
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/241854183

Pseudorandom Number Generation Using Binary Recurrent Neural Networks

Article

CITATIONS

11
READS

118

3 authors, including:

Some of the authors of this publication are also working on these related projects:

CePTER (center for personalized translational epilepsy research) View project

Brain Stimulation View project

Jochen Triesch

Frankfurt Institute for Advanced Studies

345 PUBLICATIONS 4,717 CITATIONS

SEE PROFILE

All content following this page was uploaded by Jochen Triesch on 30 May 2014.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/241854183_Pseudorandom_Number_Generation_Using_Binary_Recurrent_Neural_Networks?enrichId=rgreq-109f59ee7d111a41f4316360d11fa171-XXX&enrichSource=Y292ZXJQYWdlOzI0MTg1NDE4MztBUzoxMDIzMzYxMDE4Nzk4MjNAMTQwMTQxMDIzNjkwOA%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/241854183_Pseudorandom_Number_Generation_Using_Binary_Recurrent_Neural_Networks?enrichId=rgreq-109f59ee7d111a41f4316360d11fa171-XXX&enrichSource=Y292ZXJQYWdlOzI0MTg1NDE4MztBUzoxMDIzMzYxMDE4Nzk4MjNAMTQwMTQxMDIzNjkwOA%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/CePTER-center-for-personalized-translational-epilepsy-research?enrichId=rgreq-109f59ee7d111a41f4316360d11fa171-XXX&enrichSource=Y292ZXJQYWdlOzI0MTg1NDE4MztBUzoxMDIzMzYxMDE4Nzk4MjNAMTQwMTQxMDIzNjkwOA%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Brain-Stimulation?enrichId=rgreq-109f59ee7d111a41f4316360d11fa171-XXX&enrichSource=Y292ZXJQYWdlOzI0MTg1NDE4MztBUzoxMDIzMzYxMDE4Nzk4MjNAMTQwMTQxMDIzNjkwOA%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-109f59ee7d111a41f4316360d11fa171-XXX&enrichSource=Y292ZXJQYWdlOzI0MTg1NDE4MztBUzoxMDIzMzYxMDE4Nzk4MjNAMTQwMTQxMDIzNjkwOA%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jochen-Triesch?enrichId=rgreq-109f59ee7d111a41f4316360d11fa171-XXX&enrichSource=Y292ZXJQYWdlOzI0MTg1NDE4MztBUzoxMDIzMzYxMDE4Nzk4MjNAMTQwMTQxMDIzNjkwOA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jochen-Triesch?enrichId=rgreq-109f59ee7d111a41f4316360d11fa171-XXX&enrichSource=Y292ZXJQYWdlOzI0MTg1NDE4MztBUzoxMDIzMzYxMDE4Nzk4MjNAMTQwMTQxMDIzNjkwOA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jochen-Triesch?enrichId=rgreq-109f59ee7d111a41f4316360d11fa171-XXX&enrichSource=Y292ZXJQYWdlOzI0MTg1NDE4MztBUzoxMDIzMzYxMDE4Nzk4MjNAMTQwMTQxMDIzNjkwOA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jochen-Triesch?enrichId=rgreq-109f59ee7d111a41f4316360d11fa171-XXX&enrichSource=Y292ZXJQYWdlOzI0MTg1NDE4MztBUzoxMDIzMzYxMDE4Nzk4MjNAMTQwMTQxMDIzNjkwOA%3D%3D&el=1_x_10&_esc=publicationCoverPdf

Senior Individualized Project

Pseudo-random Number Generation
Using Binary Recurrent Neural Networks

James M. Hughes, Kalamazoo College
Advisors:

Prof. Dr. Jochen Triesch, Fellow,

Frankfurt Institute for Advanced Studies

Dr. Nathan Sprague, Professor of Computer Science,

Kalamazoo College

A paper submitted in partial fulfillment of the requirements for the degree

of Bachelor of Arts at Kalamazoo College.

April 26, 2007

1

Contents

1 Acknowledgements 5

2 Abstract 6

3 Introduction 7

4 Random Number Generators 8
4.1 Physical vs. Mathematical Generators 8
4.2 Definition of a Pseudo-random Number Generator 9
4.3 General Mathematical PRNG Construct 9
4.4 Types of PRNGs . 9

4.4.1 Linear vs. Non-linear Generators 9
4.4.2 Theoretical Example: Linear Congruential Generators 10
4.4.3 Practical Example: Mersenne Twister 11
4.4.4 Practical Example: Blum-Blum-Shub 11

4.5 Characteristics of Good PRNGs . 12
4.5.1 Limit Cycles . 12
4.5.2 One-way Functions . 12
4.5.3 Hard-core Predicates . 13
4.5.4 Computational Complexity . 13

5 Neural Networks 13
5.1 Purpose & Inspirations . 13
5.2 Neuronal Plasticity & its Effects on Network Dynamics 14

5.2.1 Spike-timing Dependent Plasticity 15
5.2.2 Intrinsic Plasticity . 15
5.2.3 Anti-Spike-timing Dependent Plasticity 15

6 Specific Network Model 16
6.1 General Network Structure . 16
6.2 Update Function . 17
6.3 Plasticity Functions . 18
6.4 Bit Gathering & Parity Gadget . 18

7 Statistical Results 21
7.1 Overview of Testing Software . 21
7.2 Parameter Set for Pseudo-random Number Generation 22

2

7.3 Results . 22

8 Limit Cycles & Chaotic Behavior 25
8.1 Limit Cycle Analysis . 26
8.2 Parameter Set for Limit Cycle Analysis 27
8.3 Results & Comparison . 27
8.4 Chaotic Behavior . 29
8.5 Parameter Set for Estimation of Chaotic Behavior 30
8.6 Results . 31

9 Discussion 32
9.1 Results of Simulated Networks . 32

9.1.1 Statistical Results . 32
9.1.2 Limit Cycles & Refractory Period 33

9.2 Comparison with other PRNGs / Applications 35

10 Future Work 37

3

List of Figures

1 DIEHARD Results for Un-shuffled Networks 24
2 DIEHARD Results for Shuffled Networks 25
3 Visualization of Limit Cycles . 26
4 Limit Cycle Lengths for Networks with 2-step Refractory Period . . . 28
5 Limit Cycle Lengths for Networks Trained with Various Plasticity

Routines . 30
6 Derrida Plot Showing Chaotic Network Dynamics 31
7 Limit Cycle Lengths for Networks with No Refractory Period 34
8 Limit Cycle Lengths for Networks with 3-step Refractory Period . . . 36

4

1 Acknowledgements

I would like to thank several people and organizations that made this research pos-
sible. First of all, I wish to thank Prof. Dr. Jochen Triesch, my research advisor at
the Frankfurt Institute for Advanced Studies at the Johann-Wolfgang-Goethe Uni-
versität in Frankfurt, Germany, where I conducted this research. Additionally, I
would like to acknowledge the significant contribution that my additional advisors,
Ph.D. student Andreea Lazar and Dr. Gordon Pipa, made to this project. Their
help, support, and ideas in all aspects of this project were integral to its success. This
project would also not have been possible without the generous funding provided by
the Howard Hughes Medical Institute.

