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Introduction
LET S be a set, and denote by Q,, (S) the set of all subsets of S which contain
exactly n elements. F. P. Ramseyt proved the following theorem :

Given any positive integers k, n, ANT, there is a positive integer M which has
the following property. If S = {1, 2, . . ., A1}, and A is any distribution of
Q,(S) into k classes, there is always an element S' of OAS) such that the
(--,a,') elements of

	

belong to the same class of A .
We denote by R(k., n, N) the least number _J1 possessing this property,

and we call R Ramsey's function . Clearly
R(1, n, AT ) _ AT ;

	

R(k,1,1V) = k(N-1) 1-1 1,
so that only the case k: > 2 ; AT > n > 2 is of interest .
All known proofs (1), (2), (3), (4) of Ramsey's theorem give upper

estimates for R which are so large that they are hardly expressible explicitly
in terms of the fundamental algebraic operations . A modification of the
known methods of proof leads to a new upper estimate for R (Theorem 1)
which is in general much better than the known estimates and which is,
moreover, easily expressible in terms of (n-1)-fold exponentiation .

In (4), Ramsey's theorem, or rather its companion theorem in which
both S and S' are denumerably infinite, was generalized so as to cover
the case of arbitrary distributions into infinitely many classes . The main
step in the proof of this generalized Ramsey theorem consisted in showing
that every 'invariant' distribution of S2n(S) is `canonical' . A distribution
A of Q, (S), where S is a set of real numbers, is called invariant if the following
condition holds . Suppose that A = {a1 , . . ., aj ; B = {b	bj are any
elements of Q,,,(S) belonging to the same class of A, and that f(x) is any
function defined and increasing in the union A+B and having its values
in S. Then always the sets {f (a,1 ), . . ., f (a„ )} and {f (b 1 ), . . ., f (b )} belong to
the same class of A. A distribution A of S2„(S) is called canonical if integers
k, v, can be found satisfying

0 < to < n ;

	

1 < V1 < V2 < *" < Vk < n,
such that the above sets A and B, under the assumption

a1<a-2< . . .<a,ti ;

	

b1 < . ..<bn ,
t (1), Theorem B .

	

T (1), Theorem A .
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belong to the same class of A if and only if a,,, = b,,, : a, = b, ; . . . ; a„k = b„k .
In this case we write A = A(k) vk .

Clearly every canonical distribution is invariant . In (4), Theorem III,
it was proved that if S = {1, 2, . . .} . then every invariant distribution is
canonical, so that the two classes of distributions coincide . It turns out
that for finite sets S this is no longer true . In Theorem 2 of the present
note necessary and sufficient conditions on n and N are established in
order that every invariant distribution of Stn({l, 2	YJ) should be
canonical .

By means of Theorem 1 and Theorem 2 we obtain a finitist version
(Theorem 3) of the generalized Ramsey theorem of (4) .

The next section of the paper is largely devoted to transfinite extensions
of Ramsey's Theorem A in the case k = n = 2 . The general type of
problem arising in this field, of which we have only partial solutions, can
be characterized as follows . Suppose that all sets of two real numbers are
distributed into two classes K, and K2 . Let us say that an order type ~ is
realizable in the class KA if there exists a set X of real numbers, of order type 0
under the natural order according to magnitude, such that S2 2(X) c KA .
Ramsey's Theorem A ensures that the first infinite ordinal number
w = { 1,2 , . . .} is always realizable in some class . A very interesting example
due to Sierpinski (last section, Example 4 A) shows that it can happen that
the only order types realizable in K1 are denumerable ordinals, and at the
same time the only types realizable in K 2 are the converses of denumerable
ordinals, i .e . order types obtained from ordinal numbers by replacing every
relation x < y b`* the corresponding relation x > y . The most concrete
result obtained in this note (Theorem 7) implies that every order type co +?n
is realizable in some class, for any finite m . In Theorems 4-8 various results
are established pointing in the direction of a fairly plausible conjecture :
in every distribution every denumerable ordinal is realized in some class . The
section concludes with two results (Theorems 9 and 10) concerning distribu-
tions of 12n(S) for arbitrary finite n and having any number of classes,
finite or infinite .

In the final section of the paper a number of examples are given which
show that in certain directions Ramsey's theorem cannot be generalized .
Some of these examples give rise to unsolved problems, the most interesting
of which seems to be the following one, discussed in §§ 2 and 3 of the last
section . Given an infinite set S, is it possible to divide all finite subsets of S
into two classes in such a way that every infinite subset of S contains two finite
subsets of the same number of elements but belonging to different classes ?
The answer is in the affirmative if the cardinal of S is at most that of the
continuum, and there are, in fact, many different methods of effecting
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the required classification . Nothing, however, is known for sets whose
cardinal exceeds that of the continuum .

The last example of the paper is not concerned with Ramsey's theorem
but with the following theorem due to van der Waerden (5) . Given positive
integers k and l, there is a positive integer m such that, if the set {1, 2, . . ., m} is
divided into k classes, at least one class contains l+l numbers which form an
arithmetic progression . The least number m possessing this property is
denoted by W(k, l) (van der Waerden's function) . Our final example yields
what seems to be the first non-trivial, no doubt extremely weak, lower
estimate of W, namely W(k, l) > ckitll . An upper estimate of W, at any
rate one which is easily expressible explicitly in terms of the fundamental
algebraic operations, seems to be beyond the reach of methods available
at present .

Notation and definitions
Brackets { . . .} are used exclusively in order to define sets by means of a

list of the elements they contain. Thus order and multiplicities are ir-
relevant, so that {1, l, 2} _ {2, 1} . If A and B are sets, then A+B, AB,
and A-AB denote their union, intersection, and difference respectively,
and I A denotes the cardinal ofA. Set inclusion, in the wide sense, is denoted
by A c B . The symbol {a1 , a 2 an }# denotes the set {al , . . ., a n} and also
expresses the fact that ar a s (1 < r < s < n), and similarly {b 1 , . . ., bn }<
denotes the set {b 1 , . . ., b n } and at the same time expresses the fact that
b 1 < . . . < bn . Throughout, even in arguments involving transfinite
ordinals, the symbol x l, x 2 . . . . denotes a sequence of type w, where w stands
for the first infinite ordinal .

For typographical reasons we frequently replace symbols like
11-r-< ..ars by

	

l<s<-n. Da'rs~
1_<r_< ?n
l<-s_n

and similarly when in place of I we have IT, min, or max. As stated in
the introduction, we put Q,,, (8) _ I S' c S, l S' J = n [] {S'} .

The letter í, is used to denote partitions or distributions of sets S into
classes, i.e. equivalence relations on S . The fact that 0 is a distribution
of S is also expressed by saying that A(x) is defined for x e S. V6'e use the
notation and the calculus of partitions developed in (6), which will now be
briefly described .

