then to ZcY
yields the same result as restricting to Z);

{c) a structure of type C is determined by its finite substructures (in the
sense that if every finite subset of X carries a C-structure, and if the
inclusion maps behave well, then there is a unique compatible C-structure
on X);

(d) (the amalgamation property) if MO,M1 and M2 are C-structures, and
fi: M0 - Mi are embeddings (i = 1,2), then there is a C-structure M3
and embeddings 95 :Mi - M3 (i = 1,2) such that flg1 = ,9,.

The reader is urged to check that conditions (a}-(d) hold for the class of graphs.
A proof of the equivalence is given in [12], and further discussion in [4].

The amalgamation property says, loosely speaking, that if we are given two C-struc-
tures with a common substructure, then an amalgam exists in which the intersection of
the two structures is at Teast the given substructure.
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In many situations, the first three conditions are obvious, and only the fourth
requires proof. (Thus, (a) - (c¢) hold if C is the class of all relational structures
over a given first-order language with no function or constant symbols, or all those
satisfying a given collection of universal sentences. For example, the structure of
a graph is completely determined by the knowledge of all its 2-vertex subgraphs.)

Thinking of a complementary pair of graphs as a colouring of the edges of the
complete graph with two interchangeable colours, we see that there is a group G
for which nk(G) is the number of k-vertex graphs up to complementation (the average
of ##479 and 780). (Alternatively, the random graph I is self-complementary; let G
be the group of its automorphisms and anti-automorphisms.) Similarly, there is a
group G for which nk(G) is the number of switching classes (Seidel equivalence
classes) of graphs on k vertices (#321). We may allow the graphs to have Toops (#646),
or to be directed (##715, 784, 1229). Other examples are tournaments (#484), and va-
rious generalizations to relations of higher arity (##606, 872, 875).

Note that, if the group G and the class C are related in the above way, then
nk(G) is the number of unlabelled k-element structures in C, while Nk(G) (the
number of orbits of G on ordered k-tuples) is the number of labelled k-element struc-
tures in C. However, in some cases, it is possible to construct a group G' for
which nk(G') is the number of labelled k-element structures. The requirement is
that the amalgamation in (d) can be performed without making any additional identifi-
cations. For example, let C be the class of graphs. Take C' to be the class of struc-
tures each of which consists of a graph together with a total ordering of the vertices
Then C' still satisfies (a) - (d); and a finite C'-structure is essentially a labelled
graph, so the corresponding group G' realizes the sequence (1,1,2,8,64,1024,...)
enumerating labelled graphs.

Three further examples of this phenomenon:

(i) If Cis the class of total orders, then nk(G') is the number of orderings
of {1,2,...,k}, viz.k! (#659). This example can be modified by regarding the two
total orders on a C'-structure as interchangeable, giving a group realizing the se-
quence (1,1,2,5,17,73,...), the average of ##469 and 659 (the number of inverse pairs
in Sk).

(ii) If C corresponds to the group G = SWrS (so that nk(G) is the number of
partitions of k), then ny (G') 1is the number of partitions of the set {1,2,....k},
the kP Bell number (#585).
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(iii) If C is the class of k-uniform hypergraphs, then G' is a subgraph of

Aut(Q,<) which is (k-1)-homogeneous but not k-homogeneous, answering a question of
Glass ([6], p.248).

4. Other examples

There is a group G realizing the sequence #545 (1,1,2,5,11,26,...) enumerating
graphs with k edges and no isolated vertices. For let X be the set of all 2-element
subsets of an auxiliary infinite set Y, and G the symmetric group on Y, in its in-
duced action on X. A k-subset of X consists of k distinct 2-subsets of Y, i.e.

k edges of a graph on Y; two k-sets are in the same orbit if and only if the corres-
ponding graphs (after deletion of isolated vertices) are isomorphic. In a similar

way, we can realize the sequence enumerating t-uniform hypergraphs with k edges, for
given t. Furthermore, the direct product of two symmetric groups, acting on the direct
product of the underlying sets, realizes the sequence enumerating graphs with k edges
having a named bipartite block, while its extension by a group of order 2 (inter-
changing the factors) realizes the sequence enumerating graphs with k edges having a
named bipartition.

Further examples include the collineation groups of projective or affine spaces
of infinite dimension over finite fields. In these cases, nk(G) is the number of
different configurations of k points in projective or affine space, up to collineations
of the space.

In the above example, the connection between the groups and the structures enumer-
ated is fairly obvious. This is less so in the next three cases. They are #121
(sequences generated by a binary shift register), #298 (commutative bracketings -
the Wedderburn-Etherington problem), and #122 (boron trees).

The binary sequences in the first case are defined by the condition Xk = 1+ Xy
for all i; two sequences are equivalent if they differ by a cyclic shift. The group
G is constructed in [21I]: it is a transitive extension of the subgroup of A fixing
a dense subset of Q with dense complement. (The fact that all such subsets are equiva-
lent under order-automorphisms of Q was proved by Skolem.) In another formulation,
the structures being enumerated are local orders, or tournaments containing no 4-vertex
subtournament consisting of a vertex dominating or dominated by a 3-cycle. Any Tocal
order gives rise to a circular ordering of the point set; the local orders giving a
fixed circular order form a switching class. The equivalence of local orders and
shift register sequences was shown by A.Brouwer, after he had noted that the sequence
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obtained in [2 O] for (nk(G)) agreed with #121 in the Handbook - a good example
of how the Handbook was intended to be used!

The Wedderburn-Etherington numbers count commutative bracketings of a sequence of
k symbols, or words of length k in the free commutative non-associative structure on
1 generator. Equivalently, they count binary trees with k end vertices, where the
distinction between Teft and right is not significant. The corresponding group was
constructed in [2 IV] as a group of permutations of the set of finite sequences of
rational numbers. (If the left-right distinction is significant, we obtain the se-
quence of Catalan numbers; I do not know any group realizing this sequence.)

A boron tree is a tree in which all vertices have valency 1 or 3. The sequence
enumerating boron trees is realized by a group which is a transitive extension of
the group described in the preceding paragraph. (This is to be expected, because of
the correspondence between boron trees rooted at an end vertex and binary trees.)
Inspection of the boron trees with up to 5 end vertices shows that this group is
5-homogeneous (nS(G) = 1) and 3-transitive but not 4-transitive. Thus it is a
counterexample to an earlier conjecture of the author (see [41).

It is notable that the last three groups were constructed in the context of prob-
lems of a purely permutation-group-theoretic nature: see [2, II, IV]. Another common
feature of the three will be seen in Section 6.

5. Model-theoretic observations.

In this section and the next, we turn to the question: which sequences (nk) of
natural numbers are realized by a group G, in the sense that N = nk(G) for all k?

First, we observe that it is enough to consider groups of countable degree.

Proposition 5.1. If G is an infinite permutation group with nk(G) < « for all k,

then there is a countable permutation group Gl of countable degree satisfying
nk(G) = nk(Gl) for all k.

Proof. There are first-order formulae in a suitable language expressing the facts
that G is a group, that G acts on X, and that G has N orbits on the set of k-element
subsets of X for all k. Now the existence of a countable model follows from the down-
ward Lowenheim-Skolem theorem ([1], p.10).

This argument can be medified to find a group Gy of countable degree with the same
modified cycle index as G. However, there is another way to proceed. Given the group
G, construct a first-order language with a name (a k-ary relation symbol) for each
orbit of G on ordered k-tuples, for each k.
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The set X carries an ultrahomogeneous relational structure over this language, with
G as an automorphism group acting "ultrahomogeneously". It follows easily that the
class of finite substructures of X satisfies conditions (a)-(d) of Section 3. We de-
duce the existence of a countable ultrahomogeneous model on a set Xl’ with automor-
phism group Gl' (If a countable group is desired, enumerate the pairs of k-tuples
lying in the same orbit, select an element of G1 mapping the first member of each
pair to the second, and take the subgroup generated by these elements.) This argument
shows that, in a certain sense, the construction of Section 3 is the most general one
possible. However, it often tells us more about a structure to have an explicit con-
struction than merely to have an existence theorem, as the last three examples of
Section 4 show.

Next, we show that there is no upper bound for the rate of growth of the sequence
(n (G)), with the consequence that there are uncountably many such sequences.
k

Proposition 5.2. Given a natural number t and a sequence (mk) of natural numbers,

there is a group G such that n(G) =1 if k<t, while n(G) z me it ko= t.

Proof. A structure in the relevant class consists of a set, together with a col-
ouring of its k-element subsets with m distinguished colours for each k z t. Clearly
this class has properties (a)-(d) of Section 3. Now let G be the automorphism group
of the countable ultrahomogeneous structure.

Corollary 5.3. There are uncountably many sequences (nk(G)).

Proof. This is a simple diagonalization. If there were only countably many, say
(nk(Gl))’ (nk(GZ))""’ apply (5.2) with t =1, m = nk(Gk)+1’ to obtain a contra-
diction.

For those who don't believe the Continuum Hypothesis, I remark that, in fact, there
are 2 ° such sequences. (Given a subset V of IN, perform the construction of Propo-

k k-1
sition 5.2 with m =1 if k ¢V, m = p2 +1 if k €V, where p = = nj: note

k J=0
that nj depends only on ml,mz,...,mj. We have m, < p2 if k €V; so we can re-

cover the set V from the sequence.)

By contrast to Proposition 5.2, we have the following:

Proposition 5.4. Let G be the automorphism group of an ultrahomogeneous structure

with only finitely many relation symbols. Then n(G) is bounded by the exponential
of a polynomial in k.
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Proof. If the relations have arities MysMys.easMs then the number of isomor-

m m m
phism types of k-element structures is at most 2p(k), where p(k) = k l-rk 2+ stk
We can formulate the general existence question as follows. Suppose that we are

given a sequence (nk). As in the proof of (5.1), there is a first-order theory of
groups realizing this sequence. Is this theory consistent? According to the Compact-
ness Theorem ([1], p.10), the theory is consistent if, for every natural number £,
there is a group G, with nk(Gt) =n for all k< £. This suggests looking for
"local" necessary conditions. Some conditions of this sort are given in the next sec-
tion, as well as others of a more "global" character.

There is another way in which our problem is related to model theory. Let L be a
countable first-order language with no function or constant symbols, T a complete
consistent theory over L, and M an infinite model of T. A theorem of Engeler, Ryll-
Nardzewski, and Svenonius ([1], p.8l) asserts that T is N;-categorica] if and only if
Aut(M) has only finitely many orbits on k-subsets of M, for all k. (Another equiva-
Tent condition is that, for each k, there are only finitely many k-tuples of elements
of M, up to elementary equivalence in M.)

6. Necessary conditions.

In this section we 1ist a few known properties of the sequences (nk(G)) arising
from groups G. Obviously, a sequence must satisfy these conditions if we are to be
able to find a group realizing it!

The most important property is that such sequences are non-decreasing.

Theorem 6.1. nk+1(G) 2 nk(G).

This raises two questions: how fast must the sequence grow, and in what circum-
stances can consecutive terms be equal?

Examples in Sections 1 and 2 show that intransitive groups, or transitive but im-
primitive groups, may exhibit polynomial growth rate. By contrast, Macpherson [9]
showed the following:

Theorem 6.2. If G is primitive, then either nk(G) =1 for all k (G is highly

homogeneous), or for any ¢ > 0, nk(G) > exp(kl/z—s) holds for all sufficiently

large k.

It is conjectured that in fact, for primitive but not highly homogeneous groups,
the sequence (nk(G)) grows at Teast exponentially.
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It is known [2 IV] that, in order to prove this, it is enough to show that a primitive
group realizing slower than exponential growth rate is 3-homogeneous. Macpherson has
refined the techniques used for Theorem 6.2 to an extent where a proof of the con-
jecture looks possible.

In fact, very few examples are known of primitive groups where the growth rate is
exponential, that is, where Tlog nk(G) ~ ck: only the last three examples in Section
4 and some related ones. (We have c¢ = log 2 for #121, and ¢ = log 2.48... for ##122,
298. No example with ¢ < Tog 2 is known.) Perhaps there is a gap between exponential
growth and the type exhibited by ##545, 659, that is, Tog nk(G) ~ ck log k. If this
were true, the sequences with exponential growth would be especially interesting.

Questions about growth rate can be asked even when no group is present. Here are
some examples.

(i) In the Engeler-Ryl1-Nardzewski-Svenonius theorem (see Section 5), is it true
that if T is finitely axiomatisable, then n, (Aut(M}) 1is bounded by the exponential
of a polynomial (cf.(5.4))?

(ii) A theorem of Pouzet [8] asserts that, if R is a relation on an infinite set,
and my the number of restrictions of R to k-element subsets, then either (mk) grows
polynomially (i.e. ak"< m, < bk™ for some natural number n and positive constants
a and b), or (mk) grows faster than any polynomial. Can this be extended to structures
with arbitrarily many relations? What can be said about structures with polynomial
growth? (For example, which infinite graphs have this property?) And if the growth
rate is faster than polynomial, must it be at least fractional exponential?

Turning to the other question, groups with Ne = Meype We observe that any (k+1)
homogeneous group {that is, a group with Mes1” 1) has this property, by Theorem 6.1.
A considerable amount is known about such groups (see,for example,[2 IV]), but for
the present problem we regard them as "trivial". In [2 I] it is shown that, if
nk(G) = nk+—1<G) and G is intransitive, then G fixes a set of size at most k and acts
(k + 1)-homogeneously on its complement. Thus, we need only consider transitive groups.
A similar reduction in [2 II] allows us to consider only primitive groups. It is also
shown there that no primitive group G has nZ(G) = n3(G) > 1; while if G is transitive
and n3(G) = n4(G) > 1, then G acts on a dense local order (so that G is a subgroup
of the group associated with #121 if its degree is countable). Other known examples
of primitive groups with nk(G) = nk«yl(G) are the infinite-dimensional affine group
(k=4), the group associated with switching classes of tournaments (k=4), the group
associated with boron trees (#122) (k=6), and a related group associated with "boron-
carbon trees" (k=4). In all known cases, nk(G) = 2 and G is (k-1)-homogeneous.
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The investigation of groups with this property has raised a number of interesting
combinatorial questions, related to Ramsey's theorem. For a discussion of some of
these, see [3] and [4].

It is shown in [2 I] that, if G is transitive and nk(G) = nk+-2(G)’ then G is

(k+2)-homogeneous. Evidence suggests that, for primitive groups, the sequence (nk(G))
is nearly log-concave; that is, violations of the inequality nk(G)nk+2(G) 2 nk+1(G)2
are comparatively rare. (This reinforces the conjecture that (n, (G)) grows at least

exponentially.) The only result in this direction is

nk(G)nk+2(G) 2 (nk+1(G)-1)(nk+1(G) + nk(G)-l)/(k+1)(k+2)
by Cameron and Sax1 [5].
An interesting test case is k=1, assuming that nl(G) =1 (that is, G is transi-
tive). Putting nZ(G) =r, n3(G) = s, the above formula gives s 2 %r(r-l). This

bound is attained for G a finite elementary abelian 2-group acting regularly (and
only for such a group). Even for infinite primitive groups, it is best possible, apart
from a factor. (For example, let C-structures consist of colourings of the edges of
complete graphs with r colours in such a way that any triangle has at least one edge
of the last colour. The automorphism group G of the countable ultrahomogeneous C-
structure is primitive and has n,(G) = r, ny(G) =-%r(r+1). For r=2, the subgraph

of the first colour is that described by Woodrow [12].)

7. Algebras
We have already seen (in Section 2) the relation
Stk )
b3 nkt = 1 (1-t7) (*)
k=0 Jj=1
There, it connected the sequence (mk = nk(H)) with the sequence (nk = nk(H Wr S)),
where S is an infinite symmetric group. There are two other familar situations where

(*} occurs:

(i) If m is the number of connected graphs with k vertices, then Ny is the total
number of graphs with k vertices. Similarly for connected graphs and graphs with k
edges, trees and forests with k vertices, etc.

(ii) If A is a graded algebra which is a polynomial ring generated by my homogene-
ous elements of degree k (for each k), then n,  is the dimension of the kth homogeneous
component,
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These three occurrences of the same relation are, of course, not unconnected.
Let X be a set (in our application, an infinite set). Let Vk be the rational vector

space of functions from k-subsets of X to @, and A = & Vk; define multiplication
k=0

on A by setting, for f € Vk’ g€ VZ’ McX, IMl = k+£,
(fg) M) = = f(K)g(M-K),
KeM
|K1=k

and extending linearly. This makes A a (commutative and associative) graded algebra.
If G is a permutation group on X, VkG the vector space of G-invariant functions in

G

G_ oo
and A = & Vk

k=0

) s then AG is a subalgebra of A; and if nk(G) is finite, then

k’
. G
dim Vk = nk(G).

Remarks: (i) Theorem 6.1 follows from the fact that, if e is the constant func-
tion in V1 with value 1, then e is not a zero-divisor, so that multiplication by e
. . G G
is a monomorphism from Vk to Vk+1 .

(i) Macpherson's result (Theorem 6.2) implies that, if G is primitive, then AG
cannot be finitely generated unless G is highly homogeneous ( in which case AG is the
polynomial ring generated by e).

Under certain conditions, AG is a polynomial ring. If G is the automorphism group
of the countable ultrahomogeneous structure in a class C, then sufficient conditions
can be formulated in terms of C. The requirements are that C possesses concepts of
"connected structure" and "disjoint union" (so that any structure is uniquely the
disjoint union of connected ones) and “involvement" (so that, if the point set of a
C-structure M is partitioned, then M involves the disjoint union of the induced struc-
tures on the parts). We see immediately that for the groups G corresponding to the
sequences #479 (graphs with k vertices) and #545 (graphs with k edges), the algebra
AG is a polynomial ring; and the sequences enumerating its polynomial generators by
degree are #649 (connected graphs with k vertices) and #985 (connected graphs with
k edges) respectively.

If G = HWr S, then a member of the class enumerated by (nk(G)) consists of a par-
tition of k together with a structure from the class enumerated by nk(H) on each part.
The connected structures are precisely those in which the partition has a single part.
Thus AG is a polynomial ring, and the sequence enumerating its generators is (nk(H)).

It would be interesting to have further examples. A first step might invoive com-
puting the sequence (mk) from a given sequence (nk) using (*), and checking whether
it occurs in the Handbook.
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A test case is #321 (switching classes of graphs). Since there are equally many
switching classes and even graphs, the sequence (mk) enumerates connected even graphs
(i.e. Eulerian graphs). However, I do not know whether AG is a polynomial ring or not

O0f course, AG is not always a polynomial ring. For example, if H is a finite per-

mutation group, then ASwr H

is isomorphic to the ring of invariants of H, where H
acts as a linear group via permutation matrices (see [2 II1), so that fSWr H(t) is
the Molien series of H. (It is an interesting exercise to check that Corollary 2.2

agrees with Molien's theorem in this case.)
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PICTURES AND SKEW (REVERSE) PLANE PARTITIONS

Michael Clausen and Friedrich Stoétzer
Lehrstuhl II fdr Mathematik, Universitdt Bayreuth

D-8580 Bayreuth, West-Germany

Pictures first appeared in papers by James/Peel [2] and Zelevinsky [5,6] in connec-
tion with the representation theory of symmetric groups. Roughly speaking a picture
is a bijection T:A»B (A,B € WXN) such that T and T_1 both satisfy the same stan-
dard property. We distinguish two different standard properties, which are defined

by means of several orderings of WN xI:

(a,b) § (c,d) = (a<cand b <4d)
(a,b) § (c,d) = (a<cand b=>=4d)
(a,b) f (c,d) := (either a<cor a =c and b <d)
(a,b) § (c,d) :¢= (either a <cor a=c and b =2 4)

Note that % (resp. §) is a linearization of § (resp. %). A map f:X*Y (X,Y¥ € NXN)
is called PJ-standard (resp. PC-standard), iff f is an order morphism (X,§ —*(Y,§)
(resp. (X,§)—>(Y,§)). A bijection T:A>B (A,B © N XN) is said to be a PJ-picture

(resp. PC-picture) of shape A =: [T| and content B, if T and 'I‘—1 are PJ-standard

(resp. PC-standard). Let PJ(A,B) (resp. PC(A,B)) denote the set of all PJ-pictures

(resp. PC-pictures) of shape A and content B.

Since § is a linearization of % we get immediately PC{(A,B) < PJ(A,B).

Example.

illustrates the bijection T of shape
l14]22

a=1{(1,4,2,3),2,9,(2,6),4,2)}
and content

B =1{(1,3),(1,4),(2,1),(2,2),(2,3)} with

T(1,4)=(1,3), T(2,3)=(1,4), T(2,4)=(2,2), T(2,6)=(2,1), and T(4,2)=(2,3).

T is PC-standard as well as

1423]

T = 26I24 42

Hence T is a PC-picture.
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11

U= 22| is a PJ-picture but not a PC-picture,
o

A problem which arises in representation theory is to compute explicitly all pic-
tures between two skew diagrams A and B, Before we establish an algorithm which con-
structs all those pictures by suitable hook deformations we give some characteriza-

tions of pictures.

The reader is referred to [1] for a more detailed exposition.

1, Pictures

We have learnt the following useful "geographical" notation from A. Zelevinsky

[5p. 157].

NW N NE
Every point (c,d) € NxXIN decomposes

c W E

N XN into disjoint subsets:
SW S SE

We write (a,b) (X,Y,...,2)(c,d) iff (a,b) # (c,d) and (a,b) lies in one of the re-

gions X,Y,...,2 with respect to (c,d).

Example. (a,b) < (c,d) & (a,b) (N,NW,W) (c,d).

P [u]

We frequently have to deal with bijections T:A>B satisfying for all x,y € A some

of the following "geographical” conditions.

name geographical condition

(E) x (E) x = T(x) (W,SW) T(y)

(S,SE) x (S,SE) y = T(x) (SW,S,SE) T(y)

(s) x (S) vy = T(x) (SW,S) T(y)

(SE) x (SE) y = T(x) (SW) T(y)

(SW) x (SW) vy = T(x) (SW,S,SE,E,NE) T(y)

By definition, a subset A of WxN is P-convex iff x ;fy §:z and X,z € A implies
y € A, Finite P-convex sets will be called skew diagrams. A skew diagram containing
the point (1,1) will be called a diagram. X cA is A-regular iff there is a P=-convex

set D with (1,1) € D and X = A \ D. m and m,

. . ; hort-h
given by T (al,az)Hai. For the chain {x1 § oes § xn} we often use the short-hand

A YB denotes the disjoint union of A and B,

denote the natural projections IN XIN >IN

notation {xl,...,xn}<
J
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Now we can state

Theorem 1. For a bijection T:A»B (A,B € NxN) the following conditions are equivalent,

(1)
(2)

(3)

T:A*B is a PJ-picture.
For all x € A: T[{y €A | x
1 {y € B | z

] is B-regular and for all z € B:

v}
v}] is A-reqular.

BVANEVAN

For all x,y € A the bijection T satisfies the geographical conditions

(E), (S,SE) and (SW).

A similar characterization holds for PC-pictures:

Theorem 2.

(1)
(2)

(3)

T:A>B is a PC-picture,
For all x € A: T[{y €A | x S
<

y}] is B-regular and for all z € B:
-1
T [{YEBIsz}

] is A-regular.
For all x,y € A the bijection T satisfies the geographical conditions

(E),(8),(SE), (sW). ,

Under additional assumptions we can give further characterizations.

(Compare with [5,p.157].)

Theorem 3, Let A,B S N XN be P-convex. Then for a bijection T:A»B the following

conditions are equivalent.

(1)
(2)
(3)

(4)

T is a PJ-picture.

T is a PC-picture.

For all X,y € A the bijection T satisfies the geographical conditions (E}, (S)
and (SW).

-1 .
nloT and ﬂloT are column strict skew reverse plane partitions and ﬂf’T as well
-1 , .
as ﬂ2°T are row strict skew plane partitions,

[so the entries in w oT are non~decreasing from left to right in each row and

1

strictly increasing down the columns. The entries in 7,.0T are strictly decreasing

2

in the rows and non-increasing down the columns. ].
u]

Next we answer the question which subsets of N XN can be the shape or content of a

picture. Define k := {1,2,...,k}.

Lemma. Let ¢ # A © N xNN.

(1)

(2)
(3)
(4)

If the bijection T:A”B satisfies (E) then A is row-finite, i.e. for all
1EN: |AN{(i,5) | JENY <=,

If the bijection T:A»B satisfies (E) and (SE) then A < Wxk for some k € N,
PJ(A,B) * @ for suitable B S NxN iff A is row-finite,

PC(A,B) # ¢ for suitable B © IN xIN iff A € Nxk for some k € N.

For a bijection T:A>B (A,B < N xIN) the following conditions are equivalent.
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Proof,
"(1)" Note that if x (E) x' and T(x) =: (a,b), T(x') =: (a',b') then by (E):b <b'.
"(2)" If there is no such k then by (1) there exists an infinite sequence (Xl,x2,...)

of elements in A such that xi (NW) xi . Then T(Xl) (NE) T(x2) (NE) T(x3) eesy which

+1
is impossible.

"(3)" "=" is clear by (1) and Theorem 1.
" e " If A is row-finite then there is a unique order isomorphism NA:(A,§?+%A,§Q.
By Theorem 1, (3), NA € PJ(A,A).
[NA will be called the natural PJ-picture with respect to a.]
"(4)" "=" is clear by (2) and Theorem 2.
"< " Let ACK := Nx{l,...,k}. The natural PJ-picture Ny is even a PC-picture.
The "restriction" of NK to A is a PC-picture of shape A,
n
Let R be theset of all row-finite subsets of NxN and let BO ;= {a | 3k:a € Wxk}.

Now we introduce equivalence relations on 5 and 50.

A,A' € R are said to be PJ-equivalent iff there exists a bijection f:A'->A such that
for all B € R: PJ(A,B)of := {Tof | T € PJ(A,B)} = PI(A',B).

Similarly, A,A' € go are PC~equivalent iff there exists a bijection f:A'sA such that
for all B € R°: PC(a,B)of = PC(A',B).

Of course, if PJ(A,-)of = PJ(A',-) and PJ(B,-)eg = PJ(B',-) then
PJ(A',B') = g'lopJ(A,B)of.

We give more handy characterizations of these equivalence relations.

Theorem 4. For A,A' € R the following conditions are equivalent.

(1) A and A' are PJ-equivalent.
(2) There exists a bijection f:A'»A such that for all x,y € A':
x (E) ¥ = f(x) (E) £(y)
x (8,SE) y <= f(x) (S,SE) f(y)
X (SW) y «= f(x) (8W) f(y).
(3) There exists a bijection f:A'»A such that f is an order isomorphism
f:(A',fQﬁﬁA,§9 as well as an order isomorphism f:(A‘,ﬁQ*{A,<). .
Since § is a total order there exists at most one bijection f:A'»A satisfying the

conditions above.

Theorem 5. For A,A' € BO the following conditions are eqguivalent.
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(1) A and A' are PC-equivalent.
(2) There exists a bijection f:A'-A such that for all x,y € A' and all directions

R € {E,S,SE,SW} the following holds:

x (R) y = £(x) (R) £(y).

(3) There exists a bijection £:A'-»A such that f is an order isomorphism

f: (A',§)->(A,§) as well as an order isomorphism f: (A',§)—>(A,§ .
o

If we cancel in A € R all "empty rows" and "empty columns" then we get a set cpr(a),

the compression of A.

Example.

A cpr (A)=

S
N
NN

\

N
NN

Corollary. T := {A € R | A = cpr(a)} is a transversal with respect to PC-equivalence.
a]

The specification of a PJ-transversal is more complicate. For (i,j) ENXN, j = 2,

we define

Nij = {(%,3) | x <i} U {(h,5-1) | h =i},
Theorem 6. T := {A €R | A = cpr(a) and for all (i,j) €4, J > 2, A N Ny ¥ @}

is a transversal with respect to PJ-equivalence.
o

Now we are going to define orderings on IO and T allowing estimates for PC(A,B) and

PJ(A,B).

(e} , \ .
For A,C € Z (resp. A,C € Z ) we write A <PJ C (resp. A <PC C) iff there exists a
bijection f:C»A such that for all B € R (resp. B € 130): PJ(A,B)e £ < PJ(C,B) (resp.

PC(A,B)of c PC(C,B)}.

Theorem 7. (Z,<PJ) and (go, <PC) are partially ordered sets (= posets).
o
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< < i = i ;
If A o7 B (resp. A Soc B} then necessarily |A| |B|. This suggests the following
partitions.

T=T UUT and T° = 1° U U T,

= =00 =n = =0 =n

n n

where

T :={a€eT | |a] ==} 0 = {a€1° | |a] =}

T :={a€eT | [l =nk 1 :={ae1’ | |a] =nl.

The maximal and minimal elements in the posets above are characterized in the

following.

Theorem 8.

(y {{@E,n+t1-1) /1€ 3} I n € N} is the set of all maximal elements in
< i ° <
(Z'\PJ) as well as in (2 '\PC)'
(2) A €T is minimal in (£,<PJ) iff (A,§) is linear.
(3) {{(i,i) | 1 €n} | n €N} is the set of all minimal elements in
o
<
(T '\PC)'
o

According to the last theorem (Ei,%c) is a poset with O~ and l-element.

© <
Example, (23'\PC) Dd:]
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(e} . : . .
Note that (23’S$C) is neither a lattice nor ranked. The same is true for all n>3,
This example also suggests several "geographical" dualisms and automorphisms of

(T

(e} . . .
_n,<%c), which we are going to describe now.

The dihedral group D8 =<o,1 | c4=r2=1, ror—1=o3 >= {1,0,02,03,1,0T,021,03T} acts
on every Qz in the following obvious way.

o o . o .
For A € Zn' OA € Zn is the 90  rotation of A and TA € !i is the transpose of A.

Example,

[ N |
u O

O

Obviously, D8 acts faithfully on zz iff n23, For n23, the Kleinian 4-group
{1,02,1,021} is a group of automorphisms of (Z§,<%C)o 0,01,03,03T act as anti-automor
phisms on (Z§,<%c)° Note that 02 is a central symmetry and 02T is a reflection fixing
a line parallel to the axis {(i,-i) | i€z},

For § € D8 and A € Zz let 6A denote the obvious bijection GA:A+6A°

Then a straightforward computation shows that for all A,B(Ezg the following holds:

PC(GZA,UZB) = czE:aPc(A,B)o((SzA)n1 and PC(TA,02TB) = (021')BoPC(z-\,B)o'rA-1 o

These formulae are closely related to results of Zelevinsky and Schiitzenberger/Knuth.

2., Pictures between skew diagrams

Let S be a skew diagram.

In this section we want to develop an algorithm which generates the union of all
PC(S8',S), S' a skew diagram. [Recall that by Theorem 3 PC(S',S) = PJ(S',S)O]

We begin with the computation of the union of all PC(D,S), D a diagram.

Reversing in ids the order of the columns, we get a PC-picture TS, which is the star-

ting point of the algorithm.

Example,
- 14f15] 15]14
23[24 24]23
idg = 313233 T, = 33[32[31
41 Ja2 |43 43[42{a1
51 [52 |53 53(52]51

Now we can formmlate the algorithm in its first version.
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Let S €T be a skew diagram.

Algorithm T

Tn(p,q), if (p,9)€ b

T (p,@), if (p,q) €8 s.t. pfr and ats )

rI‘n+1 prq) *= Tn(rn'sn)  if (p’q)z(rnin'snin)
Tn(rn,q) , if p=rnin and (rn,q) E-S-n
Tn (p,sn) , 1f q=snin and (p,sn) E—S-n

Define Dn to be the

nl’snl)"’“'(rnm "Som )}§

greatest diagram con-|
n n

tained in the shape

of T
n

(r,s) < (r ,s ) and
M :=< (r,s) P non

DnU{(r,s)} is a diagram

g :=|T_\D
- n |

Define (r ,s ) € S by
n’"n -
T (r es) § T (a,v),

for all (u,v)€ S .
-

Print T
n
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Theorem 9. Given a skew diagram S, the algorithm above will produce

D : D a diagram PC(D,S).

In addition, there are no repetitions in the list. O

In fact, the algorithm generates a directed tree of PC-pictures (see the example below)
where the tops of the branches are the desired PC-pictures. All maximal chains

TS=T1,DU°,T in this tree share the following properties:

k
(i) D1CD2 [ = Dk s
(ii) Tk is of shape Dko

F 13>i: T = .
(iii) or all j-~i j‘Di TiIDi

i F <k: =
(iv) or all n<k Tn+1iIT |\H Tn‘ |T I\H ’
n n n n
where H = {(rn,sn)} ¥ {(a,b) EITn| [ (a,b)(E,S)(rn,sn)} is the hook in |Tn[
corresponding to the J-smallest entry x = Tn(rn,sn) in Tn outside Dn'

In such a chain, T arises from Tn by a suitable hook deformation:

n+1

In order to get in the tree all covers of Tn one has to deformate Tan ,as indicated,
: n
in all ways such that

-1 -1
(v) Tn+1 (x) (N,NW,W) Tn (x) = (rn,sn) and

(vi) {T _1(x)} ¥D 1is a diagram.

n+1
These hook deformations make no problems since it can be shown that Tn has no entry
in the region shaded with respect to x. This property results from the fact that a
certain subpicture of Tn has the same compression as the corresponding subpicture of

T =TS° We indicate this in the following.

1
15]14]23] 15]14]23[31] 1514 [23]31]
Example. 24[32 2432 24 [32
: 73 — |33 13faz
(Compare with
43[42 41] 43 (42 43
—’@"® 53]52 53 |52 3[s2]
i he ex le
in t amp g & g & éa
below.) Q 8] &)
1514 15{14 1514
2423 2423 24|23
33f231] = 33[32[71] = 33|2[31] =T,
43[42]a1 434241 43faz 4
53[52(51 53[5251 53|52 51




15 [14] 23] 15[14]23]31] 15 1af23[32[3
24[32] 24]33]32 iﬂ,ﬂ]

O S| OEl [k
7;42 41
5352 5 53] E EIEK

|

1514 23]
24
®FE|  pp) ®
3] [az]a1] 3] faz]ar]
53 ls2]s1 53] [s2]s0

15[14
ﬂ] 23
©) 333231 Example. This is the tree
zj :z : generated by algorithm I
with respect to the skew
I diagram
15]14 11
l24]23 g =
@ 33[32[31
434241
53]52[51

601
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We will now deal with the second version of the algorithm, which for a given skew dia-
gram S will produce the union of all PC(S',S), S' a skew diagram. Again, beginning with
TS, a directed tree of PC-pictures will recurrently be generated by hook deformations.
But in order to get skew diagrams as shapes empty rows and/or empty columns eventually
have to be filled in at suitable positions.

To skip formal details in the formulation of the second algorithm we are going to de-
scribe some of them now.

If A is a finite subset of N XN then the smallest diagram containing A will be called
the diagram-closure of A,

Let LIEZnil, n €N, be a skew diagram and x = (a,b)€ U a U-regular point ( i.e. {x} is
U-regular). [Note that then (a,b) # (1,1).] The type vector

(1,1,0,0), if a =1 will tell us whether, or in
Z(U,x) := (t,0,1,0), ifb=1 what order of succession
(1,0,0,0), if {(a-1,b-1) €U empty rows and/or empty co-

(1,1,1,1), if (a-1,b-1) $U and a>1, b>1 lumns have to be filled in,
If Tn has been constructed by the algorithm below then, according to the algorithm,
one has to associate to T and x := (r_, ,s ., ) the type vector 2Z(n,i ):= 2(U,x),
1 n ni ""ni n
@b | 1€nll.

In the course of the algorithm the ones in Z(n,in) will step by step be replaced by

where U := {x} U Tn

zeroes. Such a (possibly modified) Z(n,in) describes how to get the PC-picture

T := z(n,in)*Tn out of Tn° The "#-product" is defined as follows. [Let a,b,cE{O,l}a]

Z(n,i ) T =2(n,i )*T
n n n
(1,a,b,c) T := Tn
(0,1,a,b) T arises from ‘I‘n by inserting in Tn an empty row between the rows of
index ¥ ., -1 and r_, .
ni ni
n n
(0,0,1,a) T arises from Tn by inserting in Tn an empty column between the
columns of index s , -1 and s, .
ni ni
n n
(0,0,0,1) T := (0,1,0,0) ¥ ({0,0,1,0)% Tn)a

Example. Assume T4 (see the table) has been constructed by the algorithm below. Then

M, = 1(1,4),(2,3)8,2),(4,1)}. If i, = 2 then 2(4,2) = (1,1,1,1) and we get:

T = (1,1,1,1)* T (Ollllll)* T4 (Olollll)* T4 (Olololl)* T4

4 4

24}

16]15 g:qzi{QQC{}; 16

]
=

[

24
s
5

1
3_5_ 1 £j§ 161
33{32 |31 25 33132131 25
43|42 |41 [ 33132131 \\\ 43 142 (41 [ § 333231
5315251 43142141 § 53 |52 |51 \\\ 43 42141
53 (52|51 N & 5352 {51
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o]

€ Zk

Let S = {(al’bl)’°°°’(ak'bk)}§

Algorithm IT

be a skew diagram.

( Start )
Let Hn(T) denote the hook in T:=Z(n,in) *Tn
Read S [ T corresponding to the entry
(an+1'bn+1) =: T(rT,sT).
Determine Z(n,in)
|Form TS with respect to
T and (r_. ,s_. )
n ni_ '“ni
n n
/
= T T(p, @), if (p, )€ [T\ B (T)
(@ .. b ),if (p,@)=(x_, ,s ) fge= il
n+l'"n+1’’ ’ ni '“ni n n
T 4q (Prd) 2= n " n
T(rT,q),lf p=rninand (rT,q)E Hn(T)
n:= O .
: T =
| (P,ST),lf a=s_; and (p,sT)E Hn(T)
n
i :=0
n
|n = n+1% A
i=T Ya_ .. ,b_..) M={r ,8 )sueu,l(x s )
: n n+1’“n+l n ni’ nt’’ "*nm_’'“nm <§
n n

Dn:= diagram-closure of

-1 .
iT, (ai,bi)|1 €n}

(xr,s) <(r_ ,s)
p n’'’n
(r,s)| and Dnlﬁ{(r,s)}

is a diagram

Replace in Z(n,in) the leftmost 1 by O




Theorem 10,

union over all skew diagrams S' EEEQ

Given a skew diagram S €T
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(o]
x!

=]

algorithm II will produce U PC(S',S),

Since trees generated by algorithm II are rather extensive even for small skew dia-

grams S, we restrict ourselves to the following.

Example.

in the tree generated by algorithm II with respect to S. We describe all covers of T

Let S be the content of T

in this tree.

4

(see the last example)., Then T

4

actually occurs

4

According to |M4| = 4 these covers naturally decompose into 4 classes.
| rag rsa) | 200029 (1,2,b,0) (0,1,a,b) 0,0,1,a) (0,0,0,1)
24(33[32]31] 33 o231}
16]15 24
25 16[15
1 (1,4) a00 |[ 25
43]a2]a1 B
53[s2{51 43 la2]a1
53 [52{51
24 24 x| 24
16]15[33] [32]31] 53] [z 16]15]33 2]31) 33 B231]
25 1615 25 16115
2 PRI TR R P 25 [ 25
(43] [a2]an [ a3 a2fa) |[ o
53] [s2[s1 [63] [ 53 52|51 a3 2]
s3] [52]5 53 52[51
24
16]15
25(33 [32]31]
3 (3,2) (1,0,0,0)
[43] 42]a1
52|91
2] 24]
16[15 16[15
25 25
4 4,1 (1,0,1,0) E 32| 31 TE 32[31
43 42[a J43] 42[a1
5] 52|51 53] 52|51

Starting with a skew diagram S Egi, a suitable modification of algorithm II will ge-

nerate a tree consisting essentially of all pictures of content S, i.e. algorithm III

constructs U PC(A,S), union over all A €2§°

These algorithms can be applied to various problems in representation theory and

combinatorics (see [1,2,5,6]),
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A CANONICAL PARTITION THEOREM
FOR CHAINS IN REGULAR TREES

W. Deuber, H.J. Promel, B. Voigt
Fakultat filr Mathematik
Universitdt Bielefeld

4800 Bielefeld 1
West-Germany

Abstract
In this paper we prove a generalization of the Erdds-Rado canonization theorem to

regular trees.

§ 1 Introduction

In 1950 Erdds and Rado proved the following theorem:

Theorem 1.1 [2] [Erdbs-Rado canonization theorem).

Let A : DW]k >N be a coloring of the k-element subsets of N (the nownegative
Antegers) with arbitrharily many colors. Then thene exists an infinite subset

X € Y and there exists a 0-1 sequence 1 = (10,...,ik_1) € Zk' such that everny
wo  k-element subsets A = {ay,...,a, g} and B = {by,....b 4} of X are

colored the same iff

a = bv forn every v <k with 1v =1.

This result generalizes the wellknown theorem of Ramsey [4]: if 4 : DN]k =6 is
a coloring using only finitely many colors, then necessarily I = (0,...,0) , viz.

all k-element subsets of X are colored the same.

Recall that the formulation of the Erdds-Rado canonization theorem involves an
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ordering on the ground-set, here the nonnegative integers:
subsets A and B of X are colored the same iff they agree on the subsets given

by the sequence I .

In this paper we consider a generalization of the Erdds-Rado canonization theorem
to certain partially ordered sets, where the coloring acts on k-chains, i.e. to-
tally ordered k-element subsets.

We prove also some apparently new partition results for chains in d-regular trees.

The paper is organized as follows:

The main results are presented in section 2. In section 3 the partition results for
chains in d-regular trees are proved. Section 4 contains some technical tools that
are used in section 5 in order to prove the canonical partition theorem for chains

in d-regular trees.

§ 2 Results
A tree is a partially ordered set (P,<) possessing a minimum such that every in-

terval [x,y] = {z]xgz:y} is a totally ordered set.

A d-regular tree , where d 1is a positive integer, is a tree (P,<) such that

every non-maximal element x € P possesses precisely d immediate successors.

Notation: By "T(d)" we denote the d-regular tree of height w without any maxi

mal nodes.

For our purposes the following explicit representation of T(d) ds useful:

- elements of T(d) are finite {0,...,d-1}- sequences, including @ , the empty
sequence.

- (aO""’am—l) 5»(b0,...,bn_1) iff (ao,...,am_l) is an initial sequence of
(bo,...,b

n_1) » i.e. m<n and a = bv for every v <m . Particularly 0

is the minimum of T(d) .

In diagram 1 the first 4 levels of T(2) are depicted:
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diagram 1

Notation: By ”Ck" we denote the chain of length k .

Here it is convenient to represent Ck by nonnegative integers less than k , viz.

{0,...,k-1} with the natural order of the integers.

Definition: Let (P,<) be a tree. A subset p < P is a subtree (with the order

< coming from P) iff the infima with respect to P and P agree, more precisely
infp(x,y) = infs(x,y) for all x,y €Pp .

Compare also diagram 2 .

a subtree no subtree

diagram 2
For trees R and T the binomial coefficient (;) denotes the set of subtrees of

T which are isomorphic to R .

Finally we introduce the following convention:
If ge(l) isa kechainin T, say
k

g = 1{9(0)s....9(k-1)3, >

and if i€ (Ck) isan f-chain in C, , say
£
i = ((0),ennni(e)),
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then g-1 € (8') denotes the £-chain in T which is contained in g exactly
£
in the same way as i 1is contained in Ck , Viz.

91 =1{9(i(0))5...,9(i(£-1))}

<

As a first "application” let us reformulate the Erdds-Rado canonization theorem:

Theorem 1.1* [2] For every colorning 4 : (Tét)) >N |, where k 45 a positive
integen, there exists a T(1) - subtree Te (%%g) , A.e. T s gdven by an An-
finite subset of T(1) , and there exists £ < k ¢

and a subchain 1€ (Jk) of C
“ CZ k
such that each two k-element subchains g,h € (g') of T are colored the same
k

A g1 =h-1i
Before we state the main result of this paper, namely a canonization result for
colorings A : (Téd)) -» N , Tet us study partition properties of the trees T(d)

k

with respect to colorings of chains.

First a positive result:
Theorem 2.1 [31 Let d and & be positive integens and Lot & : (1(9)
1

a coloning. Then there exists a T(d) - subtree Te ($Eg;) such that atk €y - sub-

)—»5 be

chains, L.e. all points of T are colonred the same.

Here even stronger results are known to be valid:
Milliken [ 31 shows that T can be found even level-preserving and Bicker,Voigt [ 1]

show that this is a density result rather than a partition result.

For k-chains with k > 1 one obtains negative results:

Theorem 2.2 Let d and k be positive integens Larger than 1 . Then there exists

a coloning A :'(Téd)) - 2, such that every T(d) - subtree Te (¥Egg) contains
=k

k-chains g.h € (] ) that are colored differently.
k

The reason for the negative result 2.2 is that to each Ck—chain in T(d) there
may be associated a type in such a way,that types are hereditary under subtrees. Let

us visualize this for the particular case d =2 and k=2 :

T(2)

Proof of 2.2 for d =2,k =2: A 2-chain g € ( é ) is given by two 0-1 se-
2
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quences a = (aO""’am-l) and b = (bO”"’bn—l) , where m < n and a, = b

for all v <m . Let us call the chain {a,b} a "chain of type 0" iff bm

n
[e]

and
let us call {a,b} "chain of type 1" otherwise, i.e. iff bm =1.

Compare the following diagram 3.

0-chains
l-chains

(Pgs -+ +Pp-q 1)

(poa-- . st_]_)

diagram 3
Finally let A(g) =0 iff g 1is a chain of type 0 and A(g) =1 iff g 1is a

chain of type 1. Obviously A has the desired properties. [s]

Next we use the ideas of the preceding proof in order to associate to each chain in

T(d) a type, where a type of k-chains is a {0,...,d-1} - sequence of length k-1,

i.e. an element of d<°! .

Definition: Let g € (Téd)) be a k-chain in T(d) , say
k

g = {ao,...,aml_l) s (aO""’amZ-l) yeees (ao,...,am _1)} s

where My <My <oL.<m o Then define

2 k
k-1
typ(g) = {a_ »...,a_ ) €d ,
™ M-1
. _ T(d)
where particularly typ (g) =8 for g € ( ¢ )
1

The next result shows that playing around with the types of k-chains in T(d) is

the only possibility in order to get negative results like 2.2 , viz.

Theorem 2.3 Let &,k and d be positive infegers. Then forn every coloring
A (Téd)) > & there exists a T(d) - subtrnee Te (Iggg

k-chains g,h € (CT) of same type (£L.e. typg =typh) are cofored the same.
k

) such that each iwo
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Now we can state the main result of this paper:

Theorem 2.4 [et A : (T(d)) >N be a coloring, where d and k anre positive

C
k
integens. Then there exists a T(d) - subtree T € (H(dj%) , fon eveny type £ € ak?

there exist an integer L(£) and a subchain 1(&) € (
k-1

Ck } and thene exisits an
. Ce(2) 5
equivalence rnefation w on d such that eveny fwo Kk-chains ¢,h € (C ) are

k
colored the same A4

typg ~typh (mod =) and g,i(typg) =h_1.(typh)

This result implies that for k-chains of given type £ the full analogue to the
Erdds-Rado canonization theorem is valid. For k-chains g and h of different

type the following two possibilities exist:

- either all chains of type typ g are colored differently from those chains of

type typ h (i.e. typg #typh (mod =))

- or eventually these chains are colored the same (i.e. typg mtyph (mod n)) ,

viz. Alg) = a(h) iff g-i(WPI) L p . i(tyPN)

§ 3 Partition results

Convention: For the remainder of this paper let d be a fixed positive integer.

The d-regular tree T(d) 1is abbreviated by T .

Notation: For an element x of T the maximal subtree of T which is rooted ir
x , i.e. the subtree given by {z€T|x<z} is denoted by Tx .
For subtrees Te (-Tr) containing x the expression'ISucf(x)' denotes the set of

immediate successors of x with respect to the tree T.

Analogously ISucf(S) = U {ISucf(x) [x €St ~S for subsets S gf .
We shall omit the subscript % when no confusion can arise.
For subtrees R € (TTX) we denote by “%(fx—»R)" the tree which is obtained from

T by replacing WA'X by R, i.e. WA'(%X»R) is obtained from T by deleting all
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elements %x ~ R.
Analogously, we denote by f(fy—»R(y)|yE ISucy(S)) the tree which is obtained from
T by replacing every ?y by R(y) .

k-1

let £ed be a type. Then (C Tg) = {g E(ér)]typ g = £} denotes the set of
k’ k

k-chains of T which have type £ .

Lemma 3.1 Let & and k be positive integens and Let £ € L hea type. Then

for every coloning A : (CTA) > & there exists a T-subtree T € d) such that

’E

K

A(9) = A(h) fox all k-chains g.h € (ch) :
k,

Proof: Proceed by induction on k . The case k = 1 has been established by
Milliken [ 3], see also [1]. Assume that 3.1 is valid for some k . We prove it

for k+1 . Let £ edf .

The crucial point is how to reduce the problem to the case k = 1 , this invokes the

inductive assumption.

(3.1.1) Forn every coloring A : (C T é) 5> & there exists a T-subtree T € (¥)
k+1?
such that A(g) = A(h) for all (k+l)-chaéns g.h € (¢ ' ;) with min g =min h .

k+1°®
This may be proved by a straightforward recursive construction which is based on

the following observation:

(3.1.2) let ScT bea finite dowmard closed set and Let q € ISuc(S) . For

Tq)  such that

every coloning A : (C T 2} » 6 there exists a subitnree Te (T

X k+l°%
T* = T(Tq—»T) satisgfies:
the element root T s which plays the nole of q An T* satisfies:

™ 2) with typg=typh and min g =min h =

8(9) = a(h) fonatt gl T
+

root f .

Assertion (3.1.2) follows immediately from the inductive assumption on- k:

2y k-1 2 k
let g' = (51""’Ek-1) €d where ¢ = (50,...,gk_1) €d” and let r be the
£~ th immediate successor of q . More precisely, say that q = (aO,...,am_l) with
respect to the representation of T = T(d) , then let r = (ao,...,am_l,go) . Con-

sider the coloring a* : Tn. » & which is defined as
Ck’g
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A¥(g) = A(qeg)

where geg 1is the (k+l)-chain with minimal element q and k-tail g . By the

T

inductive assumption there exists a T-subtree T € (.f) such that A*(g) = a*(h)

for all g,h € (C.ré') . Obviously then T* = T(Tr—»f') has the desired proper-
; K

ties.

Once we have established (3.1.1) we can restrict our consideration to colorings

A (C T 2) » & such that A(g) = a(h) for all g,h € (C T 2} with ming =
k+1°8 . k+1°®
min h . This induces the coloring a* : (C ) » & with A*(x) = A(g) for any
1
g € (C T E) with x = min g . The assertion then follows from the case k = 1.
k+1? a]

Remark 3.2 The reader is asked to recall how assertion (3.1.1) has been proved.
The basic idea was to obtain T by a recursive construction - which has not been
carried out explicitly. However, the main tool for that recursive construction is
provided by (3.1.2) which implies that any downward closed finite configuration
ST may be extended to a strictly larger configuration such that the new points -
here the point q , resp. the point root T playing the role of q - satisfy some
property P . Provided this property is hereditary under subtrees, viz. once x € T
has this property with respect to T then also x has this property with respect
to every subtree f of T containing x , one can easily construct a T-subtree
T* of T such that every point of T* satisfies this property. A1l what is left
is to prove assertion (3.1.2). This idea will be tacitly used many times throughout

this paper.
The next Temma is an immediate but useful application of Lemma 3.1:

Lemma 3.3 Lot & € <71

be a fype and Let W < MNI*? bea finite set of nonnega-
tive dntegers. Then fon every one-to-one coloning A : (C-ré) >N there exists a
k%

T-subtree fe($) such that A(g) ¢ W fon every ge(ch)'
k’

Ty 5 WU (*} which is defined as

Proof: Consider the coloring A% : (C :
k’

a*(g) = a(g) if a(g) €W

* if Alg) €W
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By Lemma 3.1 there exists a monochromatic Te ($) , but as A is one-to-one T

is necessarily monochromatic in color ‘'*' . o

Lemma 3.4 Let k < £ be positive integers and Let E € a1 nesp. ¢ € at !

be types. Let TO and T1 be T(d) - trees.

