Journal Title: Combinatorica

Volume: 1 Issue: Month/Year: 1981 Pages: 357-368

Article Author: Frankl and Wilson

Article Title: Intersection theorems with geometric consequences

Imprint:

ILLiad TN: 275061

Call #: EPSL Periodical Stacks QA164 .C662

Location:

Item #:

CUSTOMER HAS REQUESTED: Mail to Address

William Gasarch (000000350541) College Park, MD 20742

Ages Ab

INTERSECTION THEOREMS WITH GEOMETRIC CONSEQUENCES

P. FRANKL

C. N. R. S., 54 Bd. Raspail Paris 75 006, France and

R. M. WILSON

California Inst. Technology Pasadena, Calif. 91 125, U.S.A.

Received 26 August 1980

In this paper we prove that if \mathscr{F} is a family of k-subsets of an *n*-set, $\mu_0, \mu_1, ..., \mu_s$ are distinct residues mod p (p is a prime) such that $k \equiv \mu_0 \pmod{p}$ and for $F \neq F' \in \mathscr{F}$ we have $|F \cap F'| \equiv \mu_i \pmod{p}$ for some $i, 1 \leq i \leq s$, then $|\mathscr{F}| \leq \binom{n}{s}$.

As a consequence we show that if \mathbb{R}^n is covered by *m* sets with $m < (1+o(1))(1.2)^n$ then there is one set within which all the distances are realised.

It is left open whether the same conclusion holds for composite p.

1. Introduction

Let \mathscr{F} be a family of k-element subsets of $\{1, 2, ..., n\}$, and suppose that $L = \{l_1, l_2, ..., l_s\}$ is a subset of $\{0, 1, ..., k-1\}$.

Let us further suppose that for $F, F' \in \mathscr{F}$ we have

 $|F \cap F'| \in L.$

Ray-Chaudhuri and Wilson [18] proved that (1) implies

$$|\mathscr{F}| \leq {n \choose s}.$$

Deza, Erdős and Frankl [2] proved that for $n > n_0(k)$, (2) can be improved to

$$|\mathscr{F}| \leq \prod_{i=1}^{s} \frac{n-l_i}{k-l_i}.$$

In this paper we prove

14

Theorem 1. Suppose $\mu_0, \mu_1, ..., \mu_s$ are distinct residues modulo a prime p, such that

$$|F| = k \equiv \mu_0 \pmod{p},$$

AMS subject classification (1980): 05 C 65; 05 C 35, 05 C 15

and for any two distinct $F, F' \in \mathcal{F}$

(5)
$$|F \cap F'| \equiv \mu_i \pmod{p}$$
 for some $i, 1 \leq i \leq s$.

Then

358

$$(6) \qquad |\mathscr{F}| \leq$$

Clearly Theorem 1 generalizes (2). It would be interesting to know whether it holds for composite p as well. In this direction, we prove only

 $\binom{n}{s}$.

Theorem 2. Let q be a prime power. Suppose that for $F, F' \in \mathcal{F}$ we have

 $|F \cap F'| \not\equiv k \pmod{q}.$ (7)

Then

(8)
$$|\mathscr{F}| \leq {n \choose q-1}.$$

Let \mathbf{R}^n denote *n*-dimensional Euclidean space. Let us construct a graph on **R** by connecting two points if and only if their distance is 1. Let $c(\mathbf{R}^n)$ denote the chromatic number of this graph. The exact value of $c(\mathbf{R}^n)$ seems to be hard to determine. It is known that $4 \le c(\mathbf{R}^2) \le 7$. Erdős conjectured that $c(\mathbf{R}^n)$ is exponential in *n*. We prove this conjecture in

Theorem 3.

(9)
$$c(\mathbf{R}^n) \ge (1+o(1))(1.2)^n.$$

Let m(n) be the minimum integer m such that \mathbb{R}^n can be partitioned into m sets $X_1, ..., X_m$ such that for $1 \le i \le m$, there is a real number r_i with the property that $d(x, y) \neq r_i$ for all $x, y \in X_i$ (d(x, y) denotes the Euclidean distance, i.e., the length of x - y).

