A COMBINATORIAL THEOREM

P. Erpos axp R. Rapot.

[Eztracted from the Journal of the London Mathematical Society, Vol. 25, 1950.]

1. F. P. Ramsey (1) proved the following theorem. Let n be a positive
integer, and let A be an arbitrary distribution of all sets of n positive integers
into a finite number of classes. Then there exists an infinite set M of positive
integers which has the property that all sets of n numbers of M belong o the
same class of A. Apart from its intrinsic interest the theorem possesses
applications in widely different branches of mathematics. Thus in (1)
the theorem is used to deal with a special case of the “Entscheidungs-
problem” in formal logic. In (2) the theorem serves to establish the
existence of convex polygons having any number of vertices when these
vertices are to be selected from an arbitrary system of sufficiently many
points in a plane. In (3) it is a principal tool in finding all extensions of
the distributive law

(a+b)(e+d) = act+ad+be+-bd

to the case where the factors on the left-hand side are replaced by con-
vergent infinite series. Finally, Ramsey’s theorem at once leads to
Schur’s result (4), which asserts the existence of a number %, such that,
whenever the numbers 1, 2, ..., n, are arbitrarily distributed over k classes,
at least one class contains three numbers z, y, z satisfying #+y =2. The
estimate of n,, obtained in this way is, however, inferior to Schur’s estimate
ny < ek!

The object of the present note is to prove a generalisation of Ramsey’s
theorem in which the number of classes of A need not be finite. We consider
the term “distribution of the set Q" as synonymous with “binary,
reflexive, symmetrical, transitive relation in Q”. Let N = {1, 2, 3, ...},
and denote, for ne N, by Q, the set of all subsets {a,, a,, ..., a,} of N,
where a, <a,<..<a, Let k, v, v, ...,v, be integers, 0 <k <,
0<v, <vy<..<v,<n. Consider the following special distribution of
Q,, called the canonical distribution A®, ., of Q,. Two elements
{ay, .., @}, {bys o5 b,) of Q, are in the same class of A¥) | if, and only if,

O Sy Sy By Ly vy

a,=b,; a,= B dvnd a,k:b,,*.

There are exactly 2" canonical distributions of Q,. We mention the
following two extreme cases of such distributions: (i) A, the distribution

t Received 26 August, 1949; read 17 November, 1949,
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in which all elements of Q, form one single class, (i) A", . the distribu-
tion in which every element of (2, forms a class by itself. We shall prove

TraroreM 1. Let n be a positive integer. Let A be an arbitrary distribu-
tion of all sets of n positive integers into classes. Then there is an infinite sel
N# of positive integers and a canonical distribution AL’:}_ v, Such that, as far as
subsets of N*# are concerned, the given distribution A coincides with the canonical
distribution AR

If, in particular, A has only a finite number of classes then the canonical
distribution of Theorem I, having itself only a finite number of classes,
must be A®, so that Ramsey’s theorem follows from Theorem I.

2. It may be worth while to state explicitly the special case n = 2 of
Theorem 1.

TaeoreEm II. Suppose that all pairs of positive integers (a, b), where
a <b, are arbitrarily distributed into classes. Then there is an increasing
sequence of integers x,, Xy, X5, ... such that one of the following four sets
of conditions holds, where it is assumed that « <f; y<<¥:

(i) All (x,, xg) belong to the same class.
(1) (2., zs) and (z,, ;) belong to the same class if, and only if, a=y.
(iii) (2., z5) and (x,, z5) belong to the same class if, and only if, B=25.

(iv) (2., 25) and (x,, ;) belong to the sume class if, and only if, a=1y;
B=3.

We shall deduce Theorem I from Ramsey’s theorem. Our argument
does not make any use of Zermelo’s axiom. Ramsey stated explicitlyt
that his proof assumes Zermelo’s axiom. It is, however, very easy to
modify his proof in such a way that this axiom is not required. In order
to establish Theorem I without the use of Zermelo’s axiom, we give a brief
account, in §5, of such a modified proof of Ramsey’s theorem.