Then for every pain A : (Cl?g) - WO and Ay (CTlA) ;.m of one-to-one coloningsd
there exist T(d) - subtrees 10 ¢ ET) , nesp. le (7) such that ag(a) # A (h)
for every g € (Cig) and h € (Cj) :

Proof: The proof can be performed by a zig-zag recursive construction using Lemma
3.3. At even steps the tree T0 is constructed and at odd steps the tree T1 is
constructed. The recursive construction follows the pattern as given in remark 3.2.

We perform the main tool for the even steps:

Let S0 c T0 be a finite downward closed set and Tet q € ISuc(SO) , additionally

Tet S c T1 be a finite downward closed set. We show that there exists a subtree

7l € (E}) with S1 = 7l sueh that AH(9) # Al(h) for every g € (Sgufg}) with
max g = g and every h € (Cgfi) with max h ¢ S1 “

Let W= {AO(g)[g E(Sgufg}) and max g = g} . By Lemma 3.3 for every immediate
successor r € ISuc(51§ there exists a T-subtree T(r) € (E%) such that

Al(h) ¢ W for every h € (CTTE) with max h € T(r)

Thus fl = Tl(T&~+T(r)|r'€ ISuc(Sl)} has the desired properties. a
§ 4 Diversification

The result of this section (viz. Theorem 4.1) is the combinatorial core of our
proof. Loosely speaking it states that given a pair A (Ck’é) -N and

A, (Céig) -+N of one—to—oqg colorings there exists a T-subtree Te (i) such
that the restrictions Al](C:;é) and AZ] [’A have images that are as disjoint

as possible, viz. Al(g) = A2(h) implies that g = h . This will help us to con-

struct the equivalence relation = as stated in Theorem 2.4 .
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1 £-1

Theorem 4.1 let k < £ be positive integers and Let £ € dloand fed
be types of k , resp. of L-chains. Then forn every pair AI:(CTg)»N and
k’

Byt (C-ri) >N o0f one-to-one mappings there exists a T-subiree Te (¥) such
z, ~ ~

that A,(9) # A,(h) fon all g € (. 2) and h € (»'2) with g#h .
1 2 C ot Cpst
We need two preliminary lemmas:
. R T n,<k>y
Notation: Let k < £ be positive integers and let h € (c } . By "h we
£
denote the k-tail of h , i.e. the subchain of h consisting of the last k ele

h<k> _

ments of h , viz. {h(2-1-k) , h(&-k) ,..., h(2-1)} .

Lemma 4.2 Let k < £ be positive integens and Lel ¢ € a7l e a type of
£-chains .

Then forn every pain Ay (8-) N and A, (C Ti) >N of one-fo-one mappings
<k i
there exists a T-subtnee T € (i) such that Al(h<k>) # AZ(h) fon every

T

Proof: Let S < T be a downward closed finite set and let g € ISuc(S) . We show

that there exists a T-subtree T € (TQ) such that Al(h<k>)

T # Az(h) for every

he( TA) with min h = root T .
Cpt
/e,

Let r be the r,-th immediate successor of q , let g o= (£1s--estpp) € gt

be the type of (£-1)-chains consisting of the last (£-2) elements of ¢z . Con-

sider the coloring a% : (. ' s1) > 10,1} which s defined by
£-1°
ax(h) = 0 if A (h¥) = ay(qen)
=1 4f 8, (%) £ ayqeh)

where 'e' vrefers to the concatenation of chains.

By Lemma 3.1 there exists a T-subtree Te (Er) with all its C - subchains of

£-1
tpye t' monochromatic in color 0 or monochromatic in color 1 . We consider

these two cases separately:

- there exists a T-subtree T € (Er) which is monochromatic in color O .

Then A (h<k>) # A,(h) for every h € ( T ») , because otherwise A,(h) =
1 2 Cﬂ,g 2

<£—1>) , contradicting that A, is a one-to-one coloring.

Az(qsh
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- there exists a T-subtree T' ¢ (TTY’) which is monochromatic in color 1 . Then

obviously T = Tq(Tr—»T') has the desired properties. g

Lemma 4.3 Let 2 <k <t be positive integens. Let £ € d¥? 2 ed®™ and et
T ST

2) >N and A, (Cﬂ,iﬂe@é

©,0 € d . Then for every pain A (C 08t
k9

) >N of one-
to-one mappings

k-1

- where "e" nefers fo concatenation of sequences, viz. ©eE € d and

teoeicdl

thene exists a T-subtree T € (¥) such that Al(g) # Az(f@ g<k_1>) fon every

T

g € ( LIPS
zs C@@@E

and f€ (. | o) with max f<ming and fogke(,

)
Cpt17

)
Cpowme
Proof: Let S < T be a downward closed finite subset and let q € ISuc(S) .

S

tet C = {QG(C
£-k+1?

£)| max g < q} be the set of (£-k+l)-chains of type £

occuring strictly below q . We show that there exists a T-subtree 'fe (T]ﬂ) such
<k=-1> T 2

) for every g € (C Tnp@é) with min g = root T and
<k-1> T ) k
z,ceeea )

that 4,(g) # a,(feg

every f € C with feg E(C

Let r be the @.th 1immediate successor of q . Consider the coloring

A 2} » P(C) which is defined by

r
Ck-10%

Alg) = {fec|feg € (C ) and Al(qeg) = Az(f@g)}

08088

T.[l”) which is monochromatic in some

By Lemma 3.1 there exists a T-subtree T € (
color C*c<C .

We consider two cases separately:

- there exists a T-subtree T' € (TT'”) which is monochromatic in color @ . Then

obviously T = Tq(Tr - T') has the desired properties.
- there exists a T-subtree T' € (Tf“) which is monochromatic in color C* < C ,
k-1 T
where C* # @ . Then Al(g) #Az(f®g< >> for every g € (Ck’mé) and every

<k-1>

f € C* , because otherwise Al(g) = Al(q@g ) , contradicting that & is

a one-to-one coloring.

~

Consider T* = T(Tq->T‘) and apply the same argument as before, but now with
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C~C* instead of ¢ and with root T' instead of gq . After finitely many
steps, i.e. by induction, the process necessarily ends with some T-subtree

which is monochromatic in color @ .

Proof of Theorem 4.1: We proceed by induction on k .

First we consider the case k=1, i.e. £=0 . let S = T be a downward closed

finite set and let q € ISuc(S) . By Lemma 4.2 we can assume that

<1> T
(4.1.1) a(h ) # Ay(h) for every h€ (C[,E)
We show that there exist T-subtrees T(x) € (TX x € ISuc(S) , such that

7)o
T= T(T >T(x)[x€ISuc(S)) satisfies that

T

ot

Al(min T(q)) # Az(h) for every h € (C

Let g€ Tq be such that

S
Z’C
For every x € ISuc(SU{qi~{ql) let T(x) € (

(4.1.2) Al(ﬁ) # by(h) for every he€ (¢

Tx

7 } be such that

) ] Su{ql~
(4.1.3) 8;(q) # Ay(feg) for every j<t, fe€ (Cj’(c;?}--fg;_z )

Ty . T
) with feg € (~ 2)
Cf_-j’(gj""’%-z) C’e,c

, and every

g€

Such trees exist according to Lemma 3.3 .
By (4.1.1) , (4.1.2) and (4.1.3) then T-= T(Tx-aT(x)]x€ ISuc(S)) , where

T(q) = Ta(T -»T(x)|x€ISuc(q)) , has the desired properties.

q' 'x

Next comes the inductive step. Assume that the assertion of Theorem 4.1 is valid
for every j < k , where k 1is a positive integer larger than 1 . Let Sc<T be
a downward closed finite set and Tet g € ISuc(S) . We show that there exist T-sub
trees T{x) € (EX) , X € ISuc(S) , such that T = T(TX—>T(x)|x € ISuc(S)) satisfies
that

A, (g) # A,(h) for every g € ( TA) with min g = root T(q)
1 2 Cpot’ -

and for every h € (Cg’g)

By Lemma 4.2 and Lemma 4.3 we can assume that
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(4.1.4) aj(g) # A,(Fag k)
for every g € (C-rn) with q = min g and every f € (C ) with
k® £-k+1 ’
max f < q and feg<k—1> € (CTA)
z’g
Let r be the 50-th immediate successor of q . Let T1 € (Er) be such that
1
T

(4.1.5) Al(q@ g) # Az(h) for every g € (

SV {q}
hele,.e)

) and for every
Ck-l’(gl" . -,Ek_z)

1
Such a tree T1 exists according to Lemma 3.3 . Next let T2 € (E.)

2

be such that

T

(4.1.6) A,(qeg) # A,(feh) for every g € ( )
! 2 G2 (B 58kp)

and for every

J<£,fE(C(SU{q} ) and he (o ) with
T j? Co’---5§j_2 2-3° Q\]—a---sﬁ/@_z
fehe (C ~) .
z’g
Such a tree T2 exists according to the inductive assumption.
3 17 T
Finally let T° € ( T ) and for each x € ISuc(S)~{q} Tlet T(x) € (.%) be such
that
3
(4.1.7) aq(qeg) # Ay(feh) for every ge€ (c ( )) and for every
SU(q) k-115107 208k -2
Jbsfe(e q )) and he (g {(X) )) with
T ,j, EO’.‘.’EJ._Z 'e_j, Cj,' ’C/a_z
fehe (C )
Z’C
Such a tree T3 , resp. such trees T(x) exist according to Lemma 3.4 .
By (4.1.4) wup to (4.1.7) then T = T(TX—>T(x)|x€ ISuc(S)) , where T(q) =
Tq(Tr—>T3) , has the desired properties. o

§ 5 Proof of the main theorem

First we prove a special case of Theorem 2.3:

dk-l

Theorem 5.1 let £ € be a type of k-chains. Then 4on every coloning

A (CTé) SN there exists a T-subtree T € (1) and there exists £ <k and
k,
a subchain i € (Ek) such that eveny two k-chains g,h € (C'ré) are colored the
2 k*

same L g-1=h-1.
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Proof: We proceed by induction on k. First we prove the case k =1 .

Recall that the theorem asserts that T is colored monochromatically or that T
is colored one-to-one.

Thus let S < T be a downward closed finite subset and let q € ISuc(S). We show

that there exists a T-subtree T € (Tq) such that either T s colored mono-

T
chromatically or such that A(x) # a(y) for every x € T = (8.) and every
1
S
yES:(c)-

1
Consider the coloring a* : (gq) > {a(y) |y eSYu {*} with a*¥(x) = a(x) if
1

A(x) € {A{y)|y€S} and a*(x) = * if A(x) € {A(y)|y€S} .

According to Lemma 3.1 there exists a monochromatic Te (¥) which obviously has

the desired properties.

Next assume that 5.1 is valid for some k. We prove it for k +1 .

2 k o k-1 .
let ¢ = (go,...,gk_l) €d” and let g' = (gl,...,gk_l) €d consist of the last
(k-1) entries in £ .

1

(5.1.1) There exists a T-subtree T € (¥) such that forn everu x € 7l there

exists an i(x) € U {(EK)|0<Kk) satisquing that every two (k+1)-chains
-1 2

k>

g,h € (C TX =) with min g = min h = x are colored the same L4 g< - i(x) =

k> (x

Let S<= T be a downward closed finite set and let q € ISuc(S). Let r be the
go-th immediate successor of g and consider the coloring A* : (Clté.) >N with
A*(g) = A(qe g). According to the inductive assumption on k there exists a
subchain 1i(q) € U {(g;)lkfgﬁ} and there exists a T-subtree T* € (EF) such that

every two k-subchains g,h € (CT*E') are colored the same under the coloring a*

k’
iff g-i(a) = h-i(q)

Since U {(gk)|£:5k} is a finite set by Lemma 3.1 the following assertion is an
£

immediate consequence of (5.1.1):

R =1
(5.1.2) There exists a T-subtree T2 € () and there exists a subchain
22
1" €U (((K2<k} such that every two (k+1)-chains g.h € (o ' ;) with
L k+1”

min g = min h are colored the same 44 g<k> il = h<k> SR T
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. =2
(5.1.3) There exists a T-subtree T° € () such that g™ -t = ¥ .
~3 K
holds whenever ¢,h € (C T é) ane (k+l)-chains Ain T which are colored zthe
k+l?
same.
tet S be a downward closed finite set and let q € ISuc(S). We show that for
s
every x € ISuc(SU{q}) there exists a T-subtree T(x) € (E.) such that
22
g<k> il o= h<k> +i' holds whenever g € (C Tq ») with ming =g and
k+1 Sg

(TZ(TX—>t(x)|xE ISuc (Sutal),

h € are colored the same, i.e whenever

Cra1s®
A(g) = a(h)
f2
Let r be the go-th immediate successor of q . Let T'(r) € (T } be such that
g-i' = (fe h)<k'1> -i' holds whenever g € (g (g?) ,
' k?
fe S ) he (g T'(r) with

P ) c1ogs (Egre By

fehe (C T ~) , where j <k + 1, are such that
k+1°% -

A{qeg) = A(feh) .

Such a tree T'(r) exists according to repeated applications of Lemma 3.3 and

Theorem 4.1 .
fz T'(r)
Next let T(x) € ( T y for x € ISuc(Su{gl)~{r} and let T(r) € ( T } be such
that
Alqgeg) # A(feh) for every g € (T'(f?) , f e S )
Ck,g Cj,(go,...,gj_z)
he(c {(X) ) with fene (o | o) where J <k .
k#l-3° 1830 kKl k175

Such trees exist to repeated applications of Lemma 3.4 . Then obviously the trees

T(x)} , x € ISuc(Su{g}) have the desired properties.

“ 23
(5.1.4) There exists a T-subtree T4 € (E-) such that forn every 2-chain
24
fele Ig )) oneof the following two alternatives is valid:
2°'=0

~4 "4
- a(F(0)09) = 2(f(1)eg) @nwmggE(Qid with f(0)eq € (o
T

fl)ege (o ' 2)
3

2) and
Cre1-®

k+1°8

Let Sc 7> be a downward closed finite subset and let q € ISuc(S) . Let r be

the £ " th immediate successor of g .
=3
We show that there exists a T-subtree T* € (tr) such that for every 2-chain
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Su{q} . .
f =
€ (CZ’(EO)) with max f = q either
- A(f(0)eg) = A(f(1)eg) for every g € (CT*é')
k,
or
T*
- A(f(0)eg) # A(f(l)eg) for every g € (C é')
k,
23
Consider the coloring A% : (CTrg.) > P({y€S|y<ql}) with
k,

T
A*(g) = {y€S|ly<q and yeg € (Ck . é) and A(yeg) = A(qeg)}
+ L]
23

According to Lemma 3.1 there exists a monochromatic T-subtree T* € (2?) which

obviously has the desired properties.

Applying 3.1 once more yields the following strenghtening of (5.1.4):

R ~4
(5.1.5) There exists a T-subtree T € (E-) such that one o4 the following two
alternatives Ais valid:

(5.1.6) A(f(0)eg) = A(f(1)8g) for every f € (g T ) and every

. )
g€ (¢ '2) with f(1)ege (0 | ;) ’
Gt Cra1o®
or
(5.1.7) A(f(0)eq) # A(f(1)ag) for every f € ( T(so)) and every
~ ~ 2,
7 . 7
g € ol W/(/tl’l. f(l ®g € ~
e Mege (! o)

We claim that T satisfies the requirements of assertion 5.1 . However, it remains
to define the subchain 1 .
Say i' = {i'(0),...,i'(£-1)} , where i' has been introduced in (5.1.2) .
If (5.1.6) is valid then let
1'E(C('§‘”1) be with i = {i'(0)+1,...,i'(&-1)+1} ,

£
if (5.1.7) is valid then let

i€ (SKH) be with 1= (0,i'(0) +1,...,i"(-1) +1)
24l

By (5.1.3) and (5.1.6), resp. by (5.1.3) and (5.1.7) then T and i have the

desired properties. o

Proof of Theorem 2.3 By Theorem 5.1 we can assume that for every type £ € dk—1

there exists a nonnegative integer £() < k and a subchain 1(5) € (C CE ) such

£(g)
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that each two k-chains g,h € (C TA) of type £ are colored the same iff

K . 2
By Theorem 4.1 there exists a T-subtree T' € ($) such that A(g) = A(h) for

k-chains g,h € (g- ) always implies that g ,1(typg) = h .1(typ h)
k

It remains to define the equivalence relation = on dk_1 .
2 k-1 . .
For every type ¢ € d consider the coloring
Ax t (2T 2) » P(dy which is defined as
g Ck,E
8¢l9) = 2 €d* ! there exists an he (ch) with a(g) = a(h)}
k’

By Lemma 3.1 we can assume that Aé(f) = Ag(g) for every f.,g € (CT

of language let us denote this common color by Aé .

é) . By abuse
k’

The equivalence relation = is defined via these colorings, viz. put
E~7Z (mod 1) iff £ € Aé

Obviously then = together with the family (1(5)18 Edk_l) has the desired pro-

perties.

§ 6 Concluding remark

Using a compactness-argument (e.g. Konigs - Temma) Theorem 2.3 implies the

following 'finite' version:

Theorem 6.1 Let R be a finite d-regulan trnee and Let k be a positive integer

Then thene exists a ginite d-regubar trnee S such that for every coloiing

A (g } >IN there exists an R-subtree R € (g) and for every type £ € dk_1
k N
there exists a subchain i(8) € u {(gk)lﬂjgk} and there exists an equivalence
2 R

nelation T on gkt such that every two k-chains g,h € (g } are coloned the
k

same 444 typ g~ typ h (mod n) and

g- ]'(typg) = h '].(typh)
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For d =1 this yields the finite version of ErdGs-Rado canonization theorem.
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The main objectives of these notes are the following: (a) to give a new, directly
applicable setting for and a new version of the exponential formula (Theorem 3.52)
for Krull-Schmidt categories, (b) to extend the combinatorial treatment of partitions
of finite sets by means of the "Faa di Bruno" bialgebra (cf. [8], pp.100, and [241,
pp.36) to arbitrary sheaf-like categories (Theorem 3.74), and (c¢) to give an

application of homological results to the determination of incidence algebras
(§3, section B). The basic references for us, due to G.-C. Rota and his school,

have been [8] for incidence algebras and [24] concerning Hopf algebras in combinatorics
Other papers in this direction are [6], [18], [29]. Similar and very interesting
relations between combinatorics and Hopf algebras (in a different language: affine

and formal groups) are contained in [15] and [19]. Detailed proofs will appear else-
where.

Essentially, a Krull-Schmidt category K is one in which the Krull-Schmidt theorem
holds: Each object X of K has a KS-(Krull-Schmidt) decomposition, i.e. admits a

finite direct sum (dually: direct product) decomposition X= 1y Xi into indecomposables
Xi’ which is moreover unique up to isomorphism. This type of category is abundant in
combinatorics since the necessary finiteness assumptions for the proof of a KS-theorem
are trivially satisfied in finite enumeration problems. The simplest examples are the
categories of finite sets, vector spaces, topological spaces, ordered sets, graphs

and groups. Whole classes of exampies are the sheaf-like categories of this paper

(see below) generalizing the category of finite sets, and the “finite" abelian cate-
gories generalizing the categories of finite vector spaces. In sheaf-like categories
the KS-decomposition is unique up to the order of the summands and not only unique up
to isomorphism. In combinatorics, this unique KS-decomposition is usually called

“the partition of a structure into its connected components". KS-categories give rise
to generalized exponential structures, introduced by Stanley [27] as the right frame
work for exponential formulas. The corresponding formula of these notes (Theorem 3.52)

is an identity of power series with rational coefficients and in variables XP,where
P runs over a (possibly infinite) system P of representatives of the isomorphism
classes of "connected", i.e. indecomposable objects of a KS-category, and involves
the orders of automorphism groups, replacing the customary factorials, as a distin-
guishing feature. The examples of the literature are obtained for categories with
only one indecomposable object, up to isomorphism, such as finite sets and vector
spaces respectively (compare [27] and [28]). The simplest standard example is the
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identity exp(exp(X)-1) = %: B nT * where B, are the Bell-numbers of all partitions
of a set with n elements. As an application we obtain the typical relation between
numbers of all structures=objects and those of "connected" structures=indecomposable
objects over a given base. In §4, section A, we apply the exponential formula to
subobjects and equivalence relations respectively in sheaflike categories.
The distinguishing sheaf-axiom of a sheaf-like category K - in addition to some

standard assumptions on direct sums etc. and a combinatorially obvious finiteness
condition-is the universality of finite coproducts: If f:X — Y is a morphism and

Y= U Yi is a finite direct sum(coproduct) decomposition then X = lJf'l(Xi) is the
direct sum of the inverse images. It is easily seen that thisaxiom is connected with
the distributivity of lattices of subobjects. The basic example is the category Set f

of finite sets. Combinatorial standard examples are obtained as the presheaf categories
of all functors from a category I with finitely many objects into Set f. If, for
instance, I is the monoid with one generator g satisfying a relation gngn, l<m<n<ee,
e.g. 92=g or gn=1, then one obtains the category of all pairs (M,s) of a finite set M
with an endomorphism s satisfying the same relation. Of course, all categories of
sheaves or toposes, e.g. that of finite sets with a group operation, but also combi-
natorially interesting categories like ordered sets, graphs etc. are sheaf-like.
However, the latter are no toposes. The guiding idea, well established in algebra and
sheaf theory and useful in combinatorics is that “combinatorial problems concerning
finite sets can also be formulated and solved for sheaf-like categories". We demon-
strate this philosophy with the counting of (effective) equivalence relations,
corresponding to partitions for K=Set f. The sheaf-axiom ensures that the relevant
incidence algebras are bialgebras and, suitably modified, the contravariant bialgebras
of affine unipotent group schemes (Theorem 3.74). The exponential map which in the

case of rational coefficients defines a group isomorphism between the Lie Algebra of
the unipotent group, supplied with the Campbell-Hausdorff composition, and the group
itself, gives a new type of exponential formula. A simple modification of our
construction shows that Rota's hereditary bialgebras for matroids give rise to uni-
potent groups in the same fashion (cf. [24]1, pp.89). We think that the affine algebras
of unipotent groups are those "bialgebras with a simple axiomatic definition" which
Rota calls for in [loc.cit.], p.95. The structure theory for unipotent algebraic
groups over the rationals (compare, for instance, [7], pp.485) and over the integers
[30] and not only an algebraic language can thus be applied to combinatorial problems.
The new examples and detailed calculations of §4 indicate the combinatorial usefulness
of sheaf-like categories and their derived unipotent groups.

The structure of these notes is the following. The first two paragraphs contain the
necessary purely algebraic preliminaries on abstract incidence algebras and unipotent
groups. The third paragraph develops the combinatorial applications of these notions
and is the heart of these notes. The last section consists of the longer new examples.
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In §1 we develop the notion of abstract incidence algebra (AIA) over a groundring k
mainly over Z, the integers, or @, the rationals, in combinatorics. Essentially,

this is a complete topological associative algebra H with a separated filtration
H=H(0)cH(1)cH(2)c ... of two sided, closed ideals and which is topologically free
as a k-module. The prototype is a power series algebra k[[T]]=kI[[T;,...,T 11 in
finitely many variables Ti with the monomials Tln(l)_._Trn(r) as topological basis
and the m-adic filtration, m the maximal ideal, which also defines the topology.

In combinatorics, the filtration is given by a dimension (rank) function. The notion
of AIA is general enough to include all examples from (6], [81, [18], [24]. On the
other hand,it is sufficiently special to admit useful algebraic and combinatorial
consequences. The main new feature is the filtration which implies a tight connection
between incidence algebras and unipotent groups (Theorems 2.31, 2.34 and 2.35). This
relation is similar to that between complete discrete valuation rings and commutative
unipotent groups in local class field theory (cf. [7], appendix). In the combinatorial
applications (see §3) the multiplication constants of an AIA with respect to a topo-
logical basis (called section coefficients by Rota in [24], pp.10) are given

as natural numbers from an enumeration problem. This method to transform combinatorial
data into algebraic ones is due Ph.Hall (compare (191, p.88, and [8], p.110-111).

A similar approach, but without the filtration and the topology, is taken by Joyal

in [18]. The substitution of elements of AIA's into power series is possible, and

can be used in the same fashion as the "generating function calculus" in ordinary
combinatorics. In particular, one can define and calculate Mobius, characteristic
functions and, in characteristic zero, exponential formulas (Theorem 1.29).

In §2 we define and prove some results onunipotent affine groups over a principal
ideal domain, mainly Z and § in combinatorics. It is interesting to note that here
affine, non-algebraic unipotent groups over a ring, namely Z,6 which is not a field,
appear naturally. The reason for this is that counting problems deal with natural
numbers, and that the customary use of fields like the rational, real or complex
numbers has mainly technical reasons. The restriction to objects of bounded dimension
gives rise to algebraic groups for which there is a detailed structure theory (see
above).

The third paragraph is divided into five sections A to E. In the first we construct
combinatorial incidence algebras. These are algebras k[[T]] (suggestive notation)

of all k-valued functions on sets of types T (Rota's terminology in [81, p.100).

The types are equivalence classes of suitable epimorphisms (dually: monomorphisms)
with respect to an equivalence relation. The multiplication in k[[T]} is defined by
multiplication constants which count certain sets of types. The prototype of this
construction is the Hall algebra (cf. [191, pp.88, and [8], p.110-111) Our main
observation is a set of simple axioms for the types which are satisfied in many cases
and then easily verified and which ensure that the algebras k[[T]] are AIA's in the
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sense of §l, i.e. have a rich and applicable algebraic structure. Combinatorial
standard calculations known for power Series algebras and incidence algebras of
ordered sets can thus be extended to more difficult combinatorial situations. The
algebras k [[T]] render the distinction between standard, reduced and large incidence
algebras in [8] unnecessary, and can also be considered as a suitable reduced version
of the incidence algebra of a category (cf. [6] and [241). The combinatorial useful-
ness of generalized incidence algebras has already been shown in the basic paper I[8].

In special situations (section B) the multiplication constants can be interpreted as

2-cocycles of a small category. The Koszul complex calculations for H2(N (I),A),where
M - 0

No operates trivially on an Abelian group A {(cf. [3], pp.192), and the result

HZ(L,A)=0,where L is a countable directed set [22], admit the determination of all

incidence algebras of full Dirichlet type (cf. [8], pp.116) and of LxL -triangular

type ([loc.cit.], pp.127) respectively.

The sections C and D of §3 are devoted to sheaf-1ike and Krull-Schmidt categories

(see above).
In part E we consider the incidence for isomorphism classes (called types again) of
effective epimorphisms (dually: strict monomorphisms) of a sheaf-like category.

Due to the sheaf-axiom, this is a topological bialgebra, i.e. the multiplication
constants are bisection coefficients in Rota's sense (cf. [24], p.1l). The group of
those multiplicative functions (cf. [8], p.40) which have the value one on the types

of isomorphisms, is the already mentioned unipotent group, and contains all the
essential combinatorial informations. In many cases this group is isomorphic to a
group of parameter transformations, i.e. of automorphisms of power series algebras
(3.81, 4.18, 4.22). For the "Faa di Bruno algebra" this has been shown in [8], p.102.
In (3.81) we explain how the Butcher group used in the numerical treatment of
differential equations (cf. [31]) can be interpreted as the unipotent group derived
from monomorphisms of rooted forests. Example (4.18) contains the theory for the
category of finite sets with an operation of a finite Abelian, e.g. a cyclic, group.
In (4.22) we mention an application to representations of ordered sets.

Notations and abbreviations: NO respectively N = the natural numbers including

respectively excluding zero; Z = the ring of integers; O = the field of rational
numbers; Ny{1) = the free additive monoid of all families n=(n(i);i e1)eN, such
that almost all n(i) are 0; al = ﬂ{a(i)n(i);i €1} if a(i) is contained in a
commutative ring; # (X) =IX| = number of elements of a set X; U(A) = the group of
invertible elements of an associative ring A; lim=the inverse (projective) limit in

a category or the limit of a convergent sequence; p =direct sum, coproduct; TM=direct
product; ker =kernel; cok =cokernel; im=1image; = = "implies"; & = "logically
equivalent"; o = end of an argument.

The main results of these notes are called "theorems", the others are indicated as
"propositions"”, "lemmas" or “corollarries".
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§1. Abstract incidence algebras

Let k be a commutative (ground-) ring. For combinatorial purposes the ring Z of
integers and the field Q of rational numbers are most suitable since enumeration
problems deal with integers. We consider k as topological ring with the discrete
topology.

Let X be a topological k-module; X is called linear topeclogical if X has a basis

of neighborhoods of zero (called a 0-basis) consisting of submodules. If X=Y & Z
is a topological direct sum decomposition we write X=Y ®zZand YIX. A family
(x(i); i€1I) of elements of X is called a topological basis if the map

I

k' —— X, (r(i); P€1)—x r(i)x(i)

is defined and a topological isomorphism. Here kI has the product topology. Then X
is called topologically free. In general, if X is Hausdorff and complete and if

x=(x(i); i€l) is a O-family, i.e. if for each neighborhood U of 0 in X almost al
x(i) 1ie in U, then = {x(i); 1 €I} exists, i.e. x is summable.

(1.1) Definition: An abstract incidence algebra (AIA) over k is an associative
topological algebra H with a filtration
(1.2) H=H(0)2 H(1)=2H(2)=2
such that the following conditions are satisfied:
(1.3)(Topology) H is Hausdorff and complete and has a O-basis of two-sided ideals.
(1.4)(Filtration) (i) The H(d) are closed two-sided ideals.
(i) Timy H(d) = 0.
(iii) For d,,d,>0: H(d 1)H(d2) EH(d1+d2).
(iv)

1°72=
For d=0 : H(d+1) 7 H(d), and H(d)/H(d+1) is topologically free.

iv
Condition (i) means that for any neighborhood of O there is a d with H(d) < U.
In the sequel H denotes an AIA over k. The structure introduced above has many
consequences which admit combinatorial interpretations.

(1.5) Dimension, rank: Since H is Hausdorff and h'de(d) =0, alson dH(d) =0,
Thus for x€H, x+0, the number

(1.6) dim(x): =Max {ne]NO; x€H(n)} ,

called the dimension of x, is well defined.

The filtration condition (1.3)(iii) implies

(1.7) dim(s(1)s(2))zdim(s(1))+dim(s(2)), s(i)€H.

(1.8) Topological nilpotence and power series: The conditions

(1.3),(ii) and (iii), imply 1ide(1)d=O,1'.e. H(1) is a topologically nilpotent

ideal. In particular, also 11'rndx =0 for all x€H(1l). Thus, if

g = zig(d)x; deNg € kI}XI]

is a power series in one variable X, then
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(1.9) g(x): =g(0) 1 £ g(d)x; deNy € g(0)1 +H(1)

exists. In particular,

-1 d.d

(I+x) ~ =z {{-1)"x"s deN;} € 1 +H({1).

o € Iy

This implies that H(1l) is contained in the Jacobson radical of H, thus

(1.10) x€U{H) > X € U(H/H(1)).

Special cases of this general fact appear at different places in the combinatorial
Titerature (cf. (81, p.89; [181, p.67, Th.7).

(1.11) Structure constants=section coefficients: Since H(d+1) TH(d) for d=0 there

is a non-unique topological direct sum

(1.12) H(d) =H'Y) BH(d+1), d20, hence H(D) = H(d)/H(d+1).

By assumption (1.3) (iv), H(d)/H(d+1), hence H(d), is topologically free. Let
(e(t); teT(?)) be a topological k-basis of H(9), i.e.

(113) W) Cpgeeqty; tetld)y ) gso.

Obviously,dim e(t) =d for teT(4). From (1.3) (ii), follows that

(1.14) nel9; deng — 1, ({9 dz0) —x (¥

is a well-defined map and a topological isomorphism, i.e. H :HH(d) by identification.
(1.15) with T: =0 (7{9), d 203, T(n): =0 (7(d), d=m

there result topological k-bases (e(t); t€T(n)) of H(n) for nz20. In particular,
t€T(n) « dim e(t) = n. With respect to the fixed basis e(t), t€ T, of H one obtains
multiplication constants

G{ts; t(l) ... t(r)) € k,t,t(i) € T,r = 0, by the formula

(1.16) e(t(1)) ... e(t(r)) = {G(t; t(1) ... t(r))e(t), teT}.

Rota in [24], p.10, calls these numbers section coefficients. For r =2 the notations

G(,, 4.0 ‘t3

t
t(1) £(2)) =Ceye) ) = Gy = Gayrey) = (6 HDHE)
are used instead of G(t; t(1)t(2)) in the combinatorial literature. Our notation is

=G

the one of Macdonald ([19], p.88) for the Hall algebra which is one of the proto-
types of incidence algebras.

(1.17) Remark: Just to give section coefficients=structure constants with the obvious
properties means to consider a topological k-algebra with a topological basis or,
dually, an (abstract) coalgebra with a k-basis. Even for a field k there are no
useful combinatorial consequences. The axioms of Joyal ([181, pp.62) in this context
furnish H(1), but not the whole filtration H(d), d=0. It is however this filtration
which connects combinatorics with unipotent groups (§2).

The numbers G(t; t(1)t(2)) depend on the basis e(t), t€T. For power series algebras
in finitely many parameters (=indeterminates)

X(1), ..., X(r) the change of the basis X" =x(1)"1).x(r)"(") nen ",

to another such basis 1is interesting and treated by means of the Lagrange inversion
formula (see [17] and [2], due to Abhyankar). Rota et al. [23] call this the transfer

1).



139

formula and demonstrate its combinatorial usefulness (for the case of one variable).
This is the reason why we require only the existence of a basis e(t), t€T, but do
not incorporate a distinguished one into the structure as in [24], p.3 below. o

(1.18) Graded abstract incidence algebras: An AIA H over k is called graded if a

decomposition 4 (d), 45 0 is given and satisfies
(1.19) p(d(1))(d(2)) _ y(d(1)+d(2)) .

In combinatorics this corresponds to the Jordan-Dedekind chain condition. If H has
no zero-divisors then (1.19) is equivalent to

dim(xy) = dim{x)+dim{y),x,y € H.

The two standard examples are the power series algebra

KIIXIT = k[DX(i); 1€111 = mkx"; n€N0(I)}

in indeterminates X(i), i €I an index set, with the standard grading
KLIX1T (d) = mkX"; Inl: == fn(i); 1€13 = d},

and the corresponding non-commutative topological word algebra

(1.20) Ass(1): =mihss‘9)(1); d > 03 (1251 , LA 4.13) where
ASs (A (1) =mgows w=(i(1) ... i(d)) € 19

and the multiplication is the composition of words. The topology is the product
topology which for infinite I is coarser than the Ags(I)(l)—adic topology. If H is
an AIA and if x=(x(i); 1€1) is a family of elements in H(1l) with 11m1x(1) =0, then
there is a unique continuous k-algebra homomorphism
(1.21) xfo A?s(l) H, i x(1), namely

f(x): =x" (F) =x" (= tFwws w=(i(1) ... i(d))}) = ZF(w)x(i(1))..x(i(d)).
(1.22) Base ring extension: If X and Y are Tinear topological k-modules then the

completed tensor product X ® Y =X ékY of X and Y is the Hausdorff completion of
X ® Y with respect to the topology given by the 0-basis X' ® Y+X ® Y',where X' and

Y' run over a 0-basis of X and Y respectively. If X =kI, I an index set, then
ke v =yl
then 1 ékY, 1 with the discrete topology, is a linear topological T-module. If
H=m{ke(t); t€T} is an AIA over k then 1®w:ﬂﬂeﬁ);tEﬁ is an AIA over 1.
(1.23) Power series calculations: The explicit calculation of substitutuions is
customary and useful in combinatorics. Assume that (e(t); te€ T(1)) is a fixed basis
of H(1) obtained in the non-unique way of (1.11).

We identify

(1.24) kK" oH(1), d.e. f=x (f(t)e(t); teT(1)}.

In combinatorics this is the usual identification of "sequences" f

with an obvious identification. If finally k — 1 is a ring homomorphism,

with their "generating functions" =f(t)e(t). For r = 1 define




(1.25)  type: T(1) N
where  m=(m(t); t€T(Ll)) and m(t) = % {izt(i)=t}.
For a given HIENO(T(l))- {0} and t€T(1) we define
(1.26)  GS(t;m): =T (G(t;t); type(t) =m}.
The combinatorial interpretation of this number is given in (3.19}. If H is commutative
then G(t;t) does not depend on the order of the t(i) in t and we define
(1.27)  G(t;m): =G(t;t) , type (t)=m. Then
(1.28)  GS(tsm) = ((m))G(tsm) , where
((m):=1ml L mgm(t)) "5 teT(1)}, Iml : =% m(t)
is the multinomial coefficient. Reordering terms in the expression g(f) of (1.9) one
obtains the easy, but useful

(1.29) Theorem: Let

F=(F(t); tET(1)) =2 f(t)e(t)€ek
g=x fg(d)x
(1.30) g(f)=g(0)1+zt€T(1>Z{g(ImI)GS(t;m)fm;mGNO(T(l))-{O}}e(t).

T _ ke(t) =H(1), and

5; d=0} €k [[X1] be a power series in a variable X. Then

There are two important special cases.

-1 im m
(1.31) (1+I:t€.r(1)f(t)e(t)) =1+ LT:ET( 1) = {{-1) [GS(t;m)f ; m as above} e(t).
(1.32) (Exponential formula) If Qck and H is commutative then

exp(zf(t)e(t)

(= 6(tsm)(mt) HEMe(t).

)= t
If moreover a€U(k) (1) then
e(t) a(t)a(tsm) m | e(t
(1.33) exp@ f(t ETfY y=1+ % ( . ) it o

a m!

The combinatorial interpretation of the number a(t)a_m(m!)_1 as a number of partitions
is given in (3.53). Calculations as those of (1.29) are of course known from combi-
natorics (compare, for instance, [5], pp.36 and [27], Th. 3.2). The generic case of
formula (1.31) with indeterminates f(t) is treated in (3.77). The simplest, but
interesting case is that of the Mgbius function u, depending on the basis e(t),
te€T(1l), where onedefines functions

n: =const =% fe(t); teT(1)} , &:=1+n , and

[ (1) "™es(esmy; men (T 0331 ey,

(1.38) w=tl=1sx .

“teT(1)

§2. Connections with unipotent group schemes.

This section is inspired by the theory of Witt vectors and a-rings, (see, for instance,
[201 pp.179; [71, &5, pp.119; [191, Ch.1).

Let k be a groundring and H an AIA over k. Notations as in §l. The properties of H

are inherited by the group 1+H(1), and one obtains
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(2.1) Theorem: Situation as above. Then
(i) With the topology induced from H the group 1+H(1) is a Hausdorff, complete
topological group with a basis of neighborhoods of 1 consisting of normal subgroups.
(ii) The filtration 1+H(1)2 1+H(2)=... of 1+H(1) consists of closed normal subgroups
and satisfies 11md(1+H(d)) =1. This implies
(2.2) HH(1) = Tim(1+H(1)/1+H(d);d = 1)
where the first 1im means convergence as in (1.4) (ii), and the second the inverse
limit for topological groups.
(1ii1) The map x —— 1+x induces for 1 <ms<n homeomorphisms

M tke(t);teT(mn)) = H(m)/H(n) ——— 1+H(m)/1+H(n)

T ft)e(t) — = f(t)e(t) —— L+zf(t)e(t)

where T(m,n): = 0 {T(k); k=m,...,n-1}. For n=m+l these maps are topological group
isomorphisms. Hence for d>1 the sequences
(2.3) 0 -1 {ke(t); te T(d)}——e 1+H(1)/1+H(d+1) Sl 1+H(1)/1+H(d) — 1
of groups are exact, and the groups 1+H(1)/1+H(d) have normal series with factors
of type kI, I a set.
(iv) If Qck the functions exp and log induce inverse homeomorphisms

~-1.n
- e = I H >0
(2.4) H(1) =22 144(1) X el ?-{l(r-]ll) wan 2o

Tog ’ Tog(lex): = = ((-1)"" " X"y n 21} —— 14x

The ideal H(1) is a topological nilpotent Lie algebra with bracket [x,y]: = xy-yx
in the sense of the following definition.

(2.5) Definition: Consider a topological Lie algebra g over a ring k and assume that
g has a 0-basis of ideals. Then g is called topologically nilpotent if the descending
central series Cn(g),rwzo, converges to 0.

(See [25], LA5.3 and (1.4) (ii), for the definitions).

The standard example for this notion is the topologically free Lie algebra

~ ~

LOX) =L(X(1), ..., X(r)) cASS(X(1), ... , X(r))=ASs(X)
on r generators ([25], LA 4.13). If g is any such Lie algebra and
x=(x{(1), ..., x(r)) €gr there is a unique continuous Lie algebra homomorphism
(2.6) x¥ 1 L(X(1)s +.us X(r)) — gy X(1) — x(i).
For g=H(1) this is the restriction of the corresponding map for the associative
algebras (1.21). If, in particular, Q<k and h(X,Y) € E(X,Y) is the Lie Power series
from the Campbell-Hausdorff formula with
(2.7) exp(X)exp(Y) =exp(h(X,Y)}) in A;s(X,Y)([1oc.cit.], LA 4.14), and if x,y€g
then h(x,y): = (x,y) # (h) is well defined. The part (iv) of Theorem (2.1) can thus
be improved to

(2.8) Corollary: In the situation of Theorem (2.1)(iv) the map exp:H(1) — 1+H(1)
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is a topological group isomorphism, where the composition on the left is given by
(x,y) — h(x.y).

If R is any commutative k-algebra the results (2.1) and (2.8) can be applied to the
AIA R & H over R instead of H itself.

In the sequel we use the standard terminology for affine groups from [7], Ch.II.
Let Alk: = Al denote the category of commutative k-algebras and Gr that of groups.

A representable functor G:AL —— Gr is called an affine group (-scheme, -functor)
over k. If

(2.9) Fri AT (A,R) = G(R) , REAT ,

is a functorial isomorphism then A: =A(G) is the affine algebra of G, unique up to

isomorphism, and x: =FA(idA) is the corresponding universal element.

Then F is given by

(2.10) FR(f)=(Gf)(x) , f:A —R.

In the same fashion one defines affine monoids, rings etc. For example, the AIA H
induces the affine ring

(2.11) H: AL —— {associative rings} , R — R eH .

More important for the purposes of this paper is the subgroup M of H, defined in

(2.12) Theorem: (i) The group functor

(2.13) ajAl —6r, R— LR @ H(1) <R & H

is an affine k-group which is represented by the polynomial algebra
k[X(t); teT(1)1, X(t) indeterminates, through

(2.14) AT(k[X(t); t€T(1)],R) T A(R), f —— 1+ S{F(X(t))e(t); teT(1)}
and has the universal element

(2.15) 1+ ZX(t)e(t); teT(1)} €a(kiX(t); teT(1)]).

(ii) The ideals H(d) of H, d=1, induce a filtration

(2.16) A:=A(1)5A(2) 2... , A(d)(R) = 1+R & H(d) ,

by closed , affine , normal subgroups of A such that

(2.17) A= Timg A/ A (d).

The quotient A / A {d) is taken in the category of all group functors, is affine and
can: A —— A / A (d) is faithfully flat [7].

(iii) Let Ga be the additive groups, represented by polynomial algebras,

(2.18) (d)

T — A/ A (d+])

LA A/ A (d) — 1, d21,

with faithfully flat can. In particular, A is an inverse Timit of groups with

O—»Ga
normal series whose factors are groups GaI, I a set.
Over an algebraically closed field k the latter property characterizes unipotent

affine groups ([71, p.355,487). We define unipotent for k a principal ideal domain,
e.g. Z, such that the same result is true. We show moreover that unipotent affine

groups give rise to AIA's in a canonical fashion.



143

(2.19) Assumption: In the remainder of this section we assume that k is a principal
ideal domain, e.g. Z or @, unless explicitly stated otherwise. For combinatorics this
is not a serious restriction. For group schemes over rings this assumption is often
necessary (more generally: k Dedekind)(see, for instance,[1] and [30]). Some results
hold for arbitrary noetherian k.

Assume now that, without loss of generality, G = AT(A,-), G = AT(A,-) is an affine
flat k-monoid (i.e. A is flat as k-module) with comultiplication

(2.20) A: A— A®A, a —s 1 a(l) wa(2) (see (7], p.145 and [29], p.7)

and counit e: A — k, AY: = ker(e}.

Flatness is a suitable technical condition ([26], [11, [30]), for instance, when
going from Q-groups to Z-groups. For any k-algebra R with structure map n:k —R
the k-module Homk(A,R) of k-linear maps is an associative R-algebra with the convo-
Tution multiplication

(2.21)  fg=u(f ® g) 4, i.e. (fg)(a) = £ f(a(l))g(a(2)); f,g:A —> R,

where | denotes the multiplication on R (compare,for instance, [29], pp.l4).

The unit of Homk(A,R) is ne =: €. Then

(2.22) G(R) = A1(A,R) cHom(A,R)

is a multiplicative submonoid. Moreover, Hom(A,R) is a linear topological R-module
with the finite topology, a O-basis of which is given by the Hom(A/A',R), where A
runs over the finitely generated k-submodules of A. We write

(2.23)  H:=Hom(A,k) = A", the dual module, H' : = Hom(A/k,k).

If A is k-free with basis x(t), t€T, and if e(t) € H=Hom(A,k), t€T, is the dual
basis then

(2.24)  Hom(A,R) TR@H, f — 5 f(x(t))e(t)

is a topological R-isomorphism. The methods of [26] give

(2.25) Theorem: Situation as above. The R-algebras Hom(A,R) are topological,
Hausdorff, complete and have a O-basis of two-sided ideals. If A is k-free then (2.24)
is an algebra isomorphism.

Define
+

(2.26) Ild-ne : A — A, a —> a- a(a)lA =:a and

(2.27) a: A — A", a3 —Hra(l)®...®a(n)

corresponding to the multiplication 6" —— G. The canonical filtration of A is then
defined by

(2.28)  A(n): =ker(A =25 A8 — (1d-ne)®" —— A®"

= peA; za(l)t e...0a(n) =0,

) =

(2.29) Proposition: (i) The A(n) from (2.28) satisfy the recursive relations
A(1) =k=kly » A(n+1) = (a3 Ala)-a ® 1€A(n) ® A}.

(i1) The A(n) form an increasing sequence of subcoalgebras of A, and satisfy
A(m)A(n) cA(m+n).
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(iii) Au: =UfA(n); nx1} is a subbialgebra of A, and the injection AuczA is faithfully
flat, i.e.

(2.30) G=AT(A,~) — Gu: =A1(Au,—)

is a faithfully flat epimorphism of flat affine monoids.

(2.31) Theorem: Let G=A1(A,-) be a flat affine monoid. Notations as above. Then the
following assertions are equivalent:

(i) The filtration A(n) is exhaustive, i.e. A=U A(n).

(ii) For any R€ Al the ideal Hom(A/k,R) of Hom(A,R) is topologically nilpotent.

If in addition A is k-free, then

(ii') The ideal H+==Hom(A/k,k) of H is topologically nilpotent.

(iii) If V is a finitely generated non-zero G-module, then also the fix module GV is

non-zero. a

If (i) and (ii) are satisfied, the monoid G is a group and called unipotent.

See [7], pp.169, for the definition of GV. If k is afield the preceding definition
of unipotence coincides with the usual one ([7]1, p.487). A similar notion is that

of linear unipotence in [301, p.765. That G is a group in (2.31) follows in the same
fashion as that an infinitesimal formal monoid is a group ([1l], p.528). This is not
surprising since commutative infinitesimal respectively unipotent groups a field are

in (Cartier-) duality.

(2.32) Standard example: The additive group Ga’Ga(R) =(R,+), is unipotent. _

(2.33) Corollary: The faithfully flat epimorphism (2.30) is the universal homomor-
phism from a monoid G to a unipotent group.

For unipotent groups as defined above there is a stability theorem as in [7], p.485.
This result, Example (2.32) and Theorem (2.14) imply

(2.34) Theorem: If H is an AIA over k then a, , A (R)=14R ® H(1), is k-free and

unipotent. a

On the other hand one has

(2.35) Theorem: If G=A1(A,-) is k-free and unipotent then H: =A* =Homk(A,k) with

H(n): = Hom(A/A(n),k), n=0, A(0) =0 is an AIA. Moreover, the unit n and the multi-
plication u of A induce, by duality, maps e: :n*: ASH - k and

A: =u*: H—H®H =(A® A)* respectively, such that H becomes a cocommutative
topologically k-free topological Hopf algebra, called the covariant Hopf algebra of G.

Commutative such algebras are the affine algebras of formal groups, they are treated

in [11] and [15], pp.492.

We finally consider the Lie algebra of the k-free affine monoid G =A1(A,-). The algebra
H is also a topological Lie algebra with bracket [x,y] = xy-yx.
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(2.39) Proposition: Situation as above. Then
Lie(6): =Der (A,k) =Hom(A/k+(A*)2 k) = Hom(A*/(A")2,k)
is a closed sub Lie algebra of H, where Der contains the derivations D with
D(ab) = e( yD(b) +e(b)D(a). The topology induced frém H is the finite topology of
Hom(A+ ) ,k). With this topology Lie(G) is the (topological) Lie algebra of G.

If w(a/k): =A*/(AY)2 (171, p.215) is k-free then
R ® Lie(G) =R & Hom(A*/(A*)2,k) = Hom(AT/(AT)2,R)

% Homp (R ® A")/(R @ A")2,R) =Lie(R ® 6) = R & H.

e

(2.40)

We identify all objects in this sequence and obtain the following

(2.41) Theorem: Notations as above. Assume Q S k.

(i) If G=A1(A,-) is a k-free, affine, unipotent group and if A*/(A")2 is k-free,
then Lie(G) is a topologically nilpotent (2.5) Lie algebra. The maps exp and log
induce inverse group isomorphisms

R&H *,\H(R)=1+R<§H+
(2.42) v v
R ex
R ® Lie(G) *—Taa—"- G(R) s

where on the left the group structure is the Campbell-Hausdorff composition (2.7)
(ii) If A+/(A+)2 has tha basis c(i), 1 €I, then there are algebraically independent
generators x(i) of A, i€, i.e. A=kx(i); i€1] is a polynomial algebra with
x(1)+(AN)2 = c(i).

(1i1) The functor G — Lie(G) is an equivalence between the categories of groups as
in (i) and that of topologically nilpotent, k-free Lie algebras.

The preceding theorem and the finer structure of G is known if G is algebraic over

a field k ([7], IV. §2); the generalization here is that to arbitrary affine groups
instead of algebraic groups and to topologically nilpotent Lie algebras. If k is
Dedekind (e.g. k=Z as needed in combinatorics) such a structure theory is contained
in [30}. We plan to study its combinatorial implications. Theorem (3.74) below shows
that there is a big class of combinatorially interesting unipotent affine, not alge-
braic, groups over Z (not only Q) whose affine algebras are polynomial.

§3. Combinatorial incidence algebras and unipotent groups

A. Abstract incidence algebras in combinatorics

The incidence algebras constructed in this section are a variant of the Hall algebra
(see, for instance, [19], pp.88), and the incidence algebra of a category (compare
[6] and [24], p.43), adapted to the theory of §1. They include many new classes of
examples and almost all examples of the literature. The main observation is the
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connection between sheaf theory and unipotent groups, developed in section E of this
paragraph.

Let K be a category, M a class of epimorphisms of K and ~ an equivalence relation on

M (compare [24]1, p.43). The elements of M/~=:T are called types (by Rota) and denoted
by 5, s€M. The main example for M is the class of epimorphisms in categories of sheaves
Dually one obtains a theory for monomorphisms. We assume that K is skeletal-small, i.e.