This problem was first considered by Hadwiger [13, 14] in 1944 and 1945. Raiskii [17] proved $m(n) \ge n+2$. This bound was improved by Larman, Rogers [16], then by Larman [15], and again later by Frankl [8]. However none of the lower bounds is exponential. Larman, Rogers [16] proved that

$$(10) mtext{m(n)} \leq (3+o(1))^n$$

and they conjectured that m(n) is exponential in n. Here we prove this conjecture.

Theorem 4.

(11)
$$m(n) \ge (1+o(1))(1.2)^n.$$

The statement of Theorem 4 will follow from the proof of Theorem 3 using Theorem 2 of Larman, Rogers [16] which states the following:

If s is a set of M points in \mathbb{R}^n with critical distance 1 and critical number D(i.e., every subset of s of cardinality exceeding D contains 2 points at distance 1), then

(12)
$$m(n) \ge M/D.$$

We prove as well a modification (Conjecture 2 of Larman, Rogers [16]):

with

(13)

$$y_j^{(i)} = \pm 1 f$$

is zero. The

Let 1 Let E be a 1 supremum c tain two poi Let s(n) d $\bigcup \{\mathbf{y} \in \mathbf{B}: y_i < \mathbf{y}\}$

For n of an *n*-set si that for $n \ge n$

Here
$$\binom{n}{l} / \binom{k}{l}$$

all the interse Frankl

(17)

(18)

Here we prove

Theorem 7. If (a) $k \ge 1$

Here
$$\binom{n}{l} / \binom{k}{l}$$

(16)

Theorem 5. Let T be a set of m vectors in \mathbb{R}^n

 $\mathbf{y}^{(i)} = (y_1^{(i)}, y_2^{(i)}, ..., y_n^{(i)}); \quad i = 1, ..., m,$ $v_i^{(i)} = \pm 1, \quad i = 1, ..., m;$

with

 $y_j^{(i)} = \pm 1$ for $\frac{n}{2}$ values of $1 \le j \le n$, such that none of the scalar products $\langle \mathbf{y}^{(i)}, \mathbf{y}^{(j)} \rangle$ is zero. Then for $n=4p^{\alpha}$ (p prime, $\alpha \ge 1$) we have

(13)
$$m \leq 2 \binom{n-1}{n-1} \leq (1+o(1)) 2^n / (1.13)^n.$$

Let B denote the boundary of the unit sphere in \mathbb{R}^n centered at the origin. Let E be a measurable subset of B. H. S. Witsenhausen asked for the value of the supremum of the ratio of the measures of E and B, assuming that E does not contain two points A_1, A_2 which subtend an angle of 90° with the center of the sphere. Let s(n) denote this supremum. Choosing $E_0 = \{y \in B: y_i > 0, i = 1, ..., n\} \cup$ $\bigcup \{\mathbf{v} \in B: v_i < 0, i=1, ..., n\}$ we see that

 $s(n) \geq 2^{-n+1}.$

(

We prove

Theorem 6.

(15)
$$s(n) \leq (1+o(1))(1.13)^{-n}$$

For $n > k > l \ge 0$, let m(n, k, l) denote the maximum number of k-subsets of an n-set such that no two of them intersect in l-elements. Erdős [5] conjectured that for $n \ge n_{\rm u}(k)$, $k \ge 4$, we have

16)
$$m(n, k, l) \leq \max\left\{\binom{n-l-1}{k-l-1}, \binom{n}{l} \middle| \binom{k}{l} \right\}$$

Here $\binom{n-l-1}{k-l-1}$ corresponds to all the k-subsets containing a fixed (l+1)-set while $\binom{n}{l} / \binom{k}{l}$ would correspond to a (n, k, l)-Steiner system. In the first case all the intersections have cardinality greater than *l*, in the second smaller than *l*. Frankl [8] proved that for $k \ge 3l+2$

