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coloring of 1,2,---, R admits a monochromatic solution to L. The Rado number R(c, k)

exists if and only if k is odd or c is even.

In this paper, we show that if k is odd or c is even with k > 5 and ¢ > 2k3 + 2k? — k, then
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k
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, as predicted by Jones and
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1. Introduction

The Rado number theory is a Ramsey theory for an equation or system of equations. This originated in the work [17]
of Schur who showed that there exists a natural number N such that every r-coloring of [1, N] ={1,2,---, N} admits
a monochromatic solution x, y,z € [1, N] to equation x + y = z. The smallest such number N is called the r-color Schur
number, S(r).

As is well known, S(2) =5, S(3) =14, S(4) =45 [18], and S(5) = 161 [8], whereas S(r) is unknown for r > 6. Rado
[3,15] extended this theory to all linear equations and all systems of homogeneous linear equations. He determined the
necessary and sufficient condition that for a given system of homogeneous linear equations, there exists a natural number
N such that every r-coloring of [1, N] admits a monochromatic solution. The smallest number N satisfying this property
is called the r-color Rado number of the system. However, determining the Rado number for an equation (or a system of
equations) is generally not an easy problem.

A natural generalization of the Schur equation x + y =z is x; + X2 + --- + Xm—1 = Xm. Beutelspacher and Brestovansky
[1] determined the two-color Rado number for it. Further, the two-color Rado number for ayx; 4+ axxy + ... + amxm = Xo was
studied by Hopkins and Schaal [9], and computed by Guo and Sun [7]. Schaal [16] computed the two-color Rado number
for 27:11 Xi +¢ = x,m when ¢ > 0. Kosek and Schaal [11] computed the two-color Rado number for the same equation when
¢ < 0. The two-color Rado numbers for equations x; 4+ ax, — x3 = ¢ [4] and Z',":f Xi + axm—1 — Xm = ¢ [5] were studied by
Dwivedi and Tripathi. The two-color Rado number of x + y 4+ ¢ = kz has been studied by several researchers [6,10,12-14];
its Rado number is denoted R(c, k). In this paper, we also study the two-color Rado number R(c, k) for this equation. We

c+2
show that R(c, k) = (w—‘ for k> 5 and ¢ > 2k3 + 2k? — k.
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2. Two-color Rado number of x+ y + ¢ = kz

One of the most studied equations in the theory of Rado numbers is L:x+ y + ¢ = kz for integers ¢ and k > 1. Let
R(c, k) be the two-color Rado number for L. If k is even and c is odd, then the two-coloring x (x) = x (mod 2) admits no
monochromatic solutions to L. Thus, throughout this paper, we consider R(c, k) only when k is odd or c is even.

Burr et al. [2] showed that R(0,1) =5, R(0,2) =1, R(0,3) =9, R(0,k) = @ for k >4 and R(c,1) =4c + 5 for all
¢ > 1. Jones and Schaal [10] proved that for ¢ > 0 and k > 1, R(c, k) is finite if and only if k is odd or c is even. Martinelli
and Schaal [14] determined that

212+ c-|
k

is a lower bound of R(c, k) for all ¢ >0 and k > 1. Jones and Schaal [10] predicted that for each k, R(c, k) = LB(c, k) for

all sufficiently large c, based on empirical evidence. Martinelli and Schaal [14], meanwhile, proved that R(c,2) = LB(c, 2)

for all even c, and studied R(c, 3). Kézdy et al. [12] proved that R(c, 3) = LB(c, 3) for all ¢ > 13. Additionally, they noted

that R(c,k) = LB(c,k) when ¢ = "32—”‘ and R(c, k) > LB(c,k) when c = sz’k + 1 for odd k > 5. Guo [6] demonstrated that

R(c,4) = LB(c,4) for all even c > 34.

The authors of this paper computed R(c, k) = %(k(k—l— 1) —c+ 1) when both ¢ and k are odd and k > c + 6 [13]. In this
case, R(c, k) is significantly larger than LB(c, k). In this paper, we study the reverse case for the same equation when c is
sufficiently larger than k. We show that the Rado numbers agree with LB(c, k), as predicted by Jones and Schaal [10]. The
main theorem is as follows.

LB(c, k) = (

Theorem 1. Assume that k > 5, ¢ > 2k3 + 2k? — k and that either k is odd or c is even. Then, the two-color Rado number R(c, k) of

c+2
X+ y+c=kzisequalto LB(c,k) = {w—‘

For all c> 13 = 337’3 +1, R(c,3) = LB(c, 3) was shown by Kézdy et al. [12], and for all even ¢ >34 = 437’4 +4, R(c,4) =
LB(c, 4) was shown by Guo [6]. Even when k > 5, the condition ¢ > 2k3 + 2k — k in Theorem 1 is not sharp.