A relation x - y ( . A) expresses the fact that x, y c- S, and that x and y
belong to the same class of A . The number, of non-empty classes of 0 is
denoted by I Al . The following two methods are employed for generating
new distributions from given ones .
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(i) If Al , • • • , A. are defined in S, then the equation

A*(x) = jj 1, < < m 114,,(x) (x E S)
defines that distribution A* of S for which the relation

x-y( •A* )
is equivalent to the system of relations

x-y( •A,) (1<µ<M) .
(ü) If 0(y) is defined for y e T, and iff (x) is a function on S into T, then

the equation

	

A'(x) _ A(f(x)) (x E S)
defines that distribution A' of S for which the relation

x1 = x2 ( ~)
is equivalent to the relation

f(x1) = f(x2) ( .~) .

Estimate of Ramsey's function R(k, n, 14')
We define a binary operation * by putting, for positive numbers a and b,

a*b = ab •
Furthermore, we put, for n > 3,

a1*a2*a3* • • • * an = al*(a2*(a3*( • • • * (a„-1*an) • • • ) )) •
Then, if 1 < m < n,

al*a2* • • • * a.*(am+,* • • • * an) = al*a2* • • • * an,
where the symbol al* a2 * . . . *a. has the value a, if m = 1 •
THEOREM 1 • Ramsey's function R, defined in the introduction, satisfies

the inequality
R(k,n,N) < k*(kn-1)*(kn-2)* • • • * (k2)*[k(N-n)Tl]

	

(1)
(k>2;N>n>2)•

In particular, R(k, 2, N) < kk(N-2)+1 •

Ramsey, in his paper (1), states that his method yields the estimate
R(k,2,N) < ( . • • ((N!)1)! • • • ) 1 (k-1 symbols `1'),

but he emphasizes that he believes the right-hand side to be far too large .
The result obtained in (2) is

R(k, 2, N) < (kk(N-1)+2)I(k-1) .

For k = n = 2, the result of (3) is slightly better than (1) . We find

from (3) : R(2, 2, N) < (N-1
21 ti ,r-122 N'- 2N-i (N oo) ;N

while Theorem 1 gives

	

R(2, 2, N) < 22N-3•
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But for k = 2 ; n = 3 the comparison is heavily in favour of the new value.
We find
from (3) : an estimate considerably weaker than

R(2, 3, N) < 2 * 2 * * 2 (2N-2 `factors')
and from Theorem 1 :

	

R(2, 3, N) < 242N-6 •

In the special case k = n = 2 Theorem 1 asserts that every graph of order
22.v-3 contains either N independent nodes or a complete subgraph of order N .
A transfinite analogue of this result is proved in (8) .

Proof of Theorem 1 . Let k > 2 ; N > n > 2 . We first dispose of a trivial
case. If N = n, then R(k, n, N) = n, and the theorem asserts that

n < k * (kn -1 ) * (kn-2) * . . . * (k 2 ) * [k . 0-}-1] . (2)
If n = 2, then (2) asserts that 2 < k, which is true. Now suppose that
(2) holds for all k and some n = no > 2. Then, when n = no is replaced
by no+1, the right-hand side of (2) increases by at least a unit, so that
(2) holds for n = no +1 . Hence the conclusion holds for N = n, and we
may assume that N > n .

Let A be a finite set. The construction we shall describe will be possible
provided that I A I is sufficiently large . A sufficient condition on IA I will be
determined after the construction has been defined . Throughout this proof
the letter B denotes subsets of A such that JBI = n-2 .

We are given a distribution A of t2 .n(A), such that 10I < k. We choose
{a1 , a 2 , . . ., an-1}# c A and put

O.n_1(x) _ A({a1 , . . ., an_h x}) (x E A-{a1, . . ., a.n_1}) •
Then 1A,1 1 < k, and there is A.,, c A-{a1 , . . ., a n_ 1} such that I An-1 I = 1
in An,f

	

~Anj > ( JAI-n+1)k-1 .
We choose a,n EAn and put

An(x) = 11 B c {a 1 , . . ., a.n-1} Q A(B+{an, x}) (x E An -{an}) .
Then I On j < k * (n=2), and there is An+, C An-{an} such that O n I = 1
111 An+1,

	

An+lI > (JAn

	

n-2).
Generally, let m > n, and suppose that elements a,, . . ., a.-, and sets
An,, An+1 , . . ., A,, have been defined, and that A. 0. Then we choose
a. e A,n and put

A.(x) = [T B c {a1 , . . ., a,n_1} [] A(BT{a,n , x}) (x e A.-{a,n}) .
Then I A n I < k * (n=2 ), and there is Ant+1 c A.-{a,n} such that 1A.1 = 1
in A.+,,

Now put

	

l = 1+R(k,n-1,N-1) .

t i .e . all elements of A 1, belong to the same class of A .- , .
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Then l > N > n. If JAI is sufficiently large, then A. 0 (n < m < l),
so that a,, . . ., al exist. Let

0'({Pv . . ., Pm,-i}) _ A({api, . . ., ap,_ i , al}) (1<p1< . . . < Pn-i < l) .
Then I A' I < k, and by definition of l there is D c {1, . . ., l-1} such that
IA'J = 1 in fl,,_ 1(D), IDS = N-1 . Finally, we put

A' _ {al}+ I p e D [I {ap} _ {aA l , . . ., aAN }# ,
say. Then

	

I A I = 1 in S2n(A') .

	

(3)
For let C = {api , . . ., a p, } cA' ; 1 < p, < . . . < pn < l . Then, since a pn , al E App ,
we have ap. - a l ( . Op„_,), and hence

{ap	a pn_ 1 , ap.} - {api, . . ., ap„_, , alj ( . } .

	

( 4 )
Also, since {api , . . ., ap„_ 1 } c A', we have

{api , . . ., apn_ 1 - aA,, . . ., aA._i

	

( .O },
i.e .

	

{a pi , . . ., apn _,, al} - {aA,, . . ., aan i , al}

	

( .,).

	

(5)
By (4) and (5), C - Co ( .A), where Co = {aa l ; . . .,a _ i.aj is independent of
the choice of C . Hence (3) follows .

We shall now obtain a value for JA I which will ensure that the construc-
tion can be carried through . For such a value we shall then have

R(k, n, N) < I A ~ .
Put

	

t,, = k-1(j AI-n+ l),

t,~+1 = k-(n-2)(-1+t .) (n < m < l) .

All we require is that t l > 0 . Now, if k -(nm2) = km ,

tl - kl-2(-I+k,l-3( . . .(-1 kn_1( - I ~tn)} . . .)}
-kl-2 -k1-2 k1-3- . . .-k1-2 kt-3 . . . kn_i+kl-2 . . . kn-1 tn •

Hence a sufficient condition on I A I is

kl-2 . . . kn-2(I A I -n+ 1) >
kl-2+k'l-2 kl-3+

. . .+k't-2 . . . kn-1~
i .e .

