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Abstract. Let R(a(z — y) = bz) denote the least integer n such that for
every 2-coloring of the set {1,2,...,n} there exists a monochromatic solu-
tion to a(z—y) = bz. Recently, Gasarch, Moriarty and Tumma conjectured
that R(a(z —y) = bz) = b> + b+ 1, where 1 < a < b. In this note, we
confirm this conjecture.
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1 Introduction

Let N denote the set of natural numbers and let [a,b] = {n|Jn € N,a <n <
b}. A function A : [1,n] — [0,k — 1] is referred to as a k-coloring of the
set [1,n]. Given a k-coloring A and a linear equation £ in m variables, a
solution (z1,Z3,...,Zm) to £ is monochromatic if and only if

A(xl) = A(mg) == A(:L‘m) (1.1)

In 1916, I. Schur (8] proved that for every integer k > 2, there exists a least
integer n = S(k) such that for every k-coloring of the set [1, ), there exists
a monochromatic solution to x +y = z. The integers S(k) are called Schur
numbers. In 1933, R. Rado (7] generalized the concept of Schur numbers to
arbitrary systems of linear equations. Rado found necessary and sufficient
conditions to determine if an arbitrary system of linear equations admits
a monochromatic solution under every k-coloring of the natural numbers.
For a linear equation £, the least integer 7, provided that it exists, such that
for every k-coloring of the set [1,7n] there exists a monochromatic solution
to € is called the k-color Rado number for £. If such an integer n does not
exist, then the k-color Rado number for £ is infinite. Rado numbers are
also referred to as generalized Schur numbers. In recent years the exact
Rado numbers for several families of equations have been found [2-4, 6].
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The reader may consult the book [5] by B.M. Landman and A. Robertson
for a survey of results on Rado numbers.

H. Harborth and S. Maasberg [3,4] completely characterized the 2-color
Rado numbers for equations of the form a(z + y) = bz. Motivated by the
results of H. Harborth and S. Maasberg, W. Gasarch, R. Moriarty and N.
Tumma [1] characterized the 2-color Rado numbers of equations of the form
a(z—y) = bz. Let R(a(z —y) = bz) represent the 2-color Rado numbers for
the equation a(z — y) = bz. W. Gasarch, R. Moriarty and N. Tumma (1]
proved the following two theorems.

Theorem 1.1. For1 < b < a, we have
R(a(z — y) = bz) = a’. (1.2)

Theorem 1.2. For 1 < a < b, we have
R(a(z —y) =bz) > b2 +b+1. (1.3)
Gasarch, Moriarty and Tumma [1] conjectured further that the inequal-

ity in (1.3) is actually equality. In this note, we confirm this conjecture;
namely, we establish the following theorem.

Theorem 1.3. For1 < a < b, we have

R(a(z —y) =bz) =b% +b+1. (1.4)

2 Proof of Theorem 1.3

It may be assumed that a and b are relatively prime since any common
factors could be reduced, creating the same equation. It follows from the
facts 1 < @ < b that there exists only one integer r such that a|(b+ r) and
1 <r <a-1. Also, by elementary number theory, the fact 1 < a < b
implies that there exist integers k; and kp suchthat 1 < k) <b,1< k2 <a
and

kia—kdb=1. (2.1)
By (1.3), in order to prove Theorem 1.3, it suffices to prove that
Rla(z —y) =b2) < b2 +b+1. (2.2)

Assume by way of a contradiction that there exists a coloring A : [1, b2 +b+
1] — [0, 1] that does not admit a monochromatic solution to a(z —y) = bz.
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Without loss of generality we may assume that A(a) = 0. We will now
consider two cases on the possible values of A(d + 7).

Case 1: A(b+7) = 0. We first prove the following claim:
Claim 1: if 1 £ £k < b~ 1 and A(ka) = 0, then A(ke + a) = 0. The facts
A(a) = 0 and A(b+ r) = 0 imply that A(r) = A(2b +r) = 1. It follows
from the facts A(ka) = 0 and A(b+7) =0 that A(kb+b+r) =1 or else
(kb+b+r,b+ 7, ka) is a monochromatic solution to a(x — y) = bz. Note
that the inequality 1 < k < b— 1 implies that kb +b+7 < b*+b+ 1. If
A(ka 4+ a) = 1, then (kb+ b+ r,7,ka + a) is a monochromatic solution to
a(z —y) = bz, so we may assume that A(ka+a) = 0. This proves Claim 1.

By Claim 1, we have A(a) = A(2a) = --- = A(ab) = 0. Particularly, we
have A(kia) = A(ksb + 1) = A(ksa) = A(a?) = A((b+1 — k2)a) =0. By
(2.1), we know that (kja, 1, k2a) is a solution to a(x — y) = bz which yields
that A(1) = 1. The facts A(e) = A(a®) = 0 imply that A(ab+a) =1
or else (ab + a,a,a?) is a monochromatic solution to a(z — y) = bz. It
follows from the facts A(1) = 1 and A(ab+a) =1 that A(b2+b+1) =0
otherwise (b2+b+1,1,ab+a) is a monochromatic solution to a(z—y) = bz.
Now we have A(kob+ 1) = A((b+1—kz)a) = A(B®2 +b+1) = 0 and
(b24+b+1, k2b+1, (b+1—k2)a) is a monochromatic solution to a(z—y) = bz.
This is a contradiction.

Case 2: A(b+r)=1. Since (ﬂb—:—'l +b+r7,b+7,b+r) is a solution to

o(z —y) = bz, we have A2 4 b+ 7) = 0. If ACCED 1 7) =0, then
(ﬂ%}'ﬂ +b+r, ﬂ";"—'l +7,a) is a monochromatic solution to a{z —y) = bz, so
we may assume that A(P-(b%"—)- +r) = 1. Combining A(i(%;"—"2 +7)=1and
A(b+r) = 1, we have A(%ﬂﬂ') = O orelse (ﬂ?’—r)+r, 2("T"'ﬁ-l-r, b+r) is
a monochromatic solution to a(x—y) = bz. Note that %bf—rlﬂ" < b2+b+1.
It follows from the facts A(a) = 0 and A(ZLE1) 4 1) = 0 that A(ZEED)
b+ ) = 1 otherwise (2b(z+ﬁ + 7, 2"(3"") — b + r,a) is a monochromatic
solution to e(z — y) = bz. Since (?ﬂ@ —b+rb+r2b+2r—2a)is a
solution to a(z —y) = bz, we have A(2b+ 2r — 2a) = 0. Now, we are ready
to prove the following claim:
Claim 2: if2 < k < b and A(ka) = 0, then A((k—1)a) = 0. It follows from
the facts A(a) = 0 and A(ka) = 0 that A(kb+a) =1 or else (kb+a,a, ka)
is a monochromatic solution to a(x — y) = bz. Note that the inequality
k < b implies that ka +b < b2 + b+ 1. If A(b+a) = 0, then (b+ a,a,qa)
is a monochromatic solution to a(z — y) = bz, so we may assume that
A(b+a) = 1. Since (kb+a,b+a, (k—1)a) solves the equation a(z—y) = bz,
we see that A((k — 1)a) = 0. This proves Claim 2.
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By Claim 2 and the fact A(2b+ 2r — 2a) = 0, we obtain
A(2b+2r —2a) = A(2b+2r —3a)=--- = A(2a) = A(a) =0. (2.3)

Note that a|(b+7) and b+r < 2b+2r —2a. By (2.3), we have A(b+7) = 0.
However, in Case 2, we assume that A(b+ r) = 1. This is a contradiction
and this completes the proof of Theorem 1.3.
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