The faculty at Kalamazoo College who have guided me through the conception
and completion of this project also deserve mention. In this light, I would like to
thank Dr. Alyce Brady for all her good advice and support, Dr. Nathan Sprague, my
SIP advisor, for his shrewd comments, well-placed skepticism, and encouragement,
and Dr. Pamela Cutter, for her guidance and editing prowess. Their contribution
was a significant one and their commitment to expecting the best work possible from
their students has been and always will be a guiding principle of mine in future work.
Finally, I would like to thank my family for their support, especially during those last
few weeks in Germany. Their presence, if only through telecommunication, kept me
focused and excited about my work and the successful completion of this project.

5

2 Abstract

Pseudo-random number generators are deterministic functions that map, in most
cases, a state x to a new state ẋ using some update function in order to generate
pseudo-random data. Use of these numbers is an integral part of computer science,
stochastic physical & statistical simulation, and cryptography. Because of the deter-
ministic nature of these functions, it is impossible to speak of the resultant numbers
as truly random. Therefore, the primary goal of pseudo-random number generation
is to create values that are statistically identical to truly random numbers.

To this end, a few specific characteristics are desirable. First, there should be
a way to extract some value from the function (such as a single bit) at discrete
intervals that cannot be guessed with probability greater than 50% if only f, the
update function, is known. Additionally, functions with long limit cycles and whose
cycle lengths grow exponentially in the size of one or more system variables are among
those well-suited for random number generation. Finally, the values generated should
be independently and identically distributed over the given output interval.

Many different, well-established methods exist for generating pseudo-random
numbers. Each of these methods has advantages and disadvantages related to its ef-
ficiency and effectiveness. In this project, we present the results of a unique pseudo-
random number generator created using binary recurrent neural networks trained
with two types of neuronal plasticity, anti-spike-timing dependent plasticity (anti-
STDP) and intrinsic plasticity (IP). We subject our results to industry-standard
random number generator test suites, in addition to performing empirical analysis
on the dynamics of our simulated networks. We show that the interaction of these
types of plasticity creates network dynamics well-suited for pseudo-random number
generation.

6

3 Introduction

Random number generation is important in many scientific contexts, from physical
and statistical simulation to cryptography and software testing. Pseudo-random
number generators are intended to be general-purpose vehicles for the creation of
random data used in these areas [21]. Due to the deterministic nature of computers
and the common need to be able to repeat sequences of pseudo-random data, pseudo-
random number generators are based on deterministic algorithms.

Constructing “good” random number generators depends on several factors. Based
on the structure of the function f that determines the next number in the sequence,
the next value in the output sequence should not be predictable with probabil-
ity greater than 50% if only f , the update function is known. Additionally, well-
performing PRNGs must be able to generate large amounts of data before the se-
quences begin repeating. Finally, a PRNG’s output data must stand up to statistical
and empirical testing. That is, it must be as “random” as possible.

The construction of useful, efficient, and effective PRNGs has motivated research
in computer science, applied mathematics, and other related fields since the use of
computers for statistical research and simulation began. Many good PRNGs exist
today, such as the Blum-Blum-Shub [3] and Mersenne Twister algorithms [15]. Ad-
ditionally, the field of cryptography relies heavily on the use of PRNGs, especially
for data encryption [6]. In this context, PRNGs must be secure and unpredictable,
but they must also be efficient. It is easy to see the main conflict of random number
generation when viewed in the context of cryptography: there is almost always a
tradeoff between efficiency (i.e., execution time) and effectiveness (i.e., level of secu-
rity). More on the varying types of random number generators will be presented in
a later section.

One area of random number generation that has previously seen little research is
the use of neural networks to create (pseudo)-random numbers. Neural networks are
highly non-linear, mathematical systems that are meant to simulate, in some abstract
sense, the dynamics of neurons in the brain (more specifically: neocortex). Neural
network research began by using networks with little similarity to biological systems,
but more recent research has begun to take advantage not only of the functionality
of neurons, but also their structure in the brain. External forces (i.e., not inherent
to the neuron itself) have also become an integral part of neural network research,
and represent a fundamental aspect of our experiments.

Some attempts have been made to utilize the dynamics of neural networks with
random orthogonal weight matrices for random number generation [4]. These net-
works were successful in generating statistically “random” numbers that passed

7

industry-standard tests with a success rate similar to that of other well-established
random number generators.

Our experiment differs from [4] in that the synaptic weight matrices used are
trained with two types of neuronal plasticity, anti-spike timing dependent plastic-
ity (anti-STDP) and intrinsic plasticity (IP). Whereas the weight matrices in [4]
were randomly initialized and not modified, ours undergo a training phase in order
to shape their dynamics to take advantage of the behaviors that arise when using
these two types of plasticity. We will show that, when using neural networks trained
with anti-STDP & IP, numbers can be generated that are statistically equivalent to
truly random numbers according to industry-standard random number test suites.
We demonstrate that neural networks that borrow properties from their biological
counterparts are effective pseudo-random number generators whose performance po-
tentially surpasses that of the networks described in [4].

4 Random Number Generators

4.1 Physical vs. Mathematical Generators

There are two primary types of random number generators: physical devices and de-
terministic mathematical functions. The latter are the focus of this paper. However,
a short look at physical devices is warranted in order to understand the advantages
of mathematically based generators both in efficiency and effectiveness.

According to [9], physical mechanisms such as temporal differences between suc-
cessive atomic decay events, thermal noise in semiconductors, etc. can be used to
generate random numbers. However, independent and identical distribution over
the interval (0,1) can rarely be guaranteed in these systems. Additionally, there
are several logistical factors that severely reduce the efficiency and cost effectiveness
of physical systems for random number generation. The systems and equipment
necessary are often quite large and expensive, making them not portable. Physical
devices also do not have the efficiency of a mathematical function, which can result
not only in lost time but also in lost money. Finally, the sequences generated by
physical systems are non-repeatable. This excludes their practical use in physical &
statistical simulations, since these simulations cannot be repeated using sequences
of consistent values. Physical systems have found use in the areas of cryptography
and gaming machines, however. Their data are often used to seed, that is, provide
an initial value for, a pseudo-random number generator [9].

On the other hand, mathematical systems possess almost none of these draw-
backs: they are reliable, cheap (both to develop and to implement), highly portable,

8

and the sequences they generate can be repeated. Generators of this type are de-
scribed in detail in the following sections.