Ob(K)/ = , 0b(K): =class of objects of K, = isomorphism,
is a set. These data are supposed to satisfy the following condition:
(3.1)(Isomorphism): A1l isomorphisms are in M.
(3.2)(Muitiplication): If s(1),s(2) are composable morphisms, then
s(1),s(2)eEM = s(1)s(2) eM = s(1)eM. |
Let SZ(M) be the set of singular 2-simplices of M, i.e.
(3.3) SZ(M):= {(s(1),s(2))s X(0) = s{1) — X{(1) < s(2) — X(2), s(i)eM.
Two 2-simplices (s(1),s{2)}) and (r(1),r(2)) are equivalent s~ if there is an isomorphism
h with s(1)h=r(1l) and s(2) =hr(2). This h is then unique.
Define
(3.4) SZ[M] = SZ(M)/,3 3 [s{1),s(2)]. Then
(3.5)(Local finiteness): For all s€M the set
{[s(1),s(2)] €52[M]; s(1)s(2) =s} s finite (compare [24], p.43 and [6]).
Define the dimension (rank) of s €M by
(3.6) dim(s): =Sup n where n runs over all n ENosuch that there is a product repre-

D

sentation s=s5(1)...s(n),s(i) €M, where s(i) is not an isomorphism and the sup is taken

in NOU{m}. Obvicusly, dim(s)=0 if and only if s is an isomorphism.
(3.7)(Finite dimension): For all s €M the dimension dim(s) is finite.

For the equivalence relation we need

(3.8) Isomorphy implies equivalence, i.e. if s(2)=h(2)s(1)h(1)
isomorphisms h(i) then s(1) ~ s(2).

(3.9) The class Iso(K) < M of isomorphisms in K is ~-saturated, i.e. if s(1)~s(2)

and s(1) is an isomorphism, then so is s(2).

"1 ywith s(i)eM and

[w]

With Iso(T):=Iso(K)/~ one obtains a decomposition

(3.10) T=1Iso(T) g T(l) , T(l)={s; s€M is not an isomorphism}

We consider Ob(K) < Iso(K) with X =idX.

(3.11) The maps domain (dom) and codomain (cod) are ~-invariant, i.e. for s:X-Y
in M the types

dom(§):=’3; and cod(§)=Tdy in T are well-defined. g

The main axiom is (compare [6], pp.184)

the number G(t;t(1)t(2)): = # {s(1),s(2)1€S,[M]; s{i) =t(i),s=s(1)

is independent of the choice of the representative s of t. _
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Then dim(t): =dim(s),s=t, is well-defined.

Let k be a commutative coefficient ring. With the above data and conditions consider
the linear topological k-module kT with the product topology and the standard basis
e(t),t€T. Define the multiplication flfz b

(3:13) (1)) (1) =5 G(Es18)F, (1))F, ()5 t,t, € Th;

k' with this multiplication is denoted by k[[T]]. Define

(3.14)  kI[I[T1] (d) =Trgke(t); dim(t)=d}, d=0.

(3.15) Theorem: Assumptions and notations as above. Then

(i) k[ITI] with the filtration (3.14) is an AIA with multiplication constants
G(t;t(1)t(2)) with respect to the standard basis.

(i1) The family (e(t); t€Iso(T)) is a complete set of orthogonal idempotents.

(ii1) Identify k(T2 1 e(t); te Iso(T)} <k[[T1]. Then the k-algebra k!SO(T)

with the componentwise structure is a closed subalgebra of k[[T1], and the projection
k[[T1]— kISO(T) induces a topological isomorphism k[[T11/k[[T11(1) = kISO(T), and
the topological decomposition k[[T11 = k'*°(T)g k[{T11(1). In particular,by (1.10)
fEkI[T]] is invertible if and only if f(t) €U(k) for all te Iso(T).

The algebra k[[T]] is called the incidence algebra of M, reduced modulo ~([8L[24]).E|
The higher multiplication constants G(t;1(1)...t(r)) are defined as in

(1.16). They admit the following combinatorial interpretation. Define the class Sr(M)
of r-simplices and Sr[M] as (3.3) and (3.4).

(3.16) Corollary: For t,t(1l),...,t(r)€T, r=1, and s€M, s=t,
G(t3t(1)...t(r)) = #{[s(1)...5(r)1€S M5 s(1)...5(r) =s, STV =t(i)}.

A more suggestive interpretation is the following one.
For X€0b(K) consider the preordered class M(X) = {s €M; dom(s) =X} with s(l)< (2)
iff s(1)=ss(2) for some s. This s is then unique and in M and denoted by s(1)s (2)
For the equivalence relation =, induced by this preorder, i.e.

s{1) m s(2) <= s(1) <s(2) and s(2) <s(1) == s(l)s(Z)_1
(3.17) the set M[X] : = M(X)/~>3s]
of "factors of X in M" is ordered by the induced order and then locally finite by
(3.5). Th2 greatest element of M[X] is 1:= [1dX]. If s:X — Y is in M a decreasing

is an isomorphism,

sequence
(3.18) 1 =[1dX] > [f(1)] 2 ... 2 [f(r)] = [s] _1

of Tength r in M[X] is called a normal series of [s] with r factors f(i)f(i-1) ,
i=l,...,r, inT.

(3.19) Theorem: Let t,t(1),...,t(r)€T be types, and s:Y «— X a representative of t.
Then the map

ry=y <30 ey STy SO o)y ——
1=[idy] 2 [s(1)] = [s(2)s(1)] 2...2[s]
induces a bijection from the set {[s(r),...,s{(1)}1; s(r)...s(1)=s,s(i)=t(i)} onto the
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set of normal series of [s] with r factors t(1l),...,t{r). Hence G(t;t(r),...,t(1)) is
the number of these normal series. The number GS(t;m),O#rnED%(T(l)), from (1.26) is
then the number of all normal series of [s] of type m,i.e. with m(t), t€T(1),

factors of type t. g

(3.20) Corollary: Let r=2. Then

G(tst(2)t(1)) = * (IF1€MIX];Is] < [F1,F=t(1),sf *

=t(2)}.

The incidence algebra k[[M[X]]] of the locally finite ordered set M[X] is of course
a special case of the above construction. It is the k-module of functions

fr {(i,3);i<] in MIXD} — k, (i,3)— f(i,j) with the multiplication
(fg)(i,d) = £ f(i,k)g(k,d)3i<k<J} . Then

(3.21) Theorem: (Connection with local incidence algebras)
Situation from above. The map
can : k[[T11—k[{M[X11], f—F , given by
F(Is(1)1,[s(2)1) = £(s(1)s(2)"), s(1) < s(2) in M(x) ,
is a continuous k-algebra automomorphism. It preserves the ¢-function and thus the
Mébius function. In particular UM[X] ([s1,1) = uT(E) where s : X—>Y in M.

The preceding theorem shows that for the calculation of the Mobius function alone the

incidence algebra of an ordered set is sufficient. It can be interpreted as the con-
nection between standard and large incidence algebras in [8].

B. Second cohomology. Multiplication constants as 2-cocycles.

Let K and M satisfy (3.1) to (3.7), and let L be a small category whose morphisms are
epimorphisms and whose isomorphisms are identities only. As standard examples one has
(3.23) A locally finite ordered set, considered as a category, and

(3.24) A locally finite cancellation monoid without invertible elements except 1.

Let F:K— L be a functor such that F(M) = Morph(L) is the class of all morphisms of
L and s is an isomorphism if ond only if Fs is an isomorphism, i.e. an identity.

A generalization to F(M) < Morph (L) is possible [9]. Define s(1) ~ s(2), s(i)€EM,
iff Fs(1) = Fs(2). Then F induces a bijection

(3.25) F : M/~=T7% Morph(L). Identify

(3.26) M/~ =T = Morph(L), s = Fs.

As is easily seen the conditions (3.8/9/10) are satisfied. Assume however that also
(3.12) is fulfilled. That F is a functor implies that G(t;t(1)t(2)) = O unless

t = t(1)t(2). Hence define
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(3.27)  z(t(1),t(2)) = G(t(1)t(2)5t(1),t(2)) » (t(1),t(2)) €S,(L)
where SZ(L) = SZ(Morph(L)) as in (3.3).

(3.28) Theorem: Assumptions as above.

(i) The function z : SZ(L)——» Z defined above is a normalized 2-cocycle.
This means

(a) Z(tl’tz) = 1ifty =1idor t, = id.

(b)  For (t,,t;,t,)E€ 53(£) the cocycle condition

0°-1°"2
z(t,,t )z(to,tlt z(t0 tl’tZ)Z(tO’tl) holds.
Morph(L)

1ot 2)
The incidence algebra k[[T]] s given as k
(3.29) (f1fo)(t) =Z{z(t1,t2)f1(t1)f2(t2) ; t1t2=t}.
(i1) If on the other hand z is any normalized 2-cocycle Z:Sg(E)“* k with values in k
one defines k[[L,z]] = KHMorph(L) with the multiplication (3.29) and obtains an

associative topological algebra.

(T=Morph{L)) with the multiplicatior

(i11) If in (i) 2,2, are two cohomologous cocycles, i.e. if there is a normalized
l-chain c:Sl(L) =Morph(L) — U(k), c(id) = 1, with values in the group U(k) such
that z, = zl(dc) where (dc)(tl,tz) = c(tz)_lc(tl,tz)c(tl)_l, then the map

(3.30) k[[g,zll] ——»k[[g}zzll, f—sfc (fc)(t) = f(t)c(t)

is a topological algebra isomorphism. In particular k[[L]]l:= k[IL,1]1]=k[[L,dc]].

o

(L,Z%) of normalized
norm:*—

* = (Z,-)-valued 2-cocycles on L modulo cohomology. Even Hznorm(wo’zx) is a very

difficult object. A detailed study of this and a partial combinatorial interpretation
is made in [9].

The preceding theorem points to the interest of the monoid H2

Assume now in addition that z > 0, i.e. that the numbers z(t(1l),t(2)) are non-zero.
Then z is a 2-cocycle with values in the group U(Q) = @- {0}, and the second cohomo-
logy group HZ(L}U(Q)) becomes interesting. This is known in many cases. Examples:
(3.31) L=IN, : Then HZONO, abelian group) = 0 ([31,pp.192). The z from (3.27) is
cohomologous to 1,i.e. z=dc, and we obtain

QUITID = WM, dedl T atxl, f —s(HE x5 00,

This is the theory of algebras of full binomial type in [8], pp. 122. o

(3.32) L =free monoid on a set I of letters: Again Hz(g_abe1ian group) = 0 by [3],
pp-192 , and QU[T1] = ASS(I) (1.20).

a
(3.33) L_=N0(I),|II > 2: The Koszul complex calculations of [3],pp. 192, show that

z is cohomologous to a bilinear, alternating map b: WO(I) X NO(I) — U(Q), and
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thus QLIT1] = Q[[NO(I),b]]. The Tatter algebra is a skew power series albegra. For I
the set of all prime numbers No(l) is isomorphic to N with multiplication and we get

the theory of algebras of full Dirichlet type in [8], pp.1l16. g

(3.34) L=a countable directed set: Then again HZ(E} abelian group) = 0 by [22], and

then QIIT1] = Q-algebra of upper triangular L x L-matrices. This generalizes [8],

pp.127, from NO to arbitrary L, e.g. L_=NO(I),I countable.

(3.35) Remark: The most general construction of the type (3.28) (ii), is a generali-
zation of the crossed product construction in Brauer theory (see [211,p.242). Let
A:L— Al be any functor (suggestive: L operates on A by algebra homomorphisms) and
let z be a normalized 2-cocycle with values in A, i.e.

2(t(1),t(2)) €A(cod £(1)) for (t(1),t(2))€S,(L).

Then ALIL,z]] := MH{A(codt); t€T = Morph(L)} 3 f = (f(t) 5 teT)

with the multiplication
(Fg)(t) = £ {z(u,v)F(u)g(v)suv=t} , “g(v) = (Au)(g(v))

is an associative topological algebra. It is the most general skew power series algebra.
=]

C. "Sheaf-1ike" categories.

We introduce now those "sheaf-like" categories K for which k[[T]] becomes a bialgebra,
generalizing the Faa di Bruno coalgebra [24] and most of the other examples there.
Suppose that K satisfies the following conditions:

(3.36) (Finite limits): K admits arbitrary finite limits (1im).

(3.37) (Finite coproducts): K admits finite coproducts.

(3.38) (Homomorphism theorem): For any f:X —Y in K there is an exact sequence

proji can . ; ;
R(f) = X x X zzz-=—3 X ——— X/R(f) , and the induced morphism f. , with
Y proj:
f = find o can is a monomorphism. In particular, R (can) = R(f) as subobjects of

Xx X, i.e. the equivalence relation R(f) is effective (see below). If X and Y are sets
then R(f) = {(x(1),x{(2))€XxX; f(x(1)) = f(x(2))}.

o

A morphism f:X — Y is called an effective (= regular) epimorphism ([14], pp.180), if

find is an isomorphism, and an equivalence relation ReXx X is called effective if
X/R exists and R=R(can) as subobjects of X xX. Let M be the class of effective equi-
valence relations on X considered as subobjects of X x X. Then with (3.17) we obtain
the following
(3.39) Corollary: The map

Rel(X)— M[X], R — [X—— X/R]
is an order antiisomorphism. In (3.21) one can thus replace MIX] by Rel(X).
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In the category Setf of finite sets Rel(X) is the ordered set of partitions of X.

(3.40) (Universality):
and disjoint, i.e. (i) if f:X—Y is a morphism and Y =i Y(i) a finite coproduct, then
Xz f 1( Y(i)), (Y(i)) = X x Y(i), and (ii) if X = XX then X = 0. Then the cano-
nical morphisms Y(1)~—»Y are moXomorphisms

Finite coproducts are universal (seel[l4],p.243, and [12], p.156),

el

Finally we require finiteness for strict monomorphisms . A monomorphism s:Y —X in K
is called strict ("echt" in [121,p.16) if any commutative diagram (without the dotted h)

S X with an epimorphism e can be commutatively completed by an h
s h which is then unique. For X € 0b(K) define Sus(X) := {s:Y —X
g N f strict monomorphism} / ~ with s(1) ~ s(2) iff s(2)h=s(1),

h an isomorphism. Then Sus(X) is ordered like M[X] in (3.17).

(3.41) (Finiteness of strict monomorphisms): For X c 0b(K) the set Sus(X) is finite.

(3.42) The collection of conditions (3.36) to (3.41) is denoted by (Epi).

o
If the above axioms are satisfied then also the sets Rel(X), and the Hom-sets Hom(X,Y)
are finite. For enumeration problems (3.41) is a trivial requirement.

(3.43) Monomorphic situation: For the study of classes M of monomorphisms,i.e.subobjects,

we do not dualize which is not interesting, but change only axioms (3.38) and (3.40) to

(3.38)Op (Cohomomorphism theorem): Any f in K admits a factorization f = se with

a strict monomorphism s and an epimorphism e. g

(3.40)Op (3.40) plus: Epimorphisms are universal.
In the monomorphic situation we denote the whole collection by (Mono).

(3.-44) Main examples: The conditions (Epi) and (Mono) except the finiteness condition
are satisfied in toposes = categories of sheaves ([14], pp.299). Actually, the theorem
of Giraud ([14],p.303,[12],p.156, and [16],p.17) says that toposes are characterized
by simple axioms of which the universality of coproducts is the most distinguishing.
Many combinatorially interesting examples are given in [14],pp.311, see also §4 below.
The conditions are also satisfied in elementary toposes [16]1. The combinatorial
standard example is

{3.44') I a category with finitely many objects and K := (I,Setf) = category of all
functors from I to finite sets. For X€ K the ordered set Sus(X) of subobjects of X is
the Brouwer lattice af all subfunctors of X (compare [161,p.137).

Combinatoria]]y standard examples are the following:

(a) I = = the free monoid with one generator. The objects of K= 0N0,§ng) are
pairs (M s) of a finite set M with an endomorphism s.

(b) I = Z = the free group with one generator. As in (a) one obtains pairs (M,s) with
a permutation s.



152

(c) I = the finite monoid on one generator g with the relation gm==gn, l<m<n< o,
The endomorphism s from (a) has to satisfy the same relation sM=s" Ifm=1, n=2

this means that s =52 is an idempotent. q

However, the conditions (Monc) for the monomorphic situation are satisfied for combi-
natorially interesting categories which are no toposes. Special examples from the
literature are the categories of finite topological spaces, ordered sets, graphs,
(rooted) forests etc. The category of finite ordered sets does not satisfy the homo-
morphism theorem.

The next result shows how to derive new relevant categories from given ones by
"induction".

(3.45) Induced categories: Let F:K— L be a functor and assume that L satisfies
(Mono) and that
F: K(X(1),X(2)) — L(FX(1), FX(2)) , X{i)€K,

is injective. Identify f=Ff, F=1inj for f in K. An F-structure on YeL is an X€K
with FX=Y. Assume that F induces the following structures from L to K:

(3.46) If Y =UF(X(i)), X(1}€K, YEL, is a finite coproduct with canonical morphisms
u(i) : F(X{(i))—Y then there is a unique F-structure X on Y such that X =1L X(i) with

canonical morphisms u(i). a

(3.46)0p The analogue of (3.46) for finite products. g

(3.47) If Y!' =, F(X), Y' €L,X€K, is a strict monomorphism in L there is a unique
F-structure X' on Y' such that s is strict in K,too and such that for all

X" in K K(X",X') z {feK(X",X); f=sginlL} : g—sg. a
Under these conditions also K satisfies the conditions (Mono). The combinatorial
standard example is L = Setf = category of finite setsand K a category of sets with
structure. A different approach is contained in [18] (catégorie des espéces).

D. Krull-Schmidt categories and exponential formulas.

Krull-Schmidt categories are the suitable algebraic notion to distinguish between
arbitrary and "connected" structures in combinatorics. They are abundant in this area
because the finiteness conditions necessary for the proof of a "Krull-Schmidt"-theorem
are trivially satisfied in enumeration problems.

An object X of a category K with finite coproducts is called indecomposable (in combi-
natorics often : connected) if X+0 and if X = X(1) i X(2) implies X(1) or X(2) = 0.

A partition of X is a finita subset P = {[s:Y(s)— X1} of Sus(X) (see 3.41) such

that Y(s)=+0 and such that the canonical morphism

(s;[s]€P) 1 {Y(s);[s]€P}— X
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is an isomorphism. A partition is called a Krull-Schmidt(KS-)partition if the Y(s)
are idecomposable.

(3.48) Definition: A category K is called a Krull-Schmidt(KS-)category if

(i) Finite coproducts in K exist and are disjoint (compare 3.40), and the canonical
morphisms from the summands into the sum are strict monomorphisms, and if

(i) each X€K has a KS-partition, unique up to isomorphism.

(3.49) Example from section C: If a category K satisfies (Epi) or (Mono) from (3.42)
respectively (3.43) then K is a KS-category with unique KS-partitions, i.e. the
KS-partition of each object X is really unique, and not only unique up to isomorphism.

The uniqueness of KS-partitions is typical for categories with universality of copro-
ducts such as sheaves, ordered sets etc., but false for groups, modules etc. Often
the dual situation with products instead of coproduct decompositions is considered
(compare,for instance,[4],p.96).

If K is a skeletal-small KS-category and if P is a system of representatives of the
isomorphism classes of indecomposable objects of K then the map

(3.50) N ®) —ob(k)/ =, n — x(n) :=win(P)piPeER)

is a monoid isomorphism where n(P)P=P1L.. 1 P,n(P) times, and the addition on the
right is induces fromdlL.

(3.51) Interpretation with connected components: In the situation of (3.44)we define
for a functor X€ (I,Setf) the oriented graph G(X) with vertex set

IX] :=U{X(i);i €I} and oriented edges (x,y), where x€X(i), y€X(j) and there is
a: i—sJ with (Xa)(x) = y. Let K< IX]| be a connected component of the underlying
non-oriented graph and define X(K) = X by X(K)(i) = KnX(i). Then X(K) is indecom-
posable and

X =U {X{K) ;K connected component of [X|}
is the unique KS-partition of X.

o
If K is a KS-category and if R = {[s Y(s)——e X1} is a partition of X, the type of P
is the vector m = (m(n)) EW ( (1)) , T(1): (—)- {0}, where
m(n) = #{[s]€£;Y(s) ~ u{n(P)P;P€ P}}

From (1.33) one derives

(3.52) Theorem (Exponential formula for KS-categories):

Let K be a KS-category with finite automorphism groups. Notations as above. For
neT(1) = N, (B)o10) define a(n) = IAut(Ln(P)P)I. For meN, (T(1))

tet P(n,m) be the number of partitions of 1L n(P)P of type m Then:

(1) 0 if weight(m) := Z{m(t)t;te€T(L)} +n

(3.53)  P(nm) =120 it weight(m) = n.
am!
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(ii) If X(P),P€P, T(n), neT(l), and Y are indeterminates then one has in
QLY,TI00X]1]

exp(Y={T(n)a(n) xn;nE'T(l)}) = 1+Zn X
with "partial Bell-Polynomial"

T) = £{P(n,m)T"; weight(m) = n,Iml = k} .

-1 inl k -1,n

k=1 Bn,k(T)Y a(n) X

Bn,k(
A comparable result in a different situation was derived by Stanley in [27], Theorem

3.2. The M(n) from [27)coincide with the P(n,n) from (3.53), i.e. are the numbers of
KS-partitions of X(n) =1L n(P)P. For categories K with unique KS-partitions the P(n,m)

o

are given by the formula,(which is weltknown in case |P| = 1)

P(nm) = nd 1) ey e et !

and independent of K. The typical case K = Setf(E), P any set, is treated in [10].

(3.54) Corollary: In the situation of Theorem (3.52) assume moreover that K admits
unique KS-partitions. Let H be another KS-category with unique KS-partitions and
F:H—K a functor which is injective (faithful) on morphisms and has the following
"induction" property for direct sums (compare (3.46)):

F-structures on direct summands determine a unique F-structure on the direct sum, and,
in turn, this F-structure on the direct sum uniquely determines the F-structures on
the direct summands.

ATl these assumptions are satisfied in the “induction" situation of (3.45). For
n€T(1) := NO(E) - {0} Tet f(n) be the number of indecomposable F-structures on

X(n) =1 n(P)P. ForrnENo(T(l)) and k€N let g{(n,m,k) be the number of all F-struc-
tures Y on X(n) such that the KS-partition P of Y in H has k direct summands and such
that the partition FP of FY=X(n) in K has type m. Then

(3.55) exp(YZ F(n)T(n)a(n) X"
kK, -1
=1+ 5,8 (FT)Y a(n) X"
where B, (FT) := 2{g(n,m,K)T"; weight(m) = n, Imi = kl.

In particular, if g(n) denotes the number of all F-structures on X(n) we obtain from
(3.56), by putting Y=T{(n) = 1, the formula

(3.55')  exp(z,f(ma(n) ") = 1+ g(mja(m) X" _

This result is the typical connection between connected and arbitrary structures in
exponential formulas (compare [28]) and extended to completely new situations in
Theorem (3.74). Special examples, welltknown from the literature (see, for instance,
[28]), are the following. A nontrivial new example is given in §4 ,A,(4.12).

Examples: (i) If K is the category of finite sets and H that of finite graphs and if
F is the functor mapping a graph to its vertex set, then P = {{1}}, T(1) = N,
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and X(n) = {1,...,n}. Since the number of all graphs with vertex set {1,...,n} is

(5)
2 one obtains

- X"
exp(zn=1 f(n)ﬁT) = 1+z

where f(n) is the number of connected graphs on {1,...,n}.
(1) Kas in (i). Let H be the category of finite sets with an operation of the
cyclic group of order d, i.e. with a permutation s satisfying sd =1, and F the
underlying functor. An easy calculation and (3.55') imply

X

n
X _ oo
exp(and TT_) =1 oo g(n)n!

1)

where g(n) denotes the number of all solutions of sd =1 1in Sn.

E. Sheaf-like categories and unipotent groups

In this section we assume that K is a category which satisfies the assumptions (Epi)
from (3.42). We show that these assumptions give rise to a natural construction of a
combinatorial incidence algebra as in section A and a derived unipotent group. If K
is the category of finite sets the corresponding affine bialgebra is the “Faa di
Bruno" bialgebra from [24], pp.36.

By (3.49) K is a KS-category. Let P be a system of representatives of indecomposable
objects of K modulo isomorphism, and et M be the class of effective epimorphisms of
K. We consider M as a full subcategory of the category Morph(K) of all morphisms of
K. As a functor category this inherits the nronerties of K and is thus itself a KS-
category; M is closed under finite direct sums and taking direct summands in Morph(K)
As equivalence relation on M we take isomorphy in Morph(K). and obtain T := M/=.
These data (K,M,~) satisfy the assumptions made in Theorem (3.15), and we obtain the
incidence algebra k [[T]] with standard basis e(t), t€T. As for any KS-category
(compare (3.50)), Morph(K)/ T is a free abelian monoid with addition induced from
direct sum and the indecomposables as basic, and T = M/ T is a free submonoid of
Morph(ﬁ)/?. The universality of 1 (3.40) implies that an effective epimorphism
f:X— Y in M (<=Morph(K)) is indecomposable if and only if Y is indecomposable. On
the other hand, if Y is indecomposable identify Y= 1dY for YEOb(K). Let S denote

a system of representatives of the isomorphism classes of effective indecomposable
epimorphisms. With the above remarks one obtains without loss of generality a
decomposition

(3.56) S =S8'U s",S' ={pP =1dP;P€ji}, S" = {s€S; s is not an isomorphism}.
Then U := {5,5€S} is a basis of T, and this basis also admits a decomposition
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(3.57) Y=yt ou", v = ﬁd¢P€BL U" = {s;s€S"}.
This decomposition of the basis U of T gives a direct sum decomposition of abelian
monoids

(3.58) T :=T'@®T",where T" := @ {NO u"; u"eu"} and

ne

T' := Isom(T) = @ (N u'su'€U'} = @ {N_id;P€P} = @ [N PsPEP} = Ob(K)/

where T' = 0b(K)/ = is identified through E _ Y€ 0b(K). Hence Ob(K)/ = from
(3.50) is a free direct summand of T = M/ =
The monoid structure of T induces a topological ccalgebra structure on k[[T]1 by

(3.59) A : K[[T11 —k[[TI] @ kLTI, e(t)—z le(t)) @ e(ty)); ty+t, = t)

e : k[[T]] —k , e(t)— étO'

Again the universality of UL (3.40)implies the compatability of the algebra and
coalgebra structure, and hence

(3.60) Theorem: Assumptions and definitions as above. Then H := k[[T]] is a topological

bialgebra, and (3.15), an abstract incidence algebra. o

Rota ([241,p.13) considers the dual situation. Let A := k[Tlbe the dual (abstract)
bialgebra of H with the k-basis x(t), te€T, multiplication
x(tl)x(tz) = x(t1+-t2), 1A = x(0), comultiplication

(3.61) A : A—A @ A, x(t) — T{G(t;t(1)t(2))x(t(1)) ® x(t(2));t(i) €T}

(3.62) and counit ¢ : A —k, x(t)—1 if teT', 0 otherwise, the duality being
given by
KOITIT x kIT] — k, (e(t),x{t')) — 6(t,t').

By definition,k[T] is the monoid algebra of T, i.e. the polynomial algebra in inde-
terminates x(u), u€U. For the category K = Setf of finite sets Rota ([24],pp.36)
calls k[T] the Faa di Brunc bialgebra. In this case

= {id: {1} — {1}} , S" = {const:{1,.....n} — {1}; n=2},

i.e. U= No, U" = N by identification.

The algebra A = k[T] defines the k-free affine monoid G by

(3.63)  G(R) := A1(k[TI,R) = Mon(T,R), g — f, g(x(t)) = f(t) ,

where Mon(T,R) denotes the set of multiplicative ([241,p.40) functions f,i.e. f(0)=1 and
FLE(1)+t(2)) = f(£(1))F(t(2)). If we identify in (3.63) and use the identification of
(2.22) and (2.24) we obtain

(3.64) G(R) = Mon(T,R) =« RI[T]] : f =3xf(t)e(t) ,

i.e. G(R)} = Mon(T,R) is a multiplicative submonoid of R[[T]]. Of course, since T is
free on uel, f is already determined by the f(u). Contrary to the impression from
[24] and other sources, since G is represented by k[T], the study of G(R) for all R
is equivalent to that of k[T} or kI[T]] and not simpler.
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In general, G is not a group. However, a group can easily be derived from
G with preservation of the essential properties. Compare the remark in
{241, p.42. The decomposition T=T' & T" (3.58) and a little calculation
imply that

(3.65) A' = k[T'1cA=kI[T] = kKI[T" & T"] = k[T'] ® k[T"]

is a subbialgebra and A is A'-free, hence flat, hence there is a faith-
fully flat epimorphism

(3.66) G = AT(K[T],-)—R85, g' = AT(K[T'I,-)

of k-free affine monoids where Res is the restriction. Let
(3.67) G" := ker(Res) = Res_l(l)
be the kernel of Res. Then
(3.68) G"(R) = {fe€Mon(T,R);f(T') = 1} = Mon(T",R) = RII[TI] ,
where an f" €Mon(T",R) is identified with an f € Mon(T,R} by

f = th(t)e(t) =z f“(t”)(zt,e(t' +t")).

The cartesian diagram (3.69)

G Res, g KIT] o k[T'] KIITITER N k[T 1]
(3.69) U u (3.70) +kiprojlvye (3.71) sk [lprojllt n
G" —1 k[T"] o k kK[I[T"]] —k

induces the cocartesian diagram (3.70) of the affine algebras,where
k[T"] is the affine algebra of G" and proj : T —T" denotes the projection in (3.58).
Dualization implies the commutative diagram of topological algebras (3.71) where the
upper map can is that of (3.15) (ii1), and the left k [[projl] is given by
f" —f" proj. The standard basis of k[I{T"]] is mapped onto the elements

e"(t") :=Z{e(t' + t");t' €T '} €KIITII, thus

(3.72) {
K[[T"11 = T{ke"(t"),t" € T"} by identification.

We finally identify by (3.58)

(3.73) 7= = 1so(r) =n V) = B) g o gy U

and write n instead of t. Let x = (x(u);u€U) and y = (x(u)su€U"). Then
k[Tl = kIx1 , k[T"1 = kiy].

(3.74) Theorem: Conditions (Epi) from (3.42), T := {effective epimorphisms }/ == NO(U)

Notations from above and §2 . Then

(1) G" = G”Ak[[T]]’ and this is a closed, unipotent, k-free subgroup of AT
The affine algebra of G" is kIT"] = k[yl with the universal element

(3.75) 1 + z{y"e"(n);n+0} €G"(kly]) = kIy]L[[T]].

The covariant topological algebra of G" is

k[[T"1] = T{ke"(n);n€T" = NO(U“)} < kI[TI].
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(ii) The unit of k{[T"]] is e"(0) =1k[[ the coalgebra structure comes from the

additive structure of T" =N0(U")

111’

, and the multiplication constants
G"(n;nlnz)(n,nl,nZET") of k[[T"]] with respect to the basis e"(n), neT", are
" N _ n
(3.76) G"(msnyng) =Gly 4 cod(n) - cod(n,) » n,+dom(n) - dom(n,)’
if cod(nl) < cod(n), dom(nz) <dom(n) in the ordered monoid T' =NO(E) , and 0 otherwise.
n

Here G(n n ) are of course the section coefficients of k[[T}] with respect to the
172

standard basis e(n), e€T,
(ii1) The antipode S:k[y]l — k[yl of G", i.e. the inverse of the universal element,
is (1.31) given by
(3.77) S(yp)=>: {a(p,n)yn; n#0 in T"} , 0%p in T" =NO(U ) s where

a(p,n) =z {(-1) IrnlGS"(p;m); weight(m) =n},
m runs over the elements of NO(T") , weight(m) == fm(n)n;n € T"} and GS"(p;m) is derived
from G" as GS from G in (1.26). In particular, S(x(u)) =):{a(u,n)yn; 0+*neT"},
where uey" cNo(U ) is the u-th standard basis vector.

(iv) The Lie algebra Lie (6") =k[[T"1} < k{[TI] of G" (2.39) has the topological
k-basis e"(u), ueU", and the Lie bracket is

(3.78) [e"(ul),e“(uz)] = {[G“(u;ulu )—G"(u;uzul)] e"(u);uel"y for ul,u2€U".
Thus Lie(G") is determined by the indecomposable effective epimorphisms.

(v) (Exponential formula) If @ < k the exponential isomorphism

exp : R ® Lie(G") — G"(R), functorial in R,

(from (2.42) again, as in (3.55)) gives a connection between indecomposable items on
the left and all items on the right.

The z-functions is the multiplicative function ¢:T— k, z(t) =1,i.e. z(x{u))=1 for
all ueU. This function is obviously contained in G"(k), Hence u= c'l, the Mobius
function, is also in G"(k). But ¢ = Eoidk[T] s u= a;'1= zoS, hence u can be obtained

by setting x(u)=1 in (3.77). U) RGN
0

For n€T=N0( let n" be its component in T"

Then n€T(1) : = T-1Iso(T) if and only if n"*0.
(3.79) Corollary: Let ne€k[[T)1], u=2u (n)e(n), be the Mobius function in k[[TI]. Ther

1 if netso(T) =N Pie. nt=0
u(n) = "
z{(-l)“"'Gs"(n";m);meNO(T ). 0y} if n"s0.
(3.80) Remark: In the situation (Mono) of (3.43) one obtains a corresponding theory
for the class of strict monomorphisms instead of effective epimorphisms. In this case
the ordered set Sus(X) of strict subobjects of X is a distributive lattice, but in
general not a Boolean algebra. However, if Sus(X) is a Boolean algebra for all



159

X €0b(K), an equivalence relation on M satisfying the conditions (3.8)ff is given by

= y2 ,
where si':Yi'——»Xi denotes the complement of S5 :Yi ——+X1 in Sus(Xi).

Many examples in [24] are of this type.

slel———>X1 ~ S, Y2———>X2 iff Yl'

(3.81) Example: The Butcher group

Let K be the category of finite rooted forests, P a system of representatives of finite
rooted trees modulo isomorphism and M the class of (strict) monomorphisms. We define
an equivalence relation on M satisfying the conditions (3.8)ff by

ne

s,lel———>X1~52:Y2—>X2 iff Xl-sl(Yl) XZ-SZ(YZ),

where Xi 'Si(Yi) is the rooted forest obtained from Xi by removing Si(Yi)'

The types are just the isomorphism classes of rooted forests, hence T =NO(E), and
k[[T]] is a topological bialgebra. The unipotent group Mon(T,R) is isomorphic to the
Butcher group - known from the theory of Ringe-Kutta-methods in numerical mathematics
(see [311)- and admits a power series representation by Butcher series.

(3.82) Remark: The example ({241,pp.89) of finite ordered sets with the direct product
decomposition and its specializations (matroids etc.) do not directly fall into the
two cases (Epi) or (Mono) of this paragraph. The theory can, however, easily be adapted
to this case, in particular,to obtain an analogue of Theorem (3.74).

§4 . Examples

A. Enumerations of effective epimorphisms and strict monomorphisms

Let K be a category satisfying the conditions (Epi) from (3.42) (or (Mono) from (3.43)),
Tet ¥ be the class of effective epimorphisms (or strict monomorphisms) of K and let P
be a representative system of indecomposable objects in K modulo isomorphism. By (3.50),
Ob(K)/ T js a monoid with elements [X] := X modulo isomorphism and addition

[X(1)] + [X(2)] = [X(1) X(2)] , and isomorphic to N0<E). We identify

(4.1) N,®) < ob(k)/ T, n =[u n(P)PiPeP].

Moreover, if I is any index set we identify i = (0...010...0), the entry 1 in the i-th
position, and obtain I as the standard basis of NO(I). In particular,

(4.2) PN B S on(k)/ T, P = [P1= (0...010...0), 1 at p-th place. By (3.50),M/ =
is a free abelian monoid with the f := f modulo isomorphism, f:X —>Y indecomposable,
as basis. Here, f€M is indecomposable if and only if Y is indecomposable. For such an

f we define the type of f by
(4.3)  type(f) = (x3,0v1) eN B p e (B wn (B,
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where we use the identifications (4.1) and (4.2). Define the set of indecomposable

types by
(4.4) Q := {type(f);feM indecomposab]e}CNo(B) x NO(B) .

We consider cho(g) as standard basis as in (4.2), and call T.:N(g) the free monoid
of types. Extending linearly type(f) from the basis Q to No(g) = T we obtain the sur-
jective monoid homomorphism

(4.5) type = W T—1 =0 (O, Ftype(f) = £ { type(f)(n,P)(n,P)3(n,P) € Q.

If here f:X—Y is in Mand Y = 1L1.Y1. is the KS-partition of Y, then
f=a fuf = FIFTH(Y) : FH(Y)— V., is the KS-partition of f, and

(4.6) type (f)(n,P) = " (i}

(¥;) T on(Ph)P,Y, F Pl

We define type(R) := type(X can X/R) for an effective equivalence relation R on X

and type ([sl) := type(s) for a strict subobject [s]. The injection QCNO(E) x]NO(E)
extends Tinearly to

(4.7) (weight, absolute value) :]NO(Q) —»NO(E) x N (7 , t— (weight (t),Itl]),

where weight(t) = £{t(n,P)n;(n,P)€Q} and [t = ={t(n,P)P ; (n,P)€qQ}
Setting

(4.8) () == meN, B (npyegr, o(n) = Pepi(n.P) Q)

we obtain [tI(P') =Z{t(n,P');neQ(P')}.

The composition of the maps (4.5) and (4.7) is aiven by

~ _type (Q) __(weight,II; (3! P
(4.9) M/ = N, LN e N

3 ([dom(f)],[cod(f)]) ,

;
X

if f:X — Y is in M and has type t = type(f), then
Ln(P)P and Y = um(P)P with n := weight(t) and m := |t].

||2:rn

(4.10) Standard example:
Let K = Setf be the category of finite sets. Then P = {{1}} and Setf/== N, [X1 = 1xi

(1) A system of representatives of indecomposable effective epimorphisms modulo
isomorphism are the constant maps

~

{1,...,n} — {1}, n>1, hence Q = {(n,1); n€N} =N.
Then (weight, | 1) : ]NO(N)——>]N0x N, t — (Z{t(n)nsn = 1},={t(n)s;n = 1}).

s

We identify an equivalence relation R on X with the partition X/R of X. Then the type
teNo(]N) of R is given by

t(k) = number of blocks of X/R with k elements, k > 1.

Here weight(t) = IX| and Itl = [X/RI|.The number of partitions of type t of a set with
n elements, n = weight(t), is
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R(t) :=nt (1 (k) Rt

k EN
(ii) A system of representatives of indecomposable strict monomorphisms modulo iso-
morphism are the constant maps @ — {1} and {1} — {1}, hence Q = {{0,1),(1,1)}= {0,1}.
Then (weight, 11) : N {0V on N, t— (6(1),2(0) + £(1)).
We identify a subobject [s :X——Y] of Y with the subset s(X) = V.

Then the type ttENO{O’l} of [s] is given by t{0) = IY| - IXI, t(1) = IXI.

Here weight(t) = 1X| and [t|
n elements, n = weight(t), m

IYl. The number of subsets of type t of a set with
Itl, ds S(t) = (7).

1l
i

We generalize this to

N Q) be a type with weight(t) = n and

(4.11) Theorem: Situation as above. Let t€T o

[t = m. Then
M(t) := #{fEM;f:inn(P)P—ﬁiLP,m(P‘)P' has type t} =

1

L) ene eyl

= ( mn(P)im(P)!) m (M(n',P"y( T (P)1) 7)
PEP (n',P')yeQ Pep

where M(n*,P') = *{feM; 1 n' (PP —P').

[T M is the class of effective epimorphisms of K, then

Aut (JLP,m(P‘)P') acts freely on {feM;f : 1L n(P)P ——ﬁJLP,m( "}P'} and we get

1

p
R(t) := *{RERel (U,n(P)P); type (R) = t) = M(t)a(m)”
If M is the class of strict monomorphisms of K, then

Aut (1LPn(P)P) acts freely on {feM;f: L pn (PYP— JLP,m(P')P'} and we get

S(t) :="{s€sus (dyom(PY)P')5 type(s) = t} = M(t)a(n)”

The numbers R(t) or S(t) are often closely connected with the section coefficients of
the AIA H := k[[T1] from (3.60)(see, for instance, (4.18)).

(4.12) An application of the exponential formula:

We consider M as a full subcategory of the category Morph(K) of all morphisms of K.
An element f€M is indecomposable if and only if cod (f) is indecomposable. Since the

functor
F:M—Kx K ,{f:X—Y)—(X,Y)

satisfies all conditions of (3 54) (3.55") implies

4.13 bY M{n,P M(n,
( ) exP(( P)e Q(n ) —T—y _i—% n, m€N ") (n m)a(n) a(m)

and

X" m(P) X"
4.14 m T M(n,P = M{n,m s
( ) PEB(nEQ(H (n,P) EUW) nékég) (n,m) < )

where M(n,m) = # {f€ M;JLPn(P)P ——ein,m(P')P'} and X(P),Y(P),P€P are indeterminates.
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(4.13) and (4.14) are not only the generatung functions for the M(n,m), but also for
the numbers of effective equivalence relations and strict subobjects.

If K is the category of finite sets, (4.13) and (4.14) reduce to well-known results
about Bell numbers, Stirling numbers of the second kind and binomial numbers.

For instance,

® X" (expx - )" ® x"
exp (expX - 1) = £ B(n) =r , SRSl = 5 os(nm) Iy
n=0 ; m: n=0 ’
and (10" =z (1) X"
n=0

Our next example is more complicated, but still very similar to finite sets.

(4.15) Equivariant partitions of G-sets: Let G be a finite group and K := G-Setf the

presheaf category of finite G-sets, i.e. sets with an operation of G from the left.
The epimorphisms of K are the G-homogeneous surjections and effective. If X is a
G-set an equivalence relation R€Rel(X) is simply an equivalence relation
ReX x X such that (x,y)€R, g€G implies (gx,gy) €R, or equivalently, that G permutes
the blocks of X/R. In this case we call X/R an equivariant partition of X. Let S be
a system of representatives of conjugacy classes of subgroups of G, ordered by U sV
if there is a g€ G so that g'1Ug c V. Then P = {G/U;U€S} is a representative system
of indecomposable G-sets modulo isomorphism. For U,V€S we define

U,V := *lgeasgtug < v}
and w.1.0.9. we set Q = {(n,U)e(]Ng - {0}) x S; supp n < U, j.e. for all VEsupp n: V<
where supp n := {VeS;n(S)+0}, and T = No(g) .From (4.13) we get the generating

functions of p N
S(n,m):= {RERe1(J.LUn(U)G/U);(J.LUn(U)G/U)/R =1Lvm(V)G/V} and

B(n) := " (Re1( Lyn(U)6/V))
(

X" 5 fexp( x WU X(Y) 3y YQU)

(4.16) £  S(n,m) Y™ = exp{
an) Ues VU Ul a(y) a(u)

S
n,mel\l0

and

X" | (V,U) X(V),.
(4.17)  x Blkrey - el Eopplen( T S M-,
neN =
0]

where a(n) = T (
Ues

By differentiating we derive the recursive relations
T(W)
Bne) =z (M B(K) ¢ T L L
(V,V) vl

. S Vv=U W<V

k,TEN

kl= nO supp 1 =V
and

stouam) = = (Y s(nm) + Wedlsnumev)
VU ’

The number of G-homogeneous maps from 1LUn(U)G/U onto _u.Vm(V)G/V is



M(n,m) = S(n,m)a(m) = T m(-1)
ken(o,m(u)1 U
U

Applying our results to finite cyclic groups we can solve the following combinotorial
probliem:

Let X be a finite set and s a permutation of X.
How many partitions P of X are there such that s permutes the blocks of P?
Let a be the least common multiple of the lengths of cycles of s and G :=Z/Za be the
cyclic group of order a. Then G acts on X by
kox:= sk(x), where k€ G and x € X.
Let S := {dZ/Za;d divides a} be the set of all subgroups of G and define n€N§ by
n(d Z/ Za := number of cycles of s of length d.
Then the number of partitions P of X such that s permutes the blocks of P is just
B(n) from above.

B. Two unipotent groups in combinatorics

(4.18) A generalization of the Faa di Bruno bialgebra: Let now G = A be a finite
abelian group in (4.15). Then S=P(A) is the set of all subgroups of A, i.e.
Qe A pay <l ()
the map (4.6) type: M/ ?—»Nég) is an isomorphism, i.e. two effective epimorphisms

f and g are isomorphic if and only if type(f) = type(g). We identify M/ = =T = NO(Q).
According to (3.15) and (3.60),k[[T]] is an AIA and a topological bialgebra. Using
(4.11), we can calculate the elementary section coefficients:

P(A)
0

. In this case, as for the special case Setf = 1-Setf,

(4.19) Theorem: Let (n,U) be an element of Q =N
For types tl,tZET,G((n,U);tl,tz) = 0 unless
ty(m,V) =0 for all (m,V)€Q with VEU, weight(t,) = nand t; = (It, I, U).

If t€T satisfies t{m,V)=0 for all (m,V)€Q with VZU and the weigth of t is n, then
G((n,U)s(Itl,U),t) =

x P(A).

101 v m(H) t(m,V) -1
He U (m,V)e Q

veu
For sets this is the Faa di Bruno coefficient
-1

<

s(nsitit) = nt (k) ERegn )
k=1

The following theorem shows the structure of the monoid Mon(T,k) of multiplicative
functions in k[[T]] and generalizes Theorem 5.1 of Doubilet,Rota and Stanley in [8].

» where tEINO(]N) has weight n.

(4.20) Theorem: Let Mon := 1 {aek[[X(H);HeP(U)11;a(0) =0} be a monoid of
U€P(A)
vectors of formal power series with componentwise substitution composition and unit

(X(U))UEP(A)’ Then the map
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F: Mon(T,k) ———— Mon

(. {f(m,U) X e ®) - 10} with supp me U3 ) ,
’ auim) 0 n(H) = U€EP(A)
where a(m) = | Aut(dL,, _ m(H)U/H | = .y (b,
is an isomorphism of monoids. 5 h
{H! . .
F(z) = (expl <= - X(H)] -1 implies
(z) (exp Heu TUT (H) )U€P(A)
-1 IH1
= = z —_
F(U) F(C) ( He UP(A)(H’U) Tyl 109(1+X(H)))U€P(A) s

where “P(A) is the Mobius function in P(A). If we denote the set of all prime numbers
by P, then

-1)/2
UP(A)(H,U) = m (_l)O(p)pO(p)(o(p) )/
peP
for W= T (7 ZD)O(p) and Some()€No(P), where Z/ Zp is the cyclic group of
pepP

order p, and uP(A)(H,U) = 0 otherwise.
(4.21) Proposition: Let (n,U) be an element of Q. Then
k- -
) = (D (PR RR) /2
peE

if n = ki with keN, HeU and UH S 1 (2/2p)°(P) for some oen
peP

P)

and u(n,U) = 0 otherwise. o

Applying F(fg) = F(f)(F(g)) for f,g€Mon(T,k) to the z-function,we finally get the
generating functions of B(n) and S(n,m), i.e. (4.16) and (4.17) for G abelian.

(4.22) Representations of ordered sets:

Let 0 be a finite ordered set.

A representation of 0 is an order preserving map F:0 — Pot(X), where Pot(X) is the
ordered set of all subsets of a finite set X.

A morphism from one representation F:0 — Pot(X) to another representation G:0—Pot(Y)
is a map f:X —Y so that f(F(o)) < G(o) for all 0€0.

Let K be the category of representations of 0, let M be the class of all mono-
morphisms of K, i.e. all morphisms that are one-to-one, and take isomorphy as equiva-
lence relation on M. Then T := M/ = is the free monoid of types and H:=k[[T1] a topo-
Togical bialgebra.

Here G(R) := Mon(T,R) is algebraic and has a faithful Tinear representation by trian-
gular matrices. In the special case, where 0 is the empty set, i.e. K = Setf, G(R) is
just the monoid of affine maps of the line R.
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§ 1 Introduction

Suppose that II is a (finite, affine) translation plane, O is
some fixed but arbitrary point of I , and G is a group of
collineations of I which fixes O and commutes with the kernel of I .
Then it is well known that there is a field K and a KG-module V such
that the points of I correspond to the elements of V (with O corres-
ponding to the zero vector of V), and the lines of I containing O
correspond to a G-invariant spread of V. It is because of this
correspandence that the theory of group representations becomes im-
portant for the study of translation planes.

It is useful to alter our perspective and start with a KG-
module V. We then ask under what conditions does V support a G-in-
variant spread? This is a vast question, and certainly not one which
we shall consider here in anything like its full generality. For
example, if G is fixed, there are obviously an infinite number of
choices for V that can be made. However, taking our cue from repre-
sentation theory, it would seem to make sense to start with modules
which are "small". This does not mean that we bound the dimension of
V (though it might), instead we interpret small to mean irreducible.
This certainly makes sense from a representation-theoretic point of
view, though it is admittedly not quite clear how important such a
hypothesis is geometrically. On the other hand, since very little is
known about these questions, it seems worthwhile to persue anything
which can provide a systematic approach.

As for our choice of G, historical reasons and known examples
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suggest that taking G to be of Lie-type might prove fruitful. For more
technical teasons, we limit ourselves to guasisimple groups of type

Ayr Dyr Egr By 8
with a simply-laced diagram (i.e., one with no double bonds), and of

or E These are the groups associated to a root system
course we have
A, (q) = SL, (@) ; D,(a) = 0, (q)

Finally, a word about the choice of K. The representation theory
of G (of Lie-type, as above) falls into two categories, distinguished
according as to whether the characteristic of K does or does not divide
the order of G. Furthermore, if G is associated with the field GF(q),
where g = pd with p a prime, then the first category bifurcates into
the cases charK # p and charK = p. Again, historical precedent and
known examples suggest that the latter case is of high interest, and

for technical reasons we take K = GF(q)

Thus we are led to consider the following situation. We take G
to be a quasisimple group (that is, G = G' and G/Z(G) is simple) of
Lie~type
6" E7 or E8
defined over the Galois field GF(q), where g = pd with p a prime. Then

AK(Q > 1), Dl(l > 4), E

we let V be an irreducible GF(qg)G-module, which we assume supports a G-
invariant spread? Observe that our hypotheses mean that the kernel of
the translation plane represented by spread includes the field GF(g)over

which G is defined.

Anyone familiar with [A] will recognize that the foregoing is a
restatement of the philosophy of that paper. Moreover, it was suggested
there that the following should be true.

Conjecture Let G be a group of the type described above, and let V be

an irreducible GF(q)G-module. If V supports a spread, then G = SLZ(q).

In fact, the conjecture was proved in [4] for the case p = 2,
and the present report is an initial attempt to extend the ideas of
that paper to the case p odd. There are two main difficulties which
appear to arise. The relative plethora of irreducible GF(g)G-modules
in odd characteristic, and the fact that the notation of a dispersive
module, introduced in [4] , sSeems to have no direct analogue in odd
characteristic.

Partial compensation for the second of these difficulties is to
be found in a theorem due to the first author, which is restated below

(Lemma 3.2) in a form convenient for us. In order to study the irredu-
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cible GF(g)G-modules, it appears useful to employ the theory of weights
in a systematic way. Indeed, though we cannot as yet establish the con-
jecture in complete generality, we thought that it would be of interest
to see how the above ideas, in particular those involving Lie theory,
can be used to gain a strong hold on the possible modules V which can
occur. The results themselves are stated in the next section.

The authors wish to acknowledge the support and hospitality of
the University of California at Santa Cruz during the winter of 1982.
The second author was also supported by a grant from the N.S.F.

§ 2 Statement of results

As mentioned above, our present results are quite modest. They
are recorded here because we believe that they may play a role in a
conclusive proof of the conjecture of § 1, moreover they have the merit
of showing how the Lie theory and results from [1] on planar collineation
groups help the analysis in a particularly clear way.

In order to state our results we need to recall some facts from
[41. First, it was shown there [4, 7.1] that the conjecture is true in
general if it can be shown that G # SL3(q). So it suffices to assume,

by way of contradiction, that the following holds:
G = SL3(q), where g = pd with p an odd prime,
and V is an irreducible GF(g)G-module which supports a spread.