(17)
$$m(n, k, l) \leq (1+o(1)) \binom{n-l-1}{k-l-1}.$$

Here we prove

Theorem 7. If k-l is a power of a prime and (a) $k \ge 2l+1$, then

(18)
$$m(n, k, l) = (1+o(1)) {n-l-1 \choose k-l-1}$$

ı graph on

denote the be hard to

xponential

w whether

ioned into the prop-

stance, i.e.,

```
and 1945.
ogers [16],
the lower
```

```
conjecture.
```

sing Theo-

number D ice 1), then

ogers [16]):

(b) k < 2l+1, setting d = 2l-k+1 we have

(19)
$$m(n, k, l) \leq \frac{\binom{n}{d}}{\binom{k}{d}} \binom{n-d}{l-d} = O\left(\binom{n}{l}\right).$$

Let r(k) denote the minimum n such that every graph on n vertices contains either a complete or an empty subgraph on k vertices. Erdős [6] proved

(20)
$$r(k) > 2^{k/2}$$
.

His proof is probabilistic and in [7] he asked for a constructive bound yielding $r(k) > k^t$ for every t for $k > k_0(t)$. Such a construction was given in [9].

Here we use Theorem 2 to give a more accurate construction, though still far from the bound (20) (see Theorem 8).

Let f(n, k, 2) denote the maximum cardinality of a collection of $\binom{k}{2}$ -subsets of an $\binom{n}{2}$ -set such that all the pairwise intersections have for cardinality $\binom{i}{2}$ for i=1, 2, ..., k-1.

For
$$F \subseteq \{1, 2, ..., n\}$$
 set $F(2) = \{\{x, y\}: x \neq y, x, y \in F\},$
 $\mathscr{G} = \{F(2): F \subseteq \{1, 2, ..., n\}, |F| = k\}.$

Then *G* shows that

(21)
$$f(n, k, 2) \ge {n \choose k}.$$

Frankl [10] conjectured that for $n > n_0(k)$, $k \ge 10$ we have equality in (21). Here we prove

Theorem 9. If p is an odd prime then we have

(22)
$$f(n, p, 2) \leq \frac{\binom{n}{2}}{\binom{p}{2}} \binom{\binom{n}{2}}{\binom{p-1}{2}}.$$

In [11] it is conjectured that if \mathcal{F} is a collection of 7-element subsets of an n-set such that all the pairwise intersections have cardinality 0, 2, 3, 5 or 6 then $|\mathcal{F}| = O(n^2)$. We prove

Theorem 10. Let \mathcal{F} be a collection of 7-subsets of an n-set, such that for $F, F' \in \mathcal{F}$ we have

 $|F \cap F'| \in \{0, 2, 3, 5, 6\}.$

Then

Theorem subsets of

Then

Note that

Let

i-subsets of

Let

(u, v)-entry

For

in $\mathbf{R}^{(\tilde{k})}$. Let

we have

The followir

(24)

(23)

Conse Let u

transpose of entry is linear combin Let us x we have

4*

$$\binom{n}{2}$$
.

In the last paragraph we mention some possible extensions of Theorem 1. In particular we prove:

Theorem 11. Suppose $0 \le l_1 < l_2 < \ldots < l_s < n$ are integers and \mathcal{F} is a collection of subsets of $\{1, 2, ..., n\}$ such that for $F \neq F' \in \mathcal{F}$ we have

 $|F \cap F'| \in \{l_1, ..., l_s\}.$

s contains Then

d yielding

ough still

 $\binom{k}{2}$ -sub-

$$|\mathscr{F}| \leq \sum_{i=0}^{s} \binom{n}{i}.$$

Note that we do not assume anything about |F|.

2. The proof of Theorem 1

Let $A_1, A_2, ..., A_{\binom{n}{j}}$ be all the *j*-subsets and $B_1, B_2, ..., B_{\binom{n}{i}}$ be all the *i*-subsets of $\{1, 2, ..., n\}$ with j > i.