3. We introduce some notations and definitions. The letter A denotes
distributions of objeects into classes. The relation X =Y (.A) expresses
the fact that X and ¥ are objects distributed by A, and that X and Y
belong to the same class of A. Letters 4, B, C, D denote typical finite
subsets of N. The number of elements of 4 is |4|. A relation]

(1) A 1doinn il =B Bes ..o By,

t (1), Theorem A.
} Set-theoretical operations are denoted by the common algebraic symbols, and
brackets { } are only used in order to define sets by means of a list of their elements.
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means that there exists a function f(z), defined for ze A4, ...+ A4, and
having functional values in N, which has the properties:

if @<y, then f(z) <f(),
3 {fl@)f =B, (1<p<m)
red.

Thus (1) simply means that, as far as the order relation in N is concerned,
the relative position of the sets 4, to each other is the same as that of the
B,. A relation

is, by definition, equivalent to the simultaneous validity of the two relations

4. Using the notation and definitions of §3, we can state Theorem I,
for a fixed n >0, as followsT.

ProrositioN P,. Let A be a distribution of Q,. Let C, be fived,
|Cyl=n. Then there is an infinite subset N* of N and a subset Cg* of C
such that the following condition holds : if

A+BCN#%;, |A|=|Blj=n; A%:A=B*:B=C*:(,,
then A=B (A) if, and only if, A* = B¥.

A corollary of the proposition P, is the following test for a distribution
to be canonical.

TeeoreEM III. A distribution A of Q, is canonical if, and only if,
whenever
A=B(A); A:B=C:D,

then C=D (.A).

5, Our “choice-free” version of Ramsey’s proof of his theorem runs
as follows. Let A be a distribution of Q, into a finite number of classes.
We want to define an infinite subset M (A) of N such that, for some class
of A, we have A ex whenever AC M(A), |4|=n.

If n =0, then we may put M(A)=N. Let n >0, and use induction
with respect to n. If ae N— M, where

M:{xl, .‘Eg, ..-}CN; $1<352<...,

+ The case n = 0 is included merely in order to have an easy start of the induction
proof which is to follow.



252 P. ErpGs and R. Rapo

we define the distribution A(M, a) by putting
A=B(AM, a))

if, and only if,
A+BcM, |A|=|B|=n—1,

{a}+4 = {a}+ B (A).

By induction hypothesis, appliedt to the set M, in place of N, and the
distribution A(M, a), there is a well-defined infinite subset o(M, a) of M
and a class «(M, a) of A satisfying

{a}+4 ex(M, a) whenever Aco(M, a), |4|=n—1.

Now we define, inductively, numbers a, and sets M, not containing a,.
Put @;=1; M= N—{1}. Let q;,, be the least number of o(M,, @), and
put M, =o(M;, a)—{a;,,} (1=0,1,..). Let k, be the least number
such that «(M,,, ay ) = x(M,, a;) for infinitely many k, and let &, &, ...
be all numbers £ satisfying this last equation, ky <<k, < .... Then we may
put M(A)= {ay, @, ...}. This proves Ramsey’s theorem.

6. We now prove P,. Clearly, P,is true. For we may put N* =N;
Co*=C,. Let n>0, and use induction with respect to n. Let A be a
distribution of Q,. Choose some fixed D, satisfying |D,| = 2n. Define,
for any A4 such that | 4| = 2n, the set ¢(4) of pairs of subsets of D, by putting

$(d) = Z {0, D")}.
A'+A7CA
A'=4"(4)
A1 A" A=D1 D" D,
The set ¢(A) characterizes the effect of A on the subsets of 4. We define
A* by putting
(2) A= B(.A%)

if, and only if, |4|=|B|=2n; ¢(4)=¢(B).

