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For positive integers c and k, we consider the equation L : x + y + c = kz. Two-color Rado 
number R = R(c, k) of L is the least integer, provided that it exists, such that every two-
coloring of 1, 2, · · · , R admits a monochromatic solution to L. The Rado number R(c, k)

exists if and only if k is odd or c is even.
In this paper, we show that if k is odd or c is even with k ≥ 5 and c ≥ 2k3 + 2k2 − k, then 
the two-color Rado number of L is equal to N =

⌈
2� c+2

k �+c
k

⌉
, as predicted by Jones and 

Schaal.
© 2023 Elsevier B.V. All rights reserved.

1. Introduction

The Rado number theory is a Ramsey theory for an equation or system of equations. This originated in the work [17]
of Schur who showed that there exists a natural number N such that every r-coloring of [1, N] = {1, 2, · · · , N} admits 
a monochromatic solution x, y, z ∈ [1, N] to equation x + y = z. The smallest such number N is called the r-color Schur 
number, S(r).

As is well known, S(2) = 5, S(3) = 14, S(4) = 45 [18], and S(5) = 161 [8], whereas S(r) is unknown for r ≥ 6. Rado 
[3,15] extended this theory to all linear equations and all systems of homogeneous linear equations. He determined the 
necessary and sufficient condition that for a given system of homogeneous linear equations, there exists a natural number 
N such that every r-coloring of [1, N] admits a monochromatic solution. The smallest number N satisfying this property 
is called the r-color Rado number of the system. However, determining the Rado number for an equation (or a system of 
equations) is generally not an easy problem.

A natural generalization of the Schur equation x + y = z is x1 + x2 + · · · + xm−1 = xm . Beutelspacher and Brestovansky 
[1] determined the two-color Rado number for it. Further, the two-color Rado number for a1x1 + a2x2 + ... + amxm = x0 was 
studied by Hopkins and Schaal [9], and computed by Guo and Sun [7]. Schaal [16] computed the two-color Rado number 
for 

∑m−1
i=1 xi + c = xm when c > 0. Kosek and Schaal [11] computed the two-color Rado number for the same equation when 

c < 0. The two-color Rado numbers for equations x1 + ax2 − x3 = c [4] and 
∑m−2

i=1 xi + axm−1 − xm = c [5] were studied by 
Dwivedi and Tripathi. The two-color Rado number of x + y + c = kz has been studied by several researchers [6,10,12–14]; 
its Rado number is denoted R(c, k). In this paper, we also study the two-color Rado number R(c, k) for this equation. We 
show that R(c, k) =

⌈
2� c+2

k �+c
k

⌉
for k ≥ 5 and c ≥ 2k3 + 2k2 − k.
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2. Two-color Rado number of x + y + c = kz

One of the most studied equations in the theory of Rado numbers is L : x + y + c = kz for integers c and k ≥ 1. Let 
R(c, k) be the two-color Rado number for L. If k is even and c is odd, then the two-coloring χ(x) = x (mod 2) admits no 
monochromatic solutions to L. Thus, throughout this paper, we consider R(c, k) only when k is odd or c is even.

Burr et al. [2] showed that R(0, 1) = 5, R(0, 2) = 1, R(0, 3) = 9, R(0, k) = k(k+1)
2 for k ≥ 4 and R(c, 1) = 4c + 5 for all 

c ≥ 1. Jones and Schaal [10] proved that for c ≥ 0 and k ≥ 1, R(c, k) is finite if and only if k is odd or c is even. Martinelli 
and Schaal [14] determined that

LB(c,k) =
⌈2� c+2

k � + c

k

⌉
is a lower bound of R(c, k) for all c ≥ 0 and k ≥ 1. Jones and Schaal [10] predicted that for each k, R(c, k) = LB(c, k) for 
all sufficiently large c, based on empirical evidence. Martinelli and Schaal [14], meanwhile, proved that R(c, 2) = LB(c, 2)

for all even c, and studied R(c, 3). Kézdy et al. [12] proved that R(c, 3) = LB(c, 3) for all c ≥ 13. Additionally, they noted 
that R(c, k) = LB(c, k) when c = k3−k

2 , and R(c, k) > LB(c, k) when c = k3−k
2 + 1 for odd k ≥ 5. Guo [6] demonstrated that 

R(c, 4) = LB(c, 4) for all even c ≥ 34.
The authors of this paper computed R(c, k) = 1

2 (k(k + 1) − c + 1) when both c and k are odd and k ≥ c + 6 [13]. In this 
case, R(c, k) is significantly larger than LB(c, k). In this paper, we study the reverse case for the same equation when c is 
sufficiently larger than k. We show that the Rado numbers agree with LB(c, k), as predicted by Jones and Schaal [10]. The 
main theorem is as follows.