Let us define the $\binom{n}{i}$ by $\binom{n}{j}$ matrix N(i, j) in the following way: the (u, v)-entry is 1 if $B_u \subset A_v$ and 0 if $B_u \notin A_v$ for $1 \le u \le \binom{n}{i}$, $1 \le v \le \binom{n}{j}$. For i=s, j=k let the row-vectors be $v_1, v_2, ..., v_{\binom{n}{s}}$. They are all vectors

in $\mathbf{R}^{\binom{n}{k}}$. Let V denote the vector space generated by the v_i 's, $1 \le i \le \binom{n}{s}$. Obviously we have

 $\dim V \leq \binom{n}{s}.$ (23)

The following identity can be checked easily $(0 \le i < s)$

(24)
$$N(i, s)N(s, k) = {\binom{k-i}{s-i}}N(i, k)$$

Consequently, for $0 \le i < s$, the row vectors of N(i, k) are contained in V. Let us count the product $N(i, k)^T N(i, k) = M(i, k)$, where N^T denotes the sets of an transpose of N. Of course M(i, k) is an $\binom{n}{k}$ by $\binom{n}{k}$ matrix in which the (u v), entry is $\binom{|A_u \cap A_v|}{i}$ for $1 \le u, v \le \binom{n}{k}$. Moreover the row-vectors of M(i, k) are linear combinations of the rows of N(i, k), and consequently they are contained in V. Let us choose $0 \le a_i < p$ for $0 \le i \le s_0$ in such a way that for every integer x we have

(25)
$$\prod_{i=1}^{s} (x-\mu_i) \equiv \sum_{i=1}^{s} a_i \begin{pmatrix} x \\ i \end{pmatrix} \pmod{p}.$$

or 6 then

:y in (21).

 $F, F' \in \mathcal{F}$

Let us set $M = \sum_{i=1}^{s} a_i M(i, k)$, where the addition is to be done componentwise, i.e., in position (u, v) of M we have

(26)
$$M(u,v) = \sum_{i=1}^{s} a_i \binom{|A_u \cap A_v|}{i}$$

By the definition of M the row-vectors of M are in V, and consequently (23) gives:

(27)
$$\operatorname{rank} M \leq \dim V \leq {n \choose s}$$

Now let $M(\mathcal{F})$ be the minor spanned by the elements m(u, v) for which $A_u, A_v \in \mathcal{F}$. The assumptions of the theorem and (25) and (26) yield that for $A_u, A_v \in \mathcal{F}$,

The assumptions of the theorem and (25) and (26) yield that for $m_u, m_v \in V$, $u \neq v$, we have $m(u, v) \equiv 0 \pmod{p}$

and

 $m(u, u) \not\equiv 0 \pmod{p}$.

Consequently the determinant of $M(\mathcal{F})$ is not congruent to 0 modulo p, whence det $M(\mathcal{F}) \neq 0$. Thus using (27) we infer

$$|\mathscr{F}| = \operatorname{rank} M(\mathscr{F}) \leq \operatorname{rank} M \leq {n \choose s}.$$

Now we prove Theorem 2. We need an easy lemma.

Lemma. Let $q = p^{\alpha}$, p is a prime, $\alpha \ge 1$. Then for $a \ge 0$ $p \begin{vmatrix} a \\ q-1 \end{vmatrix}$ if and only if $a \ne -1 \pmod{q}$.

The proof of the lemma is elementary and we leave it to the reader.

Let us choose real numbers a_i , $0 \le i < q$, such that

$$\sum_{i=0}^{q-1} a_i \begin{pmatrix} x \\ i \end{pmatrix} = \begin{pmatrix} x-k-1 \\ q-1 \end{pmatrix}.$$

Then by the lemma all the off-diagonal entries are zero mod p in the minor corresponding to \mathcal{F} of the matrix $M = \sum_{i=0}^{q-1} a_i M(i, k)$, but the diagonal entries are non-zero mod p consequently the minor is again of full rank, yielding

$$|\mathscr{F}| \leq \operatorname{rank} M \leq \binom{n}{q-1}.$$

Hence

Let outsly d(x)any $\binom{n}{q-1}$ most $\binom{n}{q}$

(n - 2q +

Le

Nov

Remark. method yie nates is exp The

critical dist.

whicł and c

Since

provin

For a

of the

(a)

(b)

