A note on the two-color Rado numbers for a(x-y) = bz

Olivia X.M. Yao

Department of Mathematics, Jiangsu University, Zhenjiang, Jiangsu, 212013, P. R. China

Email: yaoxiangmei@163.com

Abstract. Let R(a(x-y)=bz) denote the least integer n such that for every 2-coloring of the set $\{1,2,\ldots,n\}$ there exists a monochromatic solution to a(x-y)=bz. Recently, Gasarch, Moriarty and Tumma conjectured that $R(a(x-y)=bz)=b^2+b+1$, where 1 < a < b. In this note, we confirm this conjecture.

AMS Subject Classification: 05C55, 05D10

Keywords: Schur number, Rado number, Ramsey theory

1 Introduction

Let N denote the set of natural numbers and let $[a,b] = \{n | n \in \mathbb{N}, a \le n \le b\}$. A function $\Delta : [1,n] \to [0,k-1]$ is referred to as a k-coloring of the set [1,n]. Given a k-coloring Δ and a linear equation \mathcal{E} in m variables, a solution (x_1,x_2,\ldots,x_m) to \mathcal{E} is monochromatic if and only if

$$\Delta(x_1) = \Delta(x_2) = \dots = \Delta(x_m). \tag{1.1}$$

In 1916, I. Schur [8] proved that for every integer $k \geq 2$, there exists a least integer n = S(k) such that for every k-coloring of the set [1, n], there exists a monochromatic solution to x + y = z. The integers S(k) are called Schur numbers. In 1933, R. Rado [7] generalized the concept of Schur numbers to arbitrary systems of linear equations. Rado found necessary and sufficient conditions to determine if an arbitrary system of linear equations admits a monochromatic solution under every k-coloring of the natural numbers. For a linear equation \mathcal{E} , the least integer n, provided that it exists, such that for every k-coloring of the set [1,n] there exists a monochromatic solution to \mathcal{E} is called the k-color Rado number for \mathcal{E} . If such an integer n does not exist, then the k-color Rado number for \mathcal{E} is infinite. Rado numbers are also referred to as generalized Schur numbers. In recent years the exact Rado numbers for several families of equations have been found [2-4, 6].

The reader may consult the book [5] by B.M. Landman and A. Robertson for a survey of results on Rado numbers.

H. Harborth and S. Maasberg [3,4] completely characterized the 2-color Rado numbers for equations of the form a(x+y)=bz. Motivated by the results of H. Harborth and S. Maasberg, W. Gasarch, R. Moriarty and N. Tumma [1] characterized the 2-color Rado numbers of equations of the form a(x-y)=bz. Let R(a(x-y)=bz) represent the 2-color Rado numbers for the equation a(x-y)=bz. W. Gasarch, R. Moriarty and N. Tumma [1] proved the following two theorems.

Theorem 1.1. For $1 \le b < a$, we have

$$R(a(x-y) = bz) = a^2.$$
 (1.2)

Theorem 1.2. For 1 < a < b, we have

$$R(a(x-y) = bz) \ge b^2 + b + 1.$$
 (1.3)

Gasarch, Moriarty and Tumma [1] conjectured further that the inequality in (1.3) is actually equality. In this note, we confirm this conjecture; namely, we establish the following theorem.

Theorem 1.3. For 1 < a < b, we have

$$R(a(x - y) = bz) = b^{2} + b + 1.$$
(1.4)

2 Proof of Theorem 1.3

It may be assumed that a and b are relatively prime since any common factors could be reduced, creating the same equation. It follows from the facts 1 < a < b that there exists only one integer r such that a|(b+r) and $1 \le r \le a-1$. Also, by elementary number theory, the fact 1 < a < b implies that there exist integers k_1 and k_2 such that $1 \le k_1 < b$, $1 \le k_2 < a$ and

$$k_1 a - k_2 b = 1. (2.1)$$

By (1.3), in order to prove Theorem 1.3, it suffices to prove that

$$R(a(x-y) = bz) \le b^2 + b + 1.$$
 (2.2)

Assume by way of a contradiction that there exists a coloring $\Delta: [1, b^2 + b + 1] \rightarrow [0, 1]$ that does not admit a monochromatic solution to a(x - y) = bz.

Without loss of generality we may assume that $\Delta(a) = 0$. We will now consider two cases on the possible values of $\Delta(b+r)$.

Case 1: $\Delta(b+r)=0$. We first prove the following claim: Claim 1: if $1 \le k \le b-1$ and $\Delta(ka)=0$, then $\Delta(ka+a)=0$. The facts $\Delta(a)=0$ and $\Delta(b+r)=0$ imply that $\Delta(r)=\Delta(2b+r)=1$. It follows from the facts $\Delta(ka)=0$ and $\Delta(b+r)=0$ that $\Delta(kb+b+r)=1$ or else (kb+b+r,b+r,ka) is a monochromatic solution to a(x-y)=bz. Note that the inequality $1 \le k \le b-1$ implies that $kb+b+r < b^2+b+1$. If $\Delta(ka+a)=1$, then (kb+b+r,r,ka+a) is a monochromatic solution to a(x-y)=bz, so we may assume that $\Delta(ka+a)=0$. This proves Claim 1.