	

IAI-n+1 > k(n-2)+. . .+(n=2)+k(n-2)+. ..+(n-2) } . ..+k(n-2) .
A possible value is

JAI = n+k(ni)+k(n=i)+ . . .+k(n=i),
so that

l-2
R(k, n, N) < n+

	

n-1a=n-1
l-2

	

t-2
n+~

	

1 k*A*(n-1) < n+
A
-I 1 Lk (A 11) (n-1)-kxa~ (n-1)]

n+k*(1-1)*(n-1)-k*(n-1)*(n-1) < k*(l-1 ) *(n-1)
= k*R(k,n-1,íV-1)*(n-1),

R(k,n,ll')*n < (kn)*R(k,n-1,N-1)*(n-1) .
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After n-1 applications of this last inequality we get
R(k, n, N) * n < (kn) * (kn -1 ) * . . . (k 2 ) * R(k,1, N-n+ 1) * 1

_ (/on)* (kn
-1 ) * . . . * (k 2 ) * [k(N-n)+ I],

which is the desired result .

Invariant and canonical distributions
The terms invariant distribution and canonical distribution are defined

in the introduction .
THEOREM 2 . Let n and N be integers, 1 < n < N, and let A be an invariant

distribution of S2n(S), where S = {1, 2, . . ., N}. Then A is canonical, provided
that at least one of the three conditions (i) n = 1, (ü) n < 1-2 1IT, (iii) n = N
holds. If, on the other hand, the numbers n and N do not satisfy any of the
conditions (i), (ü), (iii), then there exists an invariant distribution of f2.(S)
which is not canonical .

Proof. We recall the following definitions used in (4) . If A,,,, Bu are
sets of positive integers (I < µ < m), then the relation

A 1 : A 2 : . . . :A m = B1 : B2 : . . . :Bm
means that there exists a function f (x), defined and increasing on
A,+A,+ . ..+A., which maps, for all IL, AL on Bw . The relation

do not imply that A : A" = B : B" . This is shown by the example in which
A, A', A"; B, B', B" are

{1, 3}, 12, 41, {3, 51 ;

	

{1, 41, {2, 51, {3, 6}
respectively .
We begin by proving the last part of Theorem 2 . If n and N do not

satisfy any of the conditions (i)-(iii) then
2<n< N<2n.

	

(6)

Put S = {I	} ; A o = {1, 2, . . ., n}; Bo = {X-n+ 1,íl'-n+2, . . ., N}, and
define a distribution A' of Q,,(S) as follows . If A, B E Q,,(S), then
A - B ( .A') if and only if either A = B or A = A O ; B = Bo or A = Bo ;
B = A. . Then A' is invariant. For let A, B, C, D E 52,á(S) ; A - B ( . A'),

A :B = C :D .

	

(7)

We have to deduce that C - D ( .A') . If A = B, then, by (7), C = D,

A : A' = B : B' = C : C'

means that simultaneously
A : A' = B: B' ; B : B' = C : C' .

It is worth noting that the relations
A : A' = B : B' ; A' : A" = B' : B"
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and hence C - D ( .A') . If A zA B, then we may assume that A = A 0 ;
B = B o . Then, in view of (6), the relation (7) implies that C = A 0 ; D = B o .
For, clearly, the order relations between the elements of A O and Bo are
such that there exists only one pair of elements of Q.(S) for which they all
hold. Hence in any case C - D ( .0') .

We now show that A' is not canonical. We have 1 < N-n+1,
{l, 2, . . ., n} - {N-ná--1, N-n-á-2, . . ., N} ( .A') .

Hence, if A' were canonical, say A'= ~,~,va .. .„k, then the only possibility
would be k = 0, i.e . I A' j = 1 . But this is a contradiction against

Thus the last part of Theorem 2 is proved .
We now suppose that n and N satisfy at least one of the conditions (i)-(iii),

and that A is an invariant distribution of S2n(S), where S = {1, . . ., N} .
We shall prove that A is canonical . If in what follows we assume N = co so
that (ü) holds, then we obtain a new proof of Theorem I of (4) which is
simpler than the original proof.

All congruences are understood ( . A). First of all, let n = 1 . If there is a
set {xo , yo}< c S such that {x o} # {yo}, then we have, for {x, y}~ c S,

{xo } :{yo} _ {XNA
and hence, by the invariance of 0, {x} # {y} . Hence, if n = 1, then either
A = A(O) or A = O (,l ) , so that A is canonical .

Next, let n = N. Then 0 is canonical for the trivial reason that

I D .(S) I = 1 .
Thus we need only to consider the case 2 < n < 2N. Put

H„ - {1, 2, . . ., v-1, vá-1, . . ., n+1} (1 < v < n+1) .
Let I = {vl , v2, . . ., vk} c be the set of all v such that

1 <v<n ;

	

H„# H,+,,

Then 0 < k < n . We shall prove that A = A(. . . k .

Define n operators T„ by putting, for 1 < v < n,
Tv(A, B) _ ({al, . . ., a v_l , min(a v , b,), a, I_ ., an}, {bl, . . ., min(a,,, bv), . . ., b,,}) ,

whenever

	

A = {a l , . . .,aj< c S ;

	

B = {b l , . . ., bn}< c S.

	

(S)
Thus, in particular,

T„(Hv , H,,+l) _ (H„+v H I ) (1 < v < n) .
(a) Suppose that (8) holds, and a„ = b„ (v c- I) .
We have to prove that A - B. Put

p(A,B) = I a„ b, F1 1 .
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We may assume that p(A, B) > 0, and we may use induction with respect
to p(A, B). Let vo = min av b,, [I v . Then vo I. We may assume that
avo < b vo . Then

	

Tvp(A, B) _ (A, B'),

where

	

B: B' = Hvo : Hv o+i
Also, since vo E I, Hva = Hva+i . Hence, Since A is invariant, B - B' .
But p(A, B') < p(A, B), and therefore, using the induction hypothesis,
A-B'-B.

(~) Suppose that (8) holds, and A - B.
We have to prove that av = by (v c- I) .
Suppose that, on the contrary, there exists v' E I such that av 0 b,, .

Let vo be the smallest of such indices v' . Put

Tv o-1Tv o -2 . . . T, (A, B) _ (C, D) .
This means that, in particular, A = C, B = D, if v o = 1 . Then, using
the definition of I, we deduce that C - A - B - D. Let

C = {cl, . . ., c"}<; D = {dl , . . ., dj,~ .

Then

	

e v = dv (v < vo ) ;

	

evo

	

d vo,
and we may assume that e va < d vo . Since N > 2n, it is possible to find sets
E and F such that

E_ {el, . ..,ej< C S-{N};

	

F= {fl , . . ., f„,}< C S-{N},

C :D = E :F .

Then

	

e v = fv (), < vo) ;

	

evo < fva •

Also, by the invariance of A, E - F. Put
E _

F' - {fl, . . .,Ivo-l•fvo+1'Jvo+1+l, . . .,fy~~ 1} .

Then E' and F' are obtained from E and F respectively by an application
of the mapping

x x (x < evo ) ;

	

x x+l (x > evo ),
and therefore we have E : F = E' : F'. Hence, by the invariance of A,
E' - F' .