Since A* has only a finite number of classes it follows from Ramsey’s
theorem that there is an infinite subset M of N such that (2) holds whenever
A+BcM; |A|=|B|=2n.

Without loss of generality we may assume that M = N. For all our
arguments are only based on order relations in N.

1 The relation »<« —x, sets up a one-one mappingof N on M. By means of this mapping
there corresponds to every well-defined subset of N a well-defined subset of M, and vice
versa.
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Consider any sets 4', B’, €', D' satisfying

(3) A'= B’ (.A),

(4) Als R = )
We want to deduce that

(5) C'=D'(.A).

According to (3), (4), one can choose A and B satisfying
A'4+B'cA; C'+D'cB; |A|=|B|=2n,
(6) A":B":A=0(":D":B.
Then (2) holds and therefore, in view of (6), (3), and the definition of A%,

also (5). The fact that (3) and (4) imply (5) will briefly be described by
saying that A is invariant.

Case 1. Suppose that 4= B (.A) only holds if 4= B. Then the
conclusion of P, is true if we put N¥=N; O *=C,.

Case 2. Suppose that there are sets 4, B, satisfying 4,= B, (.A);
A,# B,. Put

zedy zeB,

AU:BOZAI:BI’

Then

and therefore, since A is invariant,

(7 4,= B, (\A).

As A, # By, we can choose z,e B,—A,B,. Put
B, = (B;— {2x})+ {2x,+1}.

Then
AO : Bo = A]. H Bg
and hence, again on account of the invariance of A
(8) A, =B, (A).
From (7) and (8),
(9) B,= B, (A).

There is €, satisfying
(Bo—{o}): By = Cy": O,
Now consider any sets 4,, 4, such that

|As|=|A44|=mn; Ag#A4,; A':A3=A4":4,=Cy':0,,
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where A’ is some suitable set. We shall show that
(10) A;=A,(.A).
We may assume that

A = Ay—{z} = Ay~ {2y} <y

Then B,:B,= A4,:4,, and therefore, since (9) holds and A is invariant,
(10) follows. In other words, if sets 4 and A’ satisfy A": A = € : C,, then
the class of A which contains 4 only depends on 4" and not on 4—4".
Hence every set A"’ satisfying

|47 =8-=1; A"c{%4 6,..1=N",

say, determines a unique class K (4"') of A, namely that class which contains
all A satisfying 4"": A= C,':C,. Such sets 4 always exist.
Define A” by putting

A" = B" (.A")
if, and only if,
|A"|=|B"|=n—1; A"+B"cN"”; K(A")=K(B").
By induction hypothesis, the proposition P,_, is true for A”". Thus there is

an infinite subset N'"' of N'” and a subset C('" of Oy such that the following
conditions are satisfied. Let

A”—'—B”CN’”; AHJ':AI!: Br!f:Bt.r: ';.rr:onr"

Then A" = B” (.A") if, and only if, 4" = B’”. In view of the definition
of A", this means that the conclusion of P, holds for the given distribution

A if we put
N* s NH:; Cﬂ* — CE\“-

This proves Proposition P, and hence Theorems I and II.

7. We now prove Theorem III. First of all, suppose that A is a
canonical distribution of Q,,,say A =A¥ , . Then the relation 4 = B (.A)

means that
A={ay, ...,a,}; B={by, ..., by},

U< <@y; b <...<by,
a, =b, (1 <«x<k).
If now 0= 10 e B P s
€ << ... <<€y dy<...<d,,
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then the validity of A : B = C: D implies that ¢, =d, (1 <k <k),1.e. that
C=D(.A). Hence A is invariant. ’ ‘

Vice versa, suppose that A is invariant. By Theorem I, we can find
an infinite subset N* of N, so that A is canonical in N*¥, say A = A,‘:f{__“, as
far as subsets of N*¥ are concerned. But, since A is invariant in the whole
set N, this obviously implies that A = A‘fl’}“_ ), B8 far as all subsets of N are
concerned. This proves Theorem III.
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