4.2 Definition of a Pseudo-random Number Generator

As mentioned in the Introduction, a pseudo-random number generator is a deter-
ministic function created to imitate the behavior of some random variable X of a
given distribution. One of the most important aspects of a given PRNG, however, is
that it consistently generate the proper distribution along the specified interval. For
most PRNGs, this interval is (0,1) [9]. Indeed, [9] defines a distinct two-step process
in random number generation that applies to nearly all types of generators:

1. Generate independent and identically distributed (i.i.d.) pseudo-random data
uniformly over the interval (0,1)

2. Apply transformations to this data to generate pseudo-random data of an ar-
bitrary distribution on an arbitrary interval.

4.3 General Mathematical PRNG Construct

It is useful to maintain a consistent scheme of representation for the structure of
pseudo-random number generators (PRNGs), regardless of significant internal differ-
ences in that structure. As such, we use the definition presented in [9]. According to
[9], nearly all pseudo-random number generators can be written as a structure (S, µ,
f, U , g), where S is the state space (some finite set of states), µ is some probability
distribution used to select the initial state, f is the function mapping the current
state to the succeeding one (i.e., f : S → S), U is the output space, and g is the
function mapping the state space to the output space (i.e., g : S → U).

This model is particularly convenient since it allows for consistent representation
of PRNGs ranging from traditional mathematical models to the neural networks used
in our experiments and those of [4].

4.4 Types of PRNGs

4.4.1 Linear vs. Non-linear Generators

Two general categories exist to distinguish between types of pseudo-random num-
ber generators: those with linear and those with non-linear dynamics [17]. Linear
generators are usually much more efficient, with respect to both space and time.

9

However, they are often poor choices for cryptographic applications because of their
high predictability [17]. On the other hand, this is often a positive factor that con-
tributes to their use in simulations, since it is possible to “jump to” the state of a
given linear system at any discrete time. By implication, a particular (sub-)sequence
can be re-generated arbitrarily without having to simulate the entire sequence again
from the beginning.

Some non-linear systems, on the other hand, do not possess this characteristic,
and are therefore better suited for cryptography. Their dynamics are often highly
dependent on a given variable, such as time [17]. The neural networks presented in
this paper provide examples of non-linear systems.

In this section, we present a theoretical model for a linear congruential generator,
followed by descriptions of industry-standard generators whose performance will be
the basis for comparison with the results of our experiments.

4.4.2 Theoretical Example: Linear Congruential Generators

The largest and most widely used class of random number generators is the multiple
recursive generator, of which the linear congruential generator is a member [9]. These
functions are based on the following recurrence:

xi = (a1xi−1 + . . . + akxi−k) mod m, (1)

where m and k are positive integers. For k = 1, this is the linear congruential
generator. This simplifies the above recurrence to the following:

xi = (a1xi−1) mod m. (2)

If m is prime, it is possible to choose a coefficient a1 that will maximize the
limit cycle of the sequence generated. Using the definition given in 4.3., we define a
structure (S, µ, f, U , g) for this PRNG as follows:

S = Z,
µ = dependent on the method used to seed the generator,
f(xi−1) = xi = (a1xi−1) mod m,
U = R on [0,1),
g(xi) = ui = xi/m.

Linear congruential generators have the advantage of being relatively easy to pro-
gram and are quite efficient [9]. However, they have drawbacks. For instance, the

10

spatial distribution of output values in some space of arbitrary dimensionality may
not be uniform.

4.4.3 Practical Example: Mersenne Twister

Introduced in [15], the Mersenne Twister algorithm is a highly effective and efficient
linear random number generation algorithm [17]. The algorithm is designed to elim-
inate the problems of equidistribution in high-dimensional space, in addition to the
fact that it is proven to have a period (i.e., limit cycle) of 219937 − 1 [14].

The algorithm itself is based on a modified Generalized Feedback Shift Register
Sequence (in which logical operations are performed on data in a simulated or real
shift register and fed back into the first stage of the shift register) that uses Mersenne
primes for period length [22]. It is, despite its extremely long period length, not well-
suited for cryptographic applications [14]. However, it is quickly becoming one of
the most widely used PRNGs in other areas because of its extremely space-efficient
deployment size and high computational efficiency.

4.4.4 Practical Example: Blum-Blum-Shub

In contrast to the Mersenne Twister algorithm, the Blum-Blum-Shub algorithm [3]
for random number generation is well-suited for cryptographic applications, in spite
of being a linear generator. The algorithm is described in [6] as the following: For
two large primes, p and g, find their product, n. Using this n, we can now create a
structure (S, µ, f, U , g) that defines the behavior of this generator:

S = R,
µ = arbitrary random distribution used to select x0, the intial state from seed s,
s ∈ R on [1, n - 1], where x0 = s2 mod n,
f(xi) = x2

i−1 mod n,
U = {0,1},
g(xi) = parity(xi).

The use of the parity of a (sub)set of the system state is similar to the method
used to extract bits from the neural networks used in our experiments. This will be
discussed in more detail in 4.5.3. We will use statistical results of sequences gen-
erated with the Mersenne Twister and Blum-Blum-Shub algorithms as benchmarks
for evaluating the performance of our generation algorithm.

11

4.5 Characteristics of Good PRNGs

Good pseudo-random number generators are efficient, cost-effective, portable, and
can generate long sequences of data before repeating themselves (i.e., have long
limit cycles). Generators used in cryptographic applications must also be difficult to
“crack,” meaning that subsequent values in a generated sequence should be unpre-
dictable to an external observer. Methods to achieve this include one-way functions,
hard-core predicates, and algorithms that require high computational complexity to
crack.

4.5.1 Limit Cycles

Pseudo-random number generators should in general be constructed to maximize the
length of the period, or limit cycle. This cycle is defined as the repeated sequence
of states in state space that the function enters after an arbitrary transient period.
Since the functions in question are deterministic, they will all enter some sort of
limit cycle. As stated above, the Mersenne Twister algorithm is capable of stepping
through 219937 − 1 iterations before repeating itself. The length of the limit cycles
of a given generator helps determine its usefulness: short limit cycles imply quick
repetitions of output sequences, effectively precluding a PRNG from use in large-scale
statistical simulation or cryptographic applications.

4.5.2 One-way Functions

According to [5], a one-way function is simply a function that is easy to evaluate but
hard to invert. Pseudo-random number generators can be constructed using one-
way functions and a hard-core predicate of those functions [4]. Functions such as
these are particularly important in cryptographic applications as well as in random
number generation for statistical simulation, since these functions, along with hard-
core predicates, ensure that subsequent output data cannot be determined knowing
only the update function itself. In [4], it is postulated that a neural network-based
pseudo-random number generator is an implementation of a one-way function by
establishing that inverting one step of the network is equivalent to the Integer Pro-
gramming problem, known to be NP-complete. It is important to stress that this is
merely a postulation; however, we believe that the networks used in our simulations
take advantage of this property.