Similarly, if
E _ {e l , . . .,e,, 6,,,,+ 1, eva+1+1, . . . . e, ,+l ,

then E : F = E" : F', since E" and F' are the images of E and F respectively
under the mapping

x --~- x (x < ev) ;

	

x --> x+ 1 (x > ev) .
Hence E" - F', and so, finally, E' - F' - E" . But

E' : E" = Hvo+l : Hv o ,
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and therefore, by the invariance of 4, H„a+1 - H„o , i .e . vo c I, which is the
desired contradiction . This proves Theorem 2 .

An estimate of the generalized Ramsey function R*(n, N)

THEOREM 3 . Given any integers n and N such that 1 < n < N, there exists
a positive integer M* having the following property . If S = {l, 2, . . ., M*},
and if A is any distribution of S2.n(S) into any number of classes, then there is
S* c S, where IS* I = N, such that A is invariant in S2 n(S*) . If, in addition
N > 2n, then A is canonical in Q,,(S*) . If R*(n, N) is the least possible value
of Ill*, then

	

2R*(n.,N) < R(2(2n)~(2n)-1~,2n,N ;-n-1),

	

(9)

where R is Ramsey's function .
Proof. Let M* be the number on the right-hand side of (9), and

S = {1, ., M*} .

Consider any distribution A of S2n(S) . We define A'(X) for X E S22n(S) as
follows . We put E - F ( . A') if and only if E, F E Q2n(S), and the following
condition holds . Whenever

A, B E Q,,(E) ;

	

C, D E 0,,(F)

A :B :E = C :D :F

	

,

then the two relations
A ___ B ( . A) ;

	

C -- D ( .0)

	

(11)

are either both true or both false .
For fixed E the number of unordered pairs A, B is n' _ 1(2n) r(22n)

Hence j A' j < 2n", and therefore, by definition of M*, there i

L

s

S' _ {al, a 2 , . . ., aN+ ,.i - 1}, c S

such that I A' I = 1 in S22n(S') . Then the set S* _ {al, . . ., a,,,} has the required
property . For suppose that A, B, C, D C- t2n (8*),

A - B ( .0) ;

	

A:B = C : D .

	

(12)

Then jA+B I _ IC-ii-DI = m, say, where n G m < 2n . If m = n, then
C = D, and so C - D ( .A) . If m > n, then we put

E = A+B+fa_N-1,aN+2,'* .,aN+2n-m}'
F - C+D+{aN+,, aN+29"'• Cí +2n_m} .

(10)

Then E, F E02n(S'), and hence, by choice of S', E - F ( . A') . Now,
(10) holds and the first relation (11) is true . Therefore, by definition of
A', both relations (11) are true .

Hence, in any case, (12) implies (11), and so 0 is invariant . The rest of
Theorem 3 follows from Theorem 2 .
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Some more definitions . Transfinite extensions of Ramsey's
theorem
We consider a fixed, non-empty, set S of real numbers. The letters

A, B, X, Y denote subsets of S, and always IA I, I BI > N o . The order type
of X under the natural order by magnitude is denoted by X . The letters
a, g, fa, v, denote ordinal numbers, and always

0 < *,A < i'ro ;

	

0 < Ifcvl < 2&,

and the letters m, n denote positive finite ordinal numbers . By 0 is denoted
any order type of cardinal 10I < No, and 0* denotes the converse of ~,
i .e. the order type obtained from 0 by replacing every relation x < y by
the corresponding relation x > y . We recall that, according to the definition
of multiplication of order types, (0102) * _ of 0,* . As usual, co denotes the
least denumerable ordinal number .

We shall be concerned with a fixed distribution A of D,,(S) into non-
empty classes KA . In the special case n = I A I = 2 we denote the classes
of A, in some fixed order, by Ki , K2 , and we define certain sets and num-
bers as follows .

F),(A) _ I X c A ; Q,(X) c KA R {X},

Fá(A) _ ITB c A EFAA,
fA(A) = min µ FA(A) ~] it,

f á(A) = min B c A 0 fA(B) .

Thus FA(A) is the set of all order types ~ which are `realizable' by some
suitable subset 'of A all of whose subsets of two elements belong to KA ,
and Fá(A) is the set of all those ~ which are even realizable in every non-
denumerable subset of A . Also, fA(A) is the least ordinal number which is
not realizable in A, and f A(A) is the least ordinal number which is not
realizable in every non-denumerable subset of A.t

It follows from the definitions that, if A c B, then

l E FA(B) c Fá(A) c FA(A) c FA(B),

2 < fA(B) < fa(A) < fA(A) < fA(B) .

It is well known that corresponding to every 0 there is a set X such that
X = 0. Furthermore, if ~o denotes the order type of the set of all rational
numbers, then 0. e FA(A) implies that every 0 e FA(A) .

THEOREM 4. If S is the set of all rational numbers, and n = A I = 2, then
either (i) co e FI(S), or (ü) w* E FI (S), or (iii) every 0 E F2(S) .

t Ordinal numbers realizable in a given ordered set were studied by J . C . Shepherd-
son, Proc. London Math. Soc . (3), 1 (1951), 291-307 .
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A common hypothesis of Theorems 5-8 is I S I > N O ; n =

	

= 2.

THEOREM 5. Either (i) W E F,(S), or (ü) every a e F2, (S) .

THEOREM 6. If fí(S) is not a limit number, then there is A and µ > 0

such that

	

fl (A) = fí(A) = f I(S),

f2(A) = f2(A) = -11 .

If 0, E F2(A) (v < a), then ~~ 0*) * E F2(A). If 0 E F2(A), then every
v

0a* E F2(A). Finally, every a* E F2(A) .

THEOREM 7 . Either (i) every w+m E F,(S), or (ü) every cu .m E F2 (S) .

THEOREM 8 . Either (i) co+co* E F,(S), or (ü) every a E F2(S), or (iii) every
a* E F2(S) .

THEOREM 9 . If I SI > N o, and n and A are arbitrary, but such that, for
every a c- S,

	

I I {a, X2",,,, xn} < E KA 0 IA} j < X0 , t

I G {xl, . . ., xn-1, a}< e KA 0 {A} I < No ,

then there is S' c S such that I S' l = No, and I A I = I in Q,, (S') .

THEOREM 10 . If I SI > K o , and n and A are arbitrary, but such, that, for
every {a l , . . ., an-1}< c S,

I I {al, . . ., an-1, x}< E K,~ CI {A} I < Xo >

then there is a set S' _ {xl , x 2 , . . .}< c S such that in Q,,(S') A is canonical and,
in fact, A=A,(,k? ., k,where 0<k<n-1 ;1<vl<v2< . ..<vk<n-1 .

The following theorem of Dushnik and Miller (7) belongs to the group of
Theorems 4-10 .

If ISI > No , then either (i) w e Fj(S), or (ü) cu* E F,(S), or (iii) F2(S)
contains some non-denumerable order type .