Remark. A consequence of Theorem 1 is that for each k > 2 there is the smallest positive integer v(k) such that R(c, k) =

LB(c, k) whenever ¢ > v(k) under the assumption k is odd or c is even. It would also be interesting to determine v (k) for

all k. From Theorem 1 and the work of Kézdy et al. [12], we have v(k) < 2k3 + 2k? —k for all k> 5 and v(k) > "37_" +1 for

odd k > 3. It is known that v(2) =1, v(3) =13 [12] and v(4) < 34 [6]. We can check that R(30,4) = LB(30,4) = 12 and
R(32,4) =LB(32,4) =13, and 12 = R(28,4) > LB(28,4) = 11. Thus, v(4) = 30. Theorem 1 indicates that R(c,5) = LB(c, 5)
if ¢ > 295. In the following example, we have v(5) > 66. The authors of this paper also checked that for all ¢ € [66, 100],
R(c, k) = LB(c, k). We conjecture that v(5) = 66.

Example. When k=5 and ¢ =65, let x :[1,19] — [0, 1],

) = 0, ifx=1,2,6,7,11,12,15,16, 17
X0 = 1, ifx=3,4,5,8,9,13,14, 18, 19.

Then, no monochromatic solution for x + y + 65 = 5z exists. Thus, R(65,5) > 19 = LB(65, 5). In fact, R(65, 5) = 20. Conse-
quently, we obtain v(5) > 66.

3. Proof of main theorem

Let m,r and N be integers such that

2[<27 4 ¢
c:km+r(0§r§k—1)andN:LB(c,k):{%-‘.

ﬁ
As ¢ > 2k3 4+ 2k? — k, we obtain m > 2k% + 2k — 1. As N=m + {w—‘ we have

2m+2 2m+r+k+3 2m+ 2k + 2
. §N§m+f§m+T. (2)

Suppose x is a two-coloring of [1, N] with colors 0 and 1. Let A={x < [1,N]|x(x) =0} and B={x € [1,N]|x (x) =1}.
We assume that no monochromatic solution exists for x + y +c =kz. Let u € [1, k] such that

r+2u = ko 3)
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for some o1 € Z. The existence of u and «; follows from the assumption that k is odd or c is even. As 2 < ko1 =1+ 2u <
3k —1, ovq is 1 or 2. We may assume x (u) =0. As u € A, we have an integer h; > 0 such that

u,k+u,---,khi +ueAandk(h; +1)+u ¢ A. (4)
Lemma 1. Let h1 be the number satisfying (4). Then, we have h1 < m,—fz and k(h1 +1) +u € B.

Proof. Suppose that hy > m’_:rz As m > 2k? + 2k — 1, we have h; > mT” > 2k + 2, and thus, h1 > 2k + 3. Hence, for all
ic[0,k—1], ki+uecA.As

u—+ (ki+u)+c=ki+2u+km-+r=k(m+ o +1i),

m+oq+i¢ A As a1 +i <2+k, we have m+a1+i <m+2+k gm—l—% <N, and thus, m+aq+i € B. Choose i € [0,k—1]
such that m + oy +i — u =kj for some j € Z. Then, kj+ u € B, and thus, h1 +1 < j. Asm+o; <kj+u<m+o;+k—1,
we have

m+2 m+oa;—u—1
k k
This is a contradiction. Thus, h1 < "IT”

As k(h1 +1)+u <m+2+2k§m+m,—f2§N, we obtain k(h1 +1)+ueB. O

m
<—.
Tk

From Lemma 1, there exists an integer hy > hy + 1 such that
k(hi +1)+u,kthy +2)+u,--- ,khp +ue Bandk(h, +1) +u ¢ B. (5)

Lemma 2. Let hq be the number satisfying (4). Then, we have h1 > m;kz.

m—k?
Proof. We assume, to the contrary, that hq < F—.
If hy < ™1 then since k(hy +1) +u <m+k+1+2k <m+ 22 < N, we have k(h; + 1) + u € A. From inequality
(2), we note that m + 22 < N. Since

(khi +u) + (k(ha + D) +u)+c=k(m+a1 +h1 +hy+1)

and

m—k¥ m+k+1 2m+2
m+oar+hi+hy+1<m+2+ X + X +1<m+ . <

we have m + a1 +hy + hy + 1 € B. Thus, this presents a contradiction because

N,

(k(h1 1) +u> 4 (khy +u) +c = k(m + a1 + hy +hy +1).

