University Of Maryland Document Delivery

iLiaa Tn: 275061 NN RAIRNY

Journal Title: Combinatorica

Volume: 1

Issue:
Month/Year: 1981
Pages: 357-368

Article Author: Frankl and Wilson
Article Title: Intersection theorems with
geometric

consequences

Imprint:

call # EPSL Periodical Stacks QA164
.C662

Location:

Item #:

CUSTOMER HAS REQUESTED:
Mail to Address

William Gasarch (000000350541)
College Park, MD 20742




CoMBINATORICA 1(4) (1981) 357368

P

INTERSECTION THEOREMS
WITH GEOMETRIC CONSEQUENCES

P. FRANKL

C. N. R. S., 54 Bd. Raspail
Paris 75 006, France
and

R. M. WILSON

California Inst. Technology
Pasadena, Calif. 91 125, U.S.A.

Received 26 August 1980

In this paper we prove that if & is a family of k-subsets of an n-set, Hos Hys ..., Uy are
distinct residues mod p (p is a prime) such that k=, (mod p) and for F=F €% we have

IFNF’|=u; (mod p) for some i, 1=i=s, then l?|§(g)

As a consequence we show that if R™ is covered by m sets with m<(1 +0(1))(1.2)" then
there is one set within which all the distances are realised.
It is left open whether the same conclusion holds for composite p.

1. Introduction

Let # be a family of k-element subsets of {l,2,...,n}, and suppose that
L={l,, I, ..., 1} is a subset of {0, 1, ..., k—1}.
Let us further suppose that for F, F'¢# we have

(1) |FNF’|€L.
Ray-Chaudhuri and Wilson [18] proved that (1) implies

) || = ["]
s
Deza, Erdds and Frankl [2] proved that for n=ny(k), (2) can be improved to
0) = =l
- i=1 k—ll

, In this paper we prove

Theorem 1. Suppose Hos Hys oo, s are distinct residucs modulo a prime p, such that

4 |F| =k =y, (mod p),

AMS subject classification (1980): 05 C 65; 05 C 35, 05C 15



358 P. FRANKL, R. M. WILSON

and for any two distinct F, F'¢ F

(5) |FOF'| = p; (modp) for somei, 1=i=s.
Then
(6) \F| = [”)

3

Clearly Theorem 1 generalizes (2). It would be interesting to know whether
it holds for composite p as well. In this direction, we prove only

Theorem 2. Let q be a prime power. Suppose that for F, F'¢ F we have

|[FONF’| # k (mod g).

™
Then

. n
®) #=(,")

Let R” denote n-dimensional Euclidean space. Let us construct a graph on
R by connecting two points if and only if their distance is 1. Let c¢(R") denote the
chromatic number of this graph. The exact value of c(R") seems to be hard to
determine. It is known that 4=c(R?=7. Erd&s conjectured that c(R") is exponential

in n. We prove this conjecture in

Theorem 3.

9) c(R") = (L+o(1)(1.2)"

Let m(n) be the minimum integer m such that R” can be partitioned into
m sets Xi, ..., X,, such that for 1=i=m, there is a real number r; with the prop-
erty that d(x, y)=r; for all x, ycX; (d(x, y) denotes the Euclidean distance, i.e.,

the length of x-—y).
This problem was first considered by Hadwiger [13, 14] in 1944 and 1945,

Raiskii [17] proved m(n)=n+2. This bound was improved by Larman, Rogers [16],
then by Larman [15], and again later by Frankl [8]. However none of the lower
bounds is exponential. Larman, Rogers [16] proved that

(10) m(n) = (3+o(D),

and they conjectured that m(n) is exponential in n. Here we prove this conjecture.

Theorem 4.
(1) m(n) = (1 +o(l))(l.2)".

The statement of Theorem 4 will follow from the proof of Theorem 3 using Theo-

rem 2 of Larman, Rogers [16] which states the following:
If 5 is a set of M points in R” with critical distance 1 and critical number D

(i.e., every subset of s of cardinality exceeding D contains 2 points at distance 1), then
12) m(n) = M/D.