Proofs of Theorems 4-10
Proof of Theorem 4 . The letter I denotes open intervals . A set X is called

i-dense if there exists some I such that X is dense in I .
LEMMA 1 . I f neither X nor Y is i-dense then X +Y is not i-dense .

For, given any I, there is h c I such that XI, = 0, and then there is
12 c I1 such that YI2 = 0 . Then (X+Y)I2 = 0.
We now prove the theorem. We introduce the notation

LA(a) _ I {x, a}< E KA[] {x},

	

RA(a) _ j {a, x}< E KA [] {x}, (13)

UA(a) = LA(a)+RA(a) .

t Here, as in similar cases later on, the summation indices or symbols are all
symbols which are not stated to have fixed values . Thus, in the present case, sum-
mation extends over varying x,. . ., xn, A .
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A set S' c S is said to be of type I if there is ao c S' such that S'U1 (ao ) is
i-dense, and of type 2 if there is no such ao .

Case 1 . Suppose that every i-dense set S' c S is of type 1 . Then there is
ao c So = S such that S1 = So U1(a o ) is i-dense. Generally, ifSm has already
been defined for some m, and if Sm is i-dense, then there is am c Sm such that
S.+1 = Sm U1 (am ) is i-dense. Then So S1 -3 . . ., and if 0 < r < s, then

a s E 4 c Sr+, = Sr Ll(ar) ;

	

{a,., a s} c K1 .

Since every sequence contains a monotonic subsequence-this is, in fact,
a simple case of Ramsey's theorem-there is a set {b1 , b 2 , . . .} c {a 1 , a2 , . . .}
such that either b 1 < b2 < . . . or b 1 > b 2 > . . . . Hence either (i) or (ü) of
Theorem 4 holds.

Case 2 . There is a set S' c S which is i-dense and o£ type 2 .
Then we can choose I such that S' is dense in I . We choose

I„ c I (v= 1,2 , . . .) such that the I„ are dense in I, which means that if
I' c I then I„ c I' for some v . Then we can find x 1 c h S' . Suppose that for
some m the numbers x1 , . . ., xmhave already been defined, and that, if m > 1,

xv+1 E Iv+1S' L2(x1) U2(x2) . . . U2(xv) (0 < v < m) .

Then none of the sets S'U1(x„) (1 < v < m) is i-dense, and therefore, by
Lemma 1, the set

{x1, . . ., xm}+ I I< v< m 11 S' U,(xv)

is not i-dense . Hence it is possible to choose

xm+1 E Im+1 S' L2(x1) Lr2(x2 ) . . . U2(xm) *

This process defines the sequence x 1 , x2 , . . . which is dense in I and satisfies
{xr ,xs}cK2 (I <r<s).

Thus (iii) of Theorem 4 holds, and the proof is completed .
Proof of Theorem 5 . If a < b, then we denote by (a, b) the open interval

with ends a and b. A set A is called afull set if for a < b < c ; b c A always

I (a, b)A I > NO;

	

I (b, c)A I >'No .

LEMMA 2 . Given any A, there is a full set B c A .

Proof of Lemma 2 . Put, for 8 > 0,

A_(8) _ a c A ; I (a-8, a)A I < No 0 {a} ;

A +(8) _ a c A ; (a, a+ 8)AI < No {a} .

Let a c A_(8) . We shall prove that a is not a point of condensation of
A_(8) . If (a,a+5)A_(8) = 0, then

I (a-8, a+8)A-(8) I < I (a-8, a)A I < No ,
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and our assertion is proved . If there is b e (a, a+8)Á_(8), then
a-8<b-8<a<b,

I (b-8, b)A-(8) I < I (a-8, a)A I + I (b-5, b)A I < No,
and the same conclusion follows . Therefore no point of A_(8) is a point of
condensation of A_(8), and so A_(S)I < No . Similarly, IA + ( 8)I < N o .
Then the set

B = A- (A lm~+A+(m)}

is non-denumerable and full, and the lemma follows .
V6'e now prove Theorem 5. Let us suppose that w € F,(S) . Then there is

A such that

	

I AR,(a) ; < xo (a c A),

	

(14)
where R j(a) is defined by (13) . For otherwise we could define sequences
Am , am as follows. Put A O = S. Then, since (14) is false for A = A O ,
there is ao e A O such that I A 1 > Ko , where A 1 = A O R l(a o ) . Then there is
a l c A,. such that IA2I > N o , where A 2 = A i R, (a,) . Generally,

a. e A,,, = Am-, R,(am-,) (m. = 1, 2, . . .) .

If we put X = {a .o , a, . . .}, then X = w ; S22(X) c Kl , which is a contradiction
against w c F,(S) . Hence (14) holds for some suitable A . By Lemma 2
we can find a full set B c A .

Now consider any ordinal a > w. We can choose a set T = {tl,t2i . . .}#
of real numbers such that T = a . Then we can successively find intervals
h, I2 , . . . such that

Im = (bm., em ) ;

	

I, IS = 0 (r --- s)

{bi , b 2 , . . ., b,,,} _ {t l , t2 , . . .,Q

	

,~5 J
1I„,BI > N o (772 = 1, 2, . . .)

For i£ I	I?2_, have already been chosen, then we can choose
such that t„,} i1` -Y-)
and then put Im = (d-e, d+e) for a sufficiently small e . Then

d e B

{b l , b 2 , . . .} = a,

and therefore there is a one-to-one mapping of the set of all v in the range
0 < v < a onto the set of intervals h, I2 , . . . in such a way that, if the interval
associated with v is J„ _ (b,„ c„ ), then

bú<c~<b'~,<c',
whenever 0 < tL < v < a . Now, using (14) and the definition of J,,, we can
find, by transfinite construction, numbers x,, c J„ B such that

{x,,, x„}cK2 (0<tL<v< (x ) .
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Then, putting X = I €x„}, we have X = a ; S2 2(X) c K2 , and therefore
a c- F2(S) . This proves Theorem 5 .
Proof of Theorem 6 . There is Al c S such that f i(S) = fl(Al ), and

A c A1 such that f 2(A 1 ) = f,, (A) . Then

fl(A) < .fi(Aj) = fi(S) < fi(A) < fi(A),
.f2(A) = f ,(Al) < f 2(A) < .f2(A),

and therefore fl (A) = f í(A) = f 1(S) ; f2(A) = f '2 (A), Now, by hypo-
thesis, fí(S) = vo+1 . Then

jAL,(a) f < No (a e A) .

	

(16)
For otherwise we could find ao e A such that I ALI (a o ) I > No. Then, since
vo < f 3 (S) = fi(A) . there is Xo c AL,(a o ) such that Xo = vo ; 0 2(Xo ) c Ki .
Then, putting X0+{ao} = Xi ,

Xi = v0+1 - fl(A) ;

	

Xi c A ;

	

~2(Xl) c K1,
which is a contradiction against the definition of fl (A) .