12

4.5.3 Hard-core Predicates

A hard-core predicate of a function f is some value b(x) that is easy to determine
when the value of x is known, but difficult to determine when only f(x) is known.
[5], [4] show that, for a group of one-way functions, the parity of a certain subset
of input bits is a hard-core predicate of these functions. Our networks, as well as
those of [4] and the Blum-Blum-Shub algorithm, all take advantage of this property
of one-way functions and use it to map a system state to the output state, U = {0,1}.

4.5.4 Computational Complexity

A third important aspect of random number generation is the computational com-
plexity into which a successful cracking algorithm that corresponds to a given gen-
erator would fall. With the goal of making cracking computationally intractable,
two realistic system properties arise. First, the algorithm needed to backtrack (i.e.,
determine a previous state st−1 knowing only st) should run in no less than polyno-
mial time in the size of the system. Second, the absolute time necessary to crack
the algorithm should grow exponentially in one or more system variables. These
properties render secure, one-way function-based PRNGs with hard-core predicates
realistically unbreakable.

5 Neural Networks

5.1 Purpose & Inspirations

In the experiments presented in this paper, we use neural networks for random
number generation. Neural networks are mathematical & computational models
intended to mimic, at some level of abstraction, the behavior of neurons. They play
an important role in research in artificial intelligence, theoretical & computational
neuroscience, and machine learning. Although all neural networks share a common
fundamental concept (the neuron), it is important to distinguish between networks
that base their functionality on the same principles as their biological counterparts
and those that utilize a more abstract conceptualization of the neuron.

Neurons communicate with one another in the brain using synapses that carry
electrical signals across channels between neurons. In general, neurons have a specific
voltage threshold, which, if exceeded, results in the the neuron’s activation or “firing.”
This causes an electrical signal to be carried from the firing neuron, which in turn can
cause other neurons to fire. It is believed that the brain’s ability to create a complex

13

structure of interdependent synaptic weights (e.g., the strengths of currents passed
from one neuron to another) and thresholds gives rise to cognition and memory.

Early computational neural network research focused on a biologically inspired
model known as the Perceptron [2]. This highly simplified model is an example
of a feed-forward neural network. In these models, external or intrinsic inputs are
applied to a certain number of input neurons. In some more complicated networks,
these inputs are then mapped using a number of “hidden layers” to a group of
output neurons. Networks such as these can be useful for training networks to solve
functions. However Perceptrons (without hidden layers) are unable to learn functions
whose outputs are not linearly separable.

Research in neural networks, especially in the areas of theoretical & computa-
tional neuroscience, has since dealt with the development of networks that have a
much greater similarity to neurons actually found in the cortex. This involves several
key concepts. The way the neurons are structured is no longer based on feed-forward
models; neural networks in current neuroscience research are highly connected, re-
current models with information flow possible both to and from any given neuron.
Additionally, several concepts that affect the dynamics of the network have also been
introduced. Our experiments are concerned mainly with the effects of certain types
of neuronal plasticity on the dynamics of neural networks. However, there are other
concepts used in neural network research that closely mimic other biological phenom-
ena, such as the introduction of both excitatory and inhibitory neurons, as opposed
to a more simplified model consisting only of excitatory neurons (see [20]).

Computational neuroscience centers mainly on understanding how the structure
and behavior of neurons in the cortex encode information and how the dynamics
of these systems can be exploited for some form of useful computation [8]. In our
experiments, we utilize neural networks as random number generators.

5.2 Neuronal Plasticity & its Effects on Network Dynamics

Plasticity describes a number of mechanisms within the brain that alter character-
istics of neurons and subsequently the dynamics of the neural networks themselves.
These are based on the theories of Donald Hebb [1] and the concept that synap-
tic connections between consecutively firing neurons should be strengthened. These
models of plasticity form the basis of theories concerning learning, memory, and
neuronal development in current research [1]. We describe two types of plasticity,
spike-timing dependent plasticity (STDP) and intrinsic plasticity (IP), and introduce
a third, anti-spike-timing dependent plasticity (anti-STDP).

14

5.2.1 Spike-timing Dependent Plasticity

Spike-timing dependent plasticity (STDP) affects the strength of synaptic connec-
tions between neurons. If some neuron ni is active in a discrete time interval following
the activation of neuron nj, then the connection between nj and ni is strengthened.
This is based on the principle, similar to Hebb’s, that the brain can store information
in this manner; additionally, it produces a “causal” relationship between firing neu-
rons, in that a certain neuron firing causes another to fire subsequently, and that this
relationship is encouraged by STDP [8]. Networks trained with STDP form short,
stable limit cycles, as the dynamics of these networks, aside from an initial random
state, are quickly shaped into a causal firing pattern [8].

5.2.2 Intrinsic Plasticity

In contrast to STDP, intrinsic plasticity (IP) modifies the thresholds of individual
neurons, rather than the connection strengths between neurons. An IP routine at-
tempts to match pre-activation sums (i.e., the sum of all incoming weights from active
neurons to a specific neuron at a given timestep) to threshold values. Therefore, a
neuron with a high pre-activation sum will also, through the process of training,
acquire a high threshold. Intrinsic plasticity tends to keep individual neuron activity
within a specific regime [8]. When viewed in the context of the entire network, IP
regulates activity such that all neurons in the network fire at the same average activ-
ity rate. As a result of this spreading out of their activity, networks trained with IP
tend to have long limit cycles that increase exponentially in the size of the average
firing rate [8].

The dynamics of networks trained with both STDP & IP rather than IP alone
have very different dynamics. Indeed, these two somewhat opposing forces tend to
produce networks with short, unstable limit cycles – meaning nearby trajectories in
the state space do not approach the limit cycle [19]. More on these concepts and
their significance will be discussed in 8.1. However, in these networks, activity is
spread out over a greater number of network members than in the STDP-only case
[8].

5.2.3 Anti-Spike-timing Dependent Plasticity

Anti-spike-timing dependent plasticity (anti-STDP) is in effect the “opposite” of
STDP. Rather than encouraging subsequent activity by strengthening synaptic con-
nections between neurons that fire in consecutive timesteps, anti-STDP weakens
these connections (and strengthens those between neurons that do not fire consecu-

15

tively. This effectively removes the causal relationship between subsequently firing
neurons that develops through STDP (see 5.2.1). By removing the traditional causal
relationship between spiking neurons, the anti-STDP routine leads to a kind of “self-
disorganization” within the network. Networks trained longer with an anti-STDP
routine should exhibit dynamics that take advantage of this property, since any re-
lationships that become “causal” (because the network is encouraging subsequent
firing of neurons that did not originally fire consecutively) will themselves be dis-
couraged by the anti-STDP routine. We postulate that the dynamics of networks
trained with anti-STDP, for well-chosen parameters, can enter a chaotic regime and
possess extremely long limit cycles that grow exponentially both in network size and
in the average activity rate. These factors would make such networks well-suited for
random number generation.