Thus, hy > THEL
Additionally,

N.

m — k2 2m+2
m+ay+2h +2<m+4+2 smt——=
As

N—m-a <
k

for all i such that 2hy +2 <i < N —m — o1, we have that there exist i1,i» € [hy + 1, hy] satisfying i =iy + i». Since
ki +u,kip+ueB, m+a;+i<N and

2 2k +2 k 1
u_aﬁz(%)f%

(kiy +u) + (kiz +u) +c =k(m+oq + iy +iz) =k(m + oy +1),
we have m + a1 +1i € A. Consequently, we have [m + o1 + 2h 4+ 2, N] C A. Since

—(m+4+2(m;k2))

2k% — 4k + 2
=%zk—l,

2m+2

N—(m+ai+2h1+2)>m+
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there exists j; such that m+aq +2hy +2 <kj;+u < N. Thus, kj; +u € A, and hence, hy < ji. Additionally, k(h, +1)+u € A.
Furthermore, since

u+ (k(hz—H)—i—u) +c=k(m+o;+hy+1)

and
m+42

<N,

. N-—-u 2
m+0(1+h2+1§m+051+]1§m+T+2§m+

we have m +oq +hy +1¢€ B. As [m+ a1 + 2hy + 2, N] C A, we have m + o1 + hy +1 <m + o1 + 2h1 + 1, which implies
2h1 > hy. Let jo =2hy —hy + 1. As 1 < j, =2h; —hy +1 < hq, we have kj, + u € A, and because kj, +u,k(hy +1)+uecA
and

(l<j2+u)+(k(hz+l)+u)+c:k(m+oz1 4o+ hy 4+ 1) =k(m+aq + 2kt +2),
we have m + a1 + 2hy + 2 € B. However, this is a contradiction, as

(k(h1 1)+ u) + (k(h1 1)+ u) T c=k(m+aq +2hy +2).
Thus, h1 > m%’g O
Lemma 3. [f M = min{N, m + oy + 2hy}, then [m + o1, M] C B.

Proof. If 0 <i <2hq, then i =iy + i, for some iy, iy € [0, h1]. Considering

(kiy +u) + (kiz +u) +c=k(m+ oy + i1 +i2) =k(m+ g + 1),
we have m + o1 +i ¢ A. Thus, [m+ o1, m + a1 +2h1]N A =0, and hence, [m+ o1, M]CB. O

ProofzofTheorem 1. Choose i; € Z such that m + a1 — 2u +k <ki; <m -+ oy — 2u + 2k — 1. For all i € [1,k], as 2hy >
2 > 2k — 1, we have
m+oqg <kii+2u—i<m+aoq +2k—1<min{N,m+ a1 + 2h1}.

Thus, from Lemma 3, ki; +2u —i € B.
As

m+oy+2k—1—-2u  2m—-2k* 2k*—m+2k—1
< < +
- k - k k
by Lemma 3, we have m + 1 + i1 € B. Since

0<iy <2hy,

i+ kit +2u—i)+c=k(m+ a1 +1iy),
we have i € A for all i € [1,k]. Let ap = (%—‘.As r+2 <koy <r+2+k, we have kay =r+i3+i4 for some i3, ig €[1,k] C
A.Sincem+a; <m+2<m+ 22 <N and

i3 +ig+c=k(m+ o),

we have m + ay € B.
Moreover, as a1,y € {1,2} and 2h; > 2k — 1 >k, by Lemma 3 we have [m + oy, m + ay + k] C B. If we let o3 =N —m,

then a3 = (W—‘ Thus, there is is € [0, k — 1] such that kaz = 2m +r + 2a +is. As [m + o2, m+ o +k] C B, we have
m+ ay, m—+ oy +i5 € B, and because
(m+az) + (m+ay +is) +c =k(m + a3) =kN,

we have N € A. Since

2 2
1<k-1m+ mk—i- y—km-—r
<(k—-—1)N-c
2 2k+2
< (k=1 + S
2 2 2 2
=m+ 2k — m+ —r<m+ m+ <N,

= K =
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we have (k—1)N —c €[1,N]. As
((k—l)N—c)—i—N—l—c:kN,
we have (k — 1)N — c € B. Choose ig € [0,k — 1] such that (k — 1)N — c+m + o3 + ig = kj1 + 2u for some j; € Z. Note that
m+ay +ig € [m+ay, m—+ oy + k] C B. Since
(k—1DN—c+m+oay+isg—2u
k
(k—l)(%)—km—r—i—m—iﬂ—i—k—l

k

m+ay+j1<m+2+

=m+2+

2m+2
me M2y

and m+ o1 + j;1 <m+ oy + 2h1, we have m + a1 + j1 € B by Lemma 3. Then,

((k—1)N —¢) + (m+ay + i) + c =k(m + a1 + j1),

and thus we obtain a contradiction. Therefore, R(c,k) <N. O
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