3. The proof of Theorems 3 and 4

Let us consider the set S of vectors $\mathbf{x} = (x_1, ..., x_n)$ in \mathbf{R}^n for which $x_i = 0$ (n-2q+1)-times and $x_i = 1/\sqrt{2q}$ the remaining (2q-1) times. Then

$$|S| = \binom{n}{2q-1}.$$

Let us associate with $\mathbf{v} \in S$ the (2q-1)-set $F(\mathbf{v}) = \{i: x_i \neq 0\}$. Then obviously $d(\mathbf{x}, \mathbf{y}) = 1$ is equivalent to $|F(\mathbf{x}) \cap F(\mathbf{y})| = q-1$. Thus by Theorem 2 among +1 vectors in S there are two at distance 1, i.e., every color contains at any of them, yielding most

$$c(\mathbf{R}^n) \ge \max_{q \text{ is a prime power}} {\binom{n}{2q-1}} / {\binom{n}{q-1}}$$

Now choosing q to be $(1+o(1))\frac{2-\sqrt{2}}{2}n$ we obtain

$$c(\mathbf{R}^n) \ge (1+o(1))(1.2)^n.$$

Remark. Since for $q=2^{2l+1}$ the expression $1/\sqrt{2q}=2^{-l-1}$ is rational, the same method yields that the chromatic number of the set of vectors with rational coordinates is exponential as well.

The statement of Theorem 4 follows now from the fact that the set S has critical distance 1 and critical number $\binom{n}{q-1}$ (cf. the introduction).

4. The proof of Theorem 7

Since $k \ge 2l+1$ then k-l>l. Thus l is the only integer between 0 and k-1(a) which is congruent to $k \pmod{q} = k \pmod{(k-l)}$. We can apply Theorem 2, and obtain

$$m(n, k, l) \leq {\binom{n}{k-l-1}} = (1+o(1)){\binom{n-l-1}{k-l-1}},$$

proving (18). For a \overline{d} -subset D of $\{1, 2, ..., n\}$ let $\mathscr{G}(D)$ be the collection of those members (b) of the family which contain D. Of course

$$\sum_{D} |\mathscr{G}(D)| = m \binom{k}{d}.$$

Hence we can choose D_0 such that

(28)
$$|\mathscr{G}(D_0)| \ge m \left(\frac{k}{d}\right) / \left(\frac{n}{d}\right)$$

dulo p,

t only if

or corretre non-

vise, i.e.,

equently

r which

 $, A_v \in \mathcal{F}$

Set $\mathscr{F} = \{G - D_0: G \in \mathscr{G}(D_0)\}$. Then \mathscr{F} is a family of (k - d)-subsets of the (n-d)-set $\{1, 2, ..., n\}$ -D, no two of which intersect in l-d elements. Since k-l>l-d we can apply Theorem 2, which gives

(29)
$$|\mathscr{F}| \leq \binom{n-d}{k-l-1} = \binom{n-d}{l-d}.$$

From (28) and (29) we obtain

$$m(n, k, l) \leq {\binom{n}{d}} / {\binom{k}{d}} {\binom{n-d}{l-d}} = O\left({\binom{n}{l}}\right).$$

5. The proof of Theorem 5 and Theorem 6

Let us define $F_i = \{j: y_j^{(i)} = +1\}$. Then $|F_i| = 2p^{\alpha}$, and the condition implies $|F_i \cap F_{i'}| \neq p^{\alpha}$. Now apply Theorem 7 with $k=2p^{\alpha}$, $l=p^{\alpha}$, d=1, and deduce

$$m \leq 2 \binom{4p^{\alpha}-1}{p^{\alpha}-1} \leq (1+o(1))2^{n}/(1.13)^{n}.$$

To prove Theorem 6 we choose q to be the smallest prime power which is at least n/4. Let α , β be two real numbers and let $S(\alpha, \beta)$ be the set of vectors $y = (y_1, y_2, ..., y_n)$ for which

$$y_i = \alpha$$
 (2q-1) times, and $y_i = \beta$ (n-2q+1) times.