Theorem 1. Assume that k ≥ 5, c ≥ 2k3 + 2k2 − k and that either k is odd or c is even. Then, the two-color Rado number R(c, k) of 
x + y + c = kz is equal to LB(c, k) =

⌈
2� c+2

k �+c
k

⌉
.

For all c ≥ 13 = 33−3
2 + 1, R(c, 3) = LB(c, 3) was shown by Kézdy et al. [12], and for all even c ≥ 34 = 43−4

2 + 4, R(c, 4) =
LB(c, 4) was shown by Guo [6]. Even when k ≥ 5, the condition c ≥ 2k3 + 2k2 − k in Theorem 1 is not sharp.

Remark. A consequence of Theorem 1 is that for each k ≥ 2 there is the smallest positive integer ν(k) such that R(c, k) =
LB(c, k) whenever c ≥ ν(k) under the assumption k is odd or c is even. It would also be interesting to determine ν(k) for 
all k. From Theorem 1 and the work of Kézdy et al. [12], we have ν(k) ≤ 2k3 + 2k2 − k for all k ≥ 5 and ν(k) ≥ k3−k

2 + 1 for 
odd k ≥ 3. It is known that ν(2) = 1, ν(3) = 13 [12] and ν(4) ≤ 34 [6]. We can check that R(30, 4) = LB(30, 4) = 12 and 
R(32, 4) = LB(32, 4) = 13, and 12 = R(28, 4) > LB(28, 4) = 11. Thus, ν(4) = 30. Theorem 1 indicates that R(c, 5) = LB(c, 5)

if c ≥ 295. In the following example, we have ν(5) ≥ 66. The authors of this paper also checked that for all c ∈ [66, 100], 
R(c, k) = LB(c, k). We conjecture that ν(5) = 66.

Example. When k = 5 and c = 65, let χ : [1, 19] → [0, 1],

χ(x) =
{

0, if x = 1,2,6,7,11,12,15,16,17

1, if x = 3,4,5,8,9,13,14,18,19.

Then, no monochromatic solution for x + y + 65 = 5z exists. Thus, R(65, 5) > 19 = LB(65, 5). In fact, R(65, 5) = 20. Conse-
quently, we obtain ν(5) ≥ 66.

3. Proof of main theorem

Let m, r and N be integers such that

c = km + r (0 ≤ r ≤ k − 1) and N = LB(c,k) =
⌈2� c+2

k � + c

k

⌉
. (1)

As c ≥ 2k3 + 2k2 − k, we obtain m ≥ 2k2 + 2k − 1. As N = m +
⌈

2m+r+2� r+2
k �

k

⌉
, we have

m + 2m + 2

k
≤ N ≤ m + 2m + r + k + 3

k
≤ m + 2m + 2k + 2

k
. (2)

Suppose χ is a two-coloring of [1, N] with colors 0 and 1. Let A = {x ∈ [1, N]|χ(x) = 0} and B = {x ∈ [1, N]|χ(x) = 1}. 
We assume that no monochromatic solution exists for x + y + c = kz. Let u ∈ [1, k] such that

r + 2u = kα1 (3)
2
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for some α1 ∈Z. The existence of u and α1 follows from the assumption that k is odd or c is even. As 2 ≤ kα1 = r + 2u ≤
3k − 1, α1 is 1 or 2. We may assume χ(u) = 0. As u ∈ A, we have an integer h1 ≥ 0 such that

u,k + u, · · · ,kh1 + u ∈ A and k(h1 + 1) + u /∈ A. (4)

Lemma 1. Let h1 be the number satisfying (4). Then, we have h1 < m+2
k and k(h1 + 1) + u ∈ B.