6 Specific Network Model

In contrast to the simpler feed-forward networks previously mentioned, the networks
used in our experiments are fully connected binary recurrent neural networks. Bi-
nary recurrent neural networks consist of interconnected neurons that form directed
cycles, meaning there is a feedback flow of information [2]. This is not the case with
the simpler feed-forward neural networks previously described. Additionally, our
networks contain neurons with two possible states: on (spiking) and off (not spik-
ing). This description will begin with a generalized overview of the mathematical
structure of our networks, followed by implementation-specific characteristics of our
computer models.

6.1 General Network Structure

We consider a recurrent network of N binary neurons. The state of the network
at time t, t ∈ N , is described by the activity vector x(t) ∈ {0, 1}N , where xi = 1
indicates that neuron i is active (spiking) at timestep t, whereas xi = 0 indicates that
the neuron is inactive (not spiking). The connections between units are described
by the synaptic connectivity (weight) matrix W, where wij is the connection from
unit j to unit i. All connections are positive (excitatory, wij ≥ 0). A neuron is not
allowed to connect to itself.

Using the model described in [9], we present our (simplified) system for the sake
of comparison with other generators. In our model, the structure (S, µ, f, U , g) is
defined as follows:

16

S = space represented by the N !
k!(N−k)!

possible states,

µ = random i.i.d. on (0,1), the k highest values of which determine which neurons
are initially active,
f = the update function that determines the state of the network at t + 1 (see
6.2),
U = {0,1},
g(xp) = xp,

where xp is the parity neuron whose value is derived from the system state (see
6.4) and k is the number of active neurons at a given timestep. This variable can
only take on the discrete values {0,1}, so it is shown that g properly maps the state
space S onto the output space U .

6.2 Update Function

The state of the network at time t is described by the activity vector x(t). The
network transitions to x(t + 1) using a two-step updating process. First, we find the
pre-activation sum hi of unit xi at time t + 1:

hi(t + 1) =
(N∑

j=1

wij(t)xj(t)
)
− Ti(t)−max(xi(t), xi(t− 1)), (3)

where Ti(t) is the threshold of unit i at time t and wij is the synaptic weight con-
necting neuron j to neuron i. The resultant network state x(t + 1) is defined as:

x(t + 1) = kWTA(h(t + 1)), (4)

where h(t+1) is the vector of pre-activation sums and kWTA is the k-winner-take-all
function, which selects the k neurons with the highest pre-activation sum and makes
those neurons active (value set to 1) at t+1; all other neurons are made inactive (value
set to 0). The max function (in Equation 3) introduces a two-step refractory period
that prevents unit i from firing if it has already been active in one of the previous
two timesteps. This is inspired by the observation that biological neurons go through
an absolute refractory period in which they cannot fire at all, followed by a relative
refractory period, during which the neural threshold is increased dramatically [11].
Additionally, as will be shown in 7.3, a two-step refractory period yields the best
pseudo-random data amongst the networks we tested.

17

6.3 Plasticity Functions

Here we present functions to model anti-spike-timing dependent plasticity and in-
trinsic plasticity. As described in 5.2.3, anti-STDP discourages a causal relationship
between neurons that fire consecutively (and encourages connections between those
that do not fire consecutively) by the following function:

∆wij = −ηanti−STDP (xi(t)xj(t− 1)− xj(t)xi(t− 1)), (5)

where ηanti−STDP is some constant value by which the synaptic connection between
units j and i is reduced. Additionally, it is important to point out that, if both units
xi, xj are active at timesteps t, t− 1, the anti-STDP routine will reduce the synaptic
weight connections between these neurons.

Intrinsic plasticity, which attempts to match pre-activation sums to neuronal
thresholds, operates using the following function:

Ti(t + 1) = Ti(t) + ηIP (xi(t)− k/N), (6)

where ηIP is a small learning rate. Units active at time t will increase their thresholds
by a small amount while those that are inactive at time t decrease theirs. As can be
seen from this equation, the parameter k should be well-chosen given the application
of the network, since, due to the IP routine, the average activity of a given unit in
the network will be driven to be k/N , i.e., each neuron will fire on average k out of
every N timesteps.

6.4 Bit Gathering & Parity Gadget

In order to generate pseudo-random numbers using the dynamics of the network, a
method must be developed to extract bits from the network’s state. One common
method of generating pseudo-random numbers, whether from a neural network or
the output of a traditional generation function, is bit sampling [4] [5]. In this process,
the value of a bit is determined using the state of the system at a given timestep.
The resultant bits are then concatenated or rearranged to produce numbers on a
certain interval. A single byte can, for instance, be constructed using the bits from
8 iterations of the function. However, the intended use of the pseudo-random data
ultimately determines the number of bits in a bit string (e.g., real numbers versus
integers). A single, 8-bit byte approach creates integers on the interval [0, 255] and
is the method used in our simulations.

In [4], a particular method is described that constitutes a hard-core predicate
of a one-way function (see 4.5.2/3). This so-called parity gadget is an addition

18

to the network that samples network state to determine the parity of a number
of active neurons in an arbitrary subset of the network at t − 2 timesteps. This is
achieved through a two-step process in which q neurons from the network population
are sampled into a ‘parity block’. This block determines, for each xkl

, l = 1, . . . , q
neurons in the block, whether there were at least l neurons active at timestep t− 1
among the q neurons from the original network.

This information is then sampled by a ‘parity neuron’ with threshold 0 and a
q-length input weight vector [1,−1, 1, . . . ,−1]. The delay for sampling the parity
of the group of neurons in the actual network must be two timesteps, since one is
required to both sample the neurons to find out how many were active (parity block)
and to determine whether the number of active neurons in the block was even or odd
(parity neuron). Thus, the information the parity neuron contains refers to the state
of the network two timesteps previous. The inputs to the parity neuron are only the
neurons in the parity block. The update function remains the same. Diagrams of the
resultant weight matrix, state vector, and threshold vector are shown below (based
on [4]):

Wp =  WN×N 0 · · · 0

1q×q
...

. . .
...

[1,−1, 1, . . . ,−1]1×q 0 · · · 0


Tp = 

TN×1

1
...
q

0


xp = 

xN×1

xk1

...
xkq

xp


19

where xp is the parity neuron, xk1 . . . xkq is the parity block, and W, T , and x
represent the weight matrix, threshold vector, and state vector of the original system,
respectively. In our experiments, we also construct a shifting parity gadget as in [4]
that moves the parity block q steps along the state vector after some arbitrary number
of timesteps, starting again from the beginning when the end of the state vector is
reached.