We assume this hypothesis for the remainder of the section.
Next, we recall (cf. [4, § 5]) that the Steinberg tensor product

theorem tells us that V can be represented as a twisted tensor product

_ o g
v = v, 18 ..... 8 V4 d

whe;e each vy is one of the p2 so-called basic GF{(g)G-modules, and

ViOl is the "twisted" version corresponding to the field automorphism

o; € Gal(GF(g)). In [3] the basic modules are constructed explicitly,

but all we need here is the well-known fact that there is a distinguished
basic module, the so called basic Steinberg module, of dimension p3 over
GF{q) .

We can now state our principle result.

Theorem 2.1 At least one of the factors Vi occuring in the

representation of V as a twisted tensor product is the basic Steinberg

module.
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There are several consequences of this result. For example we

have
Corollary 2.2 a*p

To see why the corollary is true, assume that q = p. Thus 4 = 1,
so that V is itself a twisted basic module. By the theorem we see that
V is a twisted version of the basic Steinberg module; in particular,
dim V = p3 is odd. However, V is supposed to support a spread, and so
must have even dimension.

As explained above, this corollary implies the validity of the

conjecture when g is a prime.

Corollary 2.3 Let V, G and q = pd be as in the conjecture. If
V supports a spread and if d = 1, then G = SLz(p).

The theorem is proved as follows. In § 3 we show that if
o e G = SL3(q) is a non-identity root element (a transvection), then
the fixed structure of o in its action on Il is a pth—root subplane. In
particular, V is a free <a>-module. Then in §4, we show how this cbser-
vation and the representation theory allow us to arrive at the con-

clusion of the theorem.

§ 3 The action of root elements on I

If T is an affine plane admitting a collineation a , we denote
by F{a) the fixed structure of a . If A is a group of collineations of
II, then F(A) is the fixed structure of A.

Now assume that V is a vector space over a (finite) field of
characteristic p, which supports a spread giving rise to a translation
plane T . If o is a collineation of order p in the linear translation

complement of T , we shall call o uniform provided the following holds:

If a matrix representing the action of o on V is put in Jordan

canonical form then each Jordan block has the same size.

The importance of this concept stems from the following results
established in [ﬁ] . (The second is restated in a form convenient for

our present purposes).

Lemma 3.1 [1, 3.1] If o is a collineation of Il of order p which

is planar (that is, F{(a) is a subplane), then o is uniform.

Lemma 3.2 [1,4.3 and 4.5] Suppose that o« and 8 are a Eair of

commuting planar collineations of I of order p. Assume that F(a) iw
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and F(B) # W, where W = F(a) N F(R), and the restriction of a to F(B)

is uniform. Then at least one of F(a) and F(B) is a pth—root subplane
of I .

In the sequel we shall only apply Lemma 3.2 when both o and B
are conjugate inside a larger group of collineations. Thus, in our
applications of the Lemma, we shall always conclude that both F(o) and
F(B) are pth—root subplanes.

We now begin the proof of Theorem 2.1, so let G and V be as in
§ 2. That is, G = SL3(q), where g = pd with p an odd prime, and V is
an irreducible GF(q)G-module, which supports a spread giving rise to
a translation plane 1 .

We need to recall some facts concerning the structure of G. Fix
a p-Sylow subgroup P of G. Then |P]| = q3, and P is the product P = QQ
of a pair of elementary abelian p-groups Q and Q each of order qz.
Geometrically Q can be viewed as the group of all translations with
axis a distinguished line & _ of the desarguesian projective plane of
order g, and 6 is the group of dual translations with distinguished
centre EW]on L. The groups N = NG(Q) and & = NG(é) are the maximal
parabolic subgroups of G containing P; that is, the stabilizers in G
of 2 and [w] respectively. The group Q is complemented in N by its
Levi-factor L, and L' = SLZ(q). Of course, L is just the translation
complement in N of the desarguesian affine plane with %_ the line at
infinity. Moreover, if Z = QN é, so that Z = Z(P), then Z has just
g+1 distinct conjugates under the action of L. These are the root sub-
groups contained in Q; that is, the elation groups corresponding to the
distinct centres on £ . Similar comments apply to ﬁ, and we may choose
our notation so that é = <7, étﬂ L> . Then Z and é N L are conjugate
under the action of the Levi-factor of N .

In [4] it was shown that Q or Q is planar on I . We choose our
notation so that F(Q) is a subplane of I . Certain other facts relevant
to our present discussion were also established, and these are summarized

in the next lemma.

Lemma 3.3 [4, 5.5 and 7.1j. The fixed structure F(Q) is a sub-

plane, and the Levi-factor L acts irreducibly on F(Q). Moreover, F(P)

is 1-dimensional.

The fact that L is irreducible on F(Q) and that dim F(P) = 1 are
just special cases of Smith's theorem [5] B
We need to interpolate another result from [1, 3.1] (see also

[2, 2.2]).
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Lemma 3.4 Suppose that F(Q) €« W< V and that W is a subplane
of I . Then dim F(Q) divides dim W.

We are now ready to establish the main result of this section.

Proposition 3.5 If o e Q with a # 1, then the following hold:

(1) F(a) is a pth—root subplane;

(2) F(Q) is a proper subplane of F(a).

Proof: First assume that there exists 1 £# 8§ € Q with F(8) ¥ F(a).
Since F(Q) is a subplane (Lemma 3.3), both F(a) and F(B) are subplanes
and a is planar on F(B). Therefore o is uniform on F(8) by Lemma 3.1.
Moreover, <a> is conjugate to <B> because L is transitive on the sub-
groups of order p in Q. In particular, |F(a)| = |F(B)| and thus
F (o) % F(B) implies F (o) # F(a) n F(B) # F(B) . Now (1) follows from
Lemma 3.2 and (2) is obvious.

If the above assumption is false, then F(B) = F(Q) for all
B € 0-{1}. We argue that this leads to a contradiction. In accordance
with the notation introduced prior to Lemma 3.3, let 1 ¥ y € QN L.
Since é N L is conjugate to Z, we have F(641 L) = F(y), and hence

F(P) = F(Q) N F(QN L) = F(a) N F(y).

Now choose Y to commute with o . Since F{P) is 1-dimensional by

Lemma 3.3, the restriction of a to F(y) is uniform (indeed, there is

a unique Jordan block). Moreover, Fl(a) & F(y) & Fla) because dim F(g) =
dim F(y) 2> 2. Thus F(o) is a pth—root subplane by Lemma 3.2 and the
fact that o and y are conjugate in G. As F(g) = F(Q) by hypothesis, it
follows that

dim V = p dim F(Q) (*)

On the other hand, L acts irreducibly on F(Q) by Lemma 3.3, and

L' = SLz(q) has a unique involution t which is (of course) central in

L. Therefore t has a unique eigenvalue in its action on F(Q). Thus the
eigenspace W corresponding to this eigenvalue is a Baer subplane of 1

which contains F(Q) . By Lemma 3.4 we have
dim F(Q) | (dim W =1/2 dim V).

This is not compatible with (*), and the desired contradiction is

reached.

§ 4 Some representation theory
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Proposition 3.5(1) implies that if o % 1 is a root element in G,
then V is free as an <a> -module; that is to say, each Jordan block of
a matrix representing o has size p. The following result is elementary,

and the reader is left to provide a proof.

Lemma 4.1 If X and Y are <a>-modules, then X ® Y is free if,
and only if, X or Y is free.

Applying this observation to the decomposition

- o o
vV = V1 189 ... ® Vd d

provided by Steinberg's tensor product theorem, we deduce that at least
one of the tensor factors Vioi is a free <g>-module. It is now clear

that Theorem 2.1 is a consequence of the following result.

Proposition 4.2 Let B be a basic GF(q)G-module, where G= SLB(q),

and let o + 1 be a root element in G. Then B is a free <g>-module if,

and only if, B is the basic Steinberg module.

Note that Proposition 4.2 is purely a problem of representation
theory. It is possible to establish the result by directly examining
the basic GF(q)G-modules, a description of which appear in [3] . We
shall, however, use a little of the theory of weights in our approach.
Not only is an explicit knowledge of the relevant modules not required,
but we anticipate that our arguments will prove useful (when suitably

generalized) in a more general context.

Proof of Proposition 4.2

First, if G0 is the canonical subgroup of G isomorphic to SL3(p)

then we may assume that ¢ ¢ G, . Now assume that B St, the basic

0

n

Steinberg module. Then

B[G0 = B, ® GF (p) GF (q) ,
where B0 is the Steinberg module for G0 . But it is welkknown that BO
is projective as GO—module, so BO is a free <ag>-module. Hence the above

isomorphism shows that B is a free <a>-module.

This proves one half of 4.2. The remaining assertion, that if B
is a free <a>-module, then B = St, requires some preparation. Let us
denote by {d1, Oy ot az} the positive roots of the root system
attached to G. Furthermore we take X1,A2 to be the fundamental dominant

weights satisfying (ki,uj) §ij . As B is a basic module it has a
highest weight given by X = a1A1 + a2x2 , for some 0 g a; < p-1
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We must show that each a; = p-1
It is convenient to adjust the nomenclature for certain subgroups

of G introduced prior to Lemma 3.3. Let X , X , and X be the
oy o, oyt oo,

root subgroups of P corresponding to O Gy and oy oo, . Then we may

take
Q=X X and 0 = X_ X ;
& % Ty Ay g Ty
L,=1L'=+<X_ , X _> and L, = L' = <X_ , X__ > .
2 %, —0, 1 oy oy
If H = <h ha > 1is the usual Cartan subgroup of NG(P), we need to

o r
compute CH(ﬂi). %n fact it is a simple computation involving the

Chevalley commutator formulae that

2

- n2 -
CH(L2) = <ha ha > and CH(L1) = <ha ha >
1 2 1 2
Now set B, = C,(Q) and B, = CB(é) . Either by [5] , or by direct
computation, we find that Bi is an irreducible module for Li . In fact,

from [5] one knows the following.

Lemma 4.3 If B. is the weight-space of B corresponding to

weight y , then Bi L @ BU , the sum running over those weights y

satisfying A - u = kui, for some k € W
Also this implies

Lemma 4.4 As Li—module, B, has highest weight a X, .

Now the irreducibility of B, as Li-module tells us that a
generator hi of Hi = CH(Li) has a unique eigenvalue in its action on

Bi . Let this eigenvalue be o; -

Lemma 4.5 The full oi—eigenspace of hi acting on B is pre-

cisely Bi .

Proof: One knows that B decomposes into a sum of weight spaces

Bu under the action of H, where | is a weight satisfying

A -y = a sum of positive roots

Let U be such a weight with the property that hiBu = g.B .

i
Now, as Bx is a weight space contained in Bi' we have hiBA = oiBu .

Taking the case i = 1 (the case i = 2 is the same), we have h1

hu hz , and now the foregoing equations together with the definition
1 2 ‘

of a weight-space yield
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(X—u)(u1 +20,) =0
But if A-p = ka1 + 2@2 with k,2 > 0, it follows from
(ui,ai) = 2 and (a1,a2) = =1 that 32 = 0, so 2 = 0, whence A - p = ka1

and BU c B1 by Lemma 4.3. This completes the proof of Lemma 4.5.

Corollary 4.6 The eigenspace Bi has a complement in B which

is invariant under Li R

12

Now we can complete the proof that B = St if B is free as
<a>-module . Since o is conjugate to the p-elements in each Li' and
as Bi is an Li—summand of B by Corollary 4.6, it follows that the root
elements of Li are free on Bi . As Bi has highest weight aiAi by Lemma
4.4, it has dimension a; + 1 ¢ p . But Bi has dimension divisible by p

since it admits a free p-element, so we get
a. =p-1, for i = 1 and 2

As explained at the beginning of the proof, this suffices to

prove the Proposition.

§ 5 Concluding remarks

We have been able to establish the conjecture in several other

cases, in addition to those covered by Corollary 2.3 and [4] . For
example when p = 3 , or when 4 is even and p = 2 (mod 3).
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The equivalence classes of the Vasil'ev codes

of length 15
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Technische Hochschule Darmstadt
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In this paper we determine the equivalence classes of the perfect Vasil-
ev codes of length 15: There exist 19 non equivalent Vasil'ev codes (in-
cluding the Hamming code). If we restrict the equivalence transformations
to permutations of coordinates we get 64 different Vasil'ev codes.

In 1962 Vasil'ev [4] constructed a class of nonlinear perfect single-er-
ror-correcting binary codes. His construction works as follows:

Let C be a perfect single-error-correcting code of length n, not neces-
sarily linear. Let g:C -> Fz be any mapping with g(0)=0. Set m(v)=0

or 1 depending on whether wt(v) (wt denotes the Hamming weight) is even
n
2
error-correcting code of length 2n+1, which is nonlinear if g is nonli-

or odd. Then V := {(u|utv|w(u)+g(v)) | ueF> , veC } is a perfect single-

near.

The smallest nonlinear Vasil'ev code has length 15, it is constructed
from the Hamming code of length 7. Since this Hamming code has 15 non-
zero codewords, the above construction yields a total of 215 different

Vasil'ev codes of length 15,

Two binary codes (€ and € are called equivalent if one can be obtained

from the other by permuting the coordinates and adding a constant vector,
n
2
determine the number of nonequivalent Vasil'ev codes of length 15.

i.e. T ={n(c)+a | ceC} = w(C)+a, where acF> . In this paper we want to

To do so, we shall use some notations introduced in [1]. We give the ba-

sic definitions here.

By an (n,k)-code we mean a binary code of length n, which is systematic
with respect to the first k coordinates. I.e. for every §=(x1,x2,..,xk)eF§

there exists a unique element c(§)=(x1,x 1 Xp o X ,..,xn)eC. W.l.0.9.

YA Kt 1
we shall always assume that 0=(0,0,...,0)eC. Since the entries Kypqreo Xy

are uniquely determined by XqreeasX we may write C in the form

k
C={ (Xypueerx ,£,(X),0ee, £ (X)) | x=(x,,0..,% )elFk } , where
1 k'71= r == 1 k 2
f1""'fr (r:=n-k) are mappings fi:Fz -> F, with fi(9)=o'
Since every mapping f:Fg -> F, can be uniquely written as a (reduced)

polynomial in variables XqreeasX, Over the two element field Fz, we shall

k

refer to f1,...,f as the redundancy polynomials of C.

x
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Every Fz-polynomial in variables XyreoorX formally looks like a (square

k
free) real polynomial, thus we can form the formal derivative fx of £

with respect to the variable Xy which again can be viewed as an . FZ—
polynomial,

The Jacobian of an (n,k)-code C with redundancy polynomials f1,...,fr
is defined as the rxn matrix (r=n-k)

fix. f1p +oe £
1% £k
jac ¢ = | %% 2% 2xy

1x

£ £ .es £
rx, "rx, 2% .

Note that the entries of the Jacobian are polynomials.

In case ( is a linear (n,k)-code with parity check matrix (HlIr), jacC=H.

Since we assume Oe¢C the Jacobian uniquely determines the code C.

We shall use the Jacobian to characterize the Vasil'ev codes. Since every
perfect single-error-correcting code of length 7 is (equivalent to) the
linear Hamming code Hy i= {(v,,v,,v4,v, b, (¥) by (¥ hy(w)) | veF3} with
the (linear) redundancy polynomials h1(z)=v2+v3+v4, hz(z)=v1+v3+v4 and
h3(!)=v1+vz+v4, every Vasil'ev code of length 15 is composed of H3 and

a mapping g:Hj -> F,. But since H; is systematic in its first 4 coordi-
nates, g is already determined by V9eVyiVa v

as a mapping g:Fg -> Fz, i.e, as an F

4 SO that we may think of g

2—polynomial in variables ViresesVye
It is clear that by permuting the coordinates we can transform any given
Vasil'ev code in a kind of normal form. We describe this normal form via

the Jacobian (for a proof see [21).

1.Lemma: Every Vasil'ev code V of length 15 is equivalent to a
Vasil'ev code
V= {(x1,x2,x3,x4,y1,y2,y3,z1,zz,z3,z4,f1(5,1,5),...,f4(§,z.g))|
(X,¥,2)€eF, '}
in normal form. We say V has normal form (or V is a normal code)
if jacv looks as follows:

£, (0 1 1 1 1 0 0o o 1 1 1 ]
£, 1 0o 1 1 0o 1 0 1 0o 1 1
£ ] 7 1 0o 1 o o 1 1 1 o 1
£, 7 1 1 1 1 1 1 0o o o o
+ o+ O+ o+ + + o+ o+

L Txq Ty Ty 9x %2y 92, 23 %2y

4
Where g(v,,v,,v4,v,)¢6 :={g:F2->F2|g(g)=O,Vg(g):=(9V%Q),..,QV£Q))=Q}

and with the substitution Vi:=xi+z

1
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Lemma 1 essentially says that V = {(ulu+v|m(u)+g(v)) | geF;, !€H3} has
normal form if the linear code L = {(ufu+v|w(u)) | EEF; » veH,}, which

is equivalent to the linear Hamming code of length 15, has the following
parity check matrix:
01111000111i1000
101101010110100
117010011 101:0010
171111110000:000 1
— - 5
Y
jac H4

We denote this distinguished Hamming code by H4.

A second remark on lemma 1: In the original definition we had to consider
15

all 2 2

if the polynomial g contains linear terms v, (i.e. Vg(Q) + (0,0,0,0) )

functions g:F§->F with g(0)=0. Now the above lemma tells us that
we can obtain an equivalent normal form with aeG. This can be done by
exchanging the variables (columns of jacV) Xy <=>z, for every linear
term v, in g. This yields the polynomial g:F5> —>F., with g(0)=0, VE(Q)=Q

~ 2 2
and g(v)+g(v) is linear.

Since a normal code is determined by the function geG we call g the

characterizing function of the normal code and denote the code by Vg.

To determine the equivalence classes of the Vasil'ev codes we may now
restrict ourselveson codes in normal form. The following lemma characte-
rizes the permutations of the coordinates m that transform a normal code
into a normal code.

2.Lemma: Let Vg be a nonlinear normal code. Then V=n(Vg) is again a
normal code if and only if 1w is an automorphism of H4, which fixes
the last coordinate (w(15)=15).

Proof: If the last coordinate is fixed, it is clear (by definition of

normal code)that T must be an automorphism of H4. So we only have
to show that the permutation m fixes the last coordinate.
Since deleting the last coordinate of a normal form gives a linear
code (shortened Hamming code), we are through if we can proof that
deleting any other coordinate of Vg yields a nonlinear code. But
this follows immediately since Vg has minimum distance 3:

M

Every shortened code contains again all 2 (shortened) codewords and

therefore the last coordinate makes it nonlinear []
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Let us define two codes ¢(, Tt to be p-equivalent if there exists a per-
mutation 1w of the coordinates such that n(C)=E (so this is a more re-

strictive definition of equivalence then the usual one).

We denote by I the set of all permutations described in lemma 2. Thus

we have Vg p-egivalent to Vh if and only if there exists 7mell with
w(Vg)=Vh. Furthermore lemma 2 says that I is a group:

Since the coordinates of the Hamming code H4 can be naturally interpre-
ted as the points of the 3 dimensional projective space PG(3,2) the auto-
morphismgroup of H4 is isomorphic to the automorphism group of PG(3,2)
and the subgroup I fixing the last coordinate is isomorphic to the
stabilizer of a point. So we get:

3.Corollary: The p-equivalence classes of Vasil'ev codes in normal
form are the orbits of the group I acting on the normal codes.
Furthermore I is isomorphic to the group GL(3,2) of all inver-

tible 3x3-matrices over Fz.

Since there is a one-to-one correspondence between the normal codes and
the set of characterizing functions G, the group I acts naturally on G
via g“=h if n(Vg)=Vh. So to find the equivalence classes of the Vasil'ev
codes we may as well determine the orbits on G under this group.

We shall see that the group Il acting on G has a representation as a group
f of linear transformations on the arguments of the polynomials in G,

: i1 - = = - = .

i.e. g (v1,v2,v3,v4) = g(n(v1),n(vz),w(v3),v(v4)), where T is an auto-
morphism of the 4-dimensional Fz-vectorspace V with base VGV V3V

We indicate here, how this representation of I can be found.

It 1is easy to check that the following 3 permutations of the coordinates
are automorphisms of H4 fixing the last coordinate:

ﬂ‘l : (x1x2) (2122)(f1f2) (y1y2) 7\’2 : (X1X3) (2123) (f.|f3) (Y1Y3)
T3 (Xpx3) (2,23) (£553) (ypvy)

Since V=X tz, (see lemmal) an exchange xi<—>xj, zi<->zj just means an
exchange vi<—>vj of the variables of the characterizing function g.
The other Eranspositions (fifj),(yiyj) do not affect g.

We write m, as a 4x4-matrix to describe the linear mapping on V:

E1 : 0100 v ;2 : 0010 ;3 . 1000
1000 v, 0100 0010
0010 Vs 1000 0100
0001 Vg 0001 0001
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Let us finally discuss a more complicate automorphism of H4
The permutation Tyt (z1f2)(x1y2)(x3x4)(z3z4) is an element of II. Looking

at jac H4 we find that f2(§,1,5)=v1+v +v4+y2=x1+z tRPZHR 2,y So we

3 173773
have z1=x1+f2+v3+v4+y2. The transposition of the coordinates (z1f2)

means that we have to substitute 2z, by the above expression, this yields

M TS R T IdRE S RA TR PSR /s PUNLIE PLASSAFRS PE
Furthermore, because f2 now takes the position of Zys we rename f2 into z
and so we get vy = z1+v3+v4+y2 .

Because of the transposition (x1y2) Y, is renamed into X, SO

v, > z1+v3+v4+x1 = v1+v3+v4 ,
and the transpositions (x3x4)(z3z4) result in renaming v3 <=> Vg

All together we have 1000 v

1
T_T4: 0100 vy
1001 vy
1010 vy
T
An example: g “(v1,v2,v3,v4) = gV +VaHV,, Vo, vy, Va) .

So it is not difficult to find a generating set for the group i (which
is a subgroup of GL(4,2) isomorphic to GL(3,2) ). The following table
gives such a generating set:

P 100) or vV, fo 01 0] or v, -V,
1000 V> 100 vV, =>V
F1 co0o1o0 v2->:1 T—r2 ? 000 2—>V2
3 3 V3 1
O 0 0 1 V4TV, O 0 0 1) V4>V,
[1 0 0 0) or v vy 1 0 0 0} or VTV VY,
o1 -> -
E3 Z 10 g :2—>:3 ;4 ? ; g ? 2—>:2
3 2 V3 4
L0 0 O 1 V4TV, L1 0 1 0J VgT>Vy
(O 101) or v ->v,
-
s looto] vl
3 3
0 © o 1] v4—>v1+v2+v4 (figure 1)

(or (1,1,1,O)T) is a fixpoint of

It is readily checked that v P RAL R
every element of H=<n1,n2,w3, 4,§ . Therefore taking the new base
Wt —v1+v +v3, WiV, Waimvy, W,:=v, the following lemma is immediate:
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4.Lemma: Let 1 := {[1lo 00} ¢ GL(4,2) | MeGL(3,2)} be the subgroup

1
(0]
0] M
0

of GL(4,2) which acts on the vector space V with base W Wy Wa g Wy >>
Then

is p-equivalent to V

v
g(w1,w2,w3,w4) h(w1,w2,w3,w4)

if and only if there exists well with

g(E(W1),E(W2),E(W3),E(w4)) = h(w1,w2,w3,w4) .

u
By g h we mean that g and h differ only by some affine term so+§ E4W

eie{0,1} .

il
Finally, we want to describe the orbits of I on G. The set of all poly-
nomials g:Fg—>F2 without constant term (g(Q)=0) and linear terms

is itself an F

(Vg(0)=0) 2
all monomials of degree 22,<<w1w2,w1w3,...,w1w2w3,...,w2w3w4,w1w2w3w4>> .

~vector space. As a base we have for example

We choose <<b1,b2,.....,b11>>

(given below) as a base of G.

b1.= w1(w2w3w4+w3w4+w2w4+w2w3+w2+w3+w4)
b2:= w2w3w4+w3w4+w2w4
b3 T W WaW, b4:= W W W, b5:=w1w2w3
b6:= w3w b7:= WoWy b8:= WoWg
b9:= WiW, b10:= w1w3 b11:= WiWg oo
(figure 2)
- 1 -
Now we have the following situation: For T e I we get the matrix
M
| b
1 b
0 b3
fi b,
~ b
Ty = bz
6] f b
bg
by
B0 | M| B
11

GL(3,2) -~ GL(3,2)
: { M o fl = 0 )T

3x3-matrix determined by M. We denote this group of

where .

denotes the outer automorphism

and RM is some
11x11-matrices by 1,
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Now the p-equivalence classes of the Vasil'ev codes correspond to the or-

bits of the F,-vector space G =<<b,,b ..b > under @ and we intend

2 1700000210907
to use the Burnside lemma to count those orbits. To accomplish that we

need some information about GL(3,2).

5.Lemma: In the group GL(3,2) of all invertible 3x3-matrices over Fz
for every matrix MeGL(3,2) the dimension of the fixpoint space dM
depends only on the order of M. Furthermore the elements of order 4
and the elements of order 2 are all conjugate in GL(3,2).

number of elements order dM
1 1 3
21 2 2
56 3 1
42 4 1
48 7 o
L 168

Lemma 5 can be obtained rather easily via the Sylow theorems and using
the fact that GL(3,2) is the automorphism group of the projective plane
PG(2,2).

To use the Burnside lemma we need to know the dimensions d; of the fix-

point spaces of the elements well.

6.Lemma: Let MeGL(3,2), dM the dimension of the fixpoint space of M.

Then the fixpoint space of %Meﬁ has dimension d% = 3-dM+2.
M
7

1
o= f
M o

0

| ®q o [

Proof: Since ord ﬁ = ord M, M and ﬁ have the same number of fixpoints

(lemma 5). So all we have to show is that the dimension of the fix-
#t lo
RM M

This is trivial for M being the identity (then Ry is the O-matrix)

point space of the 6x6-submatrix M'= equals 2-dM.

and it follows for orders 3 or 7 by a theorem of Maschke since there
(ord M, char F2)=1.
Because all elements of order 4 and order 2 are conjugate (lemma 5),

we have to check only two matrices, e.g.
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110 100 ]
ord{0 1 1} = 4 110 0
0 01 . 1. 1.1 i
M= o1t 10 e Ay = 2.
1001011
0 00|00 1)
r h
101 100
ord |0 1 = 2 o010 o
001 = 101 =
M= o1 o1 o1 r dye = 4.
0OO0OO0|l0O1TO
p 0 0|0 O 1‘
and the assertion is true in both cases (]

Now we can formulate our first main result:

7.Theorem: There exist 64 p-equivalence classes of Vasil'ev codes
of length 15,

Proof: The number of orbits b of G under @I is
b = —l- Z 29% {(Burnside lemma)
IHI we Il

So using 5,6 we have

b= - (1.2

168

1 8 5

+21+28456+2%+442.2%448.2%) = 64 O

Since we know the group it quite well, it is now possible to determine re-
presentatives of the equivalence classes explicitely. The arguments are
a little lengthy,so we give only the result:

8 .Theorem: The following polynomials (given as vectors of the 11-dimen-
sional Fz—vector space G with base <<b1,....,b11>>) are representa-
tives of the p-equivalence classes of the Vasil'ev codes:

a BOOOCOODOODOO 1

AR0O0OO001000 - Where o,Bc{0,1}.
aBOO0OODODOCOO1 7 The second column
aBOOOOO1T1T OO 21 .
©BO00100100 28 gives the number
o B100000O0 11 7 of elements in the
aB 100100011 7 .
aB100010011 42 orbit.
aB10000001TO0 21

aB 100100010 21

aB 10001001TO0 42

a B 100001010 84

aB 100000 1T1T1 28

aB 100100111 28

aB 100110111 84

aB1O0O0CO0O1TO1T11 84
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An example, how to use the list: The base <<b1,....,b11>> is given in

figure 2. So the first coordinate stands for b1, the last denotes b11.

The vector (O,O,1,O,O,O,1,O,O,1,1)(8th row) denotes the function

g(w1,w2,w3,w4)=w1w3w4+w2w4+w1w3+w1w4

g(V11V2/V3,V4)=(V1+V2+V3)V3V4+V2V4+(V1+V2+V3)v3+(V1+V2+V3)V4=

or using the original variables v
=(v1+v2)v3v4+(v1+v2)v3+v1v4+v35(v1+v2)v3v4+(v1+v2)v3+v1v4.

Having determined the p-equivalence classes, we shall now find the equi-

valence classes of the Vasil'ev codes.

Besides permutation of coordinates, we now have a second type of equiva-

lence transformations, the addition of a constant vector C=C+a.

Given an (n,k)-code C = {(x],..,xk,f](5),..,fr(§))l gng}

For Mc{1,2,...,k} we denote by ci(eM) the codeword in Ci (to be defined

below) ¢, (X,,X,,..,%, )eC, where x.=1 if ieM and x,=0 otherwise. If we
it 72 k i i i

want to form the code E=C+c(eM) with M={io,i1,..,il_1},it is clear that
we can do this in 1 successive steps namely

c

j+] H C] + Cj(E{lj}) j=0,1,..,1-1,

where CO=C. We then get Cl=E.

So we only need to consider addition of codewords, which have exactely

one nonzero coordinate in their systematic part, i.e. c¢(e,.,) ie{T,..,k}.
Y R {i}

Given a Vasil'ev code V={(x,y,z,f,(x,y,2),.-,f,(X,¥,2)) | (§,z,5)eF;1} .
By c(xi) we mean the codeword with all systematic places zero, except the
coordinate x.. Accordingly we define c(yi),c(zi). Since every normal code
V is linear with respect to Y i=1,2,3 (see lemma 1) , adding the code-
word c(yi) does not change the code. Furthermore it is easy to check that
adding a codeword c(xi) results in the same normal form as adding the

codeword c(zi). So we have to consider only 4 new transformations:

wi V= V+c(zi) i=1,2,3,4 .

It is not hard to recognize that adding c(zi) to V_ results in substi-

tuting the variable v, by v.+1 in the characterizing function g(vy,.,vy).
For examiie take g(vj,vz,v3,v4) = v1v2+v]v Then
g (v],vz,v3,v4) = g(v1+1,v2,v3,v4)

= (v1+1)v2+(v1+])v3v4 = VgVt VLY VLY, S

2 vyvytvgv v4+v3v4 = h(v1,v2,v3,v4)eG .

3y

3



185

Using the substitution w1=v1+V2+v3, Wo=Vo, w3=v§, w4=v4 again, we may

assume the same 4 fundamental transformations ¢i:wi—>wi+1 as a genera-

ting set for addition of codewords.

Together with the transformations

E1 : (w1—>w1, w2—>w1+w2+w3, w3—>w3, w4—>w4) to
LIS (w1—>w1, w2—>w1+w2+w3, w3—>w3, w4—>w1+w3+w4) from figure 1 we then
have a generating set for the group of equivalence transformations on

the Vasil'ev codes (in normal form).

9.Lemma: Let ¥ be the group generated by 51,52,F3,E4,E5,$1,@2,@3,$4.
Then

Vg(w1,w2,w3,w4) is equivalent to Vh(w1,w2,w3,w4)
if and only if there exists ws@ with

g(w(w1),W(WZ),W(W3),¢(W4)) = h(w1,w2,w3,w4) .

Unfortunately this group ¥ is not as nice as our ﬁ, which was isomorphic
to GL(3,2). So the following theorem was obtained by computing the orbits

in G under ¥ using a computer.

10.Theorem: There exist 19 equivalence classes of Vasil'ev codes of
length 15. The following polynomials (given as vectors of the Eo-

vector space G with base <<b1,...,b >>) are representatives of

11
the equivalence classes :

000000000CO0O0 1 01000000001 56
00000001000 7 01100000010 168
00000000001 7 01100000111 224
00000001100 21 ot1tt1to0o0000011 56
00000100100 28 100000C0C0O0O0O0O0 16
00100000010 56 10000000CO0O0C1T 112
00100000111 56 10000001000 112
001000010170 168 10000100100 448
0O0O10001T01T11 168 10000001100 336
010000000O00OC 8

The second column gives the number of elements in the orbit.

Although we have now classified all Vasil'ev codes of lenth 15, we are
far from a complete classification of all perfect codes of this length,
since there exists a great number of codes, which are not equivalent to

any Vasil'ev code. In [1] three examples of length 15 are constructed.
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On the new projective planes of R. Figueroa
by
Christoph Hering and Hans-Jorg Schaeffer

We define a proper projective plane to be a projective plane

whose automorphism group does not fix any point or line. Until recently
only 2 types of finite proper projective planes had been known: The
classical planes and the Hughes planes constructed by Hughes in 1957
(resp., in the smallest case, by Veblen and Wedderburn in 1907).
Recently a very interesting third class has been discovered by Figueroa
[1], who obtained a plane of order q3 for each prime power g such that
g ¥ 1 (mod 3). We present here a slight modification of Figueroa's
construction, which works for all prime powers. Also, we investigate
the correlation groups of these planes.

Let q be a prime power, K a field of order q3, ($,8) the
and (B8,8) a subplane of (B,8) of
ne% | =1 and P, =

classical projective plane over

= X

order g. Define 2, = {4 € g ' | .
{Pep I[Pl n8 | =14} fori=0, 1. (Here [P] = {# € &8 | P € 4}.)

Clearly 8 = 8 U 84 U 85 and U®P, UPy . There is a group

G & PGL(3,q) of automorphisms of (P,8) fixing (P,8¥) which is generated
by perspectivities. Let m be any permutation of Py U &, interchanging

Po and 8, such that X®® = X™8 for all X € P, U 8, and g € G .

1]
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Lemma. Let X,Y € Pg and X 4 Y. Then XY € £, if and only if
™nyemp, .

Proof. Assume that XY € 8, and let XY n § = {P}(where XY denotes
the line Jjoining X and Y). The group G(P) consisting of all perspec-—
tivities in G with center P has order ¢g°(gq-1) and acts semiregularly
on X¥ N Py . Thus G(P) is transitive on XY N Py, and there exists
o € G(P) such that X* = Y . Let a be the axis of a . Then
an X ex®nx™ - x2n Y? and clearly a n X® € P, . The dual argument
finishes our proof.

We now introduce the following replacement: Denote

*

4

(20 py) u (L4%] n g™ for & € %,
and
* *
8 T Ug,U 8 .
and consider the incidence geometry (3,2 ). Clearly
* *
|#] = q®+1 for £ € 8 and |[{4€ 2 |P€ 4}| =1 forPEP . (%)

Let 4, k € 8, and 4 + k. Assume at first that there exists
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* * -1 -1
S€4 Nk NPy . Then 4%, ¥ € 8%  so that s% = 4" ¥ and 8 =
Tl is,uniquely determined. Hence iz* nkon Pol = 1 . As
e - 8o, we have £ N k € Py by the dual of our Lemma, so that
4N %XNP, =Fand |4 Nk | =1. Assume now £ Ak N Py = ¢ . Then
P € 8, and, again by our Lemma, 4 A k € B, . Thus once more

* *
e nk | =1.

m

*
Let t € 8, and 4 € g, :1Suppose that ¥,Y € t A 4 n P, and

. n m=" m ©
X 4 Y . Then XY € 24 while X ny = & € By , a contradiction. So
* *
[t n 4 N 9ol = 1 and therefore |t N & | < 2 . Thus we have

*
Theorem 1. Let k + &4 . If k, 4 € § , then |kn 4| =2 . If
LIheorem 1. Legt if then
k, 4 € 8 U 2o , then |k n & = 1.

We now choose B = {{(x,%,%)) | x € K\{0}}, where X = x% for
x € K. Then G is induced by the group of matrices of the form

ot 0oF ®
on pl o
o ol O

and determinant % O , where a, b, ¢ € K . Let S = {(1,0,0)) and s be
the line corresponding to the kernel of (1,0,0)t. Then GS is induced
by matrices of the form

a

Wl

a
for a € K\{0}. In particular [G : GS] = ¢°(g-1)2(g+1) = |Bol , so that
G is transitive on P, . Also, G% = Gs so that there exists a permu-
tation m such that S = s and s° = 8 .

Theorem 2. Assume that S = s and & = S .

a) If £ €[8]Mn8,and PE sn P, , then P4™ € 8, .
*

b) (B,8 ) is a projective plane.
*

c) sNs =3sn9Py U {0,0,1) , 0,1,00} .

Proof a) Clearly (1,1,1)% € § so that <(0,1,-1)) € s N B, .
As Gg = G, is tremsitive on s N Py, we can assume P = <(0,71,-1)) .
Because G is transitive on 8, , there exists an element x € G such that

¥ = 4 . Here 8% € &5 - s, so that x_1 is represented by a matrix

ot o1 O
ok O o
O ol o
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-1 »
Thus P* = ((3-B, -Z, B)) and P* s = (0,5,3)7 = ¥(1,0,0)¥, where

O ¢ Db
Y = b 0 ¢
c B o .

\
As det Y = det X ' 4 O, it follows that PX S € ¢, and hence

PS* = Ps™ = P 2 P4® € g, .

b) If t € 24, and t N s n Bo % ¢, then t n sn P, = ¢ by a).
As G is transitive om 84, this together with Theorem 1 implies that
any two different lines in 8" intersect in at most one point. By (*)
this implies that (%,9*) is a projective plane.

c) Let £ € [S8] n 2,, and suppose 4% € s . We define x and X as
above. Then 8% = 4™ ¢ s, so that

0
X = v
]

=< O w
O W <

k)

where B, y € K. This implies that yc = 0 and 8% = <(0,1,0)) or 8% =
(0,0,1)) .

In the following we assume that st = s and st = S .

Suppose that there is an isomorphism & of (%,9*) onto (B,8),
that is a permutation of P, mapping 9* onto & . As P is a subplane of
order q of the plame (P,8), whose automorphism group is transitive on
such planes, we can assume that ﬁé = P ..Also, Aut(P,8) induces all
automorphisms of ($,%) so that we actually can assume that & fixes §
pointwise. If r is a perspectivity in G, then [7,8] is an automorphism

of (P,8) leaving invariant all points in P and on each axis of T .
Thus [ G,%] = 1 . In particular, [Gg,¢] = 1, so that s? is one of the
5 fixed points of Gg . Now the pointwise stabilizer Z of Aut(B,8) on B
is transitive on the set of fixed points of GS . Therefore we can
assume S° = S, and [G,8] = 1 forces & to fix all points in Py . As
Is¥ A s n Bol| = 2, we have s o 5 and 5" n By = s N P . But this

implies g = 2 by Theorem 1 c).

Let A be the stabilizer of B in Aut(P,8) and C the stabilizer
of T U ¥ in the group of correlations of (P,2). Then [C : A] = 2 and
4/7 = PIL(%3,q). The particular permutation m which we have chosen can
be described in the following way: If X € By , then the fixed point
structure of GX is a triangle, and ™ is the side of this triangle
oposite to X. From this one easily derives, that C is compatible with m,
i.e. that P = P™ and 5% - 4™ for a11 P € Bo, £ € 8, and § € C .

* *
Thus A leaves invariant € . Obviously Aut(B,2 ) leaves invariant P .
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Also, the pointwise stabilizer 7" ot Aut(B,Q*) on B centralizes G. Thus
7" leaves invariant the set of fixed points of GS, which implies Z*= Z
and Aut(P,8) = 4 .

For 8 € C\A we define a permutation S‘ of B U 2" by

ng = x5 . for X € (B U BU(E U g,)
P’ . 2% for P € B,

*
(4 = 48 for 4 € 8,

* *
Also, dencte ¢ = A U (C\4A) .
*
Let P € Po and 4 € 85 . If P € 4, then 4% ¢ P%, =P 408 - 4o
*g* r E\* g* % g*
and hence 4 = 4° € (P°) =P . If on the other hand % € P* ,
* *
then 4% € (B5)™, P - pEm ¢ Sfm . 8 40 p® ang P e 4 . This
* * *
shows that & is a correlation of (P,2 ). Also, C is a group isomorphic

pt m§

€
*E

te C and equal to the group of all correlations of (P,8 ) .
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COUNTING SYMMETRY CLASSES OF FUNCTIONS BY WEIGHT

AND AUTOMORPHISM GROUP
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Let us at first recall the basic problem of the theory of enumera
tion of symmetry classes of functions. If m:= {1,...,m} and
n := {1,...,n} denote two standard sets of orders m and n, then

we denote by gﬂ the set
2 :={f | £f:n— m}.

Any permutation group P acting on n induces an action on EE' if

we put for m € P

(composition of mappings). This induced permutation group on EE

is usually denoted by

and its orbits are called symmetry classes of functions £ € QE.

The theory of enumeration deals with the count of such symmetry

classes., If for m € P we denote by

*
The authors would like to thank the Deutsche Forschungsgemeinschaft for

fincancial support under contract Ke 201/8-1.
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a; (m)
the number of cyclic factors of length i of =, and if we denote by
c{m) := ; ai(n),
i

the number of cyclic factors of =, then by the Cauchy-Frobenius

lemma, the number of all the symmetry classes is equal to

1 s c{m)

T-T m '
P neP

as it is well known and easy to see.
If for £ € gﬁ we put
_ -1 -1
w(f) == (|f [{1}]|I"'l|f [{m}]|)l

the weight of f, then a result of Pblya says that the number of
symmetry classes of functions of given weight (w1,...,wm) is

equal to the coefficient of

in the polynomial

n
1 i
2T (%7 4+ e.. + X) .
Pl rep i=1 ! m

An example is the number 2, being the number of graphs on 4 points

with weight (4,2), i.e. with 2 edges (see e.g. [1], 5.1). These
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graphs are

and

L T Y
»—

o —e

This picture shows that these graphs have different automorphism
groups so that at least in this case the count of symmetry classes
by weight and automorphism group is a refinement of the usual count
by weight., It is therefore the aim of this paper to describe a
method to solve this problem of counting symmetry classes of func-

tions by weight and automorphism group.

1. The table of marks

Double cosets in symmetric groups are the link between the theories
of enumeration of symmetry classes of functions and the theory of
representations of symmetric groups. In particular the problem of
evaluating a transversal of the symmetry classes of weight w :=
(w1,...,wm) is equivalent to the problem of constructing a system

of representatives of the double cosets

(Sw ® ... 9 Sw ) ePc SE
(see [1], 5.1). Hence we consider first double cosets in an arbitra
ry finite group in order to present a general approach, afterwards

we shall restrict attention to our special problem.

If U and V denote subgroups of a finite group G, then the double
cosets UgV < G are obviously the orbits of the following action of

UxV on G:
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A seemingly different operation is in fact similar to this one (and
has therefore also the double cosets as orbits) and although it
looks complicated, it has the advantage that we immediately see how
it can be generalized in a natural way. It is an action of UxV on
the set GxG/A(GxG) of left cosets of GxG with respect to the dia-

gonal A(GxG) := {(g,g) | g € G} and reads as follows:

1.1 (u,v) ((94,9,) 8(GxG)) = (ugy,vg,)a(GxG).

Our first remark (which is easy to check) shows how one can see

that the two operations are similar:

-
.
N

(1) The bifection grom the set GxG/A(GxG) of Left cosets

onto G,

1

’

01 GXG/A(GXG) —» G: (9;,9,) 8(GxC) > 9,9,
has the propenty
0 ((u,v) (g1,9,)8(GxG)) = (4,v)0((gy,9,)A(GxG)).

(ii) The stabildizen of (g1,gz)A(GXG) unden the action 1.1 L4
equal o

UxV 0 (g4,9,)8(GxG) (g4,9,) T

Hence the stabilizers of left cosets are uniquely determined by
subgroups of A(GxG) and therefore we may very well ask for the

number of orbits of the action 1.1., the elements of which have
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stabilizers conjugate to A(WxW), W being a subgroup of G.

In order to consider this question we consider the lattice

U(G)
of subgroups
g, u', Uu", ... <G.

G acts on this lattice by conjugation:

in a way that the following holds:
1.3 YU, U', g(U < U' &> (gU) < (gUu')).

The orbit of U under this action is the class

[ar?]

of subgroups conjugate to U,

It is not difficult to see that these orbits can be numbered in

a way that the following holds:

-
.
P~

., U' <U"] => i < j.

1 1 " b
(u €Uy, U GU]

Having fixed such a numbering, we put (for Ui € ﬁi' 1<i < 4)
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i3k ¢ no. of orbits of UixUj under 1.1, the elements

of which have stabilizers conjugate to A(UkXUk).

Let these numbers form the matrices

Ai := (aijk)' 1<1i<qd,

d := no. of conjugacy classes of subgroups, and define
-1
1.5 wyg i= |{u;h | h € G, Ujhg ' = U;h, for all g € Uj}|
=7 Heec v <glvgl
i J .
These wij are the so-called marks which already Burnside introduced

([2}, p. 236) and which form a table

Zhe ftable o4 manks of G, which is uniquely determined up to permu-

tation of rows and columns. It forms the main tool in the enumera-

tion by automorphism group and it has the following properties

(see [2],[3]):

1.6 (i) @ 44 a Lower Zriangular matrix., The main diagonal contains

the indices of the Us Ain thedin noamalizens, Zhe Last now

consists of 1's, the finst column of the indices of the U;
in G:
el -, o

Q= |G:Ui1 ) ]NG(Ui):UiI
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Hence in particular Q 4s Lnverntible.

The entrdies of @ satisfy the equations

ij Yk3 T ikv “vi

in othen wornds:

wd]
L.e. the (Lineanly independent) vectons wy form a system
04 simultaneous eligenvectonrns of Lthe matrices Ay Zo the

elgenvalues Wi

In order to draw conclusions for the enumeration theory of symmetry

classes

1.7 (1)

(ii)

of functions, we notice that the definition of marks implies

14 we denote by p ., the (transitive) permutation rephesen-
y 1

tation of G induced by U L.e.

then the set (PyreaesPygl is fust the set of all the essen-
tially differnent transitive permutation nepresentations,

o4 is Zhe regulan representation, 0q the Ldentity nepresen-
tation (by 1.3).

Each permutation nepresentation & L8 thus a Linear combi-

nation of the pyr day

d

§ 2.2 di Py diE]N.
i=1



198

In particular, the mark udi 0§ Uy 4n 8§48

Keeping this in mind we consider a finite G-set, i.e. a permutation

representation §:G —> SM. Let Gm denote the stabilizer of m € M
and put
Wi |meM | U, <G, 1<3i<a
e 3 m- e S
If furthermore
x? := no, of orbits of G on M, the elements of which

have their stabilizers in Gj'

then the column vectors yM and xM consisting of these numbers satisfy

Thus (a.k) = 9-1, the inverse of the table of marks, turns out to
i

be the crucial matrix for the enumeration of orbits of G by auto-
morphism group of elements. Its entries can be evaluated by Moebius

inversion on U(G) as follows.

It
™4
£
Q

85 iv %vj
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Using the notation

wj(U) = [NG(U)I‘ uij, if U ¢ Ui r

this shows that

|6, = %
J U< U

wj(U)l

or, equivalently (if lg denotes the Moebius function on U(G)),

L(U,) = z U,u, .(U).
wj( l) . “G( ’ l)wj( )
1
This proves the eguation
[0, |
1.9 [ J z v~ (U,0.)
= BT OTOOT e O

U e U,

3
which should be compared with the following reformulation of 1.5:
NG (U)) ]

1.10 @34 = T

m AM™M
Qi

u
U

2. Symmetry classes of functions

We would like to apply the results mentioned above to the G-set mﬂ,
where g € G acts on f € EE as follows:

gf = f e plg) 1,

p:G —>» Sn being a permutation representation of G.on n.

In order to do this we recall from the introduction that



200
_ -1 -1
w(E) = (J£ [{1}1],eee, | [{m}]])
denotes the weight of f. If (w) := (w1,...,wm) denotes such a weight,
i.e. if w, € N, Z w; = n, then we denote by F(w) the set of func-
tions with this particular weight:

F(w) := {f € 2 | W(f) = (w)}.

This subset of QE is obviously a G-subset. The number of orbits of

G on F(w) is (as we know from the weighted form of the Cauchy-Fro-

benius lemma (see e.g. [1], 5.1.15)) equal to the coefficient of
w w
x(W) = X 1.. x ™
1 m

in the following polynomial arising from the cycle index ZI(p[G])
of p[G]:
n

1 m i
ZI(p[Cl]| %, +.. := T T (T x2)
1 *n) Gl geg i=1 r=1 T

ai(p(g))_

We want to refine this count by asking for the number of orbits of
G on F(w) the elements of which have their stabilizers in the con-
jugacy class ﬁi of subgroups of G. Denoting this desired number by

nt (w)

we put

nt(w) = HE € F(w) | U; <Gg}

Then 1.8 yields
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2.1 ntw) = f a4 m’(w), if (aik) = Q .

This gives us the following expression for the polynomial

z ni(w)x(W)

(w)

(which we want to display in some detail):

We now try to refine the inner sum of the right hand side with the
aid of the following numbers:

s; := no. of orbits of p,[uU,],

tij := length of j-th orbit of pi[Ui]'
v

(W) s m t .
2.3 Lemma: T n’wxY = T (2 x V)
— (w) 3=1 r=1

This follows immediately from the fact that Ui is contained in the

stabilizer of £ € gﬂ if and only if f is constant on the orbits of

Let us now introduce the symbol "<" for "being conjugate to a sub-

group of" and put

|u, |
1 .
, if U, < U,
_ Ul 1 i
c. =
il
o , otherwise ’
kil := no. of orbits of pi[Ui], the elements of

which have their stabilizers in U,.
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Then the following is true:

s
v t . d
2.4 Lemma: T (= x %) = T ¢
j=1 r=1 T 1=1 «r

™3
]

In order to agree with this we need only to observe that in case

k # O the length of each one of these k\)l orbits is equal to €1t

vl
Gathering up we have proved the following ([4], IV.8):

2.5 Theorem:
The numben of symmetry classes of functions £ € gﬂ 04 wedlght (w)

the elements of which have theirn automorphism group An ﬁi L5

equal to the coefficient of x(w) in the poﬂynomidﬂ
d m c k
Ta, T (2 x'H i
v Yt 1=1 r=1

This solves the problem of counting symmetry classes by weight
and automorphism group. Moreover the given form of the generating
function for this problem clearly shows how far we can get with
the knowledge of the isomorphism type G of the symmetry group
ED[G] alone (for it yields both the numbers LN and the cvl)
and what depends on the particular permutation representation

§:G —>» S n of G on gﬂ (namely the kvl)'
me

This result of Plesken together with the expression 1.9 of the
LN in terms of the Moebius function of the subgroup lattice U(G)

also yields the results of Stockmeyer ([7]).
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It is clear that vice versa this theorem implies Pblya's theorem
which we should obtain from 2.5 by a summation over i. In order to
show this we need only to remark that for each v the following

holds ([3]):

¢(]UV|)/|NG(Uv)!, 4§ U 48 cyclic
2.6 Lemma: Za , =
O , otherwise,

from which it follows that

c .k cy k,p o(lu D)
1,7vl 1 vl, vl v
p) T (2 x ") =ter 2 T C x SEMGMEL |
i,v “vi 1 (r *r ¢ v 1 r F NG(Uv)I
U cyclic
= ZI(p[G] | Xqteoo+x ),

i.e. Pdlya's theorem!

Further results can be obtained by applying 1.9:

2.7 Corollary: $(]Ul), 4§ U 48 cyclic
Z Ju
'<y

"lugur,uy =

0O , otherwise
Proof: Z a = ! z U (U,u
22008 u )
i Vi 1.9 NG(Uv)I U<Uv ’ | g'Vrty)y

so that the statement follows from 2.6.

A further remark is implied by

1
g 1?9 TNETﬁ:TT g (115hU ),
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so that we get from 2.5:

2.8 Corollary: The numben of onbits of G on mﬂ’ the elements of

which have thivial stabilizern, L4 equal %o

ng(l1gh,u) T

« I ’
NGO T

if v, denotes the number of onbits of pv[Uv]

3. Examples

Let us begin with the example we already mentioned in the intro-

duction: the graphs on 4 points having 2 edges.