For $\mathbf{y} \in S(\alpha, \beta)$ set $F(\mathbf{y}) = \{i: y_i = \alpha\}$. Now the length of \mathbf{y} is $\sqrt{(2q-1)\alpha^2 + (n-2q+1)\beta^2}$, i.e., y is on B iff

 $(2q-1)\alpha^2 + (n-2q+1)\beta^2 = 1.$ (30)

If $|F(\mathbf{y}) \cap F(\mathbf{y}')| = q - 1$ then

$$\langle \mathbf{y}, \mathbf{y}' \rangle = (q-1)\alpha^2 + (n-3q+1)\beta^2 + 2q\alpha\beta.$$

To make this scalar product vanish we need

(31)
$$(q-1)\alpha^2 + (n-3q+1)\beta^2 + 2q\alpha\beta = 0.$$

Since $q \ge \frac{n}{4}$ the system (30), (31) is solvable in real α , β . Let S be the image of $S(\alpha, \beta)$ under any orthogonal transformation of B. Then $|S| = |S(\alpha, \beta)| = \binom{n}{2q-1}$, and applying Theorem 2 with k=2q-1, the special choice above of α , β gives:

(32)
$$\frac{|E \cap S|}{|B \cap S|} = \frac{|E \cap S|}{|S|} \le \frac{\binom{n}{q-1}}{\binom{n}{2q-1}} \le (1+o(1))(1.13)^{-n}.$$
 Now (33) and Theorem $\mu_0 = 1, \ \mu_1 = 0, \ \mu_0 = 1, \ \mu_1 = 0, \ \mu_0 = 1, \ \mu_1 = 0, \ \mu_0 = 1, \ \mu_0$

Now avera

yielding (1:

Theorem 8. and $E(\mathcal{G}) =$

Ther

Proof. If F $1 \leq i < j \leq m$.

vertices.

If F_1 for $1 \leq i < j$:

Settir

Let x

Then

(33) and for F, F

Since $\binom{i}{2} - \binom{i}{2}$

the intersectio

the other hand

(34)

Now averaging over the orthogonal group yields ets of the $\frac{\mu(E)}{\mu(B)} \leq \max_{S} \frac{|E \cap S|}{|S|} \leq (1+o(1))(1.13)^{-n},$ ts. Since yielding (15). 6. Constructive Ramsey-bound **Theorem 8.** Let us set $V(\mathcal{G}) = \{F \subseteq \{1, 2, ..., n\}: |F| = q^2 - 1\}$, *q* is a prime power, and $E(\mathcal{G}) = \{(F, F'): |F \cap F'| \neq -1 \pmod{q}\}$. Then \mathscr{G} contains no complete or empty subgraph on more than $\binom{n}{q-1}$ **Proof.** If F_1, \ldots, F_m is a complete subgraph then $|F_i \cap F_j| \neq -1 \pmod{q}$ for every $1 \leq i < j \leq m$. Thus Theorem 2 gives the assertion. n implies If $F_1, ..., F_m$ is an empty subgraph then $|F_i \cap F_j| \in \{q-1, 2q-1, ..., q^2 - q - 1\}$ for $1 \le i < j \le m$, thus (2) gives the statement. Setting $n=p^3$, q=p, we obtain $r(k) \ge \exp\left((1+o(1))\log^2 k/4\log\log k\right).$ 7. The proof of Theorems 9 and 10 which is f vectors Let x be a point of maximal degree and set $\mathscr{F}_0 = \{F \in \mathscr{F} : x \in F\}.$ Then $2q+1)\beta^2$ $|\mathscr{F}_0| \ge |\mathscr{F}| \binom{p}{2} / \binom{n}{2},$ (33) and for $F, F' \in \mathscr{F}_0$ we have $|F \cap F'| \in \left\{ \begin{pmatrix} 2\\2 \end{pmatrix}, \begin{pmatrix} 3\\2 \end{pmatrix}, \dots, \begin{pmatrix} p-1\\2 \end{pmatrix} \right\}.$ Since $\binom{i}{2} - \binom{p-i+1}{2} = \frac{(2i-1)p-p^2}{2} \equiv 0 \pmod{p}$, and $p \not \binom{i}{2}$ for i=2, ..., p-1, the intersections lie in $\frac{p-1}{2}$ different non-zero congruence classes modulo p. On the other hand $p | \binom{p}{2} = |F|$, and therefore Theorem 1 yields image of $|\mathcal{F}_0| < \begin{pmatrix} \binom{n}{2} \\ \binom{p-1}{2} \\ \ddots \end{pmatrix}.$ (34) Now (33) and (34) imply (22). Theorem 10 is an immediate consequence of Theorem 1: Simply set k=7, $\mu_0 = 1, \ \mu_1 = 0, \ \mu_2 = 2, \ p = 3.$