Formally, we write the equations to describe the behavior of the network (analo-
gous to the equations in 6.2 but using the matrices and vectors described above) as
the following:

ẋp = Wpxp − Tp (7)

The updating of the values of the neurons in the parity block and the parity neuron
are also contained within the previous equation. However, a formal description of
their function follows:

xkl
=

{
0 if

∑endp

n=startp
xn < l

1 if
∑endp

n=startp
xn ≥ l

for xkl
, a neuron in the parity block, xn, the activation state of neuron n in the

network, for start and end points startp, endp on [1, N] and l = 1, . . . , q, the number
of neurons in the parity block. To update the value of the parity neuron, we use the
following update rule:

xp =

{
0 if

(∑q
l=1 xkl

)
mod 2 = 0.

1 otherwise

This indicates that, for the neurons in the parity block (which contain information
about the network at t − 1 timesteps), the value of parity neuron xp will be the
parity of that same subset of bits once the network is updated, indicating that the
information it contains corresponds to the network state at t− 2 timesteps.

Other methods for bit gathering include dividing the network at timestep t into
an even arbitrary number of sections d, then comparing the number of active neurons
in pairs of sections to acquire d/2 bits at each timestep. For instance, if d = 2, then
a 1 could be stored every time the left (top) half of the network has more active
neurons than the right (bottom) half. Alternatively, one bit could be gathered at
each timestep by sampling the activation state of one neuron consistently.

There are, however, a number of reasons why the use of such a parity gadget
is attractive for pseudo-random number generation. As mentioned in 4.5.3, finding
the parity of a certain subset of bits of input to a one-way function is a hard-core

20

predicate of that function [4]. Although it is not entirely clear why, the parity gadget
is somehow able to extract more ‘randomness’ from the networks than more näıve
methods.

7 Statistical Results

7.1 Overview of Testing Software

To test the randomness of our generated pseudo-random numbers, we use two in-
dustry standard test suites. The first, DIEHARD, developed by George Marsaglia
[13], features 17 tests (including subtests) that return a set of p-values of varying
size. For each test, we conclude that the generator has passed if more than half of
the number of p-values is greater than 0.025 and less than 0.975. This is the most
statistically valid range [12].

The networks which performed best on the DIEHARD test suite are then tested
using the suite developed by the Statistical Engineering & Computer Security Divi-
sions of the National Institute of Standards and Technology (NIST) [16]. Because of
the impracticality of performing the NIST tests on data (all tests must be performed
“by hand”, i.e., cannot be automated, take considerably longer than the DIEHARD
suite, and can only be run on Windows), only networks with the best results on the
DIEHARD test suite will be subjected to the NIST tests. The results from both
tests will then be qualitatively and quantitatively compared.

The NIST test suite also returns p-values for its 189 tests (including multiple
iterations of some tests). The first p-value determines the uniformity of the p-values
across the unit interval using a chi-square test [18]. The second indicates the pro-
portion of test sequences that passed each test. The rejection rate, α, is set to 0.01,
indicating that the software expects one out of every one hundred sequences to fail.
As in [4], we test 70 1Mbit sequences in the NIST suite and compare these results
to other standard PRNGs and the generation method used in [4].

7.2 Parameter Set for Pseudo-random Number Generation

For pseudo-random number generation, it is important to choose a parameter set
that minimizes the impact of some of the constraints on effective generation tech-
niques. These include, for instance, the fact that (relatively) short limit cycles will
not lead to statistically random data. To this end, we use the following parameter
set for random number generation:

21

Network size, N = 100,
k (number of neurons active in a single timestep) = {10, 20, . . . , 90},
q (size of parity block) = {5, 15},
training time = 100,000 timesteps,
testing time = 80,000,000 timesteps,
trained with anti-STDP & IP,
weights {shuffled/retrained with IP, left un-shuffled} after training,

which results in an output string of 106 output bytes which are then tested us-
ing industry-standard testing software. Results are compared for k = {10, 20, 30,
. . . , 90}, q = {5, 15}, and for shuffled and un-shuffled weights. The significance of
shuffling the weights post-training is to remove any possible “structure” created by
the anti-STDP routine while preserving the distribution of weights in the synaptic
connectivity matrix W. In line with our hypothesis, we posit that the dynamics
of the network are affected by the arrangement of the weights, not solely by their
distribution.

7.3 Results

Our networks performed on par with industry standard random number generators
and the networks used in [4]. Indeed, networks trained with N = 100, k = {20, 40},
no shuffling of weights passed all tests in the DIEHARD test suite and nearly all
NIST tests. Figure 1 plots the k neurons active at each timestep t vs. number of
DIEHARD tests passed.

Networks trained with anti-STDP & IP and with a parity gadget size q = 15
passed all DIEHARD tests for k = {20, 40}. At k = 50, nearly all tests were passed
(16/17). When q = 5, networks performed significantly worse; however, their behav-
ior was similar to those of q = 15 in that two distinct peaks in performance can be
seen. This dual-peak formation is similar to the peaks seen in limit cycle analysis
(see 8.1) and is apparently formed by the two-step refractory period present in these
simulations. Since the parity gadget, however, does not affect the limit cycles of
the networks, it can be concluded from these results that a larger parity gadget (q
= 15 versus q = 5) does in fact extract more “randomness” from the network. We
suspect that, for large networks and k � N , it is unlikely that any given 5-bit group
of the network will contain any active neurons. Irrespective of its previous state
or its pre-activation sum, each neuron has a probability of 1/(N/k) that it will be-
come active in the next timestep (since there are k active neurons at each timestep).
Thus, for a given 5-neuron block, the probability that all 5 would be inactive is close

22

to 1 − (N/k)−5 > 1/(N/k) (i.e., the probability of even one of those five neurons
becoming active), for k � N . Therefore, a 0 is a very likely output bit (0 mod 2
= 0), which would skew output data significantly. However, for q ≈ k/2 , results
appear significantly better. It is also important to notice that once k passes N/2, the
performance of the network is significantly worse. In fact, on average, the networks
with large k did not pass any of the DIEHARD tests. These results are mirrored in
the limit cycle analysis described later (section 8.1).

10 20 30 40 50 60 70 80 90
0

2

4

6

8

10

12

14

16

18

active neurons at timestep t

#
 D

IE
H

A
R

D
 t
e
s
ts

 p
a
s
s
e
d

Figure 1: Graph of active neurons per timestep vs. # of DIEHARD tests passed for
networks trained with anti-STDP & IP, N = 100. The solid line represents parity gadget
(q) size = 15, the dashed line q = 5. Each network was simulated five times; results represent
the average over those five simulations. Note the lack of data points for k = 80, 90, q = 5, 15;
this resulted from data corruption after the experimental phase that invalidated those data
points.

The Mersenne Twister and Blum-Blum-Shub algorithms (see 4.4.4/5 respec-
tively) also performed well on the DIEHARD tests we ran. The Mersenne Twister
passed 16 of 17 tests while Blum-Blum-Shub passed all 17. Networks with random
orthogonal weight matrices (and q = 5) described in [4] passed all 17 DIEHARD
tests and subtests. These results are for one simulation of each generator.