Defining a fabefled graph on p points as a mapping f from the set

[2]
P
of 2-element subsets of p (i.e. the set of (g) pairs of points)

into 2 := {0,1}, for short:

we regard this set as an SE-set, and define a graph on p points as

an orbit of S_.
<

Hence in our concrete example p := 4, we have to consider the

84-Set

[2]
F(4,2) := {f € 2% | w(f) = (4,2)}

(2]

=q1£e 22 )= 23
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In order to be prepared for an application of 1.8, we take the
table of marks of S4 from a paper of H.O. Foulkes ([5]), who cla-
rified the ideas of—J.H. Redfield on enumeration of symmetry clas:
ses by automorphism group (see [6], which was in fact the first
paper concerning this theory), and showed the connections to re-

presentation theory. This table reads as follows:

[ 24
12 2
12 o] 4
8 o] o] 2 0]
6 0 2 o] 2
6 o] 6 (o] 0 6
6 2 2 o) 0 0 2
4 2 0 1 0 0 o] 1
3 1 3 0 1 3 1 0 1
2 0 2 2 o] 2 0 0 o] 2
1 1 1 1 1 1 1 1 1 1 1
The vector YM is equal to
15
3
3
0
1
3
1
o
1
o]
o]

so that by 1.8 we get
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O 0 - 0 0O O 0O 0 0 -0

which means that the two graphs on 4 points and with weight (4,2)

have automorphism groups conjugate to

U, = {1,012) 1,

and

in accordance with the picture drawn above.
In our next example we take

. h
p:G —> 5. : g > (gh) P

G as a G-set.

the regular representation of G, from which we get m
This time instead of using 1.8, we prefer to consider the polyno-
mial given in 2.5. As
|6, if g=14
a,(elg)) =
O , otherwise,
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we have for 1 € i < 4

|G:Ui|, if Uy = {15}
kip =
(o} ; Ootherwise,
and hence
3.1 The coefficient of x(W) in
d m [U | |G:UV|
2 e, (Z x_ V)
vi r
v=1 r=1

tel oy gG,p being the

is equal to the number of onbits of EP
regular nepresentation of G, the elements of which are of
weight (w) and have thein automonphism group in U, .

In order to interprete this result, we notice that U < Gf, f e mG,

means that f is constant on the right cosets of G with respect to
U. Hence Gf must be the subgroup of G which is maximal with respect

to f being constant on its right cosets. In the case m := 2 we can

identify the set gG with the power set

The stabilizer GM of such a subset M (which has to be identified
with the mapping f which satisfies M = f_1[{1}]) is now the subgroup
U < G which is maximal in the sense that M is a union of right co-

sets of U in G. Thus 3.1 yields for this particular case
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3.2 The coefficient of x?xLGi_r in

ol Ju,l lG:u |

ayg (B 7 +xy )

I Mo

le:u, |

v=1

{8 equal fo the numbern of subsefs M c G of order rsuch
that the maximal subgroup of G for which M L8 a union of

its night cosets, Lies in ﬁi'
A numerical example is provided by G := S4 and

u., == {1,(12),(34),(12) (34) },

which yields the polynomial

1,.4, 4.6 1,.8,.8,3
6(§(X1+x2) - E(x1+xz) )
_ 20_4 10_8 1212 8._16 4 20
= 18x1 X, + 36x1 X5 + 60x_l X, + 36x1x2 + 18x1x2 .

This means for example that there exist 18 subsets M < S4 of order
20 such that M is a union of right cosets of an U € ﬁi in a way that
U is maximal with respect to this property of M.

(This number 18 agrees with the general formula
1G:Ui}- | G: NG(Ui)|
for the number of such subsets.)

Having considered the regular representation p of G which yields

QG as a G-set, we turn to the natural representation

1 :_Sn —> Sn I e S
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of Sn, which yields mﬁ as an Sn—set. As Sn is n-fold transitive,

the orbits of Sn on gﬂ are just the subsets

F(w)

of functions of a given weight (w). The corresponding stabilizer

of an £ € F(w) is a Young subgroup

Hence for each proper partition A of n, i.e.

A= (A.],AZ,...) ' A1>>\2>...,E>\i=n,
where we put
m
= = < %=
a; (1) [{7 | ¥ it] , 1<i<n
m _ _ m
a,(x) :=m T oa; ()
i=1

there are so many orbits the elements of which have a stabilizer

(=S, &8, @& ... (see [1])):
A] AZ

conjugate to SA

m!
3.3 <M o Jagatalootayoor...

» if s, €Ty
0 , otherwise.

(m)

These xém) form the solution x of the system of linear equations

tﬂx(m)

- y(m) ,

w
.
[~

which corresponds to this problem by 1.8. The coefficients of y(m)

have the form
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3.5 Yy =m 7, t, := no. of orbits of Ui’

3.3/4/5 yield various relations in the matrix 9—1. For

if U, is not a conjugate of a Young subgroup, we obtain from

3.4:
tv
3.6 z a,; W = 0, for all m = 1.
v
This implies that
n
2oz o xt
t=1 v v

is the zero polynomial, and hence the following holds:

vi

w
.
~
<

< ™
Q
]
O
~

if the sum is taken over all the Uv which have the same orbits as
has Ui‘ Among these there is exactly one Young subgroup, say Uk'

This group is maximal with respect to <, and so we obtain

3.8 Theorem:
I§ Uy 4s not a Young subgroup, but Uy 4is and has £the same onbits

as Uy, then

G <M
<
[

For further results the reader is referred to [3].
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Summary

A necessary and sufficient condition for the existence of t-(p,k,A) designs which are
invariant under the affine group Ap = {x »ax+b : a,beGF(p), a + 0} is given. From
this we derive sufficient criteria fir the existence of A_-invariant 3-(p,4,)) designs
for all primes p. These designs are simple in the case p = 5(mod 12) and X = 2. As a
corollary to our considerations, we obtain some infinite series of simple 2-(p,r,A)
designs for all primes p and certain values of X which are also invariant under Ap'

Definitions and Notations

For a set M and r€N let (2:1) = {NcM: INl=r} and V(M) be the Q-vectorspace with M
n

as a basis. For rl,rz,...,rnEN and ml,mz,...,mn€M the vector B = 1‘>=:1 rim. €V(M) is

called a multiset, and the ri's are the multiplicities of the mi's. (Also for

s
N = {nl,...,ns} = M we consider N as the vector X n; €V(M).) Furthermore, we define
n i=1
IBI = = r; and we write m€B if m€M is a term of the sum in B, -
i=1
Now let 1<t<k<p€N and A € N, where p is a prime. Then for B= ZBiBi€V((kp)),B1~ €N,

z
and arbitrary Te( tp) we define

B].,ifT~_:__:B

T T
Br = ZB.(B,-T) by, =1{
T T L 0 otherwise.

Such a multiset B 1is called a cyclic t-design over Zp (in short cSA(t,k,p)) if the
following two conditions hold:

z
(1) 1 Byl =2 for all Te( ), and

(2) if B = {bl,...,bk}eB and cEZp, then c+B = {c+b1,...,c+bk}€B

(If Bis a set the corresponding cS)(t,k,p) is called simple.)
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It is wellknown that the existence of a cS)\(t,k,p) implies that X is a multiple of

)
>\0=1cm { : — i =0,1,...,t }.
ged (L (D

Such a x will be called putative (with respect to t,k, and p.).

Let B be a cSA(t,k,p). From now on we will assume that for all B = {bl,...,b }es

we have the following :

(1) the bi's are represented by the numbers 0,1,...,p-1, and

(2) b1<b2<...<bk.

k-1
= Z a.r.
k,p i=1 1}

K,p are again represented as non-negative integers
3

Let 2<k<p€EN be as before. We write T {(al,...,ak):ai €Zp\{0}, a =~
The components of the elements of T
a; €{0,1,...,p-1}.

Now for A,BETk,p we write A ~ B iff A differs from B only by a cyclic permutation of

the components. We denote the set of orbits of the equivalence relation ~ in Tk P by

Kk,p and for (al,...,ak) eTk,p we denote the orbit of (al,...,ak) with respect to ~

by [al,...,ak]. Such a [al,...,ak] eKk,p is called a k-difference-cycle over Zp.

For teN, 1<t<k, and « = [al""’ak]EKk,p an element T = [bl""’bt]EKt,p is

called a t-subcycle of x iff (1) and (2) hold, where

‘]'*
(1) for an iEZtthere exist j,j*EZk with b1. = I 23, and
j* 1% h=J
(2) if b1. = hi_j 2, and b1'+1 = h§1 ays then 1 = j*¥+1.

(Hence we assume the indices of the components of 7 and k to be elements of Zt and Zk
respectively, represented as the numbers 0,1,...,t-1 and 0,1,...,k-1 respectively).
If T is a t-subcycle of k we write t<k.
This construction yields exactly (t) not necessarily mutually distinct t-subcycles
of a given KEKk’p. Now let Ko be the multiplicity of the appearence of TEKt,p as a
t-subcycle of K€Kk,p. Then we denote the multiset of all t-subcycles of

t ).

Kk by k7 = £ «_e1. Therefore, we have = «_ = (‘E) and |<t<—:V(Kt
<k © T<K oP
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Orbits of Difference-cycles

The following theorem is proved in [6].

n
Theorem 1. If there exist Bl,...,BnEN and S = {Kl,...,Kn}EKk D with = BiK1F=>"Kt P
E] .i=1 L]

then there exists a ¢S (t k,p).

(Clearly, this cS (t k p) is simpie 1ff By = By = ... =B = 1.) a
t_ ., . _
Now Tet S = {kys....x }c Kk,p with 121 By - A Kt o The cS, (t,k,p) which, by Theo
rem 1, belongs to this S is of the Form 5= = B,S_€V( kp), where the S_ ‘s are de-
i=1 K3 i
fined by the bijection @k:S - {S ,...,S } with
Kl Kn k-1
N N (), 5 ()4, (), N ) B
Srcj = d)k(KJ.) —<O,a1 s 3 ta, ces %1 a, > =
. . k-1 N
(3) (3) 4 (3) (3) (3) J)
{n ]+al 1+al a, R >=: h } : 1€Z }, where <5 [a1 2oy ]

h=1
Then @k_l may be described as follows.

Consider an element A.ESK containing OEZp, say Aj = {O,bl(j),...,bk l( )} with
i ) j
0<b, < icb, [ (9). Then

S e @)

We define a multipiication of an element y€Z ~{0} with an element

(j)] = [al(j),..., ak(j)] =K.

K = [al,...,ak] € Kk,p such that y-KGKk,p by
y = @k_l(y-s ) where
) k-1 k-1
y.SK = y.<0,a1,a1+a2,..., 15_1 ay > :<0,ya1,y(al+a2) s Y >::

The above construction yields the following

Lemma 1. If €K and y€Z_~ {0}, then for all 7€K we have 1<k if and

k,p p ’ t,p

only if yt<yk. a

With respect to this multiplication the set Kk D consists of orbits and we write

<> = {yex : y€Zp\{0}} for k€K, . Hence, if ¢ is a primitive root modulo p we can

k,p
write <> = {e'ek : i = 1,2,...,p-1}. Therefore, |<k>| sp-1 and I<k>| is a divisor of

p-1. Now let k€K such that a-i<k>| =p-1. Then, Fec=edk iff x =y (mod _p;_l)_

k,p

t r
Furthermore, let «~ = X X

with thN and bh-|<rh>l = p-1. Then we
h=1

h'h
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L S Pl Pl e (Pl
have ¥ (ek) = X x; I (e7;).0ntheother hand = (ek) ' =a < (e )
i=1 j=1 9 4=l i=1 i=1
p'l i (p'l)/bh i . .
and X, 1.>=:1 (e Th) = thh 1')=:l (e Th) = xhbh<1h> . This yields
r
Lemma 2. For Kt = X X0 Th the indices of the sum may be chosen in such a way that
h=1
t ri rz Y’f
kK = I X375 + z XjTj+“'+ z X5T5 with
J=1 j=ry+l J=re_qt1
<T1> = <T2> = =<Tr1>,
<T > = <1 > = v. =<1 >,
) r1+1 r1+2 ro
<1 > = <1 = =<t >,and <1 > % <t > if 1%j.
re-ptl re-1+2 f i i
Furthermore, Tet I<k>| = 2L and j<r > = B fop n = 1,2 f
H a rn ‘Bn— IR RS A
Then, putting ro = 0, the following holds:
(pa1)/a 4 f b T
I (ex) = (T oz xi) © <t >
i=1 Jj=1 1=rj_1+1 J o
(p-1)/a t t )
Instead of I (e k) we write <k>". As a consequence of Lemma 2 <>~ is a multi-
i=1

set over <Kt,p> = {<>|T€ Kt p}'

3

Using Theorem 1 and Lemma 2.we obtain the following

Theorem 2. There exists a cSA(t,k,p) which is invariant under the multiplication with
r

elements from Zp‘\{O} if and only if there exists a multiset T = X B,<k;>>By €N
i=1

of orbits of k-difference-cycles over Zp with ' = )« <Kt p>.

(Clearly, if I is a set, the corresponding CSA(t,k,p) is simple.)

We denote the multiset cSA(t,k,p) with the properties given in Theorem 2 by aSA(t,k,p).
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Now we state some properties of the sets Kk p
1
= (})

Firstly, since (p,k) = 1 we have IKk i +p

In order to obtain an important classification of the elements of Kk 0 we introduce

>

the following definition.

Let « = [al,...,ak]EK If [al,...,a ] = [al,ak,ak_l,...,az] we call x symmetric .

k.p* k
We denote the set of all symmetric k-difference-cycles over Zp by sz D’ Futhermore,

we write s*K K . By looking at the corresponding definitions, one can

S W
prove, using elementary tools, the following

Lemma 3. K €sK if and only if «= (-1) -

k,p g K. a

Lemma 3 implies that the cardinality of the set of symmetric difference-cycles over
YA
Zp is the same as the cardinality of the orbits in (kp) under the group

Dp = {x »>ax+b : ae{+l,-1},b¢ Zp}. We can, therefore, apply Polya's counting-theo-
rem to determine this cardinality. But this requires some calculations which we omit.

So we just state the following
Lemma 4. sk, b = {

(If o« €R, then {a) = max {z€Z : z < a}.)

A proof of Lemma 4 can be found in [2].

Lemma 5.

. p-1
(i) If KESKkpthen l<k>l = 5=,

(11) 1f k€K and 1<x>l = L then cesk .

(i1i) If K€SKk,p and k'e<k > then « GSKk,p' a

Finally, we introduce the following notation. We write

<sz > = {<k>:ck€sK 1} and <s*K = {<k>w€s*K, _}.

. K,p Kop K,p

The Sets K and K

3,p 4,p

In the previous chapter we defined for « = [al,...,ak] EKk D and yEZp\{O} the ele-
ment y KEKk b using the bijection <1>k. Now we ask if it is possible to write y -+«

without making use of @k. In general,we have
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k-1
..1 -
y[al,...,ak] = 9 (<05 yap, y(agtay),...oy* ]>_:1 a;>). In order to apply ¢
k-1 -
elements 0, yas y(a1+a2),y SRS have to be ordered regarded as nonnegative inte
1=1

gers. (Without this ordering [yal,...,yak] is sometimes not an element of Kk p’ We

1 the

call this ordering the reduction of [yal,...,yak].

Remark 1. For k=[a,b,-(a+b)]€ Ks b and y(—:Zp ~ {0} we have

(1) yc = [ya,yb,-y(a+bh)], or

(i1) yx = [y(atb),-yb,-yal.

Proof: It is yk = @51 (<0,ya,y(a+b)>) = [ya,yb,-y(a+b)], if yat+yb+(-y(a+b))=p over N.
Otherwise we apply reduction and obtain <I>§1 (<0,y(a+b),ya>) = [y(a+b),-yb,-yal.

w]

Similarly we obtain:
Remark 2. For « = [a,b,c,—(a+b+c)]€K4 b and y€Z~{0} we have:

(i)  yc = [ya,yb,yc,-y(a+b+c)] , or

(1) y« = lya,y(b+c),-yc,-y(a+b)] , or

(1i1) yx = [y(a+b),-yb,y(b+c),-y(a+b+c)] , or

(iv)  yc = Ly(atb),yc,-y(b+c),-yal , or

(v) yk = [y(a+b+c),-yc,-yb,-yal , or

(vi) yc = [y(atb+c),-yc,-yb,-yal. a
We now investigate the sets K3 b and K4 b in detail.
Lemma 6. (i) There is exactly one class <|<>E<l<3 p> with {<k>1= p_z—l_
For this class we have <k> = <sK3 p> and ¢« = [1,1,-2] is a representative.
(ii) If p =5 (mod 6), then s*K3 p splits into pGic:]asses <k> with l<k>| = p-1 in

each case.
(iii) If p = 1 (mod 6), then s*K3 b splits into pGi classes <k> with [<k>] = p-1 in
each case and one futher class <k'> with |<k'>| = B_,;—l In the latter case, <x'>

can be represented by k' = [1,y,y2] with y2+y+l =0 in Zp’ up to a reduction.

Proof: We have sK3 o~ {[a,a,-2a] : an ~{0}} and a = p-l .

2
On the other hand, if a, a'€{l1,2, —} and a+a', then [a,a,-2al#[a',a"',-22'].
Hence ISK3 p p21 and [1,1,-2] is a representatwe This proves (i).

In the following we consider the general case KEK3 D’ Here we have |<k>| <p-1if

and only if there exists a yEZp\{O,l} with € = yk.
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Let « = la,b,-{a+b)] = yla,b,-(a+b)] € K3 b with yezZp\~{0,1}.
Remark 1 implies [a,b,-(a+b)] = [ya,yb,-y(a+b)] or [a,b,-(a+b)]l = [y(a+b,-yb,-yal.

Now we calculate:

(i,1) if a = ya, b =yb, -(a+h) = -y(a+b) then y = 1 which was excluded,

(i,ii)  ifa=yb, b= -y(ath), -(atb) = ya then y2 +y +1=0,
(i,iii) if a = -y(a+b), b = ya, -(a+b) = yb  then yz +y+1=20,
(ii,1) if a = y(atb), b= -yb, -(atb) = -ya then y = -1,
(ii,i1) if a = -yb, b = -ya, -(a+b) = -y(a+b) then y = -1,

(ii,iii) if a = -ya, b = y(a+b), -(a+b) = -yb then y = -1.

In the case y = -1, however, k is symmetric by Lemma 3. For KE:s*K3 P we have

2

|<k>] <p=-1 iff « = yc with y2-+y4-1= 0 in Zp, and y"+y+1=0 in Zp has a solution

in Zp iff p =1 (mod 6). This proves (ii).

Now assume p = 1 (mod 6), and let «' = [a,b,-(a+b)]€ K3 o with «' = yc' and y2+y+1=0,

hence y3 = 1 with y+1. Here we have a = -y(a+b), b = -y(a+b), -(a+b) = ya or
a = -y(a+b), b = ya, -(a+b) = yb. Therefore, «' = [yb,b,yzb] €<[y,a,y2]> or

- [a,ya,y2ale<1,y,y%l>. Since -yly,1.y%] = [1,y,y°] we have <ly,1,y%1> = <[1,y.y°]

It follows from y>=1 with y +1 that |<c'>| = B3
This concludes the proof. g
In particular, Lemma 6 shows that for each k€K, o We have l< >| ——=-€1{1,2,3}. Similarly,

for each k€ K4 we have

D |< >|€ {1,2,3,4}. To be more precise:

Lemma 7. If p =1 (mod 12), then

(i) sK4’p consists of exactly one class <k> with |<k>| = Bi—l—-(here

2 2 . 2 . -5
K = [l’in‘l’T%§J with y~ = -1 up to a reduction) and further P22 classes

F

<> with |<k>] = p—l’ and

7
(ii) s*K4 o consists of exactly one class <k> with I<k>] = E%l-(here
’ 2
K = [l’x’?fi"iéTJ with x2 +x+1=0 up to a reduction) and further
(p-i?(p-7 classes <c> with l<k>| = p-1.

If p =5 (mod 12), then

(i) sK4’p consists of exactly one class <k> with I<k>] = Eil(here k =[1 y21’ *—T]
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with y2 = -1 up to a reduction) and further Eiic]asses <k> with f<k>] = 51, and
(i) s*K4’p conigsts of exactly one class <> with [<k>| = Eil-(here
= [1’X’f§;¥;%jq with x2 +x+1 =0 up to a reduction)and further iE:l%réB:Z)

classes <k> with l<k>] = p-1.

If p=7 (mod 12), then

(i) sK4 b consists of exactly Ef—c]asses <k> with |<k>| = Eﬁl, and

o _p:d

(ii) s K4’p consists of exactly one class <k> with |<k>| = —3—-(here k=[1,x, T_—'x 1]
with x2-+x + 1 =0 up to a reduction)and further (p- 14Fp 7 classes <k>
with I<k>l = p-1.

If p =11 (mod 12), then

(1) sK4’p consists of exactly Eié-c]asses <> with [<k>| = E%l-, and

(i1) S*Ky D consists of exactly (p-z- P=5) classes <> with I<k>| = p-1.

Proof: We proved Lemma 6 by elementary calculations in Zp, using Remark 1. In the same
way, the proof of Lemma 7 proceeds by calculations in Zp’ using Remark 2. As this is
rather straightforward we present only one of the 24 cases as an example.

If « = [a,b,c,-(atb+c)] = yx = [ya,y(b+c),-yc,-y(a+b)], we obtain (e.g. if

a = -yc, b = -y(a+b), ¢ = ya, -(a+b+c) = y(b+c)) b = f?; and ¢ = ay, with y2 = -1,
Hence k € < [1, TJ§3y, l+y] >, Now for y2 = -1 one has

e AV
(1, 1+y’y’ l+y 1+y t1, y- 1’ 1 y]

This yields l<>| = 222 for y% = -1 and « = yc. On the other hand, y° = -1 holds for
)rEZp iff p =1 (mod 4). Since p is a prime number we have p = 1 (mod 4)

iff p=1, 5 (mod 12).

The other cases can be treated in a similar way.

As an immediate consequence of Lemma 7 we obtain the following result, where aSX(t,k,p)

denotes an Sx(t,k,p) invariant under the affine group Ap.

Theorem 3. For all prime numbers p there exists an a512(2,4,p) and an a56(2,4,p). For

p =1 (mod 6) there exists an aS4(2,4,p), and for p = 1,5 {mod 12) there exists an

aS5(2,4,p).
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Proof: Since Ap = {x - ax+b : a,t>€Zp, a+0} is sharply 2-transitive on Zp, each
l<k>| <4 +3

o1 .By Lemma 7, the

<> of <K4 p> represents an aSA(2,4,p) with X =

assertion follows.

Sufficient Conditions for the Existence of an aS, (3,4,p)
0

Firsly, we state two useful remarks.

Remark 3. If [a,b,-(a+b)] €K then < [a,b,-(a+b)]> contains at most six 3-diffe-

3,p’
rence-cycles having 1 at Teast once as a component. These are:

oo

where a € Zp is defined by o =

Proof: It follows from Remark 1 that

x[a,b,-(a+b)] = [xa,xb,-x(a+b)] or x[a,b,-(a+b)] = [-xa,x(a+b),-xb].

1

For 1 to be a component of x[a,b,-(a+b}], x has to be one of * %3 + %3 ia+b.

yields, using the two equations of Remark 1, the listed six 3-difference-cycles, whic

are not necessarily mutually distinct.

Remark 4. If [a,b,a,-(2a+b)]€sK, , then<[a,b,a,-(2a+b)] >contains exactly two

4,p
4-difference-cycles having the entry 1 in two non-consecutive components. These are
-a , a2 . . _b
[1,a,1,-(a+2)] and [I’HIT’l’&iTJ’ where a(EZp is defined by « = T

Proof: Let « = [a,b,a,-(2a+b)] €sK, . Considering yx we see that the cases (ii) and

4,p
(vi) of Remark 2 cannot occur.

Now, Tooking at case (i) of Remark 2, we must choose y=:%-and get %K =[1,0,1,-(at2) .
The same result is obtained in case (vi) by putting y = - %u In case (iii) one gets

1 .- -o oF2 1 : .
3% " K< [1’5:T’1"&?T] for y=2ip» and we obtain the same result in case (v) by

. -1
putting y = 3+b*

[n]
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Now we can prove

L.emma 8: z <K>3=2'SK + 3+ s*K

KESK4’p

3,p 3,p°

Proof: Let KESK4 o’ Then, by Remark 4, <«> contains the elements [1,a,1,-{a+2)]

-G ot+2 3 . . ~ .
and [1,a—+1—,1, - m]. Hence <>~ contains 2 - sK3,p iff o = 1. In this case we have

<[1,1,1,-3]>3 =2-sKk, +<[1,2,-31>. No element k€ (sK, ~<I[1,1,1,-31>) con-

3,p 4,p

tains T € sK as a 3-subcycle. On the other hand, each 1 = [a,b,-(a+b)]€s*K3 D

3,p
occurs in exactly 3 symmetric 4-difference-cycles as a 3-subcycle. We have to prove

this only for those T Es*K3 b having 1 as the first component.

Let T = [1,a,-(a+1)]. Then we have T€K3 with k€ sK iff one of the following

4,p
cases occurs:
(1) K

(i) K

[1,a,1,-(a+2)) , or

n

[1,a-1,1,-(a+1)], or
(iii) k = [1,a,-(2a+l),al.

This proves Lemma 8. a

It is now appropriate to define a graph G_ = (@p,gp) for all prime numbers p>7 (here

p
(-;p denotes the set of vertices of Gp and Qp the set of edges of Gp) in the following
way:
_ B - 1 /1 -6 _ -0 . 1 ., -1
Gp = {<a>= {a,-{o+1), 3 (E+1)’ =T (cx_+f+1)} : aelp ~ {0,1,-1,-2, 5 11, and

{<(x>,<B>}E(_3p if and only if there exist a€<o> and b€<p> witha = b =1,
Using these definitions we state a few theorems; examples for these will be given in

the last section.

Theorem 4: Let p = 5 (mod 12). Then for each putative X, there exists an aS>\ (3,4,p)
if Gp possesses a l-factor.

These designs are simple for A=2.

Proof: For t=3, k=4 and p = 5 (mod 12) we have >\0=2. Therefore, it is sufficient
to prove that the existence of a 1-factor in Gp implies the existence of an a52(3,4,p)

3
By Theorem 2 and Lemma 8 ,we know that EESK4 <> \S*K3,p forms an a52(3,4,p).

P
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Therefore, we show that the existence of a l-factor in Gp allows us to choose a subset

A from <sK4 p> such that g >3 - s*K, . We proceed in the following way: For

KEA <K 3,p
<> € gp we can identify <o> with <[1,0,-(o0+1)] > €<SK3’p >, Given {<a>,<p>} E(:;p,
there are [1l,a,-(a+l)]€< [l,a,~{a+l) ] > and [l,a+1l,-(a=1+1)]€<[1,B,-(B+1)] >.
This means that [1,a,-(a+1)] and [1,B,-(B+1)] are contained in [1,a,1,-(a+2)] as
3-subcycles. A 1-factor in Gp corresponds, therefore to an A < sK, P with

3 3 ’
kEM K= s*K3,p' a

We have a similar criterion in the case p = 1l(mod 12) according to the following

Theorem 5. Let p = 11(mod 12). Then for each putative X, an aS>\(3,4,p) exists, if the

graph GFI)’ arising as an induced subgraph of Gp on GF‘) = gp ~{<2 >}, posesses a 1-factot

Proof: For t = 3, k = 4 and p = 11(mod 12) we have >\0 = 4. Hence we will construct an

3 .
EsK4 p<»<> +2-sK3’p+s*K3,p is an

aS4(3,4,p). Hence we must choose a multiset A from sK4 D satisfying

aS4(3,4,p). Again by Theorem 2 and Lemma 8, E

E <»<>3 = 2+sK + s5*K Therefore, we define A =<[1,1,1,-3] > + B with a certain

3,p 3,p°

. Since<f1,1,1,-31] >3 =2+ sK +< [1,2,-3] > we must have

3,p

E€B<K>3 = s*K, ~<[1,2,~3 1>. The same consideration as in the proof of Theorem 4

3,p

shows that a 1l-factor in GFI’ corresponds to such a B.
a

The cases p = 1, 7 (mod 12) are a little bit more complicated.

Theorem 6. Let p = 7 (mod 12) and y EZp with y2+y+1 = 0. Let G; = (G;,(_;*) be the

p
induced subgraph of Gp on Gg = (_;p\{<y>,<3>, <5}1—>}, and G;* - (@;*, Gf; } be the
. *
induced subgraph of Gp on gp = gp\{<y>,<2>, <}%1>}.Then for each putative X an

* %
aSA(3,4,p) exists, if either G; or G'p possesses a l-factor.

Proof: For t=3, k=4 and p = 7 (mod 12) we have A, = 4. Hence we will construct an

3 *
z = 3 -
a$,(3,4,p). We have cesk, p\r'<[1,1,1,—3]> <>’ = 3.5 K3,p\<[1,2, 31> .
2
v Y 1 : [ — p']-
On the other hand, « [1,y, i y-T le s*K4’p with [<k'>| = ==. Hence
= <|<>3 + <.<'>3 + <[1,1,2,-4]>3 + X <»<>3

k€sK, ~<[1,1,1,-3]> K€B

4,p
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forms an aS4(3,4,p), if the multiset B over sK satisfies

4,p

3. o - 2 ] 1oy is defi
EE B<K> =S K?’,p <[1,y,y"1> + <[1,3,-41> + <[1’y-1’y—1]>' But such a B is defined

by a 1-factor in G;.

Similarly, <[1,1:1,—3]>3 rasdy s w4y <> is an a54(3,4,p), if the
kesK, k € B¥
sp
multiset B* over sK4 p is chosen such that it is defined by & 1-factor of 6*
* o

Theorem 7. Let p = 1 (mod 12) and yEZp with yz-ry+-1= 0. Let Gp be the induced

subgraph of Gp on G gp ~ {<y>,<y-1>,<y-2>, <57T'>} Then for each putative A an

an(3,4,p) exists, 1f Gp possesses a l-factor.

Proof: For t=3, k=4 and p=1 (mod 12) we have Ao =2. Hence we will construct an

a52(3,4,p). Therefore, we define

2
" Y 1 . * _ = _ .
K - [19.y9ﬁsyj] ’ K - [19}’11,1, (-y+;)]1 ]
= - _ . - Y-
Kl = [1,)' 2,1, y] H K2 = [l,y—_I' —1—]
Thi . sy p-1 B B _p-1 _p-1
is gives |<k'>|= = [<g*>| = |<K1>| = |<K2>[ = = and I<[1l,y,-(y+1)I>1 = =

Now we can calculatesusing Lemma 2:

<'>Y = <[l,y,-(y+1)1> + <[1,y -1,-y1>,
<K*>3 = 3'<[1,y,'()’+1)}> + <[1,.Y‘1s')’]>,
<l<1>3 = <[1,y-1,-y]> + <[1,y-2, -(y-l)]>

2y-1
<kp>T = <[1,y-1,-(y+1)1> + <[1, ——1- yyl]

- 1 -y
(The latter follows from [1,y-1,-(y+1)]€< [l,y:13 S;:T]>.)

Since
b3 <|<>3 = 2+sK + 3es*K the multiset
3.p 3.p
KESK4
NY
s <;<>3 - <.<*>3 -<.<1>3 -<;<2>3 + 2-<.<'>3 -z <|<>3
KESK4 P K€EB

forms an a52(3,4,p), if a multiset B over sK4 P satisfying
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3 _ - _ _ 1 _ 5 fus _ y 2y-1
§€B<K> = S*K3,p <[1s.y9 (Y+1)]> <[]-a_y ]-, y]> <[1;_y 2: (_y 1)]> <[13y_19’7_—1’]>

exists. But such a B is represented by a 1-factor in Gp if p #13.

Many details concerning the structure of the graphs Gp can be found in [5].

The case p <100

Now we apply Theorems 4,5,6 and 7 and show that, for "small" primes, the necessary con-
ditions for the existence of an aSA(3,4,p) are also sufficient. Thus we prove the

following

A

Theorem 8. For all primes p with 11 < p < 97 there exists an aSA(3,4,p) if and only

if X is a putative parameter and p # 13.
Proof: In the case p = 13 we have

<Ky > = <[1,1,111> + <[1,3,9]> + <[1,2,10]>,

3,p
<sK4 p>= <[1,1,1,101> + <[1,4,1,71> + <[1,2,1,91> and

<s*K >=<[1,2,6,4]> + <[1,1,2,91> + <[1,1,4,7]> + <[1,1,3,8]>.

4,p

After having made the following calculations

<[1,1,1,10]>3

2-<[1,1,117> + <[1,2,101>
<[1;4’1,7]>3 = <[132’1O]>9
<[1,2,1,91>° = 3-<[1,3,91> + <[1,2,10>,

<[1,2,6,41>° = <[1,3,91> + <[1,2,101>,

<01,1,2,91>% = 4<[1,1,111> + 3-<[1,3,91> + <[1,2,101>,
<[1,1,4,71>° = 2<[1,1,111> + 3-<[1,2,101>, and
<[l,1,3,8]>3 = 2-<[1,1,11)> + 3-<[1,3,91> + 2-<[1,2,101>,

one sees immediately, using Theorem 2, that there does not exist an aSZ(3,4,13).
A further case must be treated separatly,too: the graphs 661 posses <16> as an isolated
vertex. Therefore, there is no 1-factor in G61' Nevertheless one can construct an

as,(3,4,61) in the following way.
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Since <K3 61 = <[1,1,591> + <[1,13,47]> + <(1,16,44]> + <[1,21,39]> + X

with X ={<[1,1,-(i+1)1> :

i

there is a multiset L over <K4 61° which represents an a52(3,4,61). This is

L = «[1,10,1,49}> + <[1,6,1,53]> + <[1,7,1,52]> + <[1,8,1,51]> + 2-<[1,15,1,44]> +

<[1,20,1,39]> + 2-<[1,4,9,47]> + <[1,2,3,55]>.

Indeed, this multiset L defines an a52(3,4,61) as one

and the following equation
<[1,10,1,4915>
<[1,6,1,531>°
<[1,7,1,5215°
<[1,8,1,511>°
2.<[1,15,1,44]>

<[1,20,1,391>°

S

<[1,5,55]>,
<[1,6,54]> + <{1,7,53]> ,
<[1,7,531> + <[1,8,521> ,

<[1,6,54]> + <[1,8,52]> ,

= 2+<[1,3,57]> + 2+<[1,16,

<[1,2,581> + <[1,21,39]> ,

can see by considering Theorem 2

441> ,

2'<[1,4,9,47]>3 = 2°<[1,13,471> + 2+<[1,4,56]> , and

<11,2,3,55153 = 2+<[1,1,591> + <[1,2,581> + <[1,5,551> + <[1,21,39]>.

In all other cases the graph corresponding to the prime p has a 1-factor. This can

easily be seen by applying one of the Theorems 4,5,6 or 7 to the figures below.

1 - * - =
Gy =Gg=? : Gy7
G ; = — ’ G =
23 <3> <4> 29
GX. = — » ; Gas =
31 <2> <11> 37
<12> <11>
G = ——
41 <2> <3> <4> <5>

—
<2> <3>
<8>

<3> <4>
<2>
—— ey
<5> <7>
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Ggg

<4> <9>
<9>
<6>
<5>
<10>
<2>
<3>
<7>
<5>
<4>
<3>
<4>
<5>
<6>
<20>
<22>
<21>

<16>

226

~——e
<2> <8>
<10>
<3>
<5>
<11>
<4>
<5>
<6>
<6>
<7> <18> <24>
<8>
<7>
<8> <13> <2 >
<9>
<15>
<4> <5> <6> <7>
<3>



[}

73

**
79

89

227

<15> <16>
= <t4> <4>
<2> <3>
<13> <5>
<14> <7> <8>

VAN :

<3> <Z> <5> <6> <11> <27> <28>

?T—\b
<18> <4

>
<17> <5>
<16> / <6>
<10> / 7s
<9> <8>

<8>
<28> <12>
<27 <7>
<13>
= <24> <2> <6>
<16>
<23>» ¢ <4> <5>

<3>



97 =
References
1. J.Doyen

A.Rosa

2. M.Kleemann

3. E.Kohler
4. E.Kdhler
5. E.Kdhler
6. E.Kohler
7. C.Lindner
A. Rosa

228

<17> <18>

<9> <25>

An extended bibliography and survey of Steiner systems.
Annals of Discr.Math., 7, 1980, 317-349.

k-Differenzenkreise und zweifach ausgewogene Plédne.
Diplomarbeit, Univ. Hamburg, 1980.

Zur Theorie der Steinersysteme.
Abh.Math.Sem. Univ.Hamburg, 43, 1975, 181-185.

Zyklische Quadrupelsysteme.
Abh.Math.Sem. Univ.Hamburg, 48, 1979, 1-24.

Numerische Existenzkriterien in der Kombinatorik.
Numerische Methoden bei graphentheoretischen und kombinator
schen Problemen.

Birkhduser, Basel, 1975, 99 - 108.

k-Differencecycles and the Construction of Cyclic t-Designs
in: Geometries and Groups.

Lecture Notes in Mathematics, 893, 1981, 195 - 203,

Berlin - Heidelberg - New York.

Steiner Quadrupel Systems.
Discrete Math., 22, 1978, 147 - 181.
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Several constructions of Steiner triple systems (STS) with ovals are
given. For every v=3 or 7 mod 12 there are STS's with hyperovals,

for every v=1 or 3 mod 6 there are STS's with ovals, and for infinitely
mnyv="1 or 3 mod 6 there are STS's without ovals. The ovals may be
classified by their complementary sets, the so-called counterovals.

Several questions remain open.

1. Introduction

Up to now arcs and ovals were mainly investigated in projective
planes. In classical projective planes of odd order the famous theorem
of B. Segre holds that each oval is a conic [13], [7]. Of course these
concepts make sense in linear spaces resp. in partial linear spaces.

A partial linear space is a finite incidence structure (V,8) with
point set V and line set @ with at most one line through any two
points and at least two points on every line. It becomes a linear
space if every unjoined point pair is considered as a new line. We
write v for |V] and b for |®

Examples of partial linear spaces are the so-called group divisi-
ble designs (GDD), where the points are partitioned into classes such
that two points are joined iff they are in distinct classes; in par-
ticular the transversal designs (TD) with k > 2 classes such that every
line intersects every point class. It is well known that then each
class has exactly g points and there are g2 lines. Such a TD is called
a TD[k;gl. The existence of a TD[k;g] is equivalent to the existence
of k -2 mutually orthogonal Latin squares. In the sequel we assume
that in a partial linear space at least one line has more than two
points.
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Definitions: An arc¢c in a partial linear space is a point set
which intersects no line in more than two points. Obviously every arc

is a subset of a maximal arc. For any point set B a line L is called

a
subline |z
secant 2
tangent of B if |LnNB| = 1
passant 0.

An arc is called a hyperoval if it has no tangents, and an oval if
there are tangents but at most one through any point of it. Let rp be
the number of all lines through a given point p. If B is an arc and

p €B, then the number of tangents of B through p is r, -|B] +1. If

H is a hyperoval and x € H, then there are exactly |H|/2 secants through
x, and the number of tangents in a point p€H is O= r, - [H] +1, i.e.

r = B: I

An oval Bin a linear space can be extended to a hyperoval only if
each point x€ B is on exactly one tangent and all these tangents have
a point in common.

If L is independent of p (e.g. in Steiner systems S(2,k;v) with exact-
ly k points on every line, or in GDD's GD[k,g;v] with exactly k points
on every line and g points in every class, in particular in case v=kg,
i.e. in transversal designs TD[k;gl]), then each point of an oval is on
exactly one tangent. The number tB(x) of tangents through a point x¢B
is odd iff r==rp==|B| is odd, and even otherwise. In a Steiner system
S(2,k;v) it is well known (e.g. Hall [ 5]) that

(1.1) r=21 p=SF = Lol

There is a huge literature on Steiner systems S(t,k:;v), see the
book [9] edited by Lindner and Rosa, in particular the bibliography by
Doyen and Rosa (in this book [9]) with more than 700 titles. In case
k=3 we get a Steiner triple system (STS) with r= (v-1)/2, b=w(v-1)/6.
Let STS be the set of v€ N for which an STS(v) exists. It is well
known that STS = 6IN, + {1,3}.

In this paper we shall show that for each v = 3 or 7 mod 12 there are
STS's with hyperovals, for each v € STS there are STS's with ovals, and for
for almost all v €STS there are STS's without ovals. The proof of the
last two assertionswas considerably improved by several remarks of
W. Piotrowski [12].
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2. Hyperovals in Steiner Triple Systems

Theorem 2.1: An STS(v) has a hyperoval iff it has a sub-STS(r)
with r= (v-1)/2 points. H is a hyperoval iff V~H is a sub-STS(r}.

Proof: I. Let U be a subspace of order (= number of points) r, and
p¢€U a point. Each line L3 p intersects U, since otherwise there would
be at least r+ 1 points x¢UU {p} on the r lines through p, hence

v>2r+1, a contradiction. Hence V~U is a hyperoval.

II. Let H be a hyperoval and U :=V~H. As H has no tangents, any
line through two points of U is contained in U, i.e. U is a subspace

of order v - |H| =r. o
Theorem 2.2: An STS(v) with a hyperoval exists iff v=3 or 7 mod 12.

Proof: The necessity of the condition v=3 or 7 mod 12 follows
‘from the fact that r must be odd. The sufficiency can be shown by seve-
ral classical constructions. In the sequel we shall present three of
them.

Construction 2.1: Let Kr be the complete graph with r + 1 vertices

+1

(=points). It is well known that K ,, can be factorized. E.g. put the

vertices into the centre and the corners of a regular r-gon. Then each

parallel class consists of one side S of the r-gon, the (r-3)/2 dia-
gonals parallel to S, and the radius from the centre to the remaining
corner. For the number of possible factorizations see Lindner-Mendel-
sohn-Rosa [10]. Now add a new point p, to each parallel class
ﬁ’i(i=1,...,r) such that P, forms lines together with the egdes of 3;.
Moreover form an STS(r) on the new points, say U. Thus we have con-
structed an STS(2r + 1) with a subspace of order r, i.e. with a hyper-

oval. o

Construction 2.2 (doubling construction): Given the incidence ma-

trix M of an STS(r), replace the three 1's in each column by the

auxiliary matrices

_,1 100 _,1010 _ 1001 0110
(2.1) A_(OO1 1)1 B—'(O‘IO‘])’ C.—(O‘] —IO) or else (1001)
. 0000 . . .
and zeroes by matrices (O 00 o). Thus we get the incidence matrix of

a GD[3,2;2r] which is completed to an STS(2r + 1) by a new point

which forms new lines together with the r point classes. o

If the original STS(r) has a hyperoval, say in the first (r+1)/2
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rows of the incidence matrix (then r=3 or 7 mod 12), then the r+1

first rows of the large new matrix form a hyperoval in the constructed

8TS(2r + 1) . In this case we have a lot of free choice in our construc-

tion: for each of the r(r-1)/6 columns of M there is free choice bet-
1001 o110

ween (O 11 O) and (1 00 1) for C.

Remark: Construction 2.2 works in case v=1 or 9 mod 12 too.
The first, third,...,(2r - 1)th row of the large matrix form a sub-STS,
say U, isomorphic to the original STS(r), together with the first,

fifth,..., (4r - 3)th column, if for C always (1 ©o 1) is chosen.

This doubling construction extends each line of the original STS(r)
to a subspace U' of order 7, containing ~. The intersection H' of U’
with the hyperoval H :=V~U is a quadrangle, i.e. a hyperoval in U'.
Deleting a point p€ H' yields an oval B :=H> {p} whose intersection

with U' is a triangle, i.e. an oval in U',

Theorem 2.3: An STS(v) with v=3 or 19 mod 24 has at most one hy-

peroval.

Proof: By a well known lemma of Doyen [3] any two subspaces of or-
der r have an intersection of order (r-1)/2, but (r-1)/2 is not the
order of an STS. Hence there are no two subspaces of order r, i.e. no

two hyperovals. a

Corollary: For each v=3 or 19 mod 24 there are STS (v) 's with exact-
ly one hyperoval. For v=7 or 15 mod 24 there are STS(v)'s with more

than one hyperoval as the doubling construction shows.

Lemma 2.1: Let v=3u-2w, and let (V,8) be an STS(v) with two sub-
spaces U,U' of order u such that |un U'| =w <u. Then the complementary

set U" of (UUU'")N(UNU') is a third subspace of order u.

Proof: If p€U~NU' then each line L(p,x) through p and a point
X € U' ~U contains a third point z¢UUU'. As there are only v - juuu'|=
=u -~ w such points, every line through a point z € UUU' intersects

both subspaces U,U' or none of them. The assertion easily follows. a

Theorem 2.4: If an STS has two hyperovals then it has at least
three hyperovals.

This follows from theorem 2.1 and lemma 2.1 with u=r, w= (r-1)/2. ©
Next we consider a third classical construction which yields STS's

with hyperovals and which will be needed in the sequel several times.
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Construction 2.3 (tripling construction): Let an STS(u) with a sub-

§TS(w) be given (w<u, hence w<u/2). By the theorem of Doyen and
Wilson ([4], see also [14]) this is possible if u,w € STS and w < u/2.

But we will also include the case w=0 where no subspace is considered.

First we construct a transversal design TD[3;u-w], using a Latin
square Q of order g=u-w. This is well known and works as follows.

Every Latin square Q defines a quasigroup operation o, say on the
set {1,...,g9} such that the number x oy appears in the xth row and
yth column of the square Q. The point set of the desired TD[3;g] is

{1,...,93x(1,2,3} = {x,_ :x€({1,...,9} and i€{1,2,3}).

Lines of the TD are the triples {xl,y2,(x oy)3}. On the other hand it

is easy to reconstruct the Latin square from a given TD[3;gl.

Now one forms an STS(u) with a subspace W of order w, which is pos-

sible by the Doyen-Wilson-theorem. First assume w2 3. Let

L 0
(2.2)

M N

be the incidence matrix of this STS(u), and N the incidence matrix of
the subspace W. Then the submatrix M has at most one 1 in each column.
Let

(2.3) G

be the incidence matrix of a TD[3;g], where the gx g -submatrices
F,G,H satisfy the equations (I is the g-rowed unit matrix and J is an
all-one matrix)

Then the matrix

F L 0 |0 }0

G O|L |O |O
(2.4) X=

H 00 |L |O

0 MM |[MIN

is an incidence matrixof an STS(3u - 2w) with three sub-STS(u)'s
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pairwise intersecting in a common sub-STS (w).

In the exceptional cases w=0 and w=1 let L be the incidence ma-
trix of an STS(u) vresp. of a GD[3,2;u-1]1. Then

P L [O0]O
(2.5) G ofLjo
H O|0]|L

is the incidence matrix of the desired STS(3u) with three sub-STS(u)'s
resp. of a GD[3,2;3u~3]. In the latter case the desired STS(3u- 2} is
obtained by introduction of a new point. o

Now we apply this construction to the problem of finding STS(v)'s
with hyperovals. Assume w€ STS, u=2w+ 1, v=2u+1=4w+ 3= 3u -~ 2w.
Then construction 2.3 yields an STS(v) with three subspaces of order
u=r=(v-1)/2, hence with (at least) three hyperovals. Of course
v=7or 15 mod 24.

In these cases the tripling construction yields many distinct STS's
with hyperovals. The number of distinct such STS(v)'s obviously exceeds

the number L(g) of Latin squares on 1,...,g9, and it is well known that

2
(2.6) L(g) >g"9,

where o >0 is a positive number which can be found in Wilson's paper
[15]. Note that the value of o« has been improved by Egorychev's proof
of van der Waerden's conjecture on the permanent, see Knuth [8].

3. Steiner Triple Systems without Ovals

Definitions: For each v € STS let ¥(v) be the set of STS(v), and
for each d € f(v) denote by

a{(®) the minimal size |B| of a maximal arc B,
(D) the maximal size of a (maximal) arc, moreover
(3.1) a(v) s=min{a(D):DE FP(v)},

(3.2) o' (v) r=max{a(D):DE F(v)},
(3.3) B'(v) :=min{B(D):De F(v)},
(3.4) B(v) :=max{g(D):D e F(v)}.

Examples: a) By theorem 2.2

v+ 1
2

(3.5) B(v) =

for v=3 or 7 mod 12.
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b) In this section we shall prove that 8'(v) <1;—1 for infinitely many
v € STS, and in the next section that
(3.6)  8(v) =31  for all v=1 or 9 mod 12.

c) Obviously of7) =o' (7) =8"(7) =8(7) =a(9) =a'(9) =8"(9) =8(9) =4.
In [16] it was shown that 8'(13) =g (13) =6.

d) (3.7) a(3™) g2n8 for neIN .

Proof: In affine n-space AGn(3) over GF(3) the 2" points (xl,...,xn)
with X, +0 for i=1,...,n form a maximal arc. Note that three points

in AGn(3) are on a line iff their sum is the zero vector. a
e) For v € 8TS
(3.8) (V)2 +a(v) 22v.
Proof: An arc B with o points has (;) secants. In case v > (g) +o

there must exist a point p which is on no secant of B, hence BU {p} is

an arc and B is not maximal. This implies the assertion. o
f) This example is important for the sequel [12].
(3.9) B'(27) £9.

Proof: Let ®=AG3(3) . Then we shall show that
(3.10) B(D) =9.

In order to show this, let B be an arc through two points x,y. There
are four planes containing x,y. Each of them contains at most two points
of B~{x,y}, hence B(d) £10. Assume |B| =10. Among three parallel
planes each must contain at most four and at least two points of B,

and one of them at most three points, among them x,y (w.l.o.g). Now

the same reasoning as above yields 8(JP) £9. The existence of an arc

B with 9 points is shown by the example [write xyz for (x,y,z)]

B = {001, 002, 010, 101, 102, t10, 210, 221, 222}, o
g) (3.11) S(AGm+n(3)) ZS(AGm(3))-B(AGn(3)), in particular
(3.12) ZB(AGn(3)) §B(AGH+1(3)) §3B(AGn(3)).

Proof [12): If A resp. B are arcs in AGm(3) resp. AGn(3), then
AxB is an arc in AG_(3) x AG_(3) =AG (3). o
m n m+n
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h) Our knowledge of B(AGn(3)) for n>3 is unsatisfactory, e.g.
(3.13) 18§B(AG4(3))§24.

Proof: The first inequality follows from (3.10) and (3.12). Now
let B be an arc in AG4(3).

Case 1: Every plane contains at most 3 points of B. Then the
number of planes containing 3 points of B is (lgl) and does not exceed
1170, the number of all planes. Hence |B| g 20.

Case 2: There is a plane E with [BNE| =4. There are exactly four
hyperplanes containing E. Each of them contains at most five points
of BNE. Hence |B| £4+4.5=24, o

Lemma 3.1: If v=0 mod 27, then there is an STS(v) which is the
disjoint union of v/27 sub=-STS(27)'s.

Remark: If an STS(v) is the disjoint union of Sub-STS(27)'s, then
each of these sub-STS's may be replacedby an STS(27) isomorphic to
AG3(3) (in many ways) and we have got an STS(v) which is the disjoint
union of affine 3-spaces AG3(3).

Proof of lemma 3.1: Let the incidence matrix of a TD[3;9] be given

by (2.3) with g=9, and let D be the 9 x 12-incidence-matrix of an
STS(9) .

Set u:=v/9. It is well-known that there is an STS(u) which is the
disjoint union of u/3 lines, e.g. a Kirkman system of schoolgirls. In
the incidence matrix M of such an STS{u) replace the three 1's of
each column by the auxiliary matrices F,G,H, and the zeroes by
9 x 81-zero-matrices. The result is the incidence matrix of a GD[3,9;v]
which may be completed to the desired STS(v), e.g. as follows. Write
a u-rowed unit matrix I to the right of the original incidence matrix
M, replace each 1 in this matrix by D and each O by a 9 x 12-zero-

matrix. o
Corollary: If v =0 mod 27, then
(3.14) B' (V) S 3.

Proof: By lemma 3.1 there is an STS(v) which is the disjoint union
of sub-AG;(3)'s. Each of them contains at most 9 points of an arc,

which implies the assertion. a
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Conjecture: For almost all v € STS there are STS(v)'s without ovals, i.e.
B'(v) < (v-1)/2 for almost all v € IN.
By (3.14), this is true if 27 divides v. It is also true for v = 18n + 9, n > 0.
This follows from

Lemma 3.2: If v is divisible by 9, then there is an STS(v) which is the disjoint
union of v/9 sub-STS(9)'s.