8. On possible extensions

The

Fra

Theorem 2

integer mc

Let $F_1, F_2, ..., F_m$ be the sets in our family arranged so that $|F_1| \ge |F_2| \ge$ Babai, Fra $\geq \dots \geq |F_m|.$ For $0 \leq i \leq s$, let $A_1, \dots, A_{\binom{n}{i}}$ be the different *i*-subsets of $\{1, 2, \dots, n\}.$ The $\mu_3 = 4$ and Let N(i) be the m by $\binom{n}{i}$ matrix which has 1 or 0 in the position (u, v) accord-By t ing to whether $A_v \subset F_u$ or not, $1 \leq u \leq m$, $1 \leq v \leq \binom{n}{i}$. Of course $r(N(i)) \leq \binom{n}{i}$. Theorem 12 residues mo Let us set $M(i) = N(i)N(i)^T$. Then M(i) is m by m with $\binom{|F_u \cap F_v|}{i}$ in position $F \neq F' \in \mathcal{F}$ (u, v), and we still have $r(M(i)) \leq \binom{n}{i}.$ If the Let $v_1^{(i)}, \ldots, v_m^{(i)}$ be the row-vectors of M(i), and let V be the vector space spanned is an integer by the $v_j^{(i)}$ for $1 \leq i \leq s, 1 \leq j \leq m$. Then we have dim $V \leq \sum_{i=n}^{s} r(M(i)) \leq \sum_{i=n}^{s} {n \choose i}.$ (35) Proof. Choo Let us choose $a_{\nu}^{(i)}$ for fixed *i*, $1 \le i \le s$, and $\nu = 0, 1, ..., i$ that $\sum_{\nu=1}^{i} a_{\nu}^{(i)} \begin{pmatrix} x \\ \nu \end{pmatrix} = \prod_{i=1}^{i} (x-l_i).$ (36)Now we define an m by m matrix M. If $1 \le u \le m$ and i is the greatest integer Then t for which $|F_u| > l_i$ then let the *u*th row of *M* be to the membe $\sum_{n=1}^{t} a_{v}^{(i)} v_{u}^{(v)}.$ (37) If u=m, and $|F_u|=l_s$, then the last row of M is $v_m^{(0)}$. Since all the row-vectors are in V we have by (35) $r(M) \leq \sum_{i=0}^{s} {n \choose i}.$ (38) [1] L. BABAI an [2] M. DEZA, P By (36) and (37) the u'th diagonal entry of M is London 1 [3] M. DEZA, P. $\prod_{t=1}^{t} (|F_u| - l_t) \neq 0, \quad \text{since} \quad |F_u| > l_i.$ sections, [4] M. DEZA an faisant à Since $|F_u| \ge |F_v|$ for u < v, in this case $|F_u \cap F_v| \in \{l_1, l_2, ..., l_i\}$, and consequently by (26) and (37) the (u, v)-entry of M is 0. This means that M is lower-triangular [5] P. ERDŐS, PI Comb. Co peg, 1976 with non-zero diagonal consequently of full rank; thus (38) yields [6] P. Erdős, Sc 294. $|\mathcal{F}| = m = \operatorname{rank} M \leq \prod_{i=0}^{s} {n \choose i}.$ [7] P. ERDŐS, Pr theory (F.

First we prove Theorem 11.

The most important extension is to decide whether Theorem 1 or at least Theorem 2 holds for congruences modulo arbitrary positive integers.