23

These algorithms were also tested using the NIST test suite, along with our
three best performing networks according to the results of the DIEHARD tests, with
N = 100, k = {20, 40, 50}, q = 15, weights un-shuffled. All PRNG-generated data
was cut by the test suite into 70 1Mbit sequences. The Mersenne Twister algorithm
failed none of the uniformity tests and only 2 out of the 189 proportion-of-p-values
tests. Blum-Blum-Shub performed similarly, failing none of the uniformity tests
but failing 1 proportion-of-p-values test. Networks with random orthogonal weight
matrices failed none of the uniformity tests and no proportion of p-values tests. Our
network with k = 20 failed none of the former and only 1 of the latter; k = 40
failed no uniformity tests and 1 proportion of p-values test; for k = 50, our network
failed none of the uniformity tests and 2 proportion of p-values tests. Our network
therefore performed essentially identically to industry-standard generators as well as
the generator described in [4].

In order to determine whether the arrangement of weights after training with
anti-STDP & IP was a significant factor in the success of our model under certain
parameter sets, we trained several networks with the same settings, but then ran-
domly shuffled the weights and retrained the networks with intrinsic plasticity only.
This retraining with IP only re-infuses the network with the property of a direct
correlation between the sum of incoming weights to a given neuron and its thresh-
old. Figure 2 shows the results for k vs. DIEHARD tests passed. It is clear that
these networks perform better than the networks trained with anti-STDP & IP for a
greater number of parameter sets, including when k grows beyond N/2. In the case
of q = 5, the network performed rougly equivalently for parameter sets not including
k = {50, 60, 70}. This emphasizes once again the significance of a larger parity block
in our networks. The networks described in [4], however, perform well even with
q = 5.

It is important to note that, while performance of networks retrained with IP
passed more DIEHARD tests for a greater number of parameters, analysis in 8.1
will show that networks trained with anti-STDP & IP do in fact possess longer
limit cycles than networks retrained with IP and therefore may be better choices as
pseudo-random number generators. Additionally, because of practical constraints,
the results for our shuffled/re-trained networks represent the randomness of data
from only one simulation of each network configuration. If averaged over 5 runs (as
in the anti-STDP & IP, un-shuffled case), the results may be different.

24

10 20 30 40 50 60 70 80 90
0

2

4

6

8

10

12

14

16

18

active neurons at timestep t

#
 D

IE
H

A
R

D
 t
e
st

s
p
a
ss

e
d

Figure 2: Graph of active neurons per timestep vs. # of DIEHARD tests passed for
networks trained with anti-STDP & IP, then retrained with IP only, N = 100. The solid
line represents parity gadget (q) size = 15, the dashed line q = 5. Each network was
simulated once.

8 Limit Cycles & Chaotic Behavior

In order to empirically evaluate the performance of our networks for pseudo-random
number generation in some quantitative way, we analyze two aspects of their dynam-
ics: the limit cycles and transient lengths present in various network configurations
and the presence of chaotic behavior in network dynamics.

8.1 Limit Cycle Analysis

Since our networks are deterministic functions, they operate within a closed, finite
state space. The finiteness of this space implies a limit cycle: once all possible
states have been reached, the function must return to some previously visited state.
A longer limit cycle implies that quantitatively more of the state space is visited
before a previous state is revisited. Because of this, networks with longer limit

25

cycles should produce better pseudo-random data, since the sequences of output bits
will first appear repetitious over much longer timescales. We show that networks
with longer limit cycles are in fact more successful at generating statistically valid
pseudo-random data. The length of transients (i.e., the initial length of time it takes
the network to enter the limit cycle) can also be a good measure of the effectiveness
of certain network configurations. However, ability to produce good pseudo-random
data is not as meaningful as cycle length, though long transients do tend to imply long
cycle lengths and vice versa. The transient lengths also define to a certain extent
a qualitative measure of the size of the basins of attraction for various networks.
Figure 3 shows a two-dimension state space with limit cycles of varying stability.
The stability of various limit cycles can indicate whether nearby trajectories in the
state space are likely to end up on the same limit cycle. In the unstable case (in which
these trajectories diverge from, rather than converge to, the limit cycle), we would
expect to see potentially longer transient lengths and better output data resulting
from the higher level of diversity in attractors within a state space (i.e., different
starting points more often indicate different limit cycles). This is also a potential
indicator of the presence of chaos within these systems.

Figure 3: Limit cycles plotted on a 2-dimensional plane. Figure shows a stable limit
cycle with nearby trajectories approaching the attractor, an unstable cycle with nearby
trajectories moving away from the attractor, and a half-stable cycle with some nearby
trajectories approaching and others moving away from the attractor [19].

8.2 Parameter Set for Limit Cycle Analysis

In order to obtain an estimate of the relative randomness of our networks, as well
as to judge their usefulness in cryptographic applications, we perform simulations to

26

determine the limit cycle (period) and transient lengths for various network config-
urations (see 4.5.1). We test networks with the following parameters:

Network size, N = {5, 10, 15, 20, 25, 30},
k (number of neurons active in a single timestep) = {1, 3, 5, . . . , N − 1},
training time = 100,000 timesteps,
trained with anti-STDP & IP,
weights {shuffled/retrained with IP, left un-shuffled} after training,

for networks with no refractory period, a 2-step, and a 3-step refractory period.
We obtain cycle and transient lengths as a function of both N and k. The absence
of a q parameter implies that we are not using these networks for bit generation, as
the parity gadget serves this purpose alone and has no effect on the limit cycle.

8.3 Results & Comparison

In Figure 4, we graph the limit cycle lengths for various network configurations.
Specifically, we show that, for certain parameter sets, networks trained with anti-
STDP & IP possess limit cycles much longer than those of networks whose weights
are shuffled and retrained with IP (see 7.1 for discussion of statistical results for
pseudo-random number generation). Because of computational limitation, we do
not find the limit cycles for networks as large as those used for random number
generation (N = 100, varying k). However, our results for smaller networks (with
varying network size) imply an exponential growth in cycle length (for well-chosen
k,N) that we extrapolate to draw conclusions about larger networks. Specifically, we
show that for large(r) network size N and well-chosen k, we can effectively maximize
limit cycle length and therefore the quality of the generated pseudo-random data.

Specifically, Figure 4 implies that networks with k ≈ N/5, N/3 generate the
longest limit cycles. It is important to note that the networks in Figure 4 utilize
a two-step refractory period. We believe the cause of the two distinct spikes in
limit cycle length at roughly the values mentioned above is due to this refractory
period. More on the distinctions between different length refractory periods will
be discussed in 9.1.2. The connection between these values and the values of k
for networks with N = 100 that produce the best pseudo-random data can be seen
here. For k approximately equal to the values mentioned above, we obtain the best
statistical results, therefore supporting our hypothesis that limit cycle length has a
direct effect on the “randomness” of the output data set of our neural networks.