Proof. Suppose that h1 ≥ m+2
k . As m ≥ 2k2 + 2k − 1, we have h1 ≥ m+2

k > 2k + 2, and thus, h1 ≥ 2k + 3. Hence, for all 
i ∈ [0, k − 1], ki + u ∈ A. As

u + (ki + u) + c = ki + 2u + km + r = k(m + α1 + i),

m +α1 + i /∈ A. As α1 + i ≤ 2 +k, we have m +α1 + i ≤ m +2 +k ≤ m + 2m+2
k ≤ N , and thus, m +α1 + i ∈ B . Choose i ∈ [0, k −1]

such that m + α1 + i − u = kj for some j ∈Z. Then, kj + u ∈ B , and thus, h1 + 1 ≤ j. As m + α1 ≤ kj + u ≤ m + α1 + k − 1, 
we have

m + 2

k
≤ h1 ≤ j − 1 ≤ m + α1 − u − 1

k
≤ m

k
.

This is a contradiction. Thus, h1 < m+2
k .

As k(h1 + 1) + u < m + 2 + 2k ≤ m + m+2
k ≤ N , we obtain k(h1 + 1) + u ∈ B . �

From Lemma 1, there exists an integer h2 ≥ h1 + 1 such that

k(h1 + 1) + u,k(h1 + 2) + u, · · · ,kh2 + u ∈ B and k(h2 + 1) + u /∈ B. (5)

Lemma 2. Let h1 be the number satisfying (4). Then, we have h1 > m−k2

k .

Proof. We assume, to the contrary, that h1 ≤ m−k2

k .

If h2 < m+k+1
k , then since k(h2 + 1) + u ≤ m + k + 1 + 2k ≤ m + 2m+2

k ≤ N , we have k(h2 + 1) + u ∈ A. From inequality 
(2), we note that m + 2m+2

k ≤ N . Since

(kh1 + u) + (k(h2 + 1) + u) + c = k(m + α1 + h1 + h2 + 1)

and

m + α1 + h1 + h2 + 1 < m + 2 + m − k2

k
+ m + k + 1

k
+ 1 ≤ m + 2m + 2

k
≤ N,

we have m + α1 + h1 + h2 + 1 ∈ B . Thus, this presents a contradiction because(
k(h1 + 1) + u

)
+ (kh2 + u) + c = k(m + α1 + h1 + h2 + 1).

Thus, h2 ≥ m+k+1
k .

Additionally,

m + α1 + 2h1 + 2 ≤ m + 4 + 2

(
m − k2

k

)
≤ m + 2m + 2

k
≤ N.

As

N − m − α1 ≤ 2m + 2k + 2

k
− α1 ≤ 2

(
m + k + 1

k

)
≤ 2h2,

for all i such that 2h1 + 2 ≤ i ≤ N − m − α1, we have that there exist i1, i2 ∈ [h1 + 1, h2] satisfying i = i1 + i2. Since 
ki1 + u, ki2 + u ∈ B , m + α1 + i ≤ N and

(ki1 + u) + (ki2 + u) + c = k(m + α1 + i1 + i2) = k(m + α1 + i),

we have m + α1 + i ∈ A. Consequently, we have [m + α1 + 2h1 + 2, N] ⊂ A. Since

N − (m + α1 + 2h1 + 2) ≥ m + 2m + 2

k
−

(
m + 4 + 2(

m − k2

k
)
)

= 2k2 − 4k + 2 ≥ k − 1,

k

3
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there exists j1 such that m +α1 +2h1 +2 ≤ kj1 +u ≤ N . Thus, kj1 +u ∈ A, and hence, h2 < j1. Additionally, k(h2 +1) +u ∈ A. 
Furthermore, since

u +
(

k(h2 + 1) + u
)

+ c = k(m + α1 + h2 + 1)

and

m + α1 + h2 + 1 ≤ m + α1 + j1 ≤ m + N − u

k
+ 2 ≤ m + 2m + 2

k
≤ N,

we have m + α1 + h2 + 1 ∈ B . As [m + α1 + 2h1 + 2, N] ⊂ A, we have m + α1 + h2 + 1 ≤ m + α1 + 2h1 + 1, which implies 
2h1 ≥ h2. Let j2 = 2h1 − h2 + 1. As 1 ≤ j2 = 2h1 − h2 + 1 ≤ h1, we have kj2 + u ∈ A, and because kj2 + u, k(h2 + 1) + u ∈ A
and

(kj2 + u) +
(

k(h2 + 1) + u
)

+ c = k(m + α1 + j2 + h2 + 1) = k(m + α1 + 2h1 + 2),

we have m + α1 + 2h1 + 2 ∈ B . However, this is a contradiction, as(
k(h1 + 1) + u

)
+

(
k(h1 + 1) + u

)
+ c = k(m + α1 + 2h1 + 2).