Frankl, Rosenberg [12] proved that for s=1 Theorem 1 extends to arbitrary integer moduli (which generalizes results by Ryser [19], Deza, Erdős, Singhi [3],

Babai, Frankl [1], and Deza, Rosenberg [4]). The first open case modulo a prime power is for 8: $\mu_0=0$, $\mu_1=1$, $\mu_2=2$,

 $\mu_3 = 4$ and $\mu_4 = 6$. By the proof of Theorem 1 we can prove

Theorem 12. Suppose q is a power of the prime p. Let $\mu_0, \mu_1, ..., \mu_s$ be distinct residues modulo q. Let \mathcal{F} be a collection of k-subsets of $\{1, 2, ..., n\}$, such that for $F \neq F' \in \mathcal{F}$ we have

$$|F| \equiv \mu_0 \pmod{q}$$

 $|F \cap F'| \equiv \mu_i \pmod{q}$ for some $1 \leq i \leq s$.

If there exists a rational polynomial g(x) of degree d such that $p \nmid g(k) (g(k))$ is an integer) but p|g(x) for $x \equiv \mu_i \pmod{q}$, i=1, ..., s, then

$$|\mathscr{F}| \leq \binom{n}{d}.$$

Proof. Choose the rational numbers $a_0, a_1, ..., a_d$ in such a way that

est integer

 $|F_1| \ge |F_2| \ge 1$

, 2, ..., n.

v) accord-

1 position

e spanned

(*i*))≦

ninor corresponding Then the

to the members

[2] M. DEZA, P.

[3] M. DEZA, P.

sections,

$$|\mathcal{F}| \leq \operatorname{rank} M \leq \operatorname{rank} M(d, k) \leq \binom{n}{d}.$$

w-vectors

sequently triangular

[6] P. Erdős, Some remarks on the theory of graphs, Bull. Amer. Math. Soc. 53 (1947), 292-[7] P. ERDŐS, Problems and results in chromatic graph theory, in: Proof techniques in graph

theory (F. Harary ed.), Academic Press, London, 1969, 27-35.

- [8] P. FRANKL, Extremal problems and coverings of the space, European J. Combs, 1 (1980), 101-106.
- [9] P. FRANKL, A constructive lower bound for Ramsey numbers, Ars Comb. 3 (1977), 297-302.
- [10] P. FRANKL, Problem session, Proc. French-Canadian Joint Comb. Coll., Montreal 1978.
- [11] P. FRANKL, Families of finite sets with prescribed cardinalities for pairwise intersections, Acta Math. Acad. Sci. Hung., to appear.
- [12] P. FRANKL and I. G. ROSENBERG, An intersection problem for finite sets, Europ. J. Comb 2 (1981).
- [13] H. HADWIGER, Überdeckungssätze für den Euklidischen Raum, Portugaliae Math. 4 (1944), 140-144.
- [14] H. HADWIGER, Überdeckung des Euklidischen Raumes durch kongruente Mengen, Portugaliae Math. 4 (1945), 238–242.
- [15] D. G. LARMAN, A note on the realization of distances within sets in euclidean space, Comment. Math. Helvet. 53 (1978), 529-535.
- [16] D. G. LARMAN and C. A. ROGERS, The realization of distances within sets in euclidean space, Mathematika 19 (1972), 1-24.
- [17] D. E. RAISKII, The realization of all distances in a decomposition of R^n into n+1 parts (Russian) Mat. Zametki 7 (1970), 319-323.
- [18] D. K. RAY-CHAUDHURI and R. M. WILSON, On t-designs, Osaka J. Math. 12 (1975), 735-744.
- [19] H. J. RYSER, An extension of a theorem of de Bruijn and Erdős on combinatorial designs, J. Algebra 10 (1968), 246-261.

A k-m: The number o condition under our condition in G (i.e. $\Delta = o$ ber of points finormally distril

A mat. common. A the number o We wil chosen match totically a no graph of the r $A \exp((x-B)$ The acc of edges in a 1.1. Theorem.

that $|V(G_n)|$ in are normally d.

We will

disjoint union

yields the case The con but not all nece graph on *n* veri

AMS subj

MATCH