We also test a small subset of networks for N = 100 to draw conclusions about

27

0 5
1

2

3

4

5

k

cy
cl

e
 le

n
g
th

N=5

0 5 10
2

4

6

8

10

k

cy
cl

e
 le

n
g
th

N=10

0 10 20
0

5

10

15

k

cy
cl

e
 le

n
g
th

N=15

0 10 20
0

10

20

30

40

k

cy
cl

e
 le

n
g
th

N=20

0 10 20 30
0

50

100

k

cy
cl

e
 le

n
g
th

N=25

0 10 20 30
0

100

200

300

k
cy

cl
e
 le

n
g
th

N=30

Figure 4: Graph of limit cycle lengths for networks trained with anti-STDP & IP,
N = 5, 10, . . . , 30, k = 1, 3, 5, . . . , N and using a 2-step refractory period. Solid red lines
represent un-shuffled networks, while blue dashed lines represent shuffled, re-trained with
IP.

the behavior of much larger networks, albeit for small k. These results (shown in
Figure 5), draw a clear distinction between networks trained with anti-STDP & IP
and shuffled networks retrained with IP. The un-shuffled networks (black/red solid
line) have a consistently longer limit cycle than retrained networks (blue dashed
line) for k = 1 . . . 8. This further supports our hypothesis that the arrangement of
weights (determined by anti-STDP), not simply their distribution in the synaptic
connectivity matrix, creates dynamics that result in longer limit cycles and therefore
statistically better pseudo-random data. However, we would expect that at certain
values of k, just as in Figure 4, there would be significant drops in cycle length
(shown by the peak-like formations in Figure 4).

In section 7.1, we showed that shuffled networks retrained with IP result in better

28

results for a larger parameter set. However, it is important to point out that our
statistical tests do not take full advantage of the un-shuffled networks’ (or indeed
the shuffled, retrained networks’) capabilities. Although finding the limit cycles for
networks used for pseudo-random number generation (where N = 100 for somewhat
larger k ≤ N/2) is computationally impractical, it is likely that these cycles are
on average at least several orders of magnitude longer than the lengths of output
sequences that constitute our pseudo-random data. Statistical testing is performed
on output data from 7×107, 8×107 timesteps. Since longer limit cycles result in better
pseudo-random data, we cannot definitively draw a qualitative conclusion about the
relative performance of the shuffled vs. un-shuffled networks. Indeed, blocks of
data generated from un-shuffled networks much later in a simulation run (or the
entire data set for much longer runs) may perform significantly better than shuffled
networks in statistical tests. We stress that the lack of a statistically significant
difference in performance with smaller data sets from shorter simulation runs may
be a result of the “underutilization” of the networks’ potential. Since, according to
the results shown in Figure 5, networks trained with anti-STDP & IP but not shuffled
have longer limit cycles, these networks should obtain better results as simulation
duration is increased.

8.4 Chaotic Behavior

A significant aspect of the analysis of the dynamics of our networks deals with the
existence of chaotic behavior. Although chaos alone does not imply good pseudo-
random number generation qualities, its effect on limit cycles as well as a chaotic
system’s sensitive dependence on initial conditions [19] do provide a solid theoretical
basis for pseudo-random number generation. Chaotic systems are often not effective
“out-of-the-box” pseudo-random number generators because the vectors describing
system state often are not uniformly distributed over the n-dimensional hypercube,
where n is the size of the state vector [10]. This quality is important for good data
for scientific simulation. Our networks do in fact produce statistically valid pseudo-
random data, although this was only achieved using the parity gadget. The presence
of chaos would support the idea that there is an inherent disorganizing property
to the plasticity routines in our networks and that this contributes to their good
performance in generating pseudo-random data. It is important to stress that the
simulation results presented in this section represent preliminary findings.

29

0 1 2 3 4 5 6 7 8 9
10

0

10
1

10
2

10
3

10
4

10
5

k

cy
cl

e
 le

n
g

th

N=100

anti−STDP, IP
IP only
shuffled, IP

Figure 5: Graph of limit cycle lengths for networks trained with anti-STDP & IP, anti-
STDP & IP, then shuffled and re-trained with IP, and trained only with IP, N = 100, k =
1, . . . , 8 and using a 2-step refractory period. Networks were trained for 100,000 timesteps.

30

8.5 Parameter Set for Estimation of Chaotic Behavior

We also wish to discover whether our network’s dynamics are operating in a chaotic
regime. This has significance for showing that the network’s dynamics are sensitive
to initial conditions, indicating a large, diverse number of attractors and therefore
sequences of output data. For these simulations, we use networks with the following
configurations:

Network size, N = 100,
k (number of neurons active in a single timestep) = 39,
training time = {100, 500, 1000, 5000, 10000, 15000, 25000, 50000, 75000, 100000},
testing time = 1000 timesteps,
n = 1 . . . 10.

Chaotic regions are estimated by taking n-bit pertubations of the intital state at
time t and measuring the distance between the original and perturbed states at time
t + 1.

8.6 Results

The results in Figure 6 show that, across all training times, networks with N =
100, k = 39 possess chaotic dynamics. Our simulations take networks with various
lengths of training time and sample Hamming distances between the actual network
state and a perturbed state (in which a certain number of bits from the original state
are flipped) at times t and t + 1 for initial perturbation sizes 2, 4, 6, . . . , 20. The
Hamming distances between the various perturbed network states and the original
state are then calculated after one timestep. This process is completed 1000 times
for each network (i.e., each length of training time). Only valid network states (i.e.,
states where only k neurons are active at a given timestep) are considered. A Derrida
plot [7] shows the existence of chaotic dynamics in networks. If the graph of resultant
Hamming distance lies above the 45◦ line, this indicates the presence of chaos (since
Hamming distance between network states is increasing, i.e., the states are moving
“further” apart in the state space). Regardless of training time, networks in our
simulation exhibited chaotic behavior. Indeed, little distinction can be seen between
the graphs representing various training times (different colored curves in Figure 6).
These results make intuitive sense: states with an initial Hamming distance n were
more dissimilar after one timestep.

These results are consistent with the statistical results of our networks on industry-
standard random number generator test suites. Longer training times give rise to

31

2 4 6 8 10 12 14 16 18 20
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Hamming distance at time t

N
or

m
al

iz
ed

 H
am

m
in

g
di

st
an

ce
 a

t t
im

e
t+

1

100
500
1000
5000
10000
15000
25000
50000
75000
100000
45 deg line

Figure 6: Derrida Plot showing Hamming Distance (at t) vs. normalized Hamming Dis-
tance (at t + 1) for networks with N = 100, k = 39, 2-step refractory period, trained with
anti-STDP & IP. The different colored lines represent various