Let a be arbitrary, and suppose that 0,, c- F2(A) (v < a). In order to
prove that (I ~*)* e F2(A), let us consider any set A2 c A . By Lemma 2
there is a full set B c A2 . Then we can choose T, tm, Im , bm, em, J,,, b'„ c'„
exactly as in the proof of Theorem 5 ; so that (15) holds, but with a* in place
of a . Then, using (16) and the definition of J,,, we can find, by transfinite
construction, sets X,, c J„ B such that S2 2(X) c K2 , where
X = v < a [I X„ ; X = ( 10*)* . Hence

(,I ~*)* e F2(B) c F2(Á2) •

Since A 2 is arbitrary, this implies that (

	

*)* E F2(A) . If, in particular,
~v = for all v < a, then

~a* _ (~* (x) * _ ( I ~ 11 )* c F2(A) .

	

(17)
Finally, since I E F2(A), we may put = I and find a* E F2(A) .

There only remains to prove the statement about p . It is sufficient to
show that f 2(A) is of the form cot, , since then, in view off 2(A) > 2, we have
p > 0 .

f 2(A), being a non-zero ordinal number, can be written in the form
f2(A) = co~`(fai+1) .

Then copy, < f2(A), and therefore, by applying (17) to = coutc i ; a = 2,
we find

	

w~`(~cl+Fci) < .f2(A) = &1(j_q+1),
i .e . tLi = 0. This completes the proof of Theorem 6 .

Proof of Theorem 7 . We assume that
w+mi c- Fj(S) ;

	

w.m2 E F, (S),

where mi and m2 are given numbers, and we shall deduce a contradiction .
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We have, for any A, , cum, F,(A l ), and therefore, by Theorem 5, cc EFl(A 1 ) .
As A, is arbitrary, w e Fí(S), and so

cu < f IA < fl (S) < c +Mi .

Hence it follows that f í(S) is not a limit number, and by Theorem 6 there is
A and µ > 0 such that

u,w = MA) < M S) < Wm2 •
Then ft = 1, w E F2(A), and a second application of Theorem 5 shows that
w-t-m l c F,(A) which is the desired contradiction . This proves Theorem 7 .

Proof of Theorem 8 . We require the following lemma .

LEMMA 3 . If the hypothesis of Theorem 8 holds, and

Rj(a) < xo (a c- S),

	

(18)
then every a e F2(S) .

Proof of the lemma . Let P > 1, and assume that a e F2(S) for every
a < g. We have 1 0 < a < fl 0 {a} _ {%,,x, . . .} . Let A be arbitrary .
By Lemma 2 there is a full set B c A . Then there are numbers b„„ cm e B
such that bl < cl < b 2 < c 2 < . . . . Put Im = (b., cm ) . Since al c- F2(S),
there is B1 c Bh such that B1 = al ; S1 2(Bl) C K2 . Generally, if B 1 , . . ., Bm_l
have already been found for some m, then we can find Bm such that

B. c BIm-BIm 11-<r m0 R,(a),

Bm = am ;

	

f22(Bm) C K2 (m = 1, 2, . . .) .
Here we make use of (18) . If B' _ B.m , then

B' c A ;

	

B' _ I a,n i 9 ;

	

S2 2(B') c K2 .
Hence g e F2(A) . Since A is arbitrary, this implies g c- F2(S), and the lemma
follows by transfinite induction .

COROLLARY. By applying Lemma 3 to the set S 1 = x e S 0 {-x} we
find that if I LI(b) I G Ko (b e S), then every a* E F' (S) .

We now turn to the proof of Theorem 8 . Let us assume that both (ü)
and (iii) of Theorem 8 are false. Then, by Lemma 3 and its corollary, given
any T C S, I T I > N o , there are numbers a, b e T such that I TR,.(a) I > rl o ;
I TL, (b) I > N o . By means of repeated applications of this result we find
numbers am, bm and sets Ao, Am, B1z such that A o = S,

al E Ao;

	

Bl = Ao Rj(al),
b l E Bl ;

	

A1 = B1 L1(bl),
a,,, e Am-,;

	

Bm = Am-1 R,(a.),

b,,,, c- Bm ;

	

Am. = Bm Ll(b.) .

and, generally,
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Then Am c B. c A._, . If 0 < r < s, then

Hence, if X = E {a., b,n }, then X = w+co* ; S2 2(X) c Kl , and therefore
w+w* E FI(S) . This proves Theorem 8 .

Proof of Theorem 9 . Let S(m) be the set of all a c- S such that
j {a, x 2 , . . ., xn}< E KA 0 {a} I < m.

1
{xl , . . ., xn_l , a}< E KA [I {A} I < m.

Then 1,1 S(m) I _ 18 1 > N o , and therefore I S(m o ) I > N o for some suitable
m o . An application of Lemma 2 shows that S(mo ) contains an increasing
sequence, and by applying to this sequence the generalized Ramsey
theorem of (4) we find a set S' ={a,, a 2 , . . .}< c S(mo ) such that in
Qn (S') the distribution A is canonical, say A = Ayk>. .vk , where 0 < k < n ;
1<v l <v2 < . . .<vk <n.lfk>Oandvk >1,then

{al , ar+2 , "', ar+n} # {al, as+2, • • •, as+n} ( . ~) (0<-r<8-<m0),
which is a contradiction of the definition of S(mo) . If k > 0 and vk = 1,
then k = 1,

{ar , am o +2, . . ., a.,)+,,.} 0 {as , a,+2, . . ., a. .+ ,,} ( . A) (1 < r < s < m0+1),
which is again a contradiction of the definition of S(mo ) . Hence k = 0, and
Theorem 9 follows .
Remark . The hypothesis I S I > X. cannot be replaced by I S I = No ,

as is shown by the distribution A ; 1> in Q,, (S), where S = {1, 2, . . .} . In this
case, for a c- S, I I {a, x 2 , . . ., x.n }< E Ka 0 {A} I = 1,

I i {xl xn_l , a} < E KA0 {A} I= max(0, a-n+ 1) .
Proof of Theorem 10 . We choose a full set A c S, and we put

A,=A2= . ..=An-,=A.

Choose {al , . . ., a n_l} < c A . Then there is a full set An c A,z_1 such that
{a l , . . ., a n_ l , x} < E K(l, 2, . . ., n-1) (x E An),

where, generally, K(pl, . . .,pn_l) denotes one of the KA. We choose an e An .
Generally, if m > n, and if the a,. and Ar have been chosen for

1<r<m-1,
5388.3 .2

	

F f

as E As-, c Ar c B,, c R,(a,) ; {a,., as}< E Kl ,

bs E B3 c Br+1 c A,, c Ll(b,) ; {bs , br} < E K,.,

as E As-1 c A,, c L,.(br) ; {as, br}< E Kv

bs_1 E Bs-1 c Br c Rl(a,.) ; {a,, b,11< c- K1 .
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we can find a full set Am c Am_, such that
{api	apn _ 1 , x}< E K(pl, . . ., Pn-1)

for I<pl< . . .<p,i_l<m;xcA,n.
We now choose am E A.. This defines a sequence a .. such that

{apl , ap,, . . ., ap , < E K(P1, . . ., Pn_1) ( 1 < P1 < P2 < . . . < Pn) •

	

(19)

By the generalized Ramsey theorem there is a set
S = xl, x2 , . . . < c a l , a 2 , . . .

such that in S2n(S') the distribution A is canonical, say A _ A,(,i?. .vk . Then,
by (19), k < n ; 1 < v1 < v2 < . . . < vL, < n, and Theorem 10 is proved .