The proof is analogous to that of Lemma 3.1, only more simple.
Corollary: If 9 divides v, then PB'(v) < 4v/9.

Lemma 3.3: Let u € STS and w € {0,1,3}. Then
(3.15) B'(3u - 2w) < 3B'(u).
Proof: The tripling construction 2.3 yields an STS(3u-2w) which is the union of

three STS(u)'s. Since the intersection of an arc with a subspace U 1is an arc in
U, the assertion follows. o

Corollary 1: If u € STS~{1,3,7}, then B'(3u) < (3u-1)/2 .

Proof: Doyen [3] has shown that for each u € STS there is an STS(u) which is
generated by each of its triangles. In case u > 7 such an STS cannot have a hyper
oval, by theorem 2.1. Hence B8'(u) £ (u-1)/2, and (3.15) implies the assertion. o

Corollary 2: If wu € STS and B'(u) < (u-1)/2, then B'(v) < (v-1)/2 for
v =3u-2 and v = 3u-6.

Hence it is easily seen that pB'(v) < (v-1)/2 for v = 54n + 3,7,9,21,25,27,45.
But these examples do not suffice to prove the above conjecture. Moreover, some addi-
tional information on the function B'(v) would be very desirable.

4. Recursive Constructions of Steiner Triple Systems with Ovals

Theorem 4.1: For each v € STS there is an STS(v) with an oval.

The proof will need a few lemmas. Note that in case v = 3 or 7 mod 12 the theorem
follows from theorem 2.2.

Definitions: Let P be the set of all v € STS for which there exists an STS(v)
with an oval. The assertion is P = STS. By an oval in STS({1) we understand the
empty set.

An OSTSu(v) is, by definition, an STS(v) with a subspace U,|U| =u, and
with an oval B such that U n B 1is an oval in U, i.e.
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JunB| = (u-1)/2. Let P be the set of vE€STS for which an OSTS (v)

exists.

Examples: a) Obviously P, =P.

b) (4.1) P3=P\{1}.

Proof: Let B be an oval in an STS(v) and U a tangent of B. Then
UNB is an oval in U. u]

c) The remark after construction 2.2 shows that

(4.2) 12n+ 3, 12n+7€P7 for all n€ IN.

d) 13€P follows from [16].

Lemma 4.1: If u€P_ then P cP .
—————— w u w

Proof: Assume u€P_and v€P . There is an OSTS (v), say D= (v,®,
with an oval B and a subspace U, |U| =u, such that B' :=BNU is an oval
in U. Because of u€Pw we can replace the lines in U by other lines
such that U has a subspace W with |W| =w, B' remains an oval in U,
and'B'NW=BNW is an oval in W. This was to be shown. o

Lemma 4.2: If u=3 or 7 mod 12, then 3u€Pu.

Proof: We use construction 2.3 with w=0 and a special Latin square
Q or order g=u, such that the first (u-1)/2=:m rows and columns of Q
form a Latin subsquare of order m, say with entries 1,...,m. This is
possible, see Dénes~Keedwell [2]. At the right of and below this sub-
square only the entries m+1,...,2m+ 1 appear. As an arc in the TD[3;u]
of construction 2.3 we define the set of points

X1 (X=1,-.-,m),
(4.3) y, (y=mtl,...,2m+ 1),
z3 (z=1,...,m.

Then never z =xe¢y, hence B is an arc in the TD[3;u]. Now the construc-
tion of the STS's on the point classes can be done 'in such a way that
the points in the three rows of (4.3) form arcs in the respective
8TS(u)'s, i.e. ovals in the first and third one and a hyperoval in the
second one. Thus B becomes an oval in the constructed STS(3u), and the
intersection of B with the first sub-STS(u) is an oval in this sub-

space, g.e.d. =]
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Example: 21 €P7, moreover
(4.4) 36n+9, 36n+21€P7 for all n€ IN,

Proof: For u=12n+ 3 resp. 12n+ 7 lemma 4.2 implies 36n+ 39,
36n + 21 EPu. By (4.2) and lemma 4.1 the assertion follows. a

Lemma 4.3: If uEPW and u>w>0, then

(4.5) 3u-2w€P NP .
u w

Proof: Again construction 2.3 is applied. Set

g:=u-w=2m.

We use a Latin square Q of order 2m consisting of four Latin sub-
squares of order m:

€| D
(4.6) Q= .
D|C

W.l.0.g. C has the entries 1,2,...,m, and D has the entries mt+1,...,2m.
The rows with numbers m+ 1 to 2m, 3m+ 1 to 4m, and 5m+ 1 to ém of
the incidence matrix of the TD[3;g] of construction 2.3 form an arc A

in this TD, since for x,y,z>m always z#X oV.

The completion of the TD to an STS(3u- 2w) by construction 2.3
can be achieved as follows. By the hypothesis uEPW the submatrices L,
M,N in (2.2) can be chosen such that N is the incidence matrix of the
subspace W, and the (u-1)/2 rows with numbers m+1,...,2m,...,2m+ﬂ—5—1
form an oval in the STS(u). Then the rows 2m+ 1,...,2m+-“’—5—1 form an
oval in W (which is empty in case w=1). Now the matrix (2.4) yields

the desired STS(3u- 2w), with an oval B in the rows m+ 1 to 2m, 3m+1
w-1

to 4dm, and 5m+ 1 to 6m+T. Hence v := 3u—2w€PunPw. o
Examples:
u 9 13 21 25
w 1 3 1 3 1 3 7 1 3

3u-2w| 25 21 37 33 61 57 49 73 69

If 12n+9 resp. 12n+ 13 €P, then 36n+ 25 resp. 36n+ 37 €P (Lemma 4.3
with w=1) and 36n+ 21 resp. 36n+33€P(w=3).
If 12n+9€P7, then 36n+13t’-:P7 (w=17).
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These results are not quite sufficient for the proof of theorem 4.1.

We need one more lemma.
Lemma 4.4: If u€P and uz27, then 3u—6€P7.

Proof: In case u=3 or 7 mod 12 the assertion is true by (4.2).
Now assume u=1 or 9 mod 12. By hypothesis and by (4.1) there is an
STS(u) with an oval A and a line W such that |WNnAa|=1 (i.e. W is a
tangent of A). The incidence matrix of this STS(u) is given by (2.2)
where 1

We may assumer w.l.o0.g., that the oval A belongs to the rows no.
u-3
2
in the last, i.e. (2m+ 3)Td row. Since m is odd there are at most

m+1,...,2m, 2m+ 1 with m=

Consider the lines through the point p
mTl
such lines G #W with both points of G~ {p} in the oval A and at most
m%l such lines G #W with both points of G~ {p} outside AUW. The to-
tal number of lines G#+W is r- 1=m, hence there is a line {p,a,b}
with a¢AUW and b€ A~W. We may assume, w.l.o0.g., that {a,b,p} be-

longs to the rows no. 1, m+ 1, and 2m+ 3 of the matrix (2.2).

Now proceed as in the proof of lemma 4.3, construct the TD[3;2m]
with incidence matrix (2.3), and complete it to the STS(3u-6) with

incidence matrix (2.4).

Since the first and (m+ 1)th rows and columns of the Latin square
(4.6) form a Latin subsquare of order 2, it is easily seen that the
7 rows no. 1, m+1, 2m+1, 3m+1, 4m+1, 5m+ 1, 6m+ 3 form a sub-
STS(7) whose intersection with the oval B is a triangle, i.e. an
oval in the STS(7), corresponding to the rows no. m+ 1, 3m+1, 5m+1.
This was to be shown. a

Corollary: If 12n+ 13 €P, then 36n+ 33€P7 (nemw Y {0}),
in particular 33, 69, 105€P7.

Proof of Theorem 4.1: Assume the theorem to be false. Then there

is a smallest v=1 or 9 mod 12 with v4P. By (4.4) and the examples
to Lemma 4.3 v > 85, and

v=1, 13, 25, or 33 mod 36.
The cases v=36n+ 25, 33, or 37 are covered by the examples after
Lemma 4.3. Hence only the case v =36n+ 13 remains open. By (4.4) and
by the corollary to Lemma 4.4
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(4.7) 12n+9€]?7 for all ne W,

Again by the above examples (Lemma 4.3 with w=7) 36n+ 13 €P,
a contradiction proving the theorem. =}

It may be worthwile to seek more information on the sets Por wz7.

5. Counterovals

The above existence proof does not give any information on the
question whether distinct STS(v)'s with given ovals are isomorphic,
and of characterizing the isomorphy classes of STS(v)'s with ovals.
In this generality the problem appears hopeless.

In [16] it was shown that for v =13 there are exactly three isomor
phismen classes, and that the complementary structure of an oval in
an STS(13) always has one of the two structures

with 7 points, 5 lines, and 6 secants. We generalize this observation
as follows.

Definitions: A partial Steiner triple system (PSTS) is a finite

incidence structure with at most one line through any two points and

with exactly three points on every line. A PSTS with v points is a
PSTS(v), and a PSTS(v) with s secants (i.e. unjoined pointpairs) is
a PSTS(v,s). We shall prove the following lemma.

Lemma 5.1: The complementary set of an oval in an STS(v) is a
PSTS(r+ 1,r). If an STS(v) contains a PSTS(r+ 1,r), say A, as a sub-
structure, then the complementary set B :=V~A is an oval.

Hence we define a counteroval as a PSTS(r+ 1,r), regardless of
the question whether it can be embedded into an STS(2r+1). By r

always X%i is meant.

Examples of counterovals: a) r=4, v=9: A counteroval consists
of 5 points on two intersecting lines.
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b) We shall show that the counterovals are exactly the PSTS(v)'s

with exactly

2
rc-r 4.
3 lines.

¢) If v=3or 7mod 12 and if an STS(v) with a subspace STS(r) is

given, then this STS(r) together with an arbitrary additional point

is a counteroval.

The first part of lemma 5.1 is easily proved. Let B be an oval

and A :=V~B, Then [A| =r+ 1. The number x of unjoined point pairs in

A is the number of tangents of B, i.e. x=r.

For the second part we need some notation. Let
and A,BcV with B=V~A, Denote by

lA(x) the number of sublines of A through a point

sA(x) the number of secants of A through a point

tA(x) the number of tangents of A through a point

pA(x) the number of passants of A through a point

and analogously for B instead of A. Obviously

(5.1)

1, (x) =p (x), (x) =tB(x) etc.

Sa

Moreover denote by

w =
L] n

o
It

s

Py the number of all sublines LcA

tB the number of all secants of A,

B the number of all tangents of A,

pA=lB the number of all passants of A.

(5.2)

(5.3)

(5.4)

(5.5)

(5.6)

(5.7)

31,= ] 1.(x),

X€EB

2s_ = ZsB(x),
XEB

t, = t_ (x)
xéB B

(V,® be an STS(v),

xXev,
X€EvV,
xX€EV,

X €V,

Obviously

2lB(X)+sB(x)=]B|-1 for x€B,

lB(X)+SB(x)+tB(x)=r for x€ B,

v{v-1)

lB+sB+tB+pB=b= 3
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Hence 3pA=3lB=ng(r-sB(x) -ty (x)) =ng(r— Bl +1+21 (x) ~t_(x))

= |B|(r- |B| +1) +6l, -t
(5.8) 3ly=t, - [B[(x- [B|+ 1), and similarly

(5.9) 3pg =31, =t, - [A[(x - |a] +1) =sp+ (v-|B[)(r~[B]).

Using (5.7) and the equality vr = 3b, a short calculation yields the
equations

(5.10) tptsy=3(1,+py) + [Bl(r- [B|+1)-(v-|B|)(r~|B]),
r(r-1) +1

(5.11) 1 +p_ = A s(Bl-n)(|B] -xr-1).

r(r-1)

6 I
then p,=1,=0, i.e. A=V~B is an oval. If |[B|=r+1 and s, =, then
by (5.5), (5.2}, and (5.3)

We note some consequences of (5.11): If |B| =r+ 1 and 1=

(5.12) 61 +2s_=[B|(|B| -1) =r+1,
_r(r-1)
(5.13) 1. = c p
hence A is an oval. This proves the second part of Lemma 5.1. =

Note that the equation

_ Bl
31B+sB—( 5 )

holds for every partial Steiner system B regardless of the question

of embeddability into an STS(2r+1). In case |B|=r+ 1 this means

- _r(r-1)
(5.14) Sp=r e lB__6.._

Hence counterovals PSTS (r + 1,r) can only exist for r=0,1 mod 3.

Moreover (5.11) implies
-1 1
(5.15) 1A=pB§£‘_£g~?+5(|B]-r)<|B|-r-1)

_r(r-1)
6

+2(al-0) (|a] ~r- 1),
with equality iff B is an aic.

Now the question arises which counterovals can be embedded into

STS(2r + 1) 's. We are quite unable to give an answer. A few examples
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will follow 1in section 6.

The existence of PSTS(r+ 1,r)'s for any r=0 or 1 follows from
the literature, e.g. Hanani [6], last chapter, using the obvious fact
that a PSTS(r+ 1,r) is obtained from a PSTS(r+ 1,s) with s <r by

r(xr-1)
6

deleting some lines such that lines remain, see (5.14). An

easy and elementary existence proof for counterovals works as follows.

From an STS(v) delete at most two points together with the lines
containing them, and perhaps some more lines. This works in case
r=0, 1 or 4 mod 6. In case r=1 or 3 mod 6 a counteroval is obtained

by adding an isolated point to an STS(r).

Of course the oval constructions of sections 2 and 4 also yield
counterovals. Since apparently there is an abundance of counterovals

we note a few other constructions.

Some more constructions of counterovals

a) A given counteroval A can easily be transformed into another one.
If {a,b} and {a,c} are secants of A and if L= {b,c,d} is a line then
replace L by {a,b,c}. But if b and ¢ are not on a line, replace an
arbitrary line of A by {a,b,c}.

b) The complete graph K2m with 2m vertices can be extended to a
PSTS(2m+ s) by adding s new points Uypewnsy such that u, forms a line
with the edges of the parallel class ‘Ti(i=1""’5)’ of course

s £2m-1. Then more lines on the s new points may be formed, yielding
a PSTS(s).

Examples: o) 2m=6,s =5, and the PSTS(5) has two lines. Thus we
obtain a PSTS(11) with 17 lines. By deleting any two of them we get
a counteroval.

g8) Construction 2.1.

c) The difference method may be used to construct counterovals too.
Set V:=2 U {~}. Then the 40 lines

{»,0,8},{0,2,5} , and {0,1,7} mod 16
form a PSTS(17,16).
Similarly V := Zlotl{w} with the 15 lines
{=,0,5} and {0,1,4} mod 10

forms a PSTS(11,10),
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and V := 2’12 with the 22 lines

{2,0,6}, {0,4,8}, and {0,2,5} mod 12
forms a PSTS(13,12).

&) The last few examples can be generalized. Each base line {0,a,a+b}
in Z’m corresponds to a difference triple (a,b,c) with O<a,b,c sv;—l
and c=a+b or c=m-a-b, and each difference triple of this kind
gives rise to a base line {0,a,a+b}. Hence it is convenient to de-~
scribe STS(v)'s and related structures with a cyclic automorphism
group by their difference triples instead of their base lines. Of

course this is well-known.

Examples: o) m=12n+ 10, V= z U {«}. The base line {«,0,6n+ 5}

and the 2n+ 1 difference triples

(1,5n+3,5n+4), (2,3n+1,3n+3),
(3,5n+2,5n+5), (4, 3n ,3n+4),

(2n+1,4n+ 3,6n+4), (2n,2n+ 2,4n+ 2)

(12n+10) (12n+9)

generate (2n+1):(12n+ 10) +6n+ 5= 3

lines, i.e.

a counteroval.

B) m=12n+4, V= ZmU {=»}. The base line {«,0,6n+ 2} and the 2n diffe-

rence triples

(1,5n+ 1,5n+ 2) (2,3n,3n+ 2)
(3, 5n ,5n + 3) (4,3n~1,3n+ 3)

..........................

(2n-1,4n+2,6n+ 1) (2n,2n+ 1,4n+ 1)
(12n+4) (12n+3)
6
Y) m=12n+6. The base lines {»,0,6n+ 3} and {0,4n+2,8n+4}, and

the 2n difference triples

lines, i.e. a counteroval.

generate 2n(12n+4) +6n+ 2=

(1,5n+ 2,5n + 3) (2,3n,3n+ 2)
(3,5n+ 1,5n+4) (4,3n~1,3n+ 3)

..........................

(2n-1,4n+ 3,6n + 2) (2n,2n+1,4n+ 1)

12n+6) (12n+5)

generate 2n(12n+6)+(6n+ 3)+(4n+ 2) = .

a PSTS(12n+ 7,12n+6).

lines, i.e.
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§) m=12n+ 12. The base lines {»,0,6n+6} and {0,4n+ 4,8n+ 8} and

the n+ 1 difference triples

(1,3n+2,3n+ 3) (2,5n+4,5n+6)
(3,3n+1,3n+4) (4,5n+ 3,5n+ 7)
(2n+1,2n+ 2,4n + 3) (2n,4n +5,6n + 5)

generate a PSTS(12n+ 13,12n+ 12).

For each r € STS~ {9}, R. Peltesohn [11] found an STS(r) with z_as
an automorphism group by the above difference method.
Adding an isolated point yields a PSTS(r + 1,r) with Zr as automorphism
group.

6. Construction of Steiner Triple Systems from given Counterovals

I. Given a counteroval (A,f), one can try to extend it to a
Steiner triple system (V,®) with AcVv, A <« B as follows. Let
A=={O,1,...,rj (w.l.0.9.). It has exactly r secants {x,y}, which we
denote by ; instead (or i). These r secants are the tangents of the
desired STS(2r + 1), and they can be identified with the points of
the oval B=V~A, since each oval point g € B uniquely determines
its tangent. Hence V consists of A and the r unjoined pairs ; E(S),
and the tangents of the oval B are triples {x,y,x} for which ; is a
secant of A, The problem is to find the (g) secants of B. These se-
cants are triples {;,i,p} with p€ A~ {x,y,z,u}. One can proceed as
follows by trial and error:

X A . X 2 B
Let B be the set of secants yE (2). For each pair {y’u} € (2)
find a point p(x,y,2z,u) =pl(y,X%X,z,u) =p(2,U,X,¥Y) = «v.es such that
always
z _ z' ' '
(6.1) u*ur = p(x,y,z,u) +pi{x,y,2"',u ).

Whether this choice is successful we do not know in general. If
it succeeds then it yields (g) distinct lines {;{,i,p(x,y,z,u)} such

that no two of them have a point in common. Together with the given

r(r-1)
6

secants of A) the total number of lines becomes

lines in the counteroval A and the r tangents of B (i.e.

r(r-1) (2r+1) 2x

+r+(]2:)= 2
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hence each point pair {x,y}E(g) is on exactly one line and the desired
STS(2r + 1) with oval B is constructed.

Since we cannot give a general answer to the question whether the

search for the p(x,y,z,u)'s works let us present two examples.

Example a) For r =7 let the counteroval A be given by the figure

o1 11222
Then B={3I3I617I3I4I5}‘

The points p(x,y,2,u) are in one
row of the following table where
. Xz X 2z
we write yu instead of {y,u}
Distinct rows contain distinct

solutions, all of them are found

by trial and error.

01 0101 02 02 02 11 11 12 12 12 11 12 12 12 12 12 12 22 22 22
33 36 37 33 34 35 36 37 33 34 35 67 63 64 65 73 74 75 34 35 45

2 4 5 1 6 7 5 4 6 7 O 2 7 0 3 0 3 6 5 4 1
4 2 5 1 6 7 5 2 6 7 0 4 7 0 3 O 3 6 5 4 1
7 5 2 4 1 6 2 5 6 0O 4 4 7 3 O O 6 3 5 1 7
5 2 4 1 6 7 4 2 O 7 6 5 7 0 3 6 3 0 5 4 1
4 2 5 1 7 6 5 2 0 6 7 4 6 0 3 7 3 0 4 5 1

Note that each point x € A occurs exactly lA(x) times as a point
p(x,y,2z,u) in any solution. Indeed sB(x)==tA(x), and subtraction
of (5.6) from (5.5) [with A instead of B] yields

1,(x) -t,(x) = [A] -1 -z=0.

Example b) For r=0 let the counteroval A consist of the 11 points
©,0,1,2,3,4,0',1",2',3',4" and the 15 lines {«,0,0'}, {0,1',4'},
{0,2',3'} mod 5 [i.e. {2,0,0"},{=,1,1"},{,2,2"},....,{0,1",4"},
{1,2',0'},...1.

The oval B consists of the 10 points § (x,y€1{0,1,2,3,4}). The oval

secants (found by trial and error) are the following 45 triples.
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o O o 1 ' 2 3 '
{e, K 31} {4! 47 o'} {4 4’ o'}
o 1 ' o 1 ' o 2 '
{31 27 o'} {2, 37 o'} {1, 3 o'} mod 5.
o O 1 2 o 1
. 9 L4 50 3 ©, 1

II. It is also possible to construct STS(v)'s with ovals by the
difference method, although we can only give a few examples, no
general result. We begin with an example for v=25, r=12. The point
set V consists of two copies 212 and 212 of the cyclic group of
order 12, and one more point =, with the usual rules o+ x=w +x' =

1 ¥
for XEZlZ' X 6212 .

The points of 212 with the 22 lines

{~,0,6}, {0,4,8}, {0,2,5} mod 12

form a PSTS(13,12), i.e. a counteroval A. The points of %12 form

the oval B=V~A. The 12 tangents of B (i.e. secants of A) are the
triples {0,1,1'} mod 12. The 66 secants of B are the triples
{~=,0",6'}, {O',1',2}, {O',2',8}, {0',3',7}, {O',4',9}, {0O',5',3}

mod 12. That we have indeed constructed an STS(25) with the counter-

oval A and with the automorphism group 2% is checked by Bose's

12
method of pure and mixed differences [1].

Three similar examples:

= t ©
a) Vv z,.V 7, U {=},

Counteroval A: {«,0,8}, {0,4,5}, {0,3,9} mod 16.

Tangents of B=V~A: {0,2,0"} mod 16

Secants of B: {»,0',8'}, {0',1',12}, {0',2',3}, {0',3',7},
{o',4',10}, {0',5',13}, {0',6',15}, {0',7',5} mod 16
b) V=2, 02, U=,

Counteroval A: {-,0,12}, {0,8,16}, {O,1,6}, {0,2,11}, {0,3,7}
mod 24, of course on the point set z,, U {e}.

Tangents of B: {0,10,12} mod 24

Secants of B: {,0',12"'},{0',1",2},{0"',2',8},{0',3"',3},{0",4"',14},
{0',5',4},{0',6"',21},{0',7',20},{0",8',19},{0',9"',18},{0",10,17},
{0',11',16} mod 24.
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pu— ' ©
c) V—Z’28UZ’28U{ }.

Counteroval A: {-,0,14}, {0,4,10}, {0,3,8}, {0,7,16}, {0,2,13}
mod 28.

Tangents of B: {0,1,0'} mod 28.

Secants of B: {=,0',14},{0",1',27},{0",2',14},{0",3",6},{0",4",8},
{0',5',21,{o',6',16},{0",7',24},{0",8",23},{0',9",22},{0',10",21},
{0',11',20},{0',12',19},{0',13',18} mod 28.

7. Problems and Open Questions

Section 2: Find STS's with hyperovals and large automorphism groups.

Section 3: Determination resp. estimation of the numbers a(v),
g'(v), in particular
log a(v)

inf lim inf B W) and 1im sup
log v v

B'(v)
vESTS oo Vasoo v

Let n(v) be the number of non-isomorphic STS(v)'s and no(v) the
number of non-isomorphic STS(v)'s with an oval. Is

lim no(v)/n(v)==0?
vaw

The analogous question for hyperovals.

Are there STS(v)'s without ovals for v=15,19,21,25?

Section 4: Are there STS(v)'s with ovals and with point-transitive
automorphism group ? Of course some examples are known such as the pro-
jective spaces over GF(2). Are there STS(v)'s (for given v) with a lot
of ovals? Find precise answers to this question. Get more information
on the sets P wz7.

Section 5: How many non-isomorphic counterovals PSTS(r+1,r) are there
for given r =0 mod 3? Are there counterovals with large automorphism

groups?

Section 6: Which counterovals PSTS(r+1,r) can be embedded into
STS(2r + 1) 's? All of them? Find more STS(v)'s with ovals by direct
constructions such as the difference method.
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ON DEDEKIND NUMBERS

by
Heinz Liineburg

For n € N we denote by w{n) the set of all prime divisors of n. If X C n(n),

then n(X) = n/TTbeX p. With these conventions we define the Dedekind numbers D(n,q),
where n and g are integers 2z 1, by

D(n,0) = (1/n) Iycy(ny (-1

If q is a power of a prime, then D(n,q) is known to be the numer of monic irre-

X gn(X)

ducible polynomials of degree n over GF(q), the Galois field with q elements (see
e. g. [7, Satz 6.5, p. 331). As Dedekind was the first to prove this (Dedekind [3]),
we call these numbers Dedekind numbers.

On the other hand, if F is the free group on q generators and if F(l) =F,
F(Z), ... is the lower central series of F, then F(n)/F(n+1)

group and D(n,q) is its rank, as was proved by Witt in [10]. Witt found this coinci-

is a free abelian

dence "merkwiirdig", but this noteworthy coincidence is not accidental, as we are
going to show. Moreover, we shall also show that the explanation of this coincidence
yields at the same time an algorithm producing all irreducible polynomials of degree
n over GF(q),given GF(qn), i. e., given one irreducible polynomial of degree n.

Let A be a non-empty alphabet and denote by At the set of non-empty words over
A and by A the set of all words of length n. If Cn is the cyclic group of order n,
then we 1et C operate on A by the rule

ap...8, > 8y...8.87.
We have the following well-known theorem (see e. a. Cohn [2, p. 296]) the author
of which I don't know.

THEOREM. 14 [A] = q, then the number of onbits of Length n of Con A &s equal to
D(n,q).

Proof. Let T be an orbit of C_on A+ Then n = [C [ = |T}H(C na [, where (C
denotes the stabilizer of a € T. Furthermore, if |T] = t then a; = A,
where the indices have to be reduced modulo n. This yields that a is equal to us s
where u = aj.. and s = n/t. It follows immed1ate1y that there is a bijection of
the set of all the orb1ts of length t of C on A onto the set of all orbits of
length t of C on A for all divisors t of n. Therefore, if a(t,q) is the number of
orbits of 1ength t of C on At’ we have

= Zt|n a(t,q).

n)a
for a]] i,
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Mobius inversion yields

a(n,q) = (1n) Jyp, wit)a™",

where 1 denotes the Mobius function. Hence «{(n,q) = D(n,q), q. e. d.

COROLLARY. D(n,q) 4is the number 0§ <rnreducible polynomials of degree n over GF(q).

Proof. There exists a normal basis of GF(qn) over GF(q) (see e. g. Jacobson
[4, vol III, p. 61]). Let bl’ cns bn be such a basis indexed in such a way that
b? =b, ; for i=2, ..., nand b? =b.. If x € GF(q"), then x = Z?=1 x;by with

X; € GF(q). Moreover x9

il

I., xbd = i_, xyby_q with by = b

i=1 %§P% 1ok

n
x3 = Z?=l x1+1bi with Xoel = X7- Hence, if we set A = GF(q), the Galois group
Aut(GF(qn):GF(q)) induces the operation of Cn on A: described above. Therefore, the
orbits of length n of Cn on A: are in a one-to-one correspondence with the orbits of
length n of Aut(GF(qn):GF(q)). As each of these orbits is the set of zeros of an irre
ducible polynomial of degree n over GF(q) and as GF(qn) is the splitting field of
each irreducible polynomial of degree n over GF(q), we see that D(n,q) is also the
number of irreducible polynomials of degree n over GF{q), q. e. d.

This proof gives an algorithm to compute all the irreducible polynomials of
degree n over GF(q) which can roughly be described as follows:

1) Determine an irreducible polynomial of degree n over GF(q).

)

2) Construct a normal basis bys +.es b of GF(qn) over GF(qg) using f.

3) Determine a representative for each orbit of Tength n of Cn on A: where A = GF(q).
)

4) Compute the minimal polynomial of x = Z?=l Xibi for all the representatives
(Xl’ cees xn) determined under 3).

Algorithms to achieve 1) and 4) are to be found in Berlekamp [1]. Jacobson's
proof of the Normal-Basis-Theorem for Galois fields yields a good algorithm for 2).
Here we shall say more only about 3).

let g € Nand A = {0, 1, ..., g}. (The number g has now another meaning. The
old q is one larger than the new one.) Order A; lexicographically, i. e., if
a, b e A;, then a < b, if and only if there exists an i € {1, ..., n} such that
3 = bj for j=1, ..., i -1and a; < bi‘ If T is an orbit of length n of Cn, then
pick the largest element of T as a representative of T. Given a € A:, then it is
easily checked whether a be larger than all its cyclic conjugates. If a is Targer
than aTl its cyclic conjugates, then a representative has been found. In order to

find all the representatives, one need not check all the a € A;, for, if a is larger
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than all its cyclic conjugates, then 2y 2 3, for i=2, ..., n-1and a; >a,, as is
easily seen. Therefore, given a; € {1, ..., q}, one has to check only those CIRRRL
with ay...a, € {0, ..., al}n_2 x {0y ..., ap - 1). Hence the number of words to be

checked is z%:l i(i o+ l)n-Z’ still a lot. The words in {0, ..., al}n—2 x {0y ...,

a; - 1} can be generated by a Gray-code. If one uses the one described by Joichi,
White and Williamson in [5], then the last word is a...8, = al...al(a1 - 1) if 2y
is even, and = a10...0 if ay is odd. This follows easily from [9, Satz 1 and Satz 5].
(Here we operate on Gray-codes from right to Teft instead of from left to right as
we did in [9].) Therefore CIRRR: is a representative in either case. This yields N
that the following procedure will generate recursively all the representatives in An‘
This procedure is written in PASCAL. The calling program has to provide the type
vector = array[l..t] of integer where t is a constant z n. The variable a will assume
the representatives, whereas s is needed for the generation of the Gray-code as de-
scribed in [5] or [9]. Moreover, type menge = set of 1..t. The variable x is also
used for the Gray-code algorithm. The function reg tests .in sifu whether a is a re-
presentative or not. Everything else explains itself provided one knows enough about
Gray-codes.

procedure regwort{var a, s: vector; var x: menge;
var gl, p: integer; q, n: integer;
var anfang, anfgray, ekm: boolean);

function reg{var a: vector): boolean;
var i, k, ipk: integer;
ra: boolean;
begin k := 0;
repeat i :=1; k := k + 1; ipk 1= 1 + k;
while (alipk] = a[i]) and (i < n) do
begin i := 1 + 1; ipk := ipk + 1;
if ipk > n then ipk := ipk - n
end;
rg := alipk] < a[1i]
until (not rg) or (k =n - 1);
reg :=rg
end; (% reg %)

procedure neuanf;
var i: integer;
begin ql := q1 + 1; all] := ql;
for i := 2 to n do
begin ali] := 0; s[i] := 1 end;
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x = [1];

for i :=2ton-1dox :=x+[i];
if q1 > 1 then x := x + [n];

p :=n;

while not (p in x) do p :=p - 13
anfgray := p = 1;
end;

procedure gray;

var i: integer;

begin alp] := alpl + s(pl;
if (n > p) and (gl > 1) then x := x + [n];
i:=n-1;

while i > p do

begin x := x + [i];

i=d-1
end;
if (alp] = 0) or (a[p] = ql) then
begin x := x - [p]; s[p] := ~s{p] end;
if {p = n) and (a[n] = q1 - 1) then
begin x := x ~ [n]; s[n] := -s[n] end;
p :=n;

while not (p in x) do p :=p - 1;
anfgray :=p = 1;
ekm := (p > 1) or (q > ql)

end;

begin if anfang then
begin anfang := false;
anfgray := true;
ql :=0
end;
if anfgray then neuanf
else repeat gray until reg(a)
end; (% regwort =)

There is another way to produce all the representatives or regular words as
they are called. Let (A,s) be a linearly ordered alphabet. We extend the ordering <
to A* in the following way. Let a = ay...a, and bl"'bt be words in A*. Then a < b,
if and only if one of the following conditions is satisfied:

o) There exists ¢ € A" such that a = be.
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8) There exists r £ s, t such that a; = bi fori=1, ..., r-1and a, < br'

This ordering is really strange: beggar occurs earlier in the dictionary than beg. On
the other hand, the restriction of this ordering to A; yields the lexicographic orde-
ring.

Next we consider G(A) the free groupoid on A. We denote the elements of G(A) by
(u). If all parentheses are removed in (u), we obtain a word in A* which will be
denoted by u, i. e., if (u) = ((((al)(az))(a3))(a4)), then u = ajajaqa,. We define
standard products in G(A) recursively on the length of the words as follows:

1) Products of ltength 1, i. e., elements (a) € G(A) with a € A are standard
products.
2) Let (a) = ((b){c)) be a product of length n. Then (a) is a standard product,
if and only if either b € A and (c) is a standard product with b > ¢ or (b) and (c)
are standard products, (b) = {({(u)(v)) withb > ¢ =z v.

Now, if (a) is a standard product, then a is a regular word, and conversely, if
b is a regular word, then there exists exactly one standard product (a) such that
a =b (see e. g. Cohn [2, Lemma 6.1, p. 291]). It is an interesting exercise in dyna-
mic programming to write a program which produces all the standard products and hence
all the regular words of length < n on an alphabet with q Tetters. Such a program
involves less computations than the former one, but it has the disadvantage that it
requires a lTot of storage: One has to have at hand all the regular words of length
< n -1 1in order to compute the regular words of length n.

Let R be a commutative ring with 1 and denote be R[A] the free groupoid algebra
and by LR[A] the free Lie-algebra on A over R. Then there exists an epimorphism of
R[A] onto LR[A]. Let J be its kernel. Then Sirsov has proved (see e. g. Cohn [2, Theo
rem 6.2, p. 292]) that {(a) + J|(a) is a standard product in G(A)} is a free basis of
the R-Modul R[A]/J = M. Hence {(a) + J|(a) is a standard product of length n} is a
free basis of the n-th homogeneous component M of M. Moreover, if R = Z, then Mn is
isomorphic to F(n)/F(n+l), as was proved by W1tt [10]. Therefore, the rank of

( )/F(n+1) is equal to the number of reaular words which is D(n,q) if F is genera-
ted by g elements. These considerations show that there is a common source for the
two theorems on the number of irreducible polynomials of degree n over GF(q) and the
rank of F(M/F(M*1),

Finally a word about the computation of D(n,q). As

D(n.a) = (/1) Tyepny (-1 ¥1a"K)

one has to determine =(n) wich does not offer any problem, as n is small for all
D(n,q) within our reach. Given w(n), one has to produce all the subsets of it. This
can be achieved by the binary reflected Gray-code (see e. g. [9]). Set ey = (-1)'Xf,
Then ep = 1. Let X' be the successor of X. Then there exists a prime p such that
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X' = X - {p} or X' = XU {p}. In either case |X'| = [X] + 1 mod 2, whence ey = ey
If X' = X - {p}, then n(X') = n(X)p, i. e., q" XD = (NP 1F x* = X U {p}, then
n(X") = n(X)/p, 1. e., qn(Xl) = (qn(X))l/p. The well known multiplication algorithm
of the Russian peasant is a good algorithm to compute (qn(X))p. The question is
whether there is an algorithm to compute (qn(X))l/p as easily.

PROPOSITION. let a, p € N with p 2 2. Then [((p - 1)a + [d/aP"11)/p) 2 [d%/P] fon
atl d € N.

Proof. Assume that [({p - 1)a + [d/ap_l])/p] < [dl/p].Then
((p- Da+ da® L yp s 1dP1 + (p - 1)/p < 1dP1 1t folTows [d/aP] <
P[dl/p] - (p - 1)a. Moreover /2Pl < rdzaPhy 4 (ap-l - 1)/ap-1 < d/aP 41
Hence d/aP™ 1 < p[d¥P] - (p - D)a < pdP - (p - 1)a. This yields
((p - 1a + d/aP"1y/p < d¥P. on the other hand d/P < ((p - 1)a + d/aP™*)/p by
the inequality between the geometric and arithmetic means (see e. g. [8, Satz 9.1,

_1)

p 68]). This contradiction proves the proposition.

PROPOSITION. Let a, d, p € N. 14 a > [dY/P1, then [((p - 1)a + 1d/aP11)/p) < a.
Proof. Assume [((p - 1)a + [d/ap'l])/p] 2 a. Then ((p - 1l)a + d/ap_l)/p za. It

follows d/ap_1 z a and hence dl/p za > [dl/p]. This contradicts the fact that
al/P - at/Py <1,

Using these two propositions, we get the following result.

THEOREM. 14 d, a, p € N and if a = dV/P, then

[\

repeat w := a;
a := ((p- aw +d div wp_l) div p
until a =z w;

At the exit of the repeat-Loop we have W = [dl/p}.

If one starts with an a between d'/P and ((3p - 2)/(2p - 2))d1/p, then the
number of times the statement in the repeat-loop is executed is bounded by

2+ 109,((1/p)logyd - logy((p = 1)/p))-
If one starts with an a between dl/p and 2d1/p, then this number is bounded by
2+ pln 2 + Togy((1/p)logyd + 1/((p - 1)In 2)).

This can be proved with the methods described in [6].
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Abstract. The paper presents a classification of quasi-symmetric
2-designs, and sufficient parameter information to generate a list of
all feasible "exceptional" parameter sets for such designs with at
most 40 points. The main tool is the concept of a regular set in a

strongly regular graph.
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1. Regular sets in strongly regqgular graphs

Throughout the paper, all graphs are finite, undirected, without loops

or multiple edges. A graph I' is strongly regular (see e.g. [9], [111,

[16]) if (i) every vertex is adjacent with exactly k other vertices,
and (ii) the number of vertices adjacent with two distinct vertices x
and y is 2 or u, depending on whether x and y are adjacent or not. Re-
lated to a graph is its adjacency matrix M = (m__), indexed by the

p— xy
vertices, with mxy = 1 if xy is an edge, mXy = O otherwise. If I,J

denote the identity and the all-one matrix (of suitable size) then a

graph is strongly regular iff its adjacency matrix satisfies

MJ = kI, M° = (A-y)M#(k—p) T+ud. (1)
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The adjacency matrix of a connected strongly regular graph has just
three distinct eigenvalues k (valency), r (> 0), s (< ~-1); the eigen-
value k is simple and has the all-one vector é as an associated
eigenvector. In terms of r, s, and u, the other parameters of a

strongly regular graph can be expressed by
v=(k-r)(k-8)/u, k=u-rs, A =u+r+s, (2)

where v denotes the total number of vertices. The multiplicity of the

eigenvalue r is given by

k(k-s) (-s-1)

£= n(r - s) .

(3)

Now let T be a strongly regular graph with parameters (2). A nonempty

set B of vertices of I is a regular set with valency 4 and nexus e if

the number of vertices of B adjacent with a point x € T is d (< n) or
e (> 0), depending on whether x € B or not. We call a regular set
positive if d > e, and negative if d < e. It is easy to see that the
complement of a regular set is also regular, with same sign, valency d

and nexus e', where
a' = k-e, e' = k-d. (4)

Also, a subset B of I' is regular iff the subgraphs induced on B and
its complement are both regular. In the terminology of Delsarte [61],
a regular set is a l1-design in T, and the pair (B,TI~B) is a regular
bipartition of T.

Denote by M1 the adjacency matrix of the graph induced on a regular
set B of TI'. Then the adjacency matrix of I' can be written as

M, N
m= ()
N M

2

and the properties of a regular set imply

.

af My 3

(k-e)f

_F
o
il

(k-d)} . N4 = ej -

2
ay
1
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These relations imply that the vector
(o)
—e}

is an eigenvector of M for the eigenvalue d-e < k. Hence d-e € {r,s},

and we have

Proposition 1
The parameters of a regular set B satisfy the relation

o}
1

d-r if B is positive,

e = d-s if B is negative. o

In particular, if a strongly regular graph contains a regular set then

the eigenvalues are integers.

Proposition 2
The number of vertices of a reqular set B of valency d is

K

(k-s) (d-xr) /u if B is positive,

K

(k-xr) (d=s) /u if B is negative.

Proof. We count in two ways the number of edges xy with x £ B, y € B
and get (v-K)e = K(k-d), whence

K = ve/(k-d+e). (5)
Now use Proposition 1 and equation (2) and simplify. o
Examples. 1. If I is a disjoint union of cliques, a positive regular

set is a union of classes (e=0, d=k), and a negative regular set is

a set with e points from every class {(d=e-1}.

2. If T is a complete multipartite graph, a positive regular set is a
set with i points from every class (d=e=K-i), and a negative regular

set is a union of classes (e=K, d=K-m).

3. 1In the Petersen graph, the 12 pentagons are positive regular sets
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with K=5, d=2, e=1, and the 5 cocliques of size 4 are negative
regular sets with K=4, d=0, e= 2.

4. In the lattice graph Lz(n) , the union of e parallel lines form

positive regular sets with k=en, d=n+2-e, and the union of t
disjoint transversals form examples of negative regular sets with
K=tn, d=2t, e=2t+2. For t=2, the polygon indicated in the figure

is one of several possibilities.

5. If B is a positive (negative) reqular set of size K, valency d,
and nexus e in T', then, in the complementary graph T, B is a negative

(positive) regular set with valency d and nexus e given by
d=K-1-d, e=K-e.
This explains the similarity in the first two examples.

6. Many examples of regular cliques (d=ZK-1) are given in Neumaier
[13]. Regular cliques are always positive. Complementarily, regular

cocliques (d=0) are always negative.
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Regular sets can be viewed as extremal cases of induced regular sub-

graphs:

Proposition 3

Let B be a set of vertices such that the graph induced on B is regu-
lar of valency d. Then the number K of vertices of B satisfies the

inequality
(k-s) (d-r)/p = K g (k-r) (d-s)/u. (6)

The lower (upper) bound is attained iff B is a positive (negative)

regular set.

Proof. For x ¢ B, denote by e, the number of vertices of B adjacent
with x. Counting in two ways the number of edges Xy with x ¢ B, y € B

gives
L e, = K(k-d), (7)

and counting in two ways the number of paths zxy of length 2 with

x € B, vy,2 € B, y # z gives

I egle,~1) = RA(+1-d) + K(R-1-d)u. (8)
Here the sum is over all x ¢ B. Using (2), (7), and (8) gives
I e2 = k% - K(a-1) (d-s). (9)

From (7), the averave value of ey is

_ K(k-d)
= SR (10)

and we compute

K%y - K(d-r) (d-s) - 2eK(k-d) + e2(v-K)

) (ex—e)2

k%) - K(d-r) (d-s) - K2 (k-d) 2/ (v-K)

—-K(pK-(k-r) (d-s)) (uK-(k-s) (d-x) )/ (u(v-K)), (11)

where we simplifies with (2). Now the sum of squares is nonnegative,
whence uK must lie between (k-r) (d-s) and (k-s) (d-r). But
(k-r) (d-s) - (k-s)(d-r) = (r-s)(k-d) > O, whence (6) holds. If equality

holds in (6) then Z(ex—e)2 = O, whence e, = e for all x ¢ B. Therefore,
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B is a regular set, and from (2) and (10) we find e = d-r (resp.

e = d-s) if the lower (resp. upper) bound is attained. o

Note that this proof contains a matrix-free proof of Proposition 1
and 2.

2. Semiregular partially balanced designs

A partially balanced design (with two associate classes) is a pair

UZ‘B) consisting of a connected strongly regular graph T (whose v
vertices are now called points) and a collection 63 of subsets of T
(called blocks) such that (i) every block contains K points (2<Kzv-1),
(ii) every point is in R (> 0) blocks, and (iii) two distinct points X,y
are in g or p common blocks (p # g) depending on whether x,y are
adjacent or not. For other, egquivalent definitions see e.g. [2], [15].
Associated with a partially balanced design is its incidence matrix

A = (axB) indexed by points and blocks, with ap = 1 if x € B, 2. = 0
otherwise. The vxn-matrix N = AAT has three nonnegative eigenvalues,
among them the simple eigenvalue X = RK. A partially balanced design
is called gemiregular (in [2]: special) if det(N) = O, i.e. if A =0
is an eigenvalue of N. The results of Neumaier [12; Section 3] imply
that every 1%-—design with two connection number p and g (< R) is a
semiregular partially balanced design; the converse follows easily

from the following result of Bridges and Shrikhande [2]:

Proposition 4
A partially balanced design is semiregular iff there are numbers d

and e such that every block is a regular set with valency d and

nexus e. a

Proposition 5
If T is a rank 3 graph then the orbit of every regular set is a semi-

regular partially balanced design.

Proof. The automorphism group of I' is transitive on vertices, edges,

and nonedges. This implies (ii) and (iii) in the definition of a
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partially balanced design. Obviocusly, automorphic images of a regular
set are regular sets with the same parameters; this provides (i) and

semireqularity. o

Proposition 6
The parameters of a semiregular partially balanced design can be

written in terms of d and e as

R(k-r) R(k-d)

b = ﬂ_ ’ t = m ' = R+st, g = R+(s+1)t (12)
if all blocks are positive, and as
- R(k-s) _ R(k-d) = R- = R—
b==35"+ t=ygsy ¢ P=RIt, g=R(x+t (13)

if all blocks are negative. In particular,

p < Qg iff the blocks are positive,
(14)

P>qg iff the blocks are negative.

Proof. For fixed z € T, we count in two ways the number of pairs
(x,B) with x € B, resp. with x,z € B, x adjacent with z, resp. with

x,z € B, x not adjacent with z, and obtain
Kb = Rv ,
kg = Rd , (15)
(v=1-k)p = R(K-1-4).
Now assume that the blocks are positive. Then e = d-r, K = (k-s) (d—r)/u
by Proposition 1 and 2, and with (2) we find K-1-4 = -{(r+1) (k+ds)/u,

v/K = (k~r)/(d-r). From (2), we also find v-1-k = k(r+1) (-s-1)/u,
whence by (15),

_ R(k-r) o _RA _ . _ -R(k-d) _
b = d-r ’ g-R = X R——k = (s+1)t ,
—w _ —R(k+ds) _ _ _ Rs(k-d) _

PR = 3751 " R T x(=scmy ~ st

This implies (12). Since d < k, s < —y and R » O we have t > O, hence
P < . The case of negative blocks follows by interchanging the eigen

values r and s, and replacing t with -t. o
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Remarks. 1. Since t = 2(p~q), the number t in (12) resp. (13) must

be a positive integer.

2. If (F,ﬁ}) is a partially balanced design and I' is not complete
multipartite then T is connected, whence (F,Z}) is a partially ba-
lanced design with p and g interchanged. Hence for the proper choice

of T we will have p < g, and all blocks are positive.

Proposition 7

In a semiregular partially balanced design with positive blocks, the

number b of blocks satisfies
b > £+1, (16)

where f is given by (3). Equality holds iff any two blocks intersect

in the same number of points.

Proof. This is a special case of a theorem for 1%-designs given in

Neumaier [12]. o

In the terminology of statisticians, b = f+1 characterizes the linked
designs. If we dualize a linked design we obtain a 2-design with only
two intersection numbers p and g, i.e. a quasi-symmetric 2-design.

This is the topic of the next section.

3. Quasi-symmetric 2-designs

A 2-(v*,k*, *)-design consists of a set P of v* points and a collection

'B of b* blocks such that each block consists of k* points and every
pair of points is in A* blocks. Then every point is in a constant

number r* of points, and the relations
b*k* = r¥*y*¥ ’ r*(k*—‘[) = )\*(V*-1) (17)

hold (see e.g. Raghavarao [15]). A 2-design is called quasi-symmetric

if any two blocks have either p or g common points, p < g, and if both
possibility occur. Goethals and Seidel [7] showed that the graph T
whose vertices are the blocks, adjacent if they have g common points
(the block graph) is strongly regular. We denote its parameters as in

Section 1.
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Proposition 8
For each point x € P, the set S(x) := {B € B |x € B} is a positive

regular set of the block graph with valency d and nexus e given by

d={((k*=-1) (3*-1) = (r*-1) (p-1))/(q-p), e=(k*i*-r*p)/(g-p). (18)

Proof. Fix x € P. For each block B, denote by eg the number of blocks

through x adjacent with B. We count in two ways the number s(x,B) of
pairs (y,C) such that x,y € C, vy € B, vy # x, C # B. If B € S(x) then

X € B and eB(q—1)+(r*—1—eB)(p41) = s{x,B) = (k¥-1) (A*-1) whence
eg = (k*=1) (A*=1)=(r*-1) (p=1)/(g-p). If B ¢ S(x) then x ¢ B and
qu+(r*—eB)p = s(x,B) = k*)1* whence e = (k*rx*-r*p) / (g-p) . Hence each

set S(x) is a regqular set with valency and nexus given by (18). By
Proposition 4, the dual of a quasi-symmetric 2-design is a semiregular
partially balanced design. Hence, since p < g by definition, S(x) is
positive by Proposition 6. s}

Proposition 9
The parameters of a quasi-symmetric 2-designs can be expressed in

terms of the parameters of the block graph as follows:
v*¥ = f+1, k* = (f+1)e/(k-r), p = k¥+st, g = k*+(s+1)t, (19)

b* = v , r¥

ve/(k~r) , A%

1

r¥-(r-s)t, d = e+r , (20)
with a positive integer

k* (k-r-e)

Rl vy perer )

(21)

Proof. The results of the last section apply with
v = b¥, b = v¥*, K = r¥*, R = k*, (22)

By Proposition 7, v*¥ = b = f+1 since the dual of a quasi-symmetric
2-design satisfies the equality condition. If we solve the first
equation of (12) for R and substitute (22) we find k* = ve/(k-r) =
(f+1)e/ (k-r) and obtain (19).

From Proposition 1 we have d = e+r. From (17) we find r* = b¥k*/v¥ =
vk*/(£+1) = ve/(k-r) and (v*-1) (r*-i*) = r*(v*-k*) = ve(f+1) (k-e-r)/
(k-r)2 = tvk(-s-1)/(k-r) = tk(k-s) (-s~1)/u = t(r-s)f = t{r-s) (v¥-1),

using (2) and (3), whence r*-i* = t(r-s), A* = r*-t(r-s). Therefore
(20) holds.
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Substitution of R = k* and d = e+r into the second equation of (12)

gives (21). Finally, t = g-p is a positive integer. u]

For further reference we note the formula

(k-=r) (u+s(k-s))

v = f41 = -
(r-s)u

(23)

which follows from (3) by a simple calculation.

Proposition 10

For a quasi-symmetric 2-design with connected block graph,

b* < %V*(V*—T).

Proof. For connected strongly regular graphs s < -1 whence q < k*, so

a result of Cameron and van Lint [5; Prop. 3.4] applies. a

Proposition it

The complement of a quasi-symmetric 2-design is again a quasi-symmetric

2-design; the corresponding block graphs are isomorphic.

Proof. The new blocks are the complements of the old blocks. Two
adjacent old blocks have complements intersecting p = v*-2k*+p points
two nonadjacent old blocks have complements intersecting in

g = v*-2k*+g points. Since p < g the two block graphs are isomorphic.

We now consider some particular classes of quasi-symmetric 2-designs.

Class 1. Multiples of symmetric 2-designs. In a symmetric 2-design,

every block contains k* points and any two blocks intersect in A < k*
points. The design consisting of m > 1 copies of the blocks has inter-
section numbers p = X and g = k*, hence is quasi-symmetric; the block

graph is a disjoint union of cliques.