By Claim 1, we have $\Delta(a) = \Delta(2a) = \cdots = \Delta(ab) = 0$. Particularly, we have $\Delta(k_1a) = \Delta(k_2b+1) = \Delta(k_2a) = \Delta(a^2) = \Delta((b+1-k_2)a) = 0$. By (2.1), we know that $(k_1a,1,k_2a)$ is a solution to a(x-y) = bz which yields that $\Delta(1) = 1$. The facts $\Delta(a) = \Delta(a^2) = 0$ imply that $\Delta(ab+a) = 1$ or else $(ab+a,a,a^2)$ is a monochromatic solution to a(x-y) = bz. It follows from the facts $\Delta(1) = 1$ and $\Delta(ab+a) = 1$ that $\Delta(b^2+b+1) = 0$ otherwise $(b^2+b+1,1,ab+a)$ is a monochromatic solution to a(x-y) = bz. Now we have $\Delta(k_2b+1) = \Delta((b+1-k_2)a) = \Delta(b^2+b+1) = 0$ and $(b^2+b+1,k_2b+1,(b+1-k_2)a)$ is a monochromatic solution to a(x-y) = bz. This is a contradiction.

Case 2: $\Delta(b+r)=1$. Since $(\frac{b(b+r)}{a}+b+r,b+r,b+r)$ is a solution to a(x-y)=bz, we have $\Delta(\frac{b(b+r)}{a}+b+r)=0$. If $\Delta(\frac{b(b+r)}{a}+r)=0$, then $(\frac{b(b+r)}{a}+b+r,\frac{b(b+r)}{a}+r,a)$ is a monochromatic solution to a(x-y)=bz, so we may assume that $\Delta(\frac{b(b+r)}{a}+r)=1$. Combining $\Delta(\frac{b(b+r)}{a}+r)=1$ and $\Delta(b+r)=1$, we have $\Delta(\frac{2b(b+r)}{a}+r)=0$ or else $(\frac{2b(b+r)}{a}+r,\frac{b(b+r)}{a}+r,b+r)$ is a monochromatic solution to a(x-y)=bz. Note that $\frac{2b(b+r)}{a}+r\leq b^2+b+1$. It follows from the facts $\Delta(a)=0$ and $\Delta(\frac{2b(b+r)}{a}+r)=0$ that $\Delta(\frac{2b(b+r)}{a}-b+r)=1$ otherwise $(\frac{2b(b+r)}{a}+r,\frac{2b(b+r)}{a}-b+r,a)$ is a monochromatic solution to a(x-y)=bz. Since $(\frac{2b(b+r)}{a}-b+r,b+r,2b+2r-2a)$ is a solution to a(x-y)=bz, we have $\Delta(2b+2r-2a)=0$. Now, we are ready to prove the following claim:

Claim 2: if $2 \le k \le b$ and $\Delta(ka) = 0$, then $\Delta((k-1)a) = 0$. It follows from the facts $\Delta(a) = 0$ and $\Delta(ka) = 0$ that $\Delta(kb+a) = 1$ or else (kb+a,a,ka) is a monochromatic solution to a(x-y) = bz. Note that the inequality $k \le b$ implies that $ka+b < b^2+b+1$. If $\Delta(b+a) = 0$, then (b+a,a,a) is a monochromatic solution to a(x-y) = bz, so we may assume that $\Delta(b+a) = 1$. Since (kb+a,b+a,(k-1)a) solves the equation a(x-y) = bz, we see that $\Delta((k-1)a) = 0$. This proves Claim 2.

By Claim 2 and the fact $\Delta(2b+2r-2a)=0$, we obtain

$$\Delta(2b + 2r - 2a) = \Delta(2b + 2r - 3a) = \dots = \Delta(2a) = \Delta(a) = 0.$$
 (2.3)

Note that a|(b+r) and $b+r \le 2b+2r-2a$. By (2.3), we have $\Delta(b+r)=0$. However, in Case 2, we assume that $\Delta(b+r)=1$. This is a contradiction and this completes the proof of Theorem 1.3.

Acknowledgments. This work was supported by the National Natural Science Foundation of China, PAPD, and the Jiangsu University Foundation Grant 11JDG036.

References

- [1] W. Gasarch, R. Moriarty and N. Tumma, New upper and lower bounds on the Rado numbers, arXiv:1206.4885.
- [2] S. Guo and Z.W. Sun, Determination of the two-color Rado number for $a_1x_1 + \cdots + a_mx_m = x_0$, J. Combin. Theory Ser. A 115 (2008) 345-353.
- [3] H. Harborth and S. Maasberg, Rado numbers for a(x + y) = bz, J. Combin. Theory Ser. A 80 (2) (1997) 356-363.
- [4] H. Harborth and S. Maasberg, All two-color Rado numbers for a(x + y) = bz, Discrete Math. 197/198 (1999) 397-407.
- [5] B.M. Landman and A. Robertson, Ramsey Theory on the Integers, American Mathematical Society, Providence, RI, 2004.
- [6] K. Myers and A. Robertson, Some two color, four variable Rado numbers, Adv. Appl. Math. 41 (2008) 214–226.
- [7] R. Rado, Studien zur Kombinatorik, Math. Z. 36 (1933) 424–480.
- [8] I. Schur, Über die kongruenz $x^m + y^m \equiv z^m \pmod{p}$, Jahresber. Deutsch. Math. Verein. 25 (1916) 114–117.