Some counter-examples for extensions of Ramsey's theorem
1 . Ramsey's theorem makes an assertion about distributions of t2 n(S)

when n < Xo, I A I < No. The question arises how much of the theorem
remains true when n = No . The following example shows that there is
very little scope for a reasonable extension in such a direction, even for
I A I = 2 and arbitrarily large cardinals I S I . In this final section the con-
ventions about the use of the letters S, A, B are no longer valid .
EXAMPLE 1 . Let I S I > No . Then there exists a distribution of the set T

of all infinite subsets of S into two classes such that, given any S' E T, there are
infinite subsets A, B of S' satisfying A # B ( .A) .

Proof. Let X < Y be a well-ordering relation of the set T. Let K1 be
the set of all X E T such that X' < X for at least one X' c X, and put
K2 = T-Kl . Then the distribution A whose classes are K, and K 2 has the
required property . For let S' E T, and let A be the first infinite subset of S' .
Then, whenever A' c A and A' E T, we have A' c A c S' and hence, by
definition ofA, A < A'. Therefore A E K2 . We can write

A = {a,, a ., a J=, }+ C,

where, for all m, am i C . Put Am = {a2 , a4 , . . ., a2m, al , a 3 , a 5 , . . .I+C. Then
there exists min Am = A.,, and we have

A..m < A.o+l ;

	

A.., C A.,+l .
Then B = A7to+1 E K1 , and we have A # B( . A). This proves the assertion .

Clearly, in Example 1 we may replace the set T of all infinite subsets of
S by the set of all subsets of S having a given fixed infinite cardinal not
exceeding IS ; .

2 . Let I S I = No , and let A be a distribution of the set of all finite subsets
of S. Suppose that 19 I < X.. Then, by means of N successive applications
of Ramsey's theorem it is easy to find an infinite set & c S such that, for
every n < N, we have I A I = 1 in S2n(SN) . The question arises whether the
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set 8rv can be chosen so that it is independent of N, say S v = S' for all N,
so that now simultaneously for all n we have I A I = 1 in S2n(S } . The follow-
ing example shows that such a set S' need not exist .
EXAMPLE 2 . If IS I = Ka then there exists a distribution A of the set

T = S2n(S), where In = 2, such that the following condition holds . If
n

S' E nx,(S) then, for every sufficiently large n, there are sets A, B E Q,,(S')
such that A 0 B ( .,A) .

Proof. Let S = {1, 2, 3, . . .} . Denote by K1 the set of all A E T such that
A I > m c- A for at least one m, and put K2 = T-K,. Let A be the distribu-
tion whose classes are K, and K2 . Now suppose that S' _ {al , a2 , . . .}< c S .
Then, for n > al , we have

{a l , a2, . . ., a.n} # {a .n+U an. +2, . . ., a2n} ( . 0} .

3. The last example quite naturally leads to the question whether a
distribution exists which has a property similar to that described in
Example 2, but with respect to a set S which is not denumerable . This
question has only been decided for IS I < 2mo, and the general case seems
to be well worth studying . In the case I S < 2 e several examples of distri-
butions are known which have the required property . In order to throw
more light on the problem we give three such examples, in the hope that
perhaps one of the methods used might turn out to be capable of an exten-
sion to cardinals exceeding that of the continuum .
EXAMPLE 3A . If IS I = 2Ko, then there exists a distribution A of the set

T = I t2n(S), where I A = 2, such that the following condition holds . If
n

S' E Qx,,(S), then, for infinitely many n, there are sets A, B E S2n(S') such that

A # B ( .A) .

Proof. Let S be the set of all sequences a = (a(l), a( 2) , . . . ), where a(r) E {0, 1} .
Let Kl be the set of all sets {al , a 2 , . . ., a,.. c S such that

as = (ail), ail)....); al-) - a2(m ) - . . . = a;n >>
and put K2 = T-K, . Now consider any set S' _ {b l , b 2 , . . .} # c S, where
b, = ( bil ) , bi 2) , . . .) (l = 1, 2, . . .) . Then there are infinitely many r > 1 such
that integers s, t can be found satisfying 1 < s < t; bsr> bir > . For every
such choice of r, s, t we have

A = {b.,, b t , bt+l, . . ., bt+r-2} E K2 .

Furthermore, among the 2r-1 numbers bir) , b2r>, . . ., b2r;_ l there are r which
are equal to each other . Hence there is a set B = {b,, b, 2 , . . ., b,,} e K, for
suitable sA such that 1 < sl < 82 < . . . < sr G 2r-1 .

The following example is due to N . G. de Bruijn .
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EXAMPLE 3B . Let I S I = 2&. Then there exists a distribution A of the
set T = IOn(S), where jA = 2, such that the following condition holds .

n
If {a, b} # c S, then there is a positive integer n = n(a, b) such that

{al+C {b}+C ( .A) for all CCOn_1(S-{a,b}) .
If {al , a 2 , . . .} # c S, then the numbers n(as , a,) are unbounded for 1 < s < t .

Proof. Define S as in Example 3 A, but modify the definition of Kl as
follows. Let K1 be the set of all {a l , . . ., a,n} , c Ssuch that a1( In ) +a2 ') + . . .+a n
is even, and put K2 = T-Kl. If we now define n(a,b) to be the least
number m such that a(m) zlz b(m), then the desired conditions hold .

EXAMPLE 3 c . Let I S I = 2&. Then there exists a distribution A of the set
T = ,I Q,,(S), where I A I = 2, such that the following condition holds. If
S' E Qx,(S), then, given any sufficiently large integer m, there are sets
A, B e Q.(S') such that A # B ( . A) .

Proof. Let S be the set of all real numbers x in the range 0 < x < 1 .
Denote by Kl the set of all sets {x l , x2 , . . ., x,n }< c S such that m(x,n -xl ) < 1,
and put K2 = T-K, . Now let S' _ {a,, a2 , . . .} # c S. As is well known,
there is an increasing sequence of positive integers r l , r2 , . ., such that the
sequence b,,,, = arm is monotone. Then, for m > J b2-bl j -1 , we have

A = {bl , b2 , . . ., b,,,} E K2.
On the other hand, since, for fixed m, b,,.-br+1-> 0 as r -> ao, we have
B = {br+l, br+2, . . ., br{ ,,n} E K1 if r is sufficiently large .