Thus, h1 > m−k2

k . �
Lemma 3. If M = min{N, m + α1 + 2h1}, then [m + α1, M] ⊂ B.

Proof. If 0 ≤ i ≤ 2h1, then i = i1 + i2 for some i1, i2 ∈ [0, h1]. Considering

(ki1 + u) + (ki2 + u) + c = k(m + α1 + i1 + i2) = k(m + α1 + i),

we have m + α1 + i /∈ A. Thus, [m + α1, m + α1 + 2h1] ∩ A = ∅, and hence, [m + α1, M] ⊂ B . �
Proof of Theorem 1. Choose i1 ∈ Z such that m + α1 − 2u + k ≤ ki1 ≤ m + α1 − 2u + 2k − 1. For all i ∈ [1, k], as 2h1 ≥
2m−2k2

k ≥ 2k − 1, we have

m + α1 ≤ ki1 + 2u − i ≤ m + α1 + 2k − 1 ≤ min{N,m + α1 + 2h1}.
Thus, from Lemma 3, ki1 + 2u − i ∈ B .

As

0 ≤ i1 ≤ m + α1 + 2k − 1 − 2u

k
≤ 2m − 2k2

k
+ 2k2 − m + 2k − 1

k
≤ 2h1,

by Lemma 3, we have m + α1 + i1 ∈ B . Since

i + (ki1 + 2u − i) + c = k(m + α1 + i1),

we have i ∈ A for all i ∈ [1, k]. Let α2 =
⌈

r+2
k

⌉
. As r + 2 ≤ kα2 < r + 2 + k, we have kα2 = r + i3 + i4 for some i3, i4 ∈ [1, k] ⊂

A. Since m + α2 ≤ m + 2 ≤ m + 2m+2
k ≤ N and

i3 + i4 + c = k(m + α2),

we have m + α2 ∈ B .
Moreover, as α1, α2 ∈ {1, 2} and 2h1 ≥ 2k − 1 ≥ k, by Lemma 3 we have [m + α2, m + α2 + k] ⊂ B . If we let α3 = N − m, 

then α3 =
⌈

2m+r+2α2
k

⌉
. Thus, there is i5 ∈ [0, k − 1] such that kα3 = 2m + r + 2α2 + i5. As [m +α2, m +α2 +k] ⊂ B , we have 

m + α2, m + α2 + i5 ∈ B , and because

(m + α2) + (m + α2 + i5) + c = k(m + α3) = kN,

we have N ∈ A. Since

1 ≤ (k − 1)(m + 2m + 2

k
) − km − r

≤ (k − 1)N − c

≤ (k − 1)(m + 2m + 2k + 2

k
) − km − r

= m + 2k − 2m + 2 − r ≤ m + 2m + 2 ≤ N,

k k

4
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we have (k − 1)N − c ∈ [1, N]. As(
(k − 1)N − c

)
+ N + c = kN,

we have (k − 1)N − c ∈ B . Choose i6 ∈ [0, k − 1] such that (k − 1)N − c + m + α2 + i6 = kj1 + 2u for some j1 ∈Z. Note that 
m + α2 + i6 ∈ [m + α2, m + α2 + k] ⊂ B . Since

m + α1 + j1 ≤ m + 2 + (k − 1)N − c + m + α2 + i6 − 2u

k

≤ m + 2 +
(k − 1)

(
(k+2)m+r+k+3

k

)
− km − r + m + 2 + k − 1

k

≤ m + 2m + 2

k
≤ N

and m + α1 + j1 ≤ m + α1 + 2h1, we have m + α1 + j1 ∈ B by Lemma 3. Then,

((k − 1)N − c) + (m + α2 + i6) + c = k(m + α1 + j1),

and thus we obtain a contradiction. Therefore, R(c, k) ≤ N . �
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