Class 2. Strongly resolvable 2-designs. A 2-design with v* points and

b* blocks is strongly resolvable if the blocks can be partitioned into

(the minimal number of) b*-v*+1 classes such that every point occurs in
the same number of blocks of each class. By a theorem of Hughes and
Piper [10], strongly resolvable 2-designs are quasi-symmetric, and the

block graph is a complete multipartite graph.
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Class 3. Steiner systems with v* > k*z. A Steiner system S(2,k*,v*)

is the same as a 2-(v*,k*,A*)-design with 2* = 1. Since two points

are on a unique block, two blocks intersect in O or 1 point. Hence
Steiner systems are quasi-symmetric. Their block graphs are the Steiner
graphs, cf. [11]. The excluded Steiner systems with v* < k*2 are

affine planes (v* = k*2) belonging to class 2, projective planes

(v¥ = k*2—k*+1) with only one intersection number, and the designs

with only one block (v* = k*) with no intersection number.

Class 4. Residuals of biplanes. By results of Hall and Connor [8;

Lemma 4.1, Thm. 3.2], every 2-design with parameters v* = (2), k* =n-1,
A¥ = 2, r* = n+1, b* = (n;1) is quasi-symmetric with intersection
numbers p = 1, g = 2, and is the residual design of a unique biplane

(= symmetric 2-designs with A = 2). The block graph is the complement
of a triangular graph T(n+1). The known biplanes (see Cameron [4])
realize the cases n=3,4,5,6,7,10,12,14, sometimes with several non-
isomorphic solutions. The Bruck-Ryser-condition for biplanes excludes

infinitely many values of n, starting with n = 8,9,11,13,... .

Theorem Q

(i) A quasi-symmetric 2-design with disconnected block graph is of

class 1.

(ii) A gquasi-symmetric 2-design with complete multipartite block
graph is of class 2.

(iii) A quasi-symmetric 2-design with p

It
(o]

g =1 1is of class 3.

(iv) A guasi-symmetric 2-design with p = 1, g = 2 is of class 4, or
a 2-(5,3,3)-design.
Proof. (i) A disconnected strongly regular graph is a disjoint union

of > 2 cliques of the same size m. By Example 1 of Section 2, positive
reqular sets have d = k. By Proposition 8 and equations (14), (20) we
hence have kq = Rd = k*¥k, or q = k*. Therefore, adjacent blocks contain
the same points, and the blocks of the design form copies of another
2-design BPB'. Since two nonadjacent blocks intersect in the same num-

ber p of points, }g' must be a symmetric 2-design.
(ii) This is part of Theorem 5.3 of Beker and Haemers [1].

(iii) p = 0, g=1 implies that two blocks have at most one common point.

But two distinct points are in A* > 1 blocks whence A¥ = 1.
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(iv) 1If p =1, g = 2 then (19) implies that t = 1, k* = 1-s, and using
(22),

(k-r) (1-s) _ (s-1)(r-s)u
f+1 T u+s(k-s) ' (24)

Now (20), (2) and (24) imply that e+sr* = etsve/(k-r) = e+s(k-s)e/u =
(u+s(k-s))e/u = (s=-1) (r-s) whence e = -r mod s. Hence for a suitable

integer i,
e = -si-r, d = -si. ' (25)

Equation (21) implies 1 = (1-s) (k-d)/k(-s~1) whence k(-s-1) = (1-s)k-
(1-s)d, 2k = d(1-s), and by (25),

1is(s-1). (26)

k=5

If we insert (25) and (26) into (24), observe that u = k+rs (by (2)),

and simplify, we find the relation
. 2 . 2.
(2r+s(i=-1))" = (i+1) (2i-s"(i-1)). (27)

Now (26) implies that i > O.
If i = 1 then by (27), (25), (26), (23), and (2) we find

d d+2 d+3

d+1 _ _
)y U=(2)l f+1—(2)r V“(z)

r=1, s=-d4, e=4-1, k= ( 5

whence by (19) and (20),

d+2

V*=(2)r

K* = d+1, A% = 2.

Therefore, the design is of class 4.
If i > 1 then (27) implies O < 2i-s’(i-1) whence (s%-2)(i-1) < 2. This

is only possible if i = 2, s = -2. In this case we obtain as before

r=1%, s=-2, e=3, k=6, p=4, £f+1 =5, v=10,

which is the second alternative in the statement. o

Note that there is a unique 2-(5,3,3)-design, consisting of 5 points

and the 10 possible point triples. Its complement is of class (iii).
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4. Exceptional quasi-symmetric 2-designs with few points

We call a quasi-symmetric 2-design 33 exceptional if neither 23
nor its complement is in class 1, 2, 3, or 4. There are fairly many
feasible exceptional parameter sets with a small number of points.
By Proposition 11 it is sufficient to consider designs with

k* < %v*, and a list of all possibilities with 2k* < v* < 40 was
compiled as follows. Using the necessary conditions given in
Neumaier [11], [14], we calculated the possible parameter sets for
strongly regular graphs with £ (= v*-1) < 39 which were connected
and not complete multipartite. For each "graph" obtained we checked
whether there are one or more values of e such that the parameters
resulting from Proposition 9 are integral, and 2k* < v*. Then the
designs belonging to class 3 and class 4 were deleted. To rule out
some of the remaining 36 "designs" two further existence tests were
applied; they can be considered as analogues of the Krein condition

[16] and the improved absolute bound [14] for strongly regular

graphs.

Proposition 12

The parameters of a quasi-symmetric 2-designs satisfy the inequality

B(B~A) < AC, (28)

where
l A = (v*=1)(v*-2), B = r*(k*-1)(k*-2), (29)
C = r*d(g-1) (g=-2)+r* (r*-1-d) (p-1) (p-2) . (29)

Equality holds in (28) iff any three distinct points are in a con-

stant number of blocks.

Proof. For distinct points x,y,z, denote by Axyz the number of

blocks containing x,y, and z. Now fix a point x, and take the follo-



21

wing sums over all pairs (y,z) with x # v # z # x. By counting

suitable configurations in two ways we find } 1 = A, } Axyz = B,

X Axyz(xxyz—1) = C, given by (29). Hence the average value of Axyz
LT -, 2 -, =2 2 _
is X = B/A, and O < E(Axyz—x) = (C+B)-2)B+A A = C+B-B“/A =
(AC-B(B-A))/A, from which the assertion follows. o
Proposition 13
If for a quasi-symmetric 2-design

b* = %v*(v*—1) (30)

then (28) holds with equality.

Proof. By a result of Cameron and van Lint [5; Prop. 3.6], equa-
tion (30) implies that the design is a 4-design. In particular,

the equality condition of Proposition 12 is satisfied. o

Proposition 12 is quite powerful, and eliminates 12 of the 36 cases.

As an example, for the parameter sets

v* = 27, k*

7, A* =21, r* =91, Db* = 351,

p =1, q =3, 4d 60, e 28,

equation (30} holds but (28) is satisfied with strict inequality.
Unfortunately, all parameter sets with b* < %v*(v*-1) pass Propo-

sition 12. But one of them,

v¥ =19, k* =17, A* =7, r* =21, b* =57,

p =1, q =3, d 18, e = 14

is impossible since no strongly regular graph with corresponding

parameters



272

No Ex? v* k* ¥ P g v k A u d e
1 ? 19 9 16 3 5 76 45 28 24 25 18
2 ? 20 10 18 4 6 76 35 18 14 21 14
3 ? 20 8 14 2 4 95 54 33 27 27 18
4 ? 21 9 12 3 5 70 27 12 9 15 9
5 ? 21 8 14 2 4 105 52 29 22 26 16
6 ves 21 6 4 o 2 56 45 36 36 15 12
7 yes 21 7 12 1 3 120 77 52 44 33 22
8 ? 22 8 12 2 4 99 42 21 15 21 12
9 yes 22 6 5 o 2 77 60 47 45 20 15

10 yes 22 7 16 1 3 176 105 68 54 45 28

11 yes 23 7 21 1 3 253 140 87 65 60 35

12 ? 24 8 7 2 4 69 20 7 5 10 5

13 ? 28 7 16 1 3 288 105 52 30 45 20

14 yes 28 12 11 4 6 63 32 16 16 16 12

15 ? 29 7 12 1 3 232 77 36 20 33 14

16 yes 31 7 7 1 3 155 42 17 9 18 7

17 ? 33 15 35 6 9 176 45 18 9 27 15

18 ? 33 9 6 1 3 88 60 41 40 20 15

19 ? 35 7 3 1 3 85 14 3 2 6 2

20 ? 35 14 13 5 8 85 14 3 2 8 4

21 yes 36 16 12 6 8 63 30 13 15 15 12

22 ? 37 9 8 1 3 148 84 50 44 28 18

23 ? 39 12 22 3 6 247 54 21 9 27 12

Table 1. Quasi-symmetric 2-(v*,k*,)A*)-designs with intersection numbers p,q

and block graph parameters v,k,A,u; subgraphs induced by a point have valency
d and nexus e in the block graph.
The list covers all designs with 2k* < v* < 40 not characterized by Theorem Q.
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exists (see Wilbrink and Brouwer [17]). There remained 23 para-
meter sets, listed in Table 1. The entry 'yes' under the hea-
ding 'Ex ?' indicates that a gquasi-symmetric 2-design with the sta~

ted parameters is known.

The designs No. 6, 7, 9, 10, 11 are well-known classical designs,
related to the binary Golay code (see Goethals and Seidel [7]).
Examples 9 and 11 must be the unique Steiner systems S(3, 6, 22) and
S(4, 7, 23) constructed by Witt [18]; indeed for No. 9, 10, and 11,
relation (28) is satisfied with eqguality, whence we have 3-designs,
and a counting argument similar to that of Proposition 12 shows that

No. 11 must be a 4-design.

Designs No. 14 and 21 were constructed by Peter Cameron (personal
communication) from the symplectic group Sp(6,2), and design No. 16
was realized by Andries Brouwer {(personal communication) as the set
of all planes in the projective space PG(4,2); in fact, these are

the first members of 3 infinite families of quasi-symmetric designs.

For No. 4, 17, and 23, no designs are known, but the block graphs
of Steiner triple systems with 21, 33, and 39 points, respectively,
have the parameters needed for the block graphs of No. 4, 17, and 23.

Perhaps this can be used for a construction.

It is hoped that Table 1 will challenge some readers to construct
a few more quasi-symmetric 2-designs, or to devise new existence

tests which eliminate some of the undecided cases.

Finally, we mention one more interesting feasible varameter set:

v* = 56, k* =16, A* =6, r* =32, b* =177,

p =4, q =6, d =6, e = 4.
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The block graph has parameters

vk =77, k* =16, A* =0, u* = 4.

These are the complementary parameters of the block graph of

S(3,

6, 22), which might be a good start for a construction.
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Abstract. The paper considers a special chapter of the theory of asymptotic methods
in enumeration. While the general theory has been covered by an excellent exposition
of Bender [ll, we mainly consider relative frequencies for relational systems of a
special kind within a general class of configurations. We give a survey of results
and try to emphasize the intuitive ideas behind the formal results.
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Systems with a priori structures and Lynch's theory.
Further results on asymptotic 0-1 laws: Random graphs.

Sy O Bow N =

Conclusion.

1. Introduction. Let {cn}n €N
as the cardinality of a set ¢(n) of configurations with parameter n. The general pro-

be a sequence of natural numbers, where h is interpreted

blem is to determine the behaviour of <, forn-> o,

The special problem is to compare C(n) with a set B(n) of basic configurations which
are counted by a sequence {bn}n N’ and to determine , with the help of bn' In
particular, we are interested in the quotient q, = Cn/bn' If the 1imit of a, exists
for n -« and is equal to 0 or 1, we say that ¢(n) fulfills an asymptotic 0-1 law in

the basic class B(n), and in the l-case we write for short cnrvbn as usual.

In some applications, bn is easily computed. Then an asymptotic 0-1 law yields infor-
mation on the growth of e It determines the order of growth in the case of a 1l-Taw
and gives at least an upper bound in the case of a O-law. Thus, we are not ambitious
enough to calculate <, via bn up to an additive error; we only expect first approxi-
mations for 1 with respect to quotient behaviour. On the other hand, it is our aim

to find general results for a wide range of basic configurations and - given a class
B(n) - for as many types of configurations ¢(n) in B(n) as possible.

In general, we assume that B(n) is determined by some characteristic property or basic
condition g, and that ¢(n) is defined by what we call a special condition £ . The

results will depend on the growth of bn which can be measured by properties of gene-
rating functions. By

o

B(z) = = bnzn and b(z) = = "

n=0 n=0 "
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now we cannot even fit corollaries of their result into the general proof method
which we want to describe here. In the following sections we shall investigate,

whether (and if yes how) these examples of asymptotic 0-1 laws fit into a more

general framework.

2. Parametric conditions and Blass-Fagin Properties.

It has been proved that the asymptotic equality Bnrvﬁ%—bn is correct for a large class
of basic properties; here bn and Bn mean the number of labelled and unlabelled basic
configurations, respectively. Example 2 can be generalized to the so-called basic
parametric conditions.

In order to keep things simple, we only consider configurations over one k-ary relatio
R with k = 2. As an example of a parametric condition for a basic property in the
language of one binary relation we take

& = Vxl(walxl) AVXq ><2(><1 X, (Rx1x2—>Rx2x1)).

This condition means that R is an ordinary graph.

Another example is the following one for tournaments.
L = VX1(1 Rxlxl) AVXIVXZ(XI ¢x2<+(Rxlx2++1 szxl)).

In general, by a parametric condition (cf.Oberschelp[1l7 ],p.298) we understand a con-

Jjunction of universal formulae

& = vx M (xq)
A VX1VX2( ¥ (Xlgxz) —’Mz(xlgxz))
A A vxlvxz...vxr( *(xl’XZ"'"Xr)"Mr(Xl’XZ"'"Xr))
A . A

vx1VX2...vxk( ¢(xl,xz,...,xk)-»Mk(xl,xz,...,xk)).

Here each Mr is a purely propositional formula in atomic expressions in X5 weeXy
such that for the sets of variables we have 172 k

{Xs yevasXs F = {XyseeusX ) .
iy i 1 r

Furthermore, *(Xl"“’xr) is an abbreviation for the formula expressing that all the
variables XiseeesXy, have different values. The properties of being a direct graph,
tournament, m-graph, plex etc. can be expressed by parametric conditions. The idea
behind this concept is the following. A parametric property defines a class of re-
lations which can be determinded by theindependent choice of values (parameters) in
fixed regions of the adjacency array. Thus, for instance, a directed graph, possibly
with loops, (i.e. a binary relation) is determined by fixing one of the values 1 or O
in each position (x;) of the diagonal (which means, that x is a loop or not) and one
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we understand the ordinary and the exponential generating functions for the sequence
{bn}r1€W' It is well-known that - if the radius of convergence of the indicated power
series of the complex variable z is greater than zero - the function theoretic be-
havior of B(z) and b(z) yields information on the growth of bn'

We start with three examples.

Example 1:

Let B(n) be the set of all binary relations over a finite domain N, say N = {1,...,n}.
Define C(n) to be the class of those binary relations which fulfill the special
condition

o

vx3y Rxy.

Formally and systematically the condition & for the basic property is the empty con-
dition in the language of one binary relation symbol R. Obviously, we have
2
bn = 2", and it is easy to see that Cy = (Zn -l)n,
since in every row of the nxn adjacency matrix of R there are 2" -1 choices of zeros
and ones - the only forbidden row is the row consisting of zeros only. Furthermore,

it is easy to see that for the special condition

£ = IxVyRxy

the number of configurations is c(n) = 2
For instance, for n = 10 we have

b, = 1.26765 - 1030
c, = 1.25533 - 1030
¢, = 0.01233 - 10%9,

In our terminology, c(n) fulfills a 1-law and ¢(n) fulfills a O-law in the basic set
of binary relations.

Example 2:

We consider the so-called asymptotic counting problem for unlabelled binary relations,
graphs, tournaments and other simple types of basic configurations. In other words,
we are counting isomorphism types.

For instance, Tet B(n) be the class of isomorphism types of binary relations, and let
C(n) be the class of those isomorphism types which are invariant only under the trivia
vertex permutation e. Those structures are sometimes called rigid. It is well-known
that here again we have an asymptotic 1-law (cf., for instance, Oberschelp [16], Wright
[19] and Harary-Palmer [101).



279

The problem of enumerating unlabelled structures deserves a special comment. The so-
Tution is usually given by Polya's counting theory which interpretes B(n) as the set
of orbits of a permutation group I acting on the class of all labelled basic configu-
rations. We will denote the unlabelled numbers by capital letters.
The well-known Frobenius-Burnside-Lemma, which is the heart of Polya's theory, counts
the number of those orbits according to the formula
B, = — I f(9),
IT! ge€er

where fl(g) is the number of unlabelled basic configurations which remain fixed under
g. In this example, we cannot evaluate Bn directly. In order to prove the asymptotic
1-law we show as a central proposition that
(*) Tim %lB__flg_

n-c n

= 1.

This means that the first term (corresponding to the trivial element ¢ of ') of the
Frobenius-Burnside formula for Bn determines as a main term the asymptotic growth of
Bn' Here bn = fl(e) is of course the number of Tabelled basic structures (in this
example bn=2n2), since each basic structure is fixed under the trivial permutation,
and {T'| is n!,

It is easy to prove the asymptotic 1-law Cnann using (). We note that

n!
n!Cn-+7T(Bn -C) 2 by

since applying the group T to one of the Bn —Cn isomorph#mtypes, which are invariant

Lo . [ .
under some nontrivial element of T, yields at most %f—d1fferent1y labelled basic con-
figurations. This is equivalent to

c

- n n_o_
C.z2 Bn or = ZﬁT§; 1.

n

S o
—3
[oe)

n
For nse the right side tends to 1 by (%), and, since Cn;;Bn, we have Cn ~ Bn'

As an example for (%) we note for the case of binary relations that
B

564

8T

"

4.582971 - 1014, while for 1 bn we have the value

8 [T]

4.575085 - 1014,

Example 3:

As a further example for the technique of getting information on the growth of bn via
the order of growth of c, we mention the famous theorem of Kleitman and Rothschild
[11] on the asymptotic behaviour of the number bn of partial orders. They count partia
orders of a special kind by 1 and show that almost all partial orders are of this
special kind. There is a lot of ingenious ad hoc argumentation in their proof; up to
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of 4 values in each upper right position (xl,xz). Each value codes one of the 4 possi-
bilities
Rxlsz szx1
or RXIXZA . szx1
or - Rx1x2 A szx1
or . Rx1x2 A Rx2x1 .

The figure shows the two parameter regions for binary relations.

Figure 1

Parameter regions

If we consider ordinary graphs or tournaments, the parameter regions remain the same.
This time, however, we only have one choice in the diagonal and two choices in the
right upper half. Though the two choices in the second parameter region have different
meanings in the caseof graphs and tournaments, we have essentially the same combina-
torics for the number of ordinary graphs and of tournaments.

A simple counterexample, which is not parametric, is a formulation of transitivity,
which is needed to define partial orders for irstance:

VX1VX2VX3((X1 FXo AXpEXZAXS # x3) ~»(Rxlx2 ARX,X4 —>Rx1x3)) .

Here the atoms such as Rxlx2 do not contain all the variables of the prefix. In gene-
ral, no quantifier sequence which is Tonger than the place number of the relation R
can fulfill the condition for parametric properties.

Theorem 1: If & is parametric, then B, m:?%bn

Proof: See Oberschelp [17].

According to this theorem, relation () of section 1 holds. We have, therefore, again
the result that almost all parametric relations are rigid. Moreover, we can calculate
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bn explicitly from a certain normalization of condition & , as explained in the proof.

As a generalization of Example 1 we consider the following situation.

Definition:Let ¥ be a basic property. If for each condition %, written in the
language of first order logic with identity, there is a 0-1 law, i.e.

c
Tim Bﬂ' exists and is Oor 1 ,

N N

then & 1is called a Blass-Fagin property, or BF for short.

Here we understand by 1N the number of models with n vertices for the condition£ A &,
i.e. we restrict ourselves to basic configurations. Blass-Harary [2] and Fagin [9]
have shown among other results the following

Theorem 2: The empty condition, the graph condition, etc., considered as basic property,
are BF.

In the light of this result, the 0-1 theorem in Example 1 is a corollary since the
conditions £ and £ used there are of first order. Thus BF-properties are a good source
for getting asymptotic approximations. If Tim a, = 1 (this can even be decided effec-
tively), then we have approximated h and bn by each other.

As a generalization of the results of Blass-Fagin we have

Theorem 3: A1l parametric conditions, considered as basic properties, are BF.
The proof is sketched in Oberschelp [18].

It is plausible that not every condition £ , written in the language of first order
logic with identity, can be BF, since the spectrum of those values n which are cardi-
nalities of models for # can be very irregular. As an example - admittedly usually
not written in the language of one single relation - choose & as the conjunction of
the axioms for the theory of fields.

As an aid in the search for more BF-properties beyond the class of parametric con-
ditions let us now note some properties of parametric conditions % .

(i) In all non-trivial cases the numbers bn of (labelled) n-vertex models for & are
strictly increasing. Moreover, the functions bn are growing very fast such that the
convergence radius of the generating series

B(z) = anzn

and even of the exponential generating series

b(z) = ):n—Tzn
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is zero. In fact, it fo]%ows from the explicit formulae for bn mentioned above that
bn grows at least as 2" 1o infinity for some ¢ > 0.

(i1) The growth of bn is monotonically regular in the sence that

b
E+1 tends to zero.

n

Thus there are no essential breaks in growth rapidity.

(iii) Models for & are always closed under induced substructures. This means that

we can remove vertices of models with their adjoining "edges" without violating pro-
perty & . This fact follows immediately from the definition type for parametric rela-

tions via universal quantifiers alone.

(iv) Configurations with a parametric property fulfill a condition of "internal rich-
ness". What we understand by this notion is explained best by analyzing Blass's proof
of the graph property being BF. In order to show that almost all models of ¢ also have
property £, we try to give a constructive proof of £ from&. We try to succeed by
elimination of quantifier changes of the form

Vxl...VXnayl‘..aymC(xl,...,xn,yl,...,ym)

within the condition £, beginning with the inner parts. If we could always do this,
we would obtain after a finite number of such steps a quantifier-free kernel which
could be decided in the usual way. Now we can show that in almost all models of a pa-
rametric condition &4 any statement of the form given above is true. This means in the
special case of graphs that, for any selection of n vertices XpsensXy there are m
vertices YooYy in the graph § which have the interconnection pattern (among

X esX, and yl,...,ym) which is expressed by the kernel C(Xl""’xn’yl""’ym)‘ It
can be shown that richness conditions are highly probable if ¢ 1is big enough.
Interestingly enough, it is difficult to give explicit examples for graphs which ful-
fi1l richness conditions. The so-called Paley graphs are essentially the only known
models with such a behaviour, which is true for big "random" graphs. As an example,
we consider the Paley graph with 17 vertices and %(%Z) = 68 edges. Here two vertices
are joined if their difference is a quadratic residue mod 17. The graph in Figure 2

fulfills the richness conditions
VxIVxZVXSEIyl( (x1 Xy AX] EXGAXS * x3)->(Rx1yl ARXoY A= Rx3y1))

and
Vx1Vx2Vx3EIy1((x1 Xy MK EXGAX # x3) - (Rxly1 A= sz\y1 A= Rx3y1) ).

This was shown by Exoo [8].
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Figure 2:

Paley graph of
order 17

It is only fair to remark that also negations of richness conditions would suffice to
prove an asymptotic 0-1 law, since we could try to refute £ dually and would then
end up with an asymptotic 0-law. Thus we can summarize: the validity of either a

richness or a poorness condition is the key to success in proving that a condition
L is BF.

3. Compton's theory of slowly growing numbers. We have extracted the properties (i)

to (iv) in the last section, since it is our feeling that properties of this kind
could Tead to BF properties. On the other hand they characterize what we would like

to call an elementary data structure. Such structures should be available in big
numbers (cf. property (i) and (ii)), they should be highly resistant against structure
manipulations (1ike property (iii))and they should - if big enough - also be rich
enough to contain almost always all types of interconnection patterns between vertices
(as explained in (iv)). Thus we should like to maintain the working thesis that ele-
mentary data structures are exactly those configurations, which fuifill a BF con-
dition. It is in the spirit of this program that we try to find a complete characteri-
zation of BF properties under assumptions such as conditions (i) to (iv). In particular,
we would like to discover BF-conditions & beyond the parametric relations.

In a remarkable paper by Compton [5]an explanation of this kind is given. Compton
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considers those first order basic properties 24 which obey some weak forms of the
above conditions. He assumes, as a generalization of (ii), that 1im n#Eﬁl-always
exists. In this case, the 1imit gives the radius R of convergence of the exponential
generating function X

n

b(z) = = —J% z .

>

If R>0, or if b(z) is an entire function, then deep methods of the theory of functions
(1ike Tauber-theorems and famous theorems of Darboux and Hayman {cf. Bender [1] pp.498
and pp.506)) can be used to determine the growth of the coefficients bn' Here we simpli-
fy the situation by assuming that the growth of bn is known from sources whatsoever.
Furthermore, Compton assumes a special closedness under substructures namely under
removal of connectivity components (cf.(iii), see also (v)).

Finally, he assumes a manipulation property, which is not necessarily true for para-
metric relations but gives the theory a special touch with respect to decomposition:
(v) There is a natural notion of connectedness in parametric relations, and each class
defined by # is closed unter disjoint union of connectivity components: We call ver-
tices x and y directly connected if there is a relation tuple of R containing x and

y. Then arbitrary connections between two vertices are defined using the reflexive
and transitive closure of the direct connection relation; finally, the equivalence
classes arising from connectivity are called the components of a parametric configu-
ration.

The results of Compton characterize a basic property % as BF in terms of a radius of
convergence of b(z). In the proofs there appear analogues of richness-poorness con-
ditions in the sense of condition (iv). They are needed in proof-refutation attempts
for £ and turn out to be almost always true. But in contrast to the situation in
parametric relations, the theory of Compton only works for slowly growing coefficients.
It is, therefore, not surprising that the instances of condition (iv) which occur in
the proofs appear to be poorness conditions. They state that for a certain type &

of finite connected substructures with condition % , there are not exactly j compo-
nents in the structure, for which we want to prove or disprove condition£ . There is
a lot of technical model theoretic argumentation in the proofs which are behind this
idea.

The main result of Compton can thus be summarized as follows.

Theorem 4: Let the assumptionsbe as above. If the radijus R of convergence of b(z)
satisfies R>0, then

& is BF if and only if R =e.

Before giving examples, we comment on the appearance of the exponential generating
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function in this proposition. At first glance the trick of dividing by the factorials
seems to give just the right measure to bring the growth of bn and the BF-property
into proper coincidence. But inherent in the proofs is also always the well-known
exponential theorem, which counts under manipulations - right in the technique of
exponential generating functions ~ the numbers bn of models of a given cardinality
via the numbers dn of connected models as follows (cf.Harary-Paimer [8], p.8 for
graphs and Compton [5], p. 19 for the general case):

b
s —Q—zn and d(z) = = —2 z
n! n!

[o8

n

Theorem 5: If b(z) , then

g 4@ | @)

b(z) m!

It

A corresponding technique is not available for ordinary generation functions.

Theorem 4 covers the case of labelled enumeration. We mention that for unlabelled
enumeration there is an analogous theory and an analogous concept of BF-property,
which uses ordinary generating functions. Since the numbers Bn are positive integers
from their combinatorial meaning, an ordinary generating function

B(z) = £ B2
in this field can never have a radius of convergence S greater than 1. Again we get
a characterization using the shortest possible growing order with respect to conver-
gence radius.

Theorem 6: Let the assumptions be as above.

If the radius S of convergence of B(z) satisfies S>0, then

% is unlabelled-BF if and only if S = 1.

The application of Compton's theorems yields essentially negative results: If the

number of basic configurations is growing not too fast (i.e. R>0 or $S>0), only the
case of slow growth (i.e. R =« or S = 1) yields the BF-property. In the labelled case,
for instance, the range of applicability of Theorem 4 begins somewhat beneath the region

b, - gntog n 0(1) Therefore, there is no application to the case of partial orders,

2
(1+0(1))

n

where bn is about 2% {this follows trivially from the Kleitman-Rothschild result
mentioned in Example 3). The question, whether or not the basic property of being a
partial order is BF, cannot be answered by the general theory so far. Nevertheless,
Compton has announced (private communication) that he has proved the BF property of
partial orders directly, using the results of Kleitmann-Rothschild and the methods of
Blass-Fagin.
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Neither can the BF-question for various types of trees and forests be answered posi-
tively by Compton's theorems. Either the growth of bn is irregular such that assumption
(ii) fails (cf. for instance,[5], exampie 1.9), or the growth is regular but the num-
bers bn are growing too fast. The latter is the case for rooted trees, where R is posi-
tive and finite. Note that the asymptotics for tree enumerations are well-known since
the fundamental work of Polya and Otter (cf. [1] sections 7.2 and 7.4). Thus,by Theorem
4, we have definitely no BF-property in these cases.

One of the few new BF-properties is the case of equivalence relations (partitions of

a finite set). Here the bn - known usually as the Bell numbers - are growing just fast
enough to guarantee that R = = (as is well-known from work of Moser and Wyman [15]).
Here there is a clear indication of poorness in B(n), since we have only one type of
connectivity components for every cardinality; from this only few models arise in the
general non-connected case by the exponential theorem (Theorem 5).

For the unlabelled case, we have here the numbers Bn (usually named pn) of partitions
of the number n. It is also well-known that in this case S=1, i.e. the power series
p(z) = zpnz" has radius of convergence 1, since

1

n(1-z")
n

p(z) =

4ny3

In fact, by Ramanujan's work it follows that Py

Thus, by Theorem 6, we have an asymptotic 0-1 law for every first oder property of par-
titions . This result is weak, but general. Of course, the deep properties of parti-
tion theory are not first order. One applicable condition would be to postulate a
fixed number of components; to postulate an even number of components would, however,
not be an application.

4. Systems with a priori structure and Lynch's theory.

There is another possible extension of the situation in section 1, where we asympto-
tically counted (binary) relations which fulfill an additional special first order
condition £ . Now we assume that the vertex domain N = {1,...,n} hasya priori,a
certain structure which is described by the diagram of some relation S. We allow £
to be written with the additional use of this relation S.

Example 4: Let S be the (trivial) relation which is true for all x,y. Then any con~
dition £ using S can equivalently be written without using S. Since the basic set of
binary relations is BF, we have an asymptotic 0-1 law for each condition £ .
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Example 5: Let S be the cyclic successor, i.e., Sxy means y =x+1 mod n.
Consider a condition such as

L=V x 3y(Sxya Rxy).

General problem: Under which assumptions on S does a 0-1 Taw exist for every condition
&L in the first order language of R and S?

For the special example £, the relative frequence of the number of relations which
fulfill & in the class of all relations is q, = L which tends to zero.

n
Thus we have an asymptotic 0-law for this condition £ .

Example 6: We take S to be the natural <-relation on N with smallest element 1 and
Jargest element n. An easy computation shows that the relative frequency for the same
& has the value 9, = m(1 -—%). This converges to a limit 0.288787... different

from 0 and 1. 2

In this case we cannot have an asymptotic 0-1 law for each first oder condition & .

Lynch [13] has given an explanation for these different situations with respect to

0-1 laws. More specific, he gave a sufficient condition for the validity of a 0-1 law
in the situation described above (cf.[13], Corollary 5.10). Lynch defines a notion of
k-extendibility of the structure S. This condition is rather technical, but there
seems to be a clear intuitive background. The successor is a poor structure which
could be realized by few interchanges in different ways. On the other hand, for linear
orders the so-called Ehrenfeucht game cannot be won (by the second of two players).

This game means intuitively that the second of two players triesto answer to vertex-
choices of the first player in such a way that two isomorphic structures of k vertices
(where k is the number of quantifiers in the prenex normal form of £ ) have been created
in the end. The rule is that the first player can always decide which of the two
structures in progress he wants to complete, while the second player has to work with
the other structure at this step. Roughly summarized: The validity of an asymptotic

0-1 law for all £ appears as a consequence of the fact that here is a large stock of
choices with respect to the problem of finding many isomorphic substructures.

5. Further results on asymptotic 0-1 Taws: Random graphs.

The results on asymptotic 0-1 laws reported so far keep the range of £ fixed within

the first order conditions and try to be as general as possible for basic properties 5.
In this section we specialize on graphs.

Let us first keep the class of all graphs as the basic set of configurations. There

are special conditions &£ which cannot be formulated in first order language, but for
which there is an asymptotic 0-1 law; for instance, connectedness 3', hamiltonicity 5
(cf. Moon [141) and rigidity R (cf. Harary-Palmer {10] and the remarks about Example 2)
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While the result can be proved with respect to § as an implicational consequence from
the analogous first order result for connectedness with diameter two (cf. Blass-Harary
{2], Corollary 13), it can be proved that the properties 5 and & are not implied by
any first order condition & with an asymptotic 1-law. Therefore, no direct application
of the Blass-Fagin theory is possible (cf.Blass-Harary [2], chapter 3). Thus there are
positive asymptotic results which have been proved by special methods only.

Secondly, we turn to the most important field, where general first order arguments

have failed so far. This is the theory of random graphs, which was introduced by Erdos
and Renyi [6]. It is not our aim to give an exposition of this beautiful theory. For a
summary we refer to Bollobas ([3], pp. 144). We only want to give some indications how
the results of this theory fit into the framework for asymptotic 0-1 laws which we have
developed.

Usually, in random graph theory, the basic configurations for a given vertex cardinali-
ty n are the graphs with M=M(n) edges. Therefore, the edge function M(n) characterizes
the class B of basic configurations. The class of all graphs with n vertices and M(n)
edges is denoted by G (n,M(n)).

Some edge functions are of special interest in this theory. In particular, we define
Ma(n) =lanlog n] for a fixed number a.

Other edge functions such as |an] or La(g)J are also common in the theory of random
graphs.

For several of those basic structures there are again asymptotic 0-1 laws with respect
to single special conditions.
He consider the following examplie:

3 has a 0-law in the basic set G(n,M ;  (n))
?'5
3 has a 1-law in the basic set G(n,Ml (n)).

This is a corollary from early observations of Erdds and Renyi who Tocated the exact
threshold where the probability of being connected jumps from O to 1. It can also be
proved directly by using richness arguments (cf. Bollobas [3},p.139 and exercise 13,
p.143).

The same proposition with condition f instead of 3, can be deduced as a corollary
from recent results of Korshumov (cf. Bollobas, (3] pp. 141).

The introduction of edge numbers into the notion of basic configuration means to look
for asymptotic spectral 0-laws. The former results with the basic class of all graphs
appear as integrated statements and thus as corollaries of spectral laws.
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The figure shows the number of graphs for n=17 according to the edge number M and
indicates that connectivity and hamiltonicity happen to begin in a region given by
M(n);u%n1ogn¢s24, where there are relatively few graphs with such a Tow number of edges

m=Al
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Looking at the present state of randam graph theory it seems that our terminology for
asymptotic 0-1 laws is not fine enough to express directly all the information which

has been obtained by ad hoc methods. But beyond the desire for a uniform terminology

we should like to obtain general explanations, for instance,for the fact of threshold
which seems to occur for all graph conditions £ , which are monotone increasing (in

the sense that by adding edges to a given graph a monotone condition can never get lost).

We give an illustration of such a threshold situation by the following model, which
has been described by many authors in randam graph theory analogously. Consider a big
number N of big graphs with n vertices, where n is also big. We start with all the
graphs consisting only of isolated vertices. Then we add to each of the N graphsone
more edge at random. Thus all the graphs are in a process of evolution. Now we test
for a fixed monotone increasing property £ (like connectedness or hamiltonicity) and
Tet a bell ring if this condition is fulfilled for one of the graphs. Then we should
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expect a theory which explains generally why within a narrow bandwidth (depending
on £),almost all the bells begin to ring.

Finally we mention that even for conditions which are not monotone increasing,
asymptotic 0-1 laws occur. The theory of random graphs again presents those results
within an impressive collection of asymptotic 0-1 laws for various basic properties
and specific conditions. In order to cover those results by our terminology, it might
be necessary to introduce conditions and properties which make use of the cardinality
of the vertex set or of the edge set and will, therefore, in general not be of first
order. We try to formulate an outstanding example in this manner:

Let us consider the condition £ = aC n,p which says: For a graph g{ in the class Gp( )s

which contains all graphs with n vertices and relative frequency pof edges, the size

of the maximal clique of g is ld(n,p)] or [d(n,p)], where d(n,p) is the positive real
solution of th tio

e equation d(n,p)

n ( 2 )

(a(n,p)) * P -1

It follows from results of Bollobas and Erdds [4] that there is an asymptotic 1l-Taw
for £. This means in particular, that, if we check a big store of big graphs, all
with edge-probability p, what the size S ot the biggest clique might be, then in al-
most all cases the guess that s is in close proximity to d(n,p) is correct.

Again, for the case n=17 the following table shows d(n,p) for selected probabilities:

p d(n,p)
1/136 = 0.007353 2.00
0.1 2.91
0.25 3.85 Table
0.333 4.39 The most probable clique number for graphs
0. 5.685 with edge probability p and n=17.
0.8 9.93
0. 12.81
0.95 14.81
1 17

The methods of random graph theory are not easy to classify. But the hint that there
are often techniques for approximating the binomial by the poisson distribution and
for using the central 1imit theorem does not lead into the wrong direction.

6. Conclusion.

We do not believe that there will ever be a uniform theory for getting asymptotic
0-1 Taws in combinatorics which will cover all results, which are proved sometimes
with deep and laborious ad hoc methods. However, it should be an inspiring field of
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research for the future to develop uniform patterns of argumentation in this field
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Abstract

Let V be a set of cardinality v, ve IN. We are looking for the minimal number of
k-sets (i.e. subsets of V having cardinality k), such that every t-set of V, tsk, is
covered by at least A of these k-sets. This special covering problem is called the
generalized block design problem with parameters v,k,t,A. It is equivalent to the
problem of Turdn [16] and also to the generalized covering problem [4]. Therefore,

the known bounds for these two equivalent problems are also bounds for the generalized
block design problem and vice versa.

Using some type of greedy algorithm, we will compute an approximative solution for

an optimal generalized design with arbitrary parameters. The number of blocks in

such an approximation will be at most (1+1og(t))-t1mes the optimal number of blocks.
This result depends essentially on a theorem of Lovasz [111.

Introduction

Let A and B be finite sets and R a binary relation, R < AxB. The triple (A,B,R)

is called a covering structure or incidence structure. A subset A' of A with the
property that there exists for every b€B an a€ A such that {a,b)€R is called a
"cover of B". The aim is to find a so-called optimal cover of B, this is a cover
of minimal cardinality.

For example, the set-cover-problem {3] and the lottery-problem [12] are such
covering problems. There are several similar problems in the theory of Information
Retrival [13] and Operations Research [19].

A special case of these general covering problems are incidence structures of the
form ([V]k, [V]t, R). Here V = {1,...,v}, t<sk=v, [V]k and [V]t are the sets of
all k-sets and t-sets respectively of V, and a t-set b is incident with a k-set

a if and only if b is contained in a. A k-graph A' is a subset of [V]k and an ele-
ment of A' is called a block. A k-graph A' is called & block design with parameters
(v,k,t,x) if and only if v,k,t,A € IN, v > k > t, and every t-set of v is contained
in precisely A blocks. For further details see Hall [5].
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A recent survey is contained Lindner and Rosa [10]. For an existence theory for
the case t=2 see R.M.Wilson [17].

Generalized Block Designs

Definition 1 Let V={l,...,v}, t,v,kEN with t<k<v. A k-graph A'< [V]k is called
a generalized block design with parameters (v,k,t,x) if and only if every t-set
of V is contained in at least A blocks of A'. Thus every block design is a generalized

block design.

Definition 2 Let t<k<v, and let c(v,k,t,») denote the class of all k-graphs G over
V. The problem: "Compute c(v,k,t,x) =min{IGl : Ge T(v,k,t,A)}" is called the
generalized covering problem (GCP).

Definition 3 Let t <k <v. T(v,k,t,r) is the class of all t-graphs G over V,

so that there exist at least A edges Tl""’TA of G with T15 K,1 <1i <2, for any
kﬁetKe[ﬂk.ﬂm problem: “Compute t(v,k,t,A) =min {1G] : Ge T(v,k,t,A)}" is
called the generalized Turan problem (GTP).

We have:

(1) The generalized block design problem (GBDP): "Find an optimal GBD" is equivalent
to the GCP.

(2) e(vskytyn) =t{v,v-t,v=k,1).
This means that all inequalities and bounds for Turan- or covering-numbers

are also approximations for the numbers of blocks in an optimal GBD.

Therefore, we can deduce some bounds for the number of blocks in an optimal GBD

from the following inequalities:

(3} (Schonheim [15])

tvkota) 2 e [y [ T red o,

where [ ] denotes the upper Gaussian brackets.
(4) (Katona,Nemetz,Simonovitz, see [4])
1-t
vy, ok v k-1
(D/(5) < tvakit,1) < (}) - G=p)
(5) (Spencer, see [4] ).

t
T(V,kst,2) z_(%) =)

Further intensifications can be found, for instance, in Gutschke [4].
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In most cases it is impossible to find an optimal GBD (ora generalized covering etc.)
Therefore, we are looking for a good approximation. There are many possibilities to
find an approximative algorithm for the problems mentioned. However, not all of them
run "fast enough".

We try to find an algorithm which runs in polynomially,in v, bounded time and is best
possible.

Some alternatives are perhaps:

(i) "brutal algorithm" : Check all possible GBD's and take the optimum

(not polynomially dounded) s

(ii) Choose the "nearest” exact block design having parameters (v',k,t,:r),
v'>vorv'<v, and introduce dummies (if necessary);

(iii) A kind of greedy algorithm with a special optimization function.

We will follow the third possibility, since it looks quite simple and there is
a good approximation for the number of blocks of the approximative design.

Remarks:

(1) Algorithms of type (ii) and certain types of (iii) can be found in [13].
In all the computations I did, the type-(iii)-algorithm which I will present
in the next chapter produced the best results.

(2) Perhaps one can associate with the GBD-problem a special NP-complete probiem
and it may be possible to reduce it to such a problem. This may be a justification
for choosing an approximative algorithm for the GBD-problem. I looked for such

a reduction, but I did not find an approximate NP~-complete problem. In [14] one

can find a lot of arguments and motivation for solving the GBD-problem with an
approximative algorithm. There is also mentioned another criterion of intractability
which is applicable to the GBD-problem (aswell as to Ramsey-numbers etc.).

A Greedy Algorithm for the Generalized Block Design Problem

The general greedy heuristic can be described as follows:

The greedy algorithm computes stepwise a "nearly" optimal solution. In each step
it chooses the best possible "subsolution" by a given optimization criterion.
The solution is thus the union of all subsolutions.

Remark 3: If the class of the considered problems has a matroid-(or, more generally,
a greedoid-) structure [7], then the greedy algorithm produces an optimal solution.
Unfortunately the class of the GBD-problems has not such a matroid-structure.
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The greedy cover algorithm (for hypergraphs):
Let H be a hypergraph. We denote the set of vertices by V(H), the set of edges by
E(H).
Problem: Compute a minimal subset C < V(H) with the following property :
for all e€E(H) there exists a c€C such that c€e.
“Solution": In each step choose a point v in V(H) having maximal degree relative

to the rest of the hypergraph (maximal rest-degree = optimization criterion).
ETiminate this point and all edges incident with it. The algorithm stops if the
rest-graph is empty.

Now consider a special kind of hypergraph Hb:

Let the set of vertices V(Hb) be [V]k. The set of edges is defined as follows:

Two k-sets of V(Hb) are in the same edge if and only if their intersection contains
a t-set T€ V1%,

It is clear that there is a l-l-correspondence between the edges of Hb and the

set of all t-sets. We have, therefore, the following

Theorem 1. The greedy cover algorithm, applied to the hypergraph Hb’ produces
a GBD with parameters (v.k,t,1). For a hypergraph Hb with multiple edges (each
multiplicity = 1) it produces a GBD with parameters (v,k,t,r).

For analysing the greedy cover algorithm we will use a theorem due to Lovasz [11].
For this reason we introduce the notion of p-matching.

Definition 4: Let H = (V(H), E{H)) be a hypergraph and let p be any integer.

(i) Ap-matching M of H is a (multi-)set of edges, such that each vertex x belongs
to at most p edges of M.
We write vp(H) = max {#edges in M: M is p-matching of H}.
(i1) A p-Matching M of H is called simple if and only if every edge occurs at most
once in M.
We write 3p(H) = max {#edges inM : M is a simple p-matching of H}.

Now we can consider the following result of Lovasz.

Theorem 2. Given a hypergraph H. The greedy algorithm may produce b covering points

Then
d(H) "
b < “i oAy,
i=1 TA+I) ~ d{H)

where d(H) is the maximum degree of the vertices of H.

Proof: Let bi be the number of steps in which the algorithm chooses a point of
maximum rest-degree i.
(Note that the rest-degree of the point which is selected in the j-th step is
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greater thanor equal to the rest-degree of the one which is chosen in the (j+l)-st
step).

Let ¢; =} b:,d=d(H),
j=1

and Tet Ei(H) be the set of all those edges of H which are not covered by any of the
prevailing chosen points. Finally, let V(Hi) be the set of points incident with the
edges of Ei(H) and define

Hy = (Vi(H), E4(H)).

By the construction it is clear that the maximum degree d(Hi) of Hi is at most i,
since the point which is chosen in the (c1+1)—st step of the greedy cover algorithm
has maximum rest degree i1 (compare the definition of Ci)'

Therefore, we have

(6) el <3 .
IE(Hi)\ > 31 would imply that E(Hi) contains more edges than a maximal i-matching
of H. This is a contradiction, because each edge of E(Hi) contains at most i points.
In each of the next bi steps the algorithm selects a point which covers i new

(i.e. not yet covered) edges of E(Hi). In the following b1._1 steps each of the
selected points covers exactly i-1 new edges and so on. These arguments imply

(7) E(HO] = iby + (i-1)b,_; + oo + 2by 4D

271

and, by (6), we have

1b.+...+2b2+b-153. 1<i<d.

i i 2
Multiplying the i-th of these inequalities, 1 < i < d-1, by 1/i(i+l) gives
A%

vy

i 2 1 - ]
(8) TTT?I)bi ot Tt t TOELY b1 < T ¢ l<ig d-1;
and by multiplying the d-th inequality by 1/d we obtain
N
1 2 1 Vd
(9) adbd + ...+ Hbz + abl ST

The summation over all the left sides of (8) and the left side of (9) yields

ol &g st g
izl ( jzl ey 05 )t jgl ab; s jzl JOy T T

This is equivalent to



1
b1 ( 1%7 + 2%3»+ el * LIGE) + %.) + b2 ( 2§§ + QEE L qAET) + %-) +

i i 1
.+ bi ( T6E3) + CENIE + ...+ H(H:T7‘+ a-) + ..t bd
N Y v} n

Y1 Y2 Vd-1 Vd

Trtzs teetaEny td

IA

Since the coefficients of the bi's are all equal to 1 (by using associativity),

we finally obtain
¥ Vg ¥

_ 1 d-1 d

b = b1 tootbySsym Lt HTH:17'+ I

This is exactly the assertion of Theorem 2.

In the case of the GBD-problem (see above) we have for the special hypergraph Hb:

(10) d(H) =d = (%), and

b)
(11) for a simple p-matching the equality
v-t k
Il <o) 7 God) = pe(Y) 7 (§) holas.
Consequently it follows that

n
v

s /()

Now Theorem 2 implies

b/ () T 35D/ & v,
i=1
. 2 < 1+log(k
i.e B;;; 0g(;)

Using the equalities

v

(12) ¥, = () = c(vakats((71)-p) and

(13) %p = (K) - c(v,v—t,v-k,(z:t)-p), respectively,

we can derive better evaluations for ¥ _, and also for b, if we replace the estimations
for the 3p's by the inequalities (3), (4) or (5) (or perhaps by better bounds for
Turan- or covering-numbers).
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Remark 4

&) The algorithm and the results above are still valid for 1 > 1. This follows by
a simple transformation.

b) The result B_JE__ <1+ log (t) gives an upper bound for the number of

opt

covering blocks in the greedy cover algorithm. The average case behaviour of the
algorithm may be much better, but it is not easy to compute. Several computations
showed that the solutions of the greedy cover algorithm diverge at most by 50%
from the optimal solution for a GBD-problem.

c) The complexity of the greedy cover algorithm is in 0(vt+k)

bounded in v when t and k are fixed.

, thus polynomially

Generalizations and Concluding Remarks

Definition 5 A generalized partial block design (GPBD) with parameters

v

). EN , 1 <1< (t

(v,f,t,@ s A= (Al,...,x ), is a set of k-sets

of V= {1,...,v}, called blocks, such that for every j€ {1,...,({)} the t-set of V
labelled j is contained in at Teast Aj blocks.

Analogous considerations as in the case of A= (As...52) yield the following result

_ () y
(14) b2 ¥
1 &)

In this case upper bounds for the value of b are very hard to compute because they
depend essentially on the parameters Ay l<ix (z). Some results are known in the
special case, where e {*,A+1} for some r€N, for all i =1,...,(¥). This is the
case of the regular generalized partial block designs (see, for instance, [2]).

Let us finally illuminate this generalized problem from another point of view.
Sometimes it may be useful to describe the GPBD-problem as an LP-problem (Linear
Progranming- proolem).

Label the (V) t-sets by T

v
t T v and the (k) k-sets by K

()

Define the incidence-matrix A between the t-sets and the k-sets by

A= (a;;) ", .M a;. = LT e Kj
ij? i=1,j=1 > “ij 0 ; otherwise

12000 1,...,K V) .

{

With this notation the GPBD-problem can be described as follows.
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. . _ : v
Find an optimal cover x = (xl,...,x ) s X eNj, 1si< (¢)ssuch that Ax = é

()

TS (?)

ox
v

z 0, x integer

If there is an optimal solution for (P), we can find one by using methods of
Operations Research (cf. [19]). Unfortunately the required algorithms are in general,
not polynomially bounded in v.

Another point of view may also be of interest.

Consider the dual problem of (P):

(%) )
max .Z A5
i=1
aly < } (OP)
N
s-t. y=zo integer
:\,_'\,’X 9 : J

(DP) is aweighted generalization of a problem of Brown, Erdds and Sos [1] and
equivalent to a generalized packing problem (see, for instance, [4] ). If we replace
2 by (Xse.usr)s 2 sNo, we have (P) as the GBD-problem and (DP) as the original
problem of Brown, Erdos and Sés. With a duality theorem in LP we obtain the following

Theorem 3. If the problem (P) (this is the GPBD-problem) has an optimal solution,
then (DP), the weighted form of the B-E-S-problem, has the same optimal
solution, and vice versa.

This means that the problems are essentially the same.
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A Graphic Theory of Associativity and Wordchain Patterns

Dov Tamari
175 W 76 Street New York, N.Y. 10023, U.S.A.

Abstract
1

The problem of deciding whether a partial binary operation, a "bin" {can be
embedded in a semigroup is the associativity problem (for general bins). It is
known that it is equivalent to the word problem for (semi)groups and thus unsolivable,
even for the class of finite bins. This paper establishes a close association between

bins and their wordchains and 3-connected 3-regular planar graphs, or, equivalently
convex 3-regular polyhedral nets (skeletons). This permits a constructive approach
revealing the combinatorial depth of the associativity problem in detail and leads
to a naturally enumerable hierarchy of standard wordchain patterns, of universal
bins, and of associative laws. Each bin is a superposition of homomorphic images,
i.e. "colourings" of edges, of universal bins. One side result is a purely algebraic
equivalent of the 4-colour-theorem. The obtained results open further ways for an
efficient search by computer for simplest non-associativity contradictions. It is
hoped that they lead to solutions of the associativity problem for further subclasses
of bins, further insight into the structure of partial binary operations and of
polyhedra and will yield precise measures of presentations for associative systems
and their classifications.

0. Introduction

The complexity of the general concept of associativity of partial binary operations
could hardly be better hidden than by its collapsing into the simple elementary
formula (xy)z = x(yz) for the all-important, yet still very special case of closed
(i.e. complete) operations. Furthermore, the veil of deceptive simplicity is not
Tifted by the first encounters while reconnoitring the wilderness of partial operations.
However, some dents have been lately made in this "terra incognita", and, hopefully,
some headway may be started here. As further motivation for this pursuit may serve

1) The term bin has been proposed by K. Osondu in his thesis (Buffalo N.Y., 1974)
and can be used, when wanted, With “partial" or "full", similarily to "partial® or
"Tinear" order.
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the fact thatpartial operations have come in their own right in recent electronics
circuitry when parts of the function (mathematical and technical) are prescribed
while others are left open (oral remark by Professor Dexter).