4. Our next example, due to Sierpinski, shows that Theorems 4-8
cannot be strengthened very much.
EXAMPLE 4 A. Let S be a set of real numbers . Then there is a distribution of

0 2(S) into two classes Kl, K2 such that, in the notation defined on p . 427,

F,(S) c {a} ;

	

F2(S) C { x*} .

Proof. Let a < b be a well-ordering relation in S. Define Kl to be the
set of all {a, b}< c S such that a < b, and put K2 = 92(S)-Kl . If, now,
n2(A) c K1 then, in A, the relations x < y and x < y are equivalent, and
therefore .A is an ordinal number. Similarly, if 0 2(B) c K2 , then (B)* is an
ordinal number. In either case, the ordinal number is at most denumerable .

If, in particular, I S I = No , then the same construction, which now no
longer requires Zermelo's axiom, leads to a distribution of an even more
special character.

EXAMPLE 4 B . Let S be a denumerable set of real numbers. Then there is a
distribution of n2(S) into two classes K1, K2 such that

F,(S) c {w, 1, 2, . . .},

	

F2(S) c {w*, 1, 2, . . .} .
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The classes KA can be defined without the use of Zermelo's axiom . If, in
addition, S is well ordered according to magnitude, then the stronger result
F2(S) c {1, 2, . . .} holds .

Proof. Let S = {x1 , x 2 , . . .}# , and take as K1 the set of all {x, ., x,,},,,, such that
r < s, while K2 = Q 2 (S)-K1 . If we now assume that w+l E F,(S), then
there is A c S such that A = w+1 ; S2 2(Á) c K1 . Then there is x,,, o E A
such that xm < xmo ; x. E A for infinitely many m. Then, by definition of
K1, m < m o for infinitely many m, which is impossible . Similarly, if
l+w* E F2(S), then B = 1+w* ; 02(B) c K2 for some B c S, and there is
x., e B such that xm > x,.,; xTZ E B for infinitely many m. Then, by
definition of K2 , m < m l for infinitely many m, which is impossible. This
proves our assertions .

5. The construction in Example 4 A required the axiom of choice . The
following example shows that a weaker result can be obtained without
the use of that axiom .
EXAMPLE 5 . Let S be the set of all real numbers . Then, without the use of

Zermelo's axiom, a distribution of S2 2(S) into two classes K1 , K2 can be defined
which has the property that neither F1 (S) nor f2(S) contains any order type
which is den-e in an interval .

Proof . Let KA be the set of all sets {a, b} < c S such that
22r+A < b-a < 22r+A+1

for some suitable integer r, positive, negative, or zero, where A = 1 or A = 2 .
Now suppose that S22(Á) c KA , and that A is dense in the open interval
(a o , b o ) . Then we can find real numbers a, b and an integer r such that

a o < a < b < bo ,

	

b-a = 22r+Á ,

and hence numbers a', b' E A such that
a < a' < b' < b ;

	

2 2r+a-1 < b'-a' < 22r+a .

Then {a', b'} € Ka, and we have obtained a contradiction .
6 . The next example shows that Ramsey's theorem becomes false in

the case of denumerably many classes, even if we replace the hypothesis
JSJ = No by ISi = 2No .

EXAMPLE 6 . If I SI = 2&, then there exists a distribution a of S2 2(S) into
Xo classes such that, given any set S' EQtt,(S), there is a sequence of sets
Am E S2 2(S') satisfying Ar # A S ( .0) for 1 < r < s .

Proof. Let S be the set of all real numbers x in 0 < x < 1, and denote,
for A = 0, 1, 2, . . ., by KA the set of all sets {a, b}< c S such that

A < (b-a) -1 < A+ 1 .
Then the distribution whose classes are the KA has the desired property .
For if S' E S2m,(S) then there are sets A„t = {am , b,,,}< c S' such that
b,,,-am -> 0 and A 9z E KAm ; A.. co as m -> oo .



438

	

P. ERDŐS AND R. RADO

The last example is a best-possible one, in view of the following theorem,
which is a special case of (8), Theorem 1 .

If I SI > 2H° ; 0,(S) = K,_+K2+ . . ., then there is always a set S' c S such
that IS' I > NO; 0 2(S') c KA, for some A' .

7. Our next example shows that in Theorem 10 we cannot replace the
set S of real numbers by any arbitrary non-denumerable abstract set in
which an order has been defined . Some properties of the order type of the
real continuum are essential for the truth of Theorem 10 .
EXAMPLE 7 . There exists a non-denumerable ordered set S and a distribu-

tion 0 of n2(S) into classes KA such that, for every a c S,

I {a, x}~ E KA [] {A} I < Roy

but, at the same time,

	

{x, y} 0 {x, z} ( . A)
whenever {x, y, z}< c S .

Proof. Let cu l be the first non-denumerable ordinal number, and con-
sider an abstract set S, ordered according to the order type 0j,* . For A E S,
let KA be the set of all sets {a, A} < c S, for varying a . Then the assertion holds .

8 . In conclusion we prove a theorem which belongs to the present
chapter in so far as it asserts the existence of a distribution having a special
property, although the property in question is not concerned with Ramsey's
theorem but with the following theorem of van der Waerden (5) . Given
any positive integers k and l, there is a positive integer m which has the follow-
ing property . If A is any distribution of the set {1,2, . ..,m}, and I A I < k,
there are positive integers a and d satisfying

a - a+d - a+2d - . . . - a+ld ( .A) .

	

(20)

We define van der Waerden's function W(k, l) as being the least value of such
a number m . The existing proofs of van der Waerden's theorem lead to
upper estimates of W which are far beyond the range of explicit expressions
in terms of common algebraic operations . The following example of a
distribution gives what seems to be the first non-trivial lower estimate of
W, namely W(k, l) > (2lkd)i .

EXAMPLE 8 . Let k and l be integers not less than 2, and let m o be the largest
integer such that M2 < 2lkl. Then there exists a distribution 0 of

So = {1, 2, . . ., mo},
where I A I < k, such that (20) does not hold for any positive integers a, d .

Proof. We assume that, given any distribution A (JAI < k) of the set
S = {1, . . ., m}, there are positive numbers a, d satisfying (20), and we shall
deduce that m 2 > 21Y.
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We have m > 1+1 . For any integer d in the range 1 < d < (m-1)jl,
the number of increasing arithmetic progressions of 1+ 1 terms with common
difference d and terms in S is m-ld. Hence the total number of such pro-
gressions, for varying d, is

	

r
M = I (m-ld),

d=1

where r is the integer satisfying r < (m-1)/l < r+1 . The number of
functions f on S into the set (1, 2, . . ., k} is k-, and the number of those f
which take a given value Kp at the l+ 1 places corresponding to the terms of a
fixed progression is ká-1-1 . Hence, in view of our initial assumption,

kMk--1-1 > kn1,
2

P < Al = ?r(2m-1-1r) < M9-1,
I [2m-(m-1)j < m ,

which is the desired conclusion .
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