We prove as well a modification (Conjecture 2 of Larman, Rogers [16]):

§

Theorem 5.
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Theorem 5. Let T be a set of m vectors in R"
vy =, 38, D)

yP =41, i=1,..

i=1,..

with
L m;

yP =411 for —;— values of 1=j=n, such that none of the scalar products (y, y)

is zero. Then for n=4p* (p prime, a=1) we have
n—1

(13) m=2 no
4

Let B denote the boundary of the unit sphere in R" centered at the origin.
Let E be a measurable subset of B. H. S. Witsenhausen asked for the value of the
supremum of the ratio of the measures of E and B, assuming that E does not con-
tain two points A4,, A, which subtend an angle of 90° with the center of the sphere.
Let s(n) denote this supremum. Choosing E,={y€B: y;=0, i=1,...,n}U
U{yéB: y;<0, i=1, ..., n} we see that

= (14 0(1))27(1.13)",

(14) s(n) = 2~"+1,

We prove

Theorem 6.

(15) s(n) = (1+0(1))(1.13)~"

For n=>k=1=0, let m(n, k,1) denote the maximum number of k-subsets
of an n-set such that no two of them intersect in /-elements. Erdds [5] conjectured
that for n=n,(k), k=4, we have

min ko = maxf(233). (1) (0}

Here (nk:ll: }) corresponds to all the k-subsets containing a fixed (/+1)-set

(16)

while [7) / (]1() would correspond to a (n, k, [)-Steiner system. In the first case

all the intersections have cardinality greater than /, in the second smaller than /.
Frankl [8] proved that for k=3/+2

(17) m(n, k, 1)g(l+o(1))(2:;:1].

Here we prove

Theorem 7. If k—1 is a power of a prime and
(a) k=2l+1, then

(18) m(n, k, 1):(1%(1))(2:;:;];
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360
(b) k<2l+1, setting d=2I—k+1 we have
()
d) (n—d n
(19) mim, &, l)fT(l—d) 20[(1)]'

()

Let r(k) denote the minimum » such that every graph on n vertices contains
either a complete or an empty subgraph on k vertices. Erdés [6] proved
(20) r(k) > 2k2,

His proof is probabilistic and in [7] he asked for a constructive bound yielding

r(k)y=k* for every t for k=>ky(t). Such a construction was given in [9].
Here we use Theorem 2 to give a more accurate construction, though still

far from the bound (20) (see Theorem 8).
Let f(n, k,2) denote the maximum cardinality of a collection of (g)-sub-

sets of an g)-set such that all the pairwise intersections have for cardinality (5)

for i=1,2,...,k—1.
For FS{1,2,..,n} set FQ)={{x, y}: x#y, x, yeF},

¢ ={FQ: FS {1,2,..,n), |[F| = k}.

Then % shows that

21) fn, k,2) = (Z]

Frankl [10] conjectured that for n=>n,(k), k=10 we have equality in (21).
Here we prove
Theorem 9. If p is an odd prime then we have
(2) [(3)
2 2
np2)=— .
fln, p,2) (p ] p—1
2 2

(22)

In [11] it is conjectured that if & is a collection of 7-element subsets of an
n-set such that all the pairwise intersections have cardinality 0, 2, 3, 5 or 6 then

|F|=0(n%). We prove
Theorem 10. Let F be a collection of T-subsets of an n-set, such that for F, F'¢F

we have
|[FNF’|€{0, 2, 3,5, 6}.

1-(3)
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In the last paragraph we mention some possible extensions of Theorem 1.
In particular we prove:

Theorem 11. Suppose 0=l <l,<...<l,<n are integers and F is a collection of
subsets of {1,2, ...,n} such that for F=F'¢F we have

|FNF'\e{ly, ..., L}
Then

I#1 = é(;(’:)

Note that we do not assume anything about |F|.

2. The proof of Theorem 1

Let A,, A4, ...,A(,,) be all the j-subsets and B, B, ..., B(,,) be all the
J i
i-subsets of {l,2,...,n} with j>i.
Let us define the (’:) by (7] matrix N(i,j) in the following way: the
(u, v)-entry is 1 if B,c 4, and O if B,4¢ 4, for 1§u§(;-1), I=sv= 7
For i=s, j=k let the row-vectors be vy, vy, ..., v(,,). They are all vectors

in R("). Let ¥V denote the vector space generated by the v/’s, 1=i é(:) Obviously

we have
23) ding(:J.

The following identity can be checked easily (0=i<s)

(24) NG, NG, k) = [’; :i ] NG, k).

Consequently, for 0=i<s, the row vectors of N(i, k) are contained in V.
Let us count the product N(i, k)T N(i, k)=M(i, k), where N T denotes the

transpose of N. Of course M (i, k) is an (Z] by [Z] matrix in which the (v v),

entry is (IA“?A”! for 1=u,v= Z . Moreover the row-vectors of M(i, k) are

linear combinations of the rows of N(i, k), and consequently they are contained in V.
Let us choose 0=a;<p for 0=i=s, in such a way that for every integer

x we have

(25) ]s] (x—p) = gsl’ a,-()ic) (modulo p).

i=1

4*
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s
Let us set M= > a;M(i, k), where the addition is to be done componentwise, i.e.,

i=1
in position (u,v) of M we have
(26) M(ll, LT) — Za,‘(lAu(?Avl]-
i=1

By the definition of M the row-vectors of M are in ¥, and consequently
(23) gives:

Q27) rank M = dimV = [’;]

Now let M(F) be the minor spanned by the elements m (u, v) for which

A, AEF.
The assumptions o
u#v, we have

f the theorem and (25) and (26) yield that for A4,, 4,€Z,

m(u, v) =0 (mcd p)

and
m(u,u) # 0 (mod p).

Consequently the determinant of M (#) is not congruent to 0 modulo p,
whence det M(F)>0. Thus using (27) we infer

|#| = rank M(F) = rankMé(:]. |

Now we prove Theorem 2. We need an easy lemma.

Lemma. Let g=p® p is a prime, a=1. Then for a=0 p!(qil] if and only if

az —1 (mod gq).
The proof of the lemma is elementary and we leave it to the reader.

Let us choose real numbers g;, 0=i<g, such that
a1 x) (x—k— 1]
i;(; ai( i) g—1 .
Then by the lemma all the off-diagonal entries are zero mod p in the minor corre-

g—1
sponding to # of the matrix M= > a; M (i, k), but the diagonal entries are non-
i=0

zero mod p consequently the minor is again of full rank, yielding

n )-l

| = rank MM[
q—1
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3. The proof of Theorems 3 and 4

Let us consider the set S of vectors x=(x;, ..., x,) in R” for which x;=0
(n—2g+ 1)-times and x,-:l/l/2q the remaining (2g—1) times. Then

IS1= [2qn— 1]'

Let us associate with véS the (2g—1)-set F(v)={i: x;#0}. Then obvi-
ously d(x,y)=1 is equivalent to [F (X)( 1 F(y)|=g—1. Thus by Theorem 2 among

any [ g—1 ]+1 vectors in S there are two at distance 1, i.e., every color contains at
n g
_1] of them, yielding

. n h
C(R ) = qisa;?r}ggpower(zq—l)/(q_l).

Now choosing ¢ to be (1 —Fo(l))z—i1 2 n we obtain

t
mos [(]

c(R") = (1+o(1))(1.2)".

Remark. Since for ¢=2%+! the expression 1/V2g=2-'-1 is rational, the same
method yields that the chromatic number of the set of vectors with rational coordi-

nates is exponential as well.
The statement of Theorem 4 follows now from the fact that the set S has

critical distance 1 and critical number ( g— 1] (cf. the introduction).

4. The proof of Theorem 7

(@) Since k=2[+1 then k—1=1 Thus [is the only integer between 0 and k—1
which is congruent to k (mod q)=k (mod (k-1 )). We can apply Theorem 2,

and obtain
] n n'—l"—]
m(n, k, 1) = [k——l—l] = (1+0(1))[k—l—-1]’

proving (18).
® For a d-subset D of {1,2,...,n} let ¥ (D) be the collection of those members

of the family which contain D. Of course

> %) = m (k]
) d

Hence we can choose D, such that

(28) BUONE: m[f{]/(:;)
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Set F ={G—D,: Ge%(Dy)}). Then F is a family of (k—d)-subsets of the . Now aver:
(n—d)-set {1,2,...,n}—D, no two of which intersect in /—d elements. Since
k—I=I—d we can apply Theorem 2, which gives

o = ) _ (n—d] yielding (1.
29) #] _(k—l—l =\i-a)
From (28) and (29) we obtain
n kY(n—d n
m(n, k, l)§[d)/[d)[l—d]=0[(l)]' i - Theorem 8.
and E(g):
Ther
5. The proof of Theorem 5 and Theorem 6 : .
vertices.
Let us define Fy={j: y{?=+1}. Then |F|=2p and the condition implies Proof. If F
|Fy(\ Fy |5 p°. 1=i<j=m.
Now apply Theorem 7 with k=2p° I=p* d=1, and deduce If F,
for 1§l<]
m = 2[4;1_'11] = (1+o(1)27/(1.13). 1 ‘ Settir
To prove Theorem 6 we choose ¢ to be the smallest prime power which is
at least n/4. Let a, B be two real numbers and let S(x, f) be the set of vectors '
y=(y1, y2a LR ) yn) fOI’ Wthh 6
y; =a (2q—1) times, and y; =B (n—2q+1) times. Let x
For y€ S(a, f) set F(y)={i: yy=a}. Now the length of yis Y(2g— D) a®+(n—2q+1)f%, Then
i.e., yis on Biff ! -
(30) (2g—1)at+(n—2q+ D = 1. (33)
and for F, F
If |[F(y)\F(y)|=g—1 then
G5, ¥) = (q=D a2+ (n—3q+ 1) 2 +2q2p.
To make this scalar product vanish we need ' Since ( 2] — (
|
(31) (g— Do+ (n—3q+1)f*+2q2f = 0.  the intersectio

n i :
the syst 30), (31) is solvabl 1 a, B. Let S be the i f
e system (30), (31) is solvable in real « p. Le ¢ the image of other han

Since q%z
S(x, ) under any orthogonal transformation of B. Then |S|=|S(, ﬁ)|::( 2 qn_ 1],
and applying Theorem 2 with k=2g—1, the special choice above of a, B gives: 34)

(,2)
32) :ggg: - ‘EQIS' =97V (o)1  Now (33) and
' ( | Theoren
2q— Cho=1, =0, p
|
i

P
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Now averaging over the orthogonal group yields

t(E) [ENST _ -

yielding (15).

6. Constructive Ramsey-bound

Theorem 8. Let us set V@) ={Fc{l, 2,...,n}: lFl:qz—l}, g is a prime power,
and E(%)={(F, F'): |FNF'|# —1 (mod ¢q)}.

Then ¥ contains no complete or empty subgraph on more than ( qfl—l)

vertices.

Proof. If F,, ..., F, 152 complete subgraph then |F;NF;|#—1 (mod q) for every
1=i<j=m. Thus Theorem 2 gives the assertion.

If Fy, ..., F, isanempty subgraph then \F,NFle{g—1, 2g—1, ... g?—q—1}
for 1=i<j=m, thus (2) gives the statement.

Setting n=p®, g=p, W¢€ obtain

r(k) = exp (1+0(1)) log? k/4 loglog k).

7. The proof of Theorems 9 and 10

Let x be a point of maximal degree and set
F, = {FeF: x€F}.
Then

sz (2)](2)

and for F, F'¢%, we have
, 2 3 p—l)}
‘mF'g{(z)’[z]’ ( 2 I

. . AT ,
Since[;]—[p ;+1)=£-2-1———1—;—D-—P——20 (mod p), and p’((;) for i=2,...,p— 1

the intersections lie in P

different non-zero congruence classes modulo p. On

the other hand p\(’z’]———]F |, and therefore Theorem 1 yields

(2)
2
2
Now (33) and (34) imply (22). |
Theorem 10 is an immediate consequence of Theorem 1: Simply set k=7,
to=1, u; =0, =2, p=3. |
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8. On possible extensions
First we prove Theorem 11.
Let Fy, Fa, ..., Fn b€ the sets in our family arranged so that |Fi|=|Fl=

For 0=i=s, be the different i-subsets of {1,2,...,n}.

let Al’ cees A(n)
Let N(i) be the m by [ 7] matrix which has 1 or 0 in the position (u, v) accord-
l=u=m, 1 évé(?} . Of course r(N(i))§[';] )

ing to whether A,c F, or not,
FNFEY . .
(l “Q "‘) in position

Let us set M(i)::N(i)N(i)T. Then M(i) is m by m with
(u, v), and we still have

r(M(@) = [':)
Let v, ..., v be the row-vectors of M(i), and let V be the vector space spanned
by the v{? for 1=i=s, 1=j=m. Then we have

(35) gimy = 3 r(M() = ;(f]

Let us choose a{? for fixed i, 1=i=s, and v=0,1,.
sao(¥)= me—1
y=0 v t=1

Now we define an m by m matrix M. If I=u=m and i is the greatest integer
for which |F,|=I; then let the uth row of M be

.., 1 that

(36)

i
> o,
v=0

then the last row of M is O,

(37)

If u=m, and |F|=l, Since all the row-vectors

are in ¥ we have by (35)

(38) r(M) = 2[’:)

i=0
By (36) and (37) the «’th diagonal entry of M is
t
ITUFL=1) # 0, since |F|=1l.
t=1
Since |F,|=|F,| for u<v, in this case |F,NF,l€{h, L, ..., I}}, and consequently

by (26) and (37) the (u, v)-entry of M is 0. This means that M is lower-triangular
with non-zero diagonal consequently of full rank; thus (38) yields

\F| = m = rank M = ]][':] 1
i=0

The
Theorem Z
Fra
integer mc
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The
=4 and
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residues mo
F=FeF

If the
is an integer

Proof. Choo

Then t

: to the membx

(1] L. BABAI ar

[21 M. DEza, P

London !

[3] M. Dgza, P.

sections,

~ [4] M. DEza an

faisant a

- [5] P. ERDGs, Pi

i
i

Comb. Cc
peg, 1976

| [6] P. ERDGs, Sc

294.

+ [ P. Ernds, Pr

R

theory (F.



NEIBE
2, .., n)

v) accord-

an=(3)

1 position

e spanned

:st integer

w-vectors

sequently

triangular

INTERSECTION THEOREMS 367

The most important extension is to decide whether Theorem 1 or at least

Theorem 2 holds for congruences modulo arbitrary positive integers.
Frankl, Rosenberg [12] proved that for ¢—1 Theorem 1 extends to arbitrary

integer moduli (which generalizes results by Ryser [19], Deza, Erdds, Singhi [3],

Babai, Frankl [1], and Deza, Rosenberg [4)).
The first open case modulo a prime pOweT is for 8: =0, =1, Uo =2,

p;=4 and ps=0.

By the proof of Theorem 1 we can prove
Theorem 12. Suppose q is a power of the prime p. Let o, Hus - u, be distinct
residues modulo q. L2t F be a collection of k-subsets of {1,2, .. n}, such that for

F=F €¢F we have
|Fl = o (mod g),

|[FONF'| = Wi (mod g) for som¢ l=i=s.

If there exists a rational polynomial g(x) of degree d such that p1g(k) (gk)
is an integer) but plg(x) for x=M (mod q), i=1, ..» 5 then

= ()

Proof. Choose the rational numbers do, a1, > %4 in such a way that
d X
2 av( ) = p(x).
y=0 v

d
Then the matrix M= >a,M(©, k) contains a full-rank minor corresponding

y=0

to the members of #, yielding

|7 = rank M = rank M(d, k) = [’;) 1
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