1. Roots of this Research

The following is a brief, admittedly subjective, account going back to the problem
of extending a cancellation semigroup S to a group (indeed rather rings without zero-
divisors to fields or division rings).

It was discovered

a) that this problem is best understood as the ordered superposition of two distinct
ones, the first of which is the (usually easier) symmetrisation problem leading in
general, but not always,to a partial bin. The symmetrisation sym(S) is followed by
the usually more difficult problem of completion of sym(S) to a group, and

b) that sym(S) need not be associative and that its associativity is the sufficient
(and of course necessary) condition that it can be completed to a group.

Since the semigroup generated by sym(S) (or even by sym(P), where P is any
presentation of S=S(P)) is by itself already a group, it seemed advantageous to look
at the problem as a special case of the more general one of embedding bins in semi-
groups. It is indeed much more general in view of the fact that any presentation of
semigroups or groups can be standardized to a bin. However, in spite of so much more
generality the new problem turns out to be not more difficult. Indeed, it is simpler
in the sense that the new "associative laws" A; are simpler, more immediate in form
and in concept, than the famous n. and s. conditions of Malcev for the embedment of
semigroups into groups. A posteriori, these are but a special-purpose adaption
for a special case; and so too are, more than a decade later, the simultaneous but
independent results of Lambek and Tamari, precursors of this present work. Malcev
of course, was the precursor of all. (A more objective report would have to start
with Hamilton, Cayley and continue with Dyck,Thue, Dehn, Magnus, Etherington, Bruck,
Coxeter, Moser, Lyndon, Schupp and many others).

For more details about basic concepts underlying this theory and for historical
background the reader is referred to [6] (in particular §§ 1, 2) and to [2] (§ 1).

2. Basic Concepts

A bin B (or partial binary operation, partial groupoid, monoid, multiplication
table with "holes") is essentially a conjunction of ternary relation statements
Ui,g;p”,ummﬂywﬁtmn1iri=m “P
if it can be embedded in a semigroup S; or, more specifically, if the canonical map

ri» p; € B). B is called associative

k: B>S(B) from B into the semigroup S(B) generated by B as a set of generators and
defining relations, in brief as a presentation, is injective, or in other words,



304

if the distinct generators (i.e. the elements of B) will still represent distinct
elements of the semigroup S ("generator problem").

Algebraists describe the “"generation" of S(B) as a “quotient construction
S(B)=F(B)/EB, where F(B) is the free semigroup over the alphabet B, i.e. the set of
words with concatenation as multiplication, EB the equivalence relation induced in
F(B) by the relations of B (EB is in fact a congruence in F(B)); k assigns to each
element b € B the equivalence class of words containing the one-letter word "b".

This is unfortunately, but unavoidably, in general, an ineffective definition.
ilo suitable collections of semigroups nor details of their generation (even not
that of single elements as infinite equivalence classes of words) are generally
accessible for constructive inspection to see if there exists an embedding semigroup,
or that no distinct elements of B become equivalent (mod EB) under k - except in
special cases. Indeed one knows that the decision problem of associativity for the
class of finite bins is equivalent to the word problem for finitely presented
(semi)groups and, therefore, unsolvable. Furthermore, every finite presentation of a
(semi)group can be standardized to a finite bin. Thus bins are universal standard
presentations of binary operations (even non-associative ones). (For details of
standardization see, for instance, [6](§2)).

Sti11, these equivalence classes of words have some general and yet definite,
genuinely constructive features, namely so-called wordchains. These are finite,
linearly ordered sets of words, each one obtained from its neighbour by one of the
substitutions of the given presentation (an equation representing two substitutions),
in our case a bin. Each equivalence class is a set union of its chains.

Wordchains "progress" or transform inside equivalence classes from one word to the
next by the standard bin substitutions

(8): 11 ry 2 Pis the binary multiplication, contraction or fusion ﬂi’

(S): p'i d ]'i r'i’

the binary factorisation, expansion or split Si’

one oniy at each step. Hence at each step the length of a word changes by +{ or -I.
These wordchains are referred to as standard wordchains. If such a wordchain begins
and ends with a single letter word, say "a" and "z", it is called a special standard
wordchain, denoted by C;. The inverse chain of Cz is denoted by C;. The total number
of their constraction steps, say n, must equal that of their expansion steps, and thus
the number of all steps is 2n, that of all words, including "a" and "z", 2n+|.

At each step three letters "act" making a total of 6én individual actions; each letter,
except a ana z, acts twice: appears and disappears in the chain at distinct steps. This
makes a total of 3n+l letters in the chain, 3n-1 "full-1ife" letters called "edges"

and the two "half-edges" a and z.
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3. Wordchain Patterns and their Associated Prototypes p"

Every wordchain can be visualized as "physically" written on a sheet of paper
and thus as a planar figure. More specifically, one identifies in successive words
letters repeated without any other action on them as successive parts of one and the
same segment or edge, or, if one wants so, as the repeated name of such an edge. One
further identifies the changes by substitution (i.e. applying the multiplication table)
even when preserving one or the other letters, as vertices into which edges enter
from former words and end (= disappear), and from which new edges originate and
proceed to later words. As there would be no point in repeating the same whole word
one has exactly one vertex between each pair of successive words. Thus the standard
wordchain has become a planar 3-valent or 3-regular graph except for its ends. However,
special standard wordchains can be closed if one can identify the two end letters, a=z,
to become one edge - otherwise one has a "contradiction” to associativity. The whole
figure becomes a planar 3-regular graph or, equivalently, a 3-regular division of the
sphere or polyhedral net. From Euler's formula (Descartes's rule) one obtains v=2n,
e=3n, f=n+2 for their number v of vertices, e of edges and f of faces, where
n=(1) , 2, 3, .. is a parameter called degree. There is a minor point of beauty
well fitting the system in keeping n=1, graphically as well as algebraically, by
starting with general ternary relations; see Al, the first in the list of examples.
Some statements, however will obviously only hold for n >1. (There is perhaps even
a point for starting at n=0.)

Each vertex has 3 edges as well as 3 faces, each edge 2 vertices and 2 faces,
and each face 3 (g-gon, g 22) g vertices and g edges (= sides). Vertices or faces
with a common edge, or edges with a common vertex, are called neighbours; vertices or
edges with a common face are “vertices and sides respectively of that face". For
n >1 each vertex has 3 vertices as neighbour, each edge 4 edges as neighbour and
each g-gon g faces as neighbour (g >2).

In the construction of special standard wordchain patterns and their associated
associative lTaws, or in the search for “contradictions" to associativity, one progresses
in natural order with the parameter n from shorter to longer chains. To avoid tri-
vialities, juxtapositions repeating already encountered cases of wordchain patterns,
one imposes also 3-connectedness on the graphs. i.e. their separation into two
disjoint graphs requires the (omission) of at least 3 edges. We shall refer to planar
{or spherical) 3-regular and 3-connected graphs (or nets) as prototypes p" of degree n.

(The term "prototype" comes from the author's thesis (Paris 1951) where it is used in
a less general context, while Lambek uses "polyhedral condition" with a somewhat
different meaning). By a classical theorem of Steinitz they are indeed equivalent to
the nets of convex 3-regular polyhedra. One has thus associated with each essentially
new special standard wordchain pattern a convex 3-regular polyhedron P" with all edges
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directed and one distinguished as the closure edge.

4. The Converse Construction

Conversely, every prototype P" with vertices Vise-eaVo, and edges € seeesBy =€
can be associated with a special standard wordchain and with couples of so-called
universal bins (An,Bn) by a judicious directing and labelling of the edges which
become the elements of a bin A" as well as, with a slight modification , those of
a bin B". This is done by linearly ordering the 2n vertices such that

1) vy and vy, are vertices of one edge e, €q, =a=z=(v1,v2n), and

2) each vertex Vis 1<1i < 2n, has at least one of its 3 edges coming from an earlier
vertex and one going to a later one. This means that all edges become naturally
directed by the indices of their endpoints-except perhaps (Vl’VZn) - and that the
neighbour relation of vertices in the plane (or on the sphere) is preserved to some
degree by this projection on the index Tine "i": a vertex Vi(|< i< 2n,l<n) remains
surrounded by most of its neighbours by falling between some couples of neighbours.
The ordering and labelling of the vertices, of the edges with their induced directions,
and of the faces can be done in a finite number of distinct ways as follows:

First one obtains an open net N? from a prototype p" by choosing any edge, say
eo=e3n=(v1,v2n), cutting it into 2 halfedges or sticks "a" and "z", and pulling them
apart, say a to the top, z to the bottom. It has n bounded and 2 unbounded faces.
It is convenient to visualize N" as spread out in the plane from left to right and
from "a" at the top to "z" at the bottom. N" remains 3-connected in its interior.
However its "ends", j.e. a with vy and z with Vo, are only 2-connected, and so are
parts of " containing an end. No P" contains a Pm, m < n,since P™ would be disconnec-
ted (i.e. O-connected "with") from the remainder of P". Nor does P" contain any N,
m <n, since N" would be only 2-connected to the remainder of ph through its half-
edges "a" and "z". Hence no N" contains any Nm, m< n. Thus no P" nor Nn, n>1
contains a "2-side" (i.e. digon), nor, for n >2, two adjacent triangles because they
constitute the bounded faces of an N, an NZ, etc. respectively.

For convenience of reference the following construction proceeds in a Cartesian
number plane. N" becomes an ordered (open) net or wordchain model or pattern 0" as

follows: Stretch N between vy and v, giving the vertices v, distinct natural number
ordinates yi=1, i=1,2, ... ,2n, such that each vertex Vis 1< i< 2n, gets (at least)
one neighbour vertex with lower index and one with higher index. This means that the
neighbourhood relation between vertices remains reflected in the indices by projection
on the vertical Tine as an "interior" or "between" relation. Thus all edges descend
strictly, i.e. pass any ordinate (i.e. horizontal line) at most once and no edges
ever meet except in vertices. Thus each vertex becomes a tripod with one edge to

one side, either up or down, and 2 edges to the other. This permits 1) to distinguish
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the two arrows simultaneously entering or simultaneously leaving the same vertex
as a left and a right factor, 2) to order all edges after ase | a5 €1,€5, ... ej,

s €352 in this linear order by their starting vertices and when needed from
left to right.A different way would be 3) to order all edges meeting one and the same
ordinate from left to right as letters of one word, and 4) to order, similarly as
in 2), the faces fo’fl' v fk’ cees fn’fn+1’ fo the unbounded "polygon" to the Tleft,
fn+1 to the right, both derived from the two faces of the "cut" edge, while each
other polygon fk has a distinct vertex v1-k at its "top", ik a strictly increasing
function of k and, dually, another at its "bottom’as well as a left and a right "side"
(=sequence of edges).

Each vertex Vi j=1,2, ..., 2n, is either a split (factorisation, expansion, or
top of face) into which a so-called product arrow ej=pi enters and from which 2 factor

arrows, a left one e =11 and a right one ej*+1 =ris Jj< j*, exit; or a fuse

j*
(multiplication, contraction, or bottom of face) into which 2 factor arrows ]1 and r;
enter and from which one product arrow Py exits. Denote by Si(ti) the number of splits
(fuses) among VisVps «vv aVs and observe that s; >t for i< 2n, but Son~tonN>

si+ti=1, Sl=1’ and for n 22 52=2, etc.

The edges, including the sticks, presented by segments or arcs meeting any ordinate
at most once, are also called letters, elements, generators, variables or indetermina-

tes. The sequence of letters encountered by any ordinate between Vs and Visl is well
determined and is the word
W, =e. e, ..ol f length A.+1, wh .=S.~t. .
7%, %94 eJiki 0 g A1 ere A1 5 t1
The sequence of 2n+1 words wo=a, Nl, cee s W2n=z associated with the ordered model

0" is its wordchain, the sequence A, its profile:

=0= = -). =+ i -
AO 0 A2n’ Axi A1+1 Ai 1, Aiz 1 for 1<is<2n-1.

5. The Universal Bins

To each vertex vy belongs a triple (11,r1;pi) of letters "active" in the trans-

formation or transition T.: Wig - W, with

Ti: P; 11ri or Tiz ri]i 2 Py depending on vy being a split or a fuse.

The collection of these triples written as a binary oparation relation ]ir1=p1,
in particular, their tabulation into a partial multiplication table, defines the free
or universal bin B" associated with 0".

Once an ordering has been fixed each of the 3 edges, or rather half-edges at each
vertex receives a unique natural interpretation as one of the three components -
left factor, right factor or product - of 2n ternary relations or table entries of
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a bin A" or B". Thus each of the 3n edges of A" and the 3n-1 edges of B respectively
plays two roles which may or may not differ - one at its beginning vertex, one at its
end vertex; but the half-edges a+z € B" play only one product role. Thus the bin g"
is the same as the bin A", except for the chosen "start-end" or closure edge of

p" e, =e3n,wn1ch will be "cut" with the result that py=a# z=p, in B". Thus A"

is obtained from B" by identifying a and z; in other words one has the "near-identity"
epimorphism ¢: 8" - A", g" is, evidently , non-associative, while A" s easily proven
to be associative. Thus A" is the greatest associative homomorphic image of B". An A"
may belong to several Bn; a P" to several A"; the number of PT rises steeply with
larger n.

6. A Homological Definition of Associativity

One can now state the following

Proposition. A bin B is associative if and only if every morphism B: "> B splits
into the epimorphism €: 8" A" and a morphism a: A" 5 B.

This statement can also serve as a "homological" definition of associativity.
It can be turned constructively to supply an enumerable hierarchy of independent
associative Taws. The totality of these can be expressed in a "metaformula" of
impiications

(A") B" = a=z ,

where the hypothesis B" is considered the conjunction of the 2n bin (ternary relation)
statements of Bn, for all universal bins.

Anticipating later results (section 15) subclassifying the A" and B" forn > 1
one writes with more detail

(A;) : B; =a=z, where l<m<n.

Here m is the number of letters of Ag which possess two factorizations, i.e. they
appear twice as products inside the multiplication table including the one special
letter a=z¢€ A; , while the “primes" are those letters which have no decomposition
into factors, i.e. they do not appear inside the multiplication table.
A; admits a more compact and more explicit "normal" form valid for n >1
n

- = ! < =
(Am).qu qu, lsk<men, =M =M

;7
where the hypothesis of k-1 equations is empty if m=1, and where the M are monomials,
i.e. full binary bracketings in the n+m primes of the universal bins. These primes
serve as general variables of indeterminates like, e.g. X, y, z in (xy)z=x(yz) to
express the ordinary associative law, which is just the first instance of an Ag,
namely A2==A§. The Qps «-- 5qy_1» are the m-1 twice directly factorizable letters

common to an associated couple of universal bins A;, g"

. o s n
n? while Gy =2 =7 in I—\m only.
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The monomials M _ , Mé indexed by the q, are the couple of their prime factor de-
compositions der&ved %rom the couple of their entries in the multiplication table,
Ma and MZ the unique prime factor decompositions of a and z.

Corresponding to the m monomial equations above the polyhedral net belonging to
Ag decomposes into m regions, each one a binary double tree - a pair of binary trees
with a common root, rather 1ike a natural tree - generated from the root by successive
binary factoring (splitting) as long as possible, i.e. till one is stopped when all
last components present are primes. Each prime belongs to the extremes of two distinct
such double-trees, except the case that it may belong to Ma and Mz' The totality of
primes constitutes the common boundary regions of these double-trees whose common
roots are just these elements with double factorization. The corresponding open nets
and wordchain patterns belonging to BQ decompose in the same way, but rather into m+l
regions: m-1 double trees Mk =M&, 1 <k<m, and the 2 trees Ma and MZ with roots
a and z. The two appearances of each of the primes are in the same order, but no
couple of monomials has any pair of brackets in common. This is the equivalent of
3-connectedness for monomial systems.

7. Types and Characters of Letters in Wordchains and Universal Bins

Fach letter, except "a", originates (starts, appears, begins) in a vertex Vi and
each one, except "z", ends (disappears) in a vertex Viies i< i', in one and only one
of three possible ways: either as a left, or as a right factor, or as a product.

This yields the nine types indicated by the following self-explanatory symbols:
(u,v), u,v € {1,r,p}, u being the letter character at the start Vis v that at the end
Vi

Each letter has a natural number L=1'-i as its life-span in the chain during which
it participates in the wordchain.

The universal bins A" and B" are rather "lean" and very special. Both have only
2n entries in their multiplication table of size (3n)2 and (3n+1)2 respectively,
the diagonals are empty. All elements are used exactly twice as left (1) or right
(r) factors (f), or as products (p), except the two special distinct ones (a # z)
in Bn. This produces 9 possible types (u,v) of elements with u,v.=1,r, or p; one may
say that "a" is of type (-,p) and "z" (p,-). The nine, or even eleven types are
conveniently grouped into three principal types pi, i=0,1,2,where i is the frequency
of the character p in their type (u,v). Thus pO comprises four types without p, the
already mentioned primes, of which there are altogether n+m, the same in A; and B;;
p1 also comprises four types (u,v), those with exactly one single p of which there are
altogether  2(n-m) elements in Ag and 2(n-m)+2 in B; adding the two special elements
a and z; finally p2 comprises one single type, the already mentioned twice factorizable
elements of which there are, by definition,m in Ag, but only m-1 in B;.
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(I) m=1:1In A" there is at least one p2-e1ement a=z.

(11) I{po-e1ements of A;}[ = Kpo—e1ements of BQ}I =n+m:

In A; 2m of the 2n entries in the multiplication table are of the m pz-e1ements;

there remain 2(n-m) unique entries of pl—e1ements. Therefore, the number of primes

1s3n—ﬂn-m)—m=n+minA;

In B; one has only one p2—e1ement less, but two pl-e1ements a # z more, with no change

of primes.

(III) A1l three principal types must be present in a universal bin except that p2

may lack in g" (namely in B?): It suffices to prove that m< n, i.e. that elements

p1 must always be present. Indeed, the first two substitutions must be splits "s",

i.e. b=e1,lor c=e, of type ss (see below ), therefore pl. There must be at least two

distinct p -elements and at least one ending in z which is of type ¢p (see below).
Denoting by ¢ the fuse type of a vertex and s the split type one gets 2x2=4 other

edge types. Only pp becomes @gs, all primes become sg and the p1 become either ss or

8.

3. Normalization

The classification of vertices in a chain as splits s and fuses ¢ suggests
classifications of edges into 4 classes ss, s@, #s, and g@. As a chain is equivalent
to its dual by inversion of directions which interchanges the s and ¢ characters of
the vertices, the edge characters gs and sg are each one invariant, indeed identical
with p2=¢s and p°=s¢, and thus ss U gg =p1. So far nothing is new. However, the s-¢
characterization is useful for the normalization of wordchain patterns, to weed out
some irrelevant but "annoying” vertex order changes by delaying all fusions until after
execution of all already destined future splits of all Tetters present at any time of
this process, i.e. including also iterated splits. In other words, one gives absolute
priority to expansion as Tong as possible. One could not do this with fusing because
the cofactor for fusing a present Tetter need not yet exist in the chain and will
only be produced by a later split. However, there is total symmetry between splits and
fuses as they must finally balance out, fuses becoming prominent in the second half
of the chain.

Among simultaneously possible splits one could fix a priority, say from left to
right in a word, but need not; one could also shorten chains by decreeing multiple
simultaneous splits as far as possible, but does not. The already introduced partial
normalization has certain consequences: in each "narrow" or "bridge", i.e. a word
of Tocally minimal length in a chain, there must be a p2-1etter with Tifespan 1,
which means that it appears in this minimal word only. One does not need to go into
further detail because the normalization adopted here is automatically taken care of
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by the monomial equations presentation (see sections 6. and 15.) which takes also
care of the essentials of the vertex ordering and which will be studied further.

9. General Discussion of Remaining Problem

The preceding description of the systems of monomial equations, the universal bins,
and the standard wordchains are not yet sufficient for their complete direct alge-
braical-combinatorial construction and enumeration independent from the construction
of their polyhedral graphs. This can certainly not be an easy problem in the general
case because its solution would, conversely, resolve the long outstanding problem
of an effective closed construction and enumeration of convex polyhedra to start
with the 3-regular ones, or at least a recursive construction not requiring individual
inspection of each newly constructed polyhedron for identification. However, some
dents have been made in this problem as we show in the following section.

10. The Case m=1

This is the so-called contraction-associativity. It has beencompletely resolved in
q by a complicated
formula of recurrence; forn=2, 3, 4, 5, 6 their numbers are 1, 5, 34, 273, 2436

respectively. For further details the reader is referred to [4] (Resumé p. 70, and

earlier work, including the enumeration of the associative laws A

§ 8, p. 80), where these numbers are denoted by D(Pn—l) (D for "diagonals"). Although
the enumeration is by recurrence, the construction of the Aq themselves is quite
explicit and simple. This is also evident from the monomial form of (A;): a single
unconditional identity in 2 disjoint bracketings over the same sequence of n+l letters
However, cases with m > 1 seem never to have been considered before; but even for m=1
one has not yet evaluated what could be learned about convex polyhedra from what one
knows about the AT.

11. The General Case, the Successor Operation

For general 3-connected planar graphs, including especially 3-regular ones, only
relatively Tittle seems to be known. This is quite surprising considering the fact
that simple 3-connected polyhedra, in particular 3-regular ones, are the most ele-
mentary "“furniture” of ordinary 3-space in which we live, "the stuff from which
things small and large are made", from which Descartes had to start to build his
material world. Thus one can know little from this source about ordered nets, standard
wordchain patterns, universal bins, and associative laws. However, there is a simple
redursive construction leading from prototypes PN to all protottypes Pn+1 and,
therefore, to the whole infinity of prototypes P, starting with the single Pl, the
trihedron, or if one wants with the single PZ, the tetrahedron, or even with the
single P3, the pentahedron, better known as the triangular prism. The construction
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n+1

of the P from the P" is by insertion of just a new edge dividing a face and any

two distinct edges of it. This creates two new vertices, three new edges and one new

face, resulting often, but not always, in several distinct Pn+1

depending on the face
and its edges chosen to be divided. The big differencefrom the successor construction
of the naturals N which can also start indifferently , say with 0, or 1, or 2, etc.,
is of course that after n=3 the P-construction bifurcates and then “polyfurcates"
more and more, and what is worse, in both directions; i.e. the binary (predecessor -
successor) relation becomes highly many-to-many with growing n. As the P-construction
becomes so quickly impractical and is certainly well-known it will not be treated
here further. Its algebraical interpretation is probably new, but this by itself will
not change the situation and will be treated elsewhere with a closer Took at the

details of the successor operation.

12. The Closed Ordered Model

The closure condition B a=z, also called an associative law A" of degree n,

reproducesfrom a given ordered model 0" its parent prototype P" enriched with a
cyclic ordering of its vertices, which may or may not be a Hamiltonian circuit, and,
more importantly, with a consistent labelling and “colouring" of the edge with their
character types giving them and the vertices a meaningful algebraical interpretation.
Or, conversely, one has provided a combinatorial-geometrical meaning of general

associativity. The prototypes thus enriched are called closed ordered models. The
principal Tletter types pi, i=0, 1, 2, are preserved under the dualities of top-bottom
and left-right direction inversion which were arbitrarily determined by the choices

of vis and thus of Von? of the cut-edge, and of e and e, as left and right. Each edge
will still get one of the above 9 types. The closure edge e,=a=z=e4, will be of
type p2, or, equivalently, #s, whatever its direction.

13. The Uniqueness of the Cut-Edge

This remains preserved under closure even if the closed 0" has several letters of
type pz, i.e. m> 1. To see this consider the directions of the sticks a and z and
the characters of the vertices Vi and Vor - It was understood that Vi is a split with

the product "a" directed into it, while Von is a fuse and the product "z" directed
away from it. This gives the closure edge the direction Vo = V- The formerly un-

bounded faces fo and f have now become bounded by this common edge and cyclically

n+l

oriented, say fo clockwise and fn+1 anti-clockwise. All other faces fl, el fn

keep their top and bottom vertices and retain their left and right sides ("sides"
in the sense of'sequences of adjacent edges") parting at the top and meeting at the
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bottom. Thus (JE;:Vl) is singled out as the only edge between the only two cyclically
oriented faces. One can imagine a global map of “ocean currents" parting and meeting
around "“islands" in fl,fz, RN fn’ but circling the two “continents" in fo and fn+1
in opposite directions which thus are joined in the "channel” along the closing edge.
One could, however, decide otherwise. Indeed, one must invert the direction of the
current in the “continental channel" making vy the only source (all 3 edges going out)
and Von the only sink (all 3 edges coming in) in order to preserve generalisability
of (equational) associativity to (quasi-ordered) semi-associativity, (see for instance,
the references [3] to [6] in [4],or [3], [32] in [61) in which transitivity without
symmetry imposes direction V17V for the closure edge. This again singles out this
couple of vertices (and their edge) among all others which remain splits or fuses.

14. The Vertex Ordering

The hypothesis 8" of A" is a conjunction of bin statements. Therefore,it has to be
independent of their order. From this point of view the vertex ordering is only a
convenient auxiliary construction for the derivation of the associated wordchain.

On the other hand, the vertex ordering induces the arrowing of the edges instrumental
in obtaining 8", MWhat really matters is the characterization of the three halfedges
at each vertex as T, or r, or p in a manner consistent with the general flow picture
described above. This could "a priori" be achieved on the polyhedron in various ways.
Once this has been done and the universal bin B" has been constructed it is not
difficult to recover the associated vertex ordering except for irrelevant indeter-
minacies. This will be done in the next section by the method of monomials. One will
thus also obtain conciser and more familiar expressions for the associative laws A",

15. Monomials and Binary Trees, the Prime Factor Decomposition

One can considerably reduce the number of letters and statements required for an
A by using the classical bracket notation or any equivalent device. This will also
eliminate parasitic bugs in the vertex ordering. One pays by complicating the state-
ments. One starts with the "extremes" a and z, the only elements used only once in
the multiplication table. Substitute according to the multiplicate table of 8" a by
its factorization g8, and, similarly, z by eje3n_1 or e3n_1ej, where ej is the
cofactor of e3_1° For each p-type letter among the el’e2’ej’e3n—1 substitute its
factorization included in a pair of brackets according to the applicable formula
Py = (11r1). Repeat this procedure as Tong as possible, i.e. as long as there are stil
p-letters in the compounded expression. At the end all Tetters present must be of
po—type, i.e. primes. Denote by Ma and MZ the thus obtained final monomials (the
complete binary bracketing expressions). .Vla =MZ will serve as the new consequence
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replacing a =2z, while one has erased in the multiplication table all used statements.
Note that in the process no pp-letters have been used as each substituting letter had
to have an 1-type or r-type.

If this exhausts B" one has finished, and A" is reduced to the unconditional
identity Ma==MZ. Both are monomials without common brackets in the same n+l letters,
namely all the primes of Bn, appearing on both sides in the same order, while the
eliminated 2n letters were all the entries inside the multiplication table. That Ma
and M, are two disjoint bracketings over the same word follows from the 3-connectedness
and the fact that each po-letter "born" in a-bc-> ... - Ma must join its equal in MZ
in order to disappear in the contracting chain MZ-+ ... »z. In fact, one has done
nothing other than reconstituted the wordchain leading from a to z, perhaps with some
"improvement", namely normalization which in this case reveals the simple "1-mountain”
profile which may not have shown itself in the original form.

The graphic equivalent of this procedure is the “"growing" of 2 binary trees from
the roots a and z in opposite directions by following up all uninterrupted sequences
of splits starting from a and similarly for fuses starting from z (indeed coming from
z the original fuses appear as splits). If this exhausts B" then the crowns of these
two trees completely overlap and form a zone composed of primes only. One may call
these trees prime-leaved trees and denote them by their monomials Ma and MZ which
determine the trees completely. But what if there remain entries in "2

Indeed, each letter (edge) of 8", say e, is root of its well determined binary
prime- 1eaved tree M If e is a prime M =e is its own such tree and monomial. If e
is a p —1etter it a]so uniquely determ1nes its prime-Teaved tree by binary factoriza-
tion. The firstone isuniquely determined and so are the later ones since all appearing
letters come from factorizations, thus they cannot be p2, and are, therefore, either
primes or pl—letters.

Moreover, as e is p1 it must have at the "other" end a cofactor, say d. Then
de=g or ed =g, where g is a p-letter, too, d either a prime or a pl—letter, i.e.
also having a uniquely determined tree Mq. One has, therefore,a tree Mg MdMe
MMy and Mg is larger than Mg. If g is p¢ it cannot have a cofactor and Mg is a
maximal tree; if not it is p1 and itself contained in a Targer tree. Continuing
with comultiplication as long as one can one must finally be stopped at a pz-type
letter determining a maximal tree, say Mq. Of course if e was already p~ one would
already have such a q. Thus among the remaining entries there must be at least one
such q and, therefore, even at least two entries. Hence one can conclude:

1f 8" is not yet exhausted there must be entries and relations of the form

e ex=q=gpe'e" for g =qy and, possibly, other p2—1etters 95 Q35 ++- s each one to

be treated twice as a and z have been treated before. This means that e, e*, e’,

i

e
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have to be treated as €1 €ys ej, €301 (or €3,-1° ej) before, by replacing each still
present p-letter by its two direct factors enclosed in brackets, till one is stopped
when one has arrived at two prime-leaved trees Mq and M&, which may be of different
length. Similarly, one obtains M s Mé , etc. till 8" s completely exhausted. One has
arrived at a collection of monom1%1 equat1ons

n,

C Mq1~ Mél qu— Méz e 3
their conjunction constitutes the new hypothesis and the implication A Cn=>Ma =MZ
the monomial equations form of an associative law. One can provide a further subscript
m indicating the total number of equations. This system is, in general, non-homogeneous:
its monomials may have different degrees; they must have all Tletters different in each
equation except Ma =MZ; they form a completely disjoint system of brackets, i.e. all
submonomials are distinct, although each prime, and primes only, just appear twice in
the whole system . The associated wordchain profile is more pitted with"valleys", each
one having under its bottom a short-lived p2-1etter. Ma and MZ are now monomials over
distinct words, namely the first and the last "peaks" (= A having a local maximum)
of the wordchain, although they may have some common subwords. Each letter of Ma’ Mz’
Mq s Mé must finally join its equal in some other monomial in a consistent order
1n5ucin5 also a well defined direction in each double-tree. The whole wordchain will
be recomposed from these pieces Tike some picture puzzles or a planar wiring system
from such subsystems by joining end-wires without overcrossing to their single
correspondents in other subsytem terminals. It will be easy because they correspond
in whole segments in which words overlap.

16. Homomorphic Images of Bins or "Colourings"

By closing the special standard wordchain into a circle, or rather on a cylinder
mantle, i.e. by imposing An the 2 extremal pieces M and M melt into one double-
tree M —...—Z=a —.. .—-M and one may consider a= z =, By imposing A on its Bm
one obta1ns a new un1versa1 bin A , @ homomorphic image of B , indeed 1ts greatest
associative homomorphic image w1th IA [ =3n: every assoc1at1ve homomorphic image of
Bg is also a homomorphic image of th1s An

One is also interested in the non- assoc1at1ve homomorphic images of Bn, i.e. those
which still "separate” a and z.

The concept of homomorphismfor general bins, even that of universal bins, needs
special attention. This is an important topic, indeed a crucial one for further
applications of this theory, which one must leave open here for a later occasion,
except for some simple but enlightening examples. By calling the image elements under
a bin homomorphism "colours® one puts in evidence that the concept of bin homomorphism
generalises that of edge colouring in a certain sense. In such "colourings" adjacent



edges may, or may not have the same colour, but colours will compose
according to a bin, i.e. constitute a "colour-bin'".

The following interesting remark gives a new, purely algebraical eguivalent to the
famous 4-colour conjecture. (Or should one rather say "theorem" after the recent
"proof by computer"?)

It is well-known that the general 4-colouring of faces (F,) reduces to that for

3
P and is equivalent to 3-colouring of edges (E3), see, for instance, [1] pp.267;
the author is obliged to Professor G. Dirac for calling his attention to this theorem).
However, E3 is obviously equivalent to the existence of surjective homomorphisms

PALNEI LN C, C the “colour bin" of colours, say X,Y,Z, with the relations

XY=YX=Z, XZ=IX=Y, YZ=ZY=X. (One may remark that C is a "truncated" 4-group, i.e.
with its identity element excised.) One has thus

F44=>E34=>€

17. The Prototypes P"

As already mentioned, there is only one prototype for each of the lower degrees
n=1, 2, and 3. They and some of higher degree are wellknown.
n=1: the trihedron P1 has three digons (i.e. biangles or twosides).
Think of three meridians trisecting the globe. Its two vertices
are the poles. It is 3-valent and 3-connected.
Remark: No digon (=f2) can appear for n > 1 because of 3-connectedness.

n=2: the tetrahedron P2 has four 3-angles: 4f3.

n=3: the pentahedron P3, better known as triangular prism, has two 3-anglies and
three 4-angles (2f3~+3f4).

n=4: There are two hexahedra P4:

(a) the 4-angular prism, for brief the “cube" 6f4, and
(b) the pentagonal "haif-prism" 2f3-+2f4-52f5 of two pentagons with one
common edge and two triangles and two quadrangles between them.
Remark: The tetrahedron is a triangular half-prism, the triangular prism a quadran-
gular half-prism. For n = 4 the n-gonal prism and the (n+l)-gonal half-prism are

distinct.

n=5: There are five heptahedra P5, two successors of the cube (which admits only
two distinct stroke operations ):
(a) the pentagonal prism 5f4-k2f5,
4 5

(b) truncated cube (truncated by cutting off a tetrahedral corner) 1f3 + 37+ 31,

We note that (a) and (b) are also successors of the pentagonal half-prism,
while the 3 following ones, each with hexagons, are successors of the pentagonal
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halfprism only

(c) the hexagonal halfprism 2f3«+3f4—+2f6, the two f6 with a common edge
and 2 less wellknown polyhedra

() 26%+ 2¢% £ 26% + 145, and

(e) 3¢5+ 36+ 17°,

With increasing n the number of prototypes increases steeply: card P" for n=6,7,8
are 14,50,233. (The next two numbers (for n=9,10) are not sure and beyond they are
unknown [3]) .The "polynomial® notation Zcif] =(c3,c4,c5 ...) becomes insufficient
because of the existence of allomorphic polyhedra, 1.e. combinatorially distinct
polyhedra, with equal numbers <, for all fi, the first instance being also the only
one for n=6, namely two distinct octahedra (2,2,2,2). One has two adjacent 4-gons
separating two 5-gons, the other one has the two 5-gons adjacent and the two 4-gons
separated and different and lesser symmetry. For larger n allomorphy becomes the

usual thing. Similarly, completely asymmetric polyhedra become more and more frequent.

18. The First Associative Laws and some Higher Degree Examples

For the associative laws the situation is similarly deceptively simple for degrees
1 and 2 - no surprises because essentially well-known:
n=1: There is only one Ol, the digon with its two sticks. It yields only one Al,
namely (b,csa), (b,c3z) = a=2z, i.e. the well-known law of

uniformity of binary operations; in other words Al singles out

N —t
! bins among ternary relations. One can now take A1 for granted and
b c ! can write, as usual, the relations as equalities. Should a digon
! appear in a wordchain it will be replaced by a simple segment and
; : the number of vertices reduced by two, the number of edges by three

and tnhe number of faces by one.

n=2: All edges of the tetrahedron are homologuous and there is only one open net,
namely two adjacent triangles with two sticks, or, even simpler,
divide the 01 above by a "stroke" of the successor operation and
obtain 02. Either Vs is at the left and Vg at the right or vice
versa, depending on the inclination of the stroke: or even better,
as one wishes to direct the stroke. Because of duality this does
ngt matter and one obtains only one associative law:

A

the ordinary associative law. From now on we take A2 for granted,

: a=bc, c=de, bd=f, fc=z = a=z, or, by substitution b(de)=(bd)e,

and replace two adjacent triangles in a wordchain by a segment reducing the
number of vertices, edges and faces by four, six and two respectively.

n=3: P3 has two kinds of edges , six 3-gon sides and three edges separating 4-gons
yielding two open nets N3: either (a) a 4-gon between two 3-gons, or (b) a
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3-gon between two 4-gons; or, even quicker, by the "stroke" operation applied
to N2, say to the upper triangle (this suffices by symmetry) to obtain N3; or
similarly, a conveniently arrowed stroke applied to an 02 yielding an 03. The
reader may draw the two N3 (a) and (b) and their five orderings Of yielding the
well-known five Ai written out in former work. We remark that the unique self-
dual A% : ((fg)e)c = f(g(ec)) derived from N3(a), the four others from N3(b).
New are the first two instances of m > 1. They are derived from N3(a) which
yields two dual Og and the corresponding Ag :
3 bd = gh = b(de) = g(he)
(A)
ec = gh = (de)c = {dg)h.
The difference between Oi(a) and the two Og(a) is in the arrowing of the quad-
rangle between the two triangles: In Ol(a) its Teft and its right side (= se-
quences of edges) have both edges. In 02 one side has 3 edges, the other one
edge; the exchange of left and right yields the two dual cases. Again, all 7
A3 now granted, no N3, i.e. adjacent sequences # A # or A# A, will be admit-
ted for n > 3.

: There is no need to write out the 34 A? listings the 34 couples of disjoint
bracketings out of the 14 binary bracketings over 5 letters. One observes that
both p4 admit cycles entering and leaving each country fk once and only once
through distinct edges, starting, say, in fo and returning to it by passing from

f
n+l”
simplicial or triangulated polyhedron) and divides the "globe" into 2 hemispheres,

The "tour" corresponds to a Hamiltonian circuit in the dual graph (a

say a northern and a southern. It induces an orientation in all edges passed, say
from north to south, and also in the remaining edges according to the rules.

It distinguishes also the northern end of €, = €3, separating fo from fn+1 as

the "North Pole", the other as the "South Pole".

For the remainder the reader is referred to the listed examples of associative
laws with indication of their prototypes. The reader is encouraged to draw let-
tered figures of the ordered models and to tabulate their bins. This is easily
done from their monomial expressions following the conventions,except that one
29€35 by b,c,d... . It should not be too
hard to complete some of these lists of associative laws, with or without the

has replaced for convenience erse

help of prototypes. Indeed, one can first construct associative laws as systems
of monomial equations and then derive their prototypes.

Two Al ((i3)(fg))e = 1((3f)(gc)) (0,6) (="cube")
(((3k)h)e)c = (2,2,2) (="pentagonal halfprism")

It
(&
[
(9]
~—
~—
—



Two AY : ef = i3 = (de)(fg) = (di)(dg) (0,6)
ef = 1j = d(e(fg)) = ((di)i)g
Two Ay @ ec = gh, dg = jk = (de)c = j(kh) (2,2,2)
bd = gh, he = jk = b(de) = (gj)k
One A3 : gc = (Imk = (d(fg))c = ((dF)1)(mk) (2,2,2,1)

One AJ : gc = ij, fi

m = (d(fg))c = d(1(mj)) t;2,3,0,2)(hexagona1 halfprism)
nk)

One A} : bd = gh, he = jk, gj =mn = b(de) = m(

One Ag : b(df) = jk, kg=(op)n = b(d(fg))=({jo)p)n (2,2,2 2& allomorphic polyhe-
dra, both with £6/f6

Six Ag 1 bd=g(1j), je=Tm, g(il)=pg = b(de)=P(cm) 2,2,2,2& Teut".
d=(jk)h, he=Im, kl=op = b{de)=j(o(pm)) (2,2,3,0,1)
ec=gh, dg=(mn)k, kh=op = (de)c m((no)p)} (2,3,1,1,1)
ec=gh, dg=jk, kh=m(op) = (de)c=(j(mo))p
ec=gh, dg=j(1m> 1(mh)=pq = (de)c=(Jjp)g %(3’1’2’1,1)
ec=g(1m), dg=jk, (kl)m=pg = (de)c=(jplq

The Tast two P6 are the smallest (completely) asymmetrical planar simple (i.e. 3-va-
lent) and 3-connected graphs (octahedral) in which no two edges are homologuous. This
was first remarked by R. Frucht (Compositio Math. 6 (1938), 239-250); communicated

by A. Hill, London). Thus each of their 18 edges leads to a distinct N6.

Acknowledgements: Thanks are due to the hearers of my talks on this subject this

last half year at various universities, in particular to Prof. M. Perles and his Sem-
inar (Jerusalem) and Prof. A. Ginzburg (Tel Aviv), for their interest and valuable
remarks; also to Mr. A. Hill, an artist in London, for showing me some (completely)
asymetric graphs and polyhedra. Particular thanks are due to the organizers of the
Combinatorics Colloquium at Rauischholzhausen, the Mathematisches Institut der Uni-
versitdt Giessen, for hospitality and for permitting to present this paper in spite
of its too late entry; also to the Matematisk Institut Aarhus for its facilities and
hospitality, in particular due to the efforts of Prof. G.Dirac; this paper profited
from many conversations with him. The final exposition was considerably improved
following the remarks of the referee; the author and the readers alike owe him thanks.
Last but not least the author feels grateful to his friends, Professors Ken and Saris
Magill, for their hospitality and unfailing friendship. They all made this endeavor
possible at this late stage of the author's life, in spite of obstructing difficult
circumstances.



320

References
C. Berge, Graphs and Hypergraphs. North Holland (2nd edition) 1976.

Paul W. Bunting, Jan van Leeuwen and Dov Tamari,
Deciding Asscciativity for Partial Multiplication Tables
of Order 3. Mathematics of Computation, 32 (1978), 593-605.

Branko Griinbaum, Convex Polytopes. Interscience Pub1.1967, Ch.13 and
Table 1, p.424.

Daniéle Huguet et Dov Tamari, La Structure Polyédraie des Complexes de
Parenthésages. J. of Combinatorics, Information and System
Sciences, 3 (1978), 69-81.

Kevin E. Osondu, Symmetrisations of Semigroups. Semigroup Forum,
24 (1982), 67-75.

Dov Tamari, The Associativity Problem for Monoids and the Word
Problem for Semigroups. In "Word Problems", North Holland
Publ.Co., Amsterdam 1973, 591-607.



ETusive Properties
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1. Introduction:

We consider properties P of subsets X of a t-element set T(t € N). Imagine that
such a property P is given and that there are two players A("Algy") and C("Con-
structor") playing the following game: A asks C questions of the form: "Is x € X 7"
about a hypothetical set X < T. The prupose of those guestions is to determine
whether or not the evolving set X has property P. A wants to minimize the number of
questions he asks and C wants to force A to ask as many questions as possible by pro-
viding very inconvenient answers. The number of questions which are asked in the game
if both players play optimally is called the complexity of P and we denote it by
c(P). P iscalled elusive if c(P) = t. If you think of P as a Boolean function
you recognize immediately that “c(P) 1is a lower bound on the time any algorithm rec-
ognizing P must take in the worst case, on any model of machine where no two operations
can take place at the same time"[RV]. A very important special case occurs if T is
the set of two-element-subsets of an n-element set V, that is, the set of edges of

a complete graph Kn' We are then asking for the complexity of graph properties. Most
graph properties which are investigated in practice contain with a graph G each iso-
morphic copy of G. I want to call such graph properties invariant. (In what follows
we always identify a property with the set of sets X = T having this property.)

We call a property P monotonic if P or its complement contain with a set X all its
subsets. P is non-trivial if P + 2 and P = p(T). For the rest of this paper we
assune every property to be non-trivial. At any moment the situation of the game can
be characterized by a pair (E,N) with E< T, N<T and En N= 0. We think of
E as the set of elements of T which are known to be elements of X, and of N as the
set of elements of T which are known not to be elements of X. An algorithm ¢ is a
function which chooses for each such pair (E,N) with E U N # T an element of

(E U N)C, the complement of E U N, which we interpret as the next probed element.

A strategy v s a function, which assigns to each pair ((E,N),x) with (E,N} as
above and x € (E U N)C one of the pairs (£ U {x},N) and (E,N U {x}).

For an algorithm ¢ and a strategy y we denote by c¢(P;,y) the number of questions
which are asked in the game if A uses algorithm ¢ and C strategy y. Let
c(Psy) = min{c(P; @, ¥) | w algoritm}. Obviously,we have c(P) = max{c(P;¥) | ¢ strategy}
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2. Duality:

For any property P we define the dual property P* by P* = {XcT| xC e p}.
(Notice that this definition differs from the notion of duality in [BBL]). We obvious-
ly have P**= P. Furthermore, the following lemma holds.

Lemma: c(P ) = c(P).

Proof:  For any strategy ¢ define a strategy w* by
UEENYX) = (E U {x3,N) & p((E,N),x) = E,N U {x}).
Let ¢ be any algorithm and assume that the game for testing P ends with the pair (E,N)
if A uses @ and C uses y. We have c¢(P;¢,y) = |E U N| and
VX(EcXxeN weXeP) (1)
or
VX (EcXcN =X ¢&P) (2)

By using ¢ and w* in the game for testing P*, we get the following situation after
IE U NI questions: Qur characterizing pair is (E',N') with E' = N and N' = E. Now
suppose that E' ¢ Y = NC. Taking complements we get N' < y© c E'C or Ec Y¢ 2N,
If (1) is true we get

VY (E'eYeNCayerh
and if (2) is true we have

VY (E'cYyeNCay ¢,
In any case the game is finished. So

c(Ps o) 2 c(PSony)
for all C and ¥ and, therefore,

¢(P) = c(P¥) 2z c(P**) = ¢(P).

3. Some important Results:

In 1973 Rosenberg [R] conjectured that there is a y > 0 such that for all (non-
trivial) invariant graph properties P
c¢(P) z y - nZ.
In [BBL] you find some counterexamples to this conjecture the first of which was con-
structed by Aanderaa (for directed graphs). Aanderaa and Rosenberg then formulated
together the following conjecture:
There is a v > 0 such that for all monotone, invariant graph properties P we have
c(P) 2 v~ n2.
Their conjecture was proved in 1975 by Rivest and Vuillemin [RV] with v = 1/16.
Kleitman and Kwiatkowski [KK] improved the value of y to 1/9 if n is large. It is con-
Jjectured that all monotone, invariant graph properties are elusive ([BBL1,p.4). There

is even a more general conjecture of Rivest and Vuillemin [RV]: If P < p(T) is in-
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variant under a transitive permutation group on T and {#,T} & P and {@,T} & PC then

P is elusive.

Rivest and Vuillemin proved their conjecture for |T| a prime power. In fact, this re-
sult is the most important step in their proof of the Aanderaa-Rosenberg-conjecture.
There are also some results proving the elusiveness of some special properties:

A theorem of Hopcroft and Tarjan shows that planarity is elusive ([BBL1,p.7). A result
of Bollobas [B1] shows the elusiveness of the properties "c1(G) =z r" and "x(G) z r",
where c1(G) and x(G) are the clique number and the chromatic number of G, respective-
ly.

4. The "Simple Strategy":

Let us define a strategy ¥y by wo((E,N),x) = EU{x},N) « 3XeP(EUu{x}e X c NC).
In [MW 1,21 and [B21, pp.406-407, this strategy is discussed and it is claimed that
for T ¢ P Yo is winning strategy for C (i.e. c(P;wO) = t) if and only if P satisfies
the following condition:

vXeEP wvxeX ayext 3vePr ((X~{x})U{yleY) (3)

Now this condition is indeed sufficient for the elusiveness of P but not necessary.
We have to change it a Tittle in order to obtain necessity, too. The right condition
is:
VXEP vxeX ((X~{x})€ePs3yex©
IY €P((X~Ix}) v iyt eV)) (4)

The restriction that T ¢ P is unnecessary.

Theorem 1: ¥, is a winning strategy for C iff P satisfies condition (4).

Proof. The proof is almost the same as the one given in [B2].
Sufficiency: Let us suppose that the game ends after s < t steps with.the character-
izing pair (E,N). Then one of the conditions (1) and (2) must hold. Since P is not
empty it follows immediately from the definition of by that (1) must hold. So, if we
define X = N® and choose x € X~E we have that X € P and X~ {x} € P, Now condition (4)
implies that there are y € N and Y € P with (X~ {x}) U {y} c Y. But then it is impos-
sible that wo chose y to be a non-element, a contradiction.
Necessity: Let us suppose that (4) does not hold. We get X € P and x € X with
X~ {x}€ P such that for all y € X® and all Y € P (X~{x}) U {y} &Y. Now Algy first
probes the elements of X~ {x} and then those of X®. This results in the pair (E,N) =
= (X~ {x}, XC) after t-1 steps. Obviously the game {and therefore the proof) is
finished.
We also want to write down the dual form of Theorem 1 which is not completely obvious.
We have:

UR((EN)x) = (BN U D)) @ 3X € P(E g X (N U Ix})S).
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* . . o .
Theorem 1 : w: is a winning strategy for C if and only if P satisfies the following
condition:

VXEPYYyEXS XUyl EP=3xexXx 3y eEp((XUly)~IaY)). (5

We can use Theorem 1% to prove the following generalization of a theorem of Bollobas
and Eldridge [BE]:

Theorem 2: Let P be invariant under a transitive permutation group on T. If P satis-
fies the following condition (6) then P is elusive:

VK KXy € P(Xp S Xy S Xy = Nl 1 or DXgNX,l 1) (6)

Proof: Let us assume that our strategy wz fails for otherwise the assertion holds.
Negating condition (5) implies that there exist X € P and y € %€ with X u {y} € P,
but (X u {y})~ {x} dees not contain a Y € P for all x € X. Since P is invariant under
a transitive permutation group we can assume that the first probed element is y. We
choose y to be not an element and from now on choose each probe z to be an element

if and only if z € X. It is rnow easy to see that (by condition (6)) the constructor
wins,

5. 2-connectedness is elusive:

In [B2], Theorem 1,2 (vi), it is claimed that P = "2-connectedness" is an elusive
graph property and that this could be proved by applying wo to P or its complement.
It is easy to see that this not the case. It is the purpose of this final paragraph
to present a strategy showing that P is elusive. Here it is:

wl((E,N),x) = (E,N U {x}) « x closes a cycle in the graph with edge-set E U {x}

in which not all diagonals have been probed yet.

Theorem 3: 1y is a winning strategy for the constructor C.

Proof: Suppose on the contrary that C locses in time ¢ = c(P;wl), (E,N) being
the characterizing pair of the game at that time.

(1) If condition (1) holds, the graph G with edge set E is 2-connected. Let
e = {u,v} be an unprobed edge. It follows from the 2-connectedness of G
that there is a cycle in G containing u and v. Hence e is an unprobed
diagonal in that cycle which is impossible by the definition of y,.
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(ii) So let us assume that conditicn (2) holds. It is easy to see that G is
connected. Note also that no block of G contains unprobed edges by the
same kind of reasoning as in (i). Consider two blocks B and B' of G ha-
ving the same cutvertex w. Denote by V(B) and V(B') the vertex sets of
B and B', respectively. We show that there is an unprobed edge joining
nodes in V(B)~{w} and V(B')~{w}. This shows that we can add edges
from (E U N)C
contradicts condition (2). Suppose that no such edge exists. Then all
edges between V(B)~{w} and V(B')~{w} are in N. Let e = {u,v} be the
last probed edge in V(B) U V(B'). (A1l edges in this set are probed at
time c¢).

to G to obtain a 2-connected graph, a fact which obviously

By symmetry there are only the following two essentially differend cases:

Case 1: u € V(B)~{w}, v € V(B')~{w]. ¥ would choose e to be an edge,
a contradiction to e € N.

Case 2: u, v € V(B). Since e is the last probed edge in V(B), ¥ chooses e

to be an edge. Now imagine that Algy asks the edges in the same order as be-
fore but that he omits e. A moment's thought shows that with this modification
the characterizing pair (E',N') at time c-1 satisfies

N' 2 N (and therefore E' < E~{el}).

But then the game is finished which contradicts the minimality of ¢ = c(P;wl)
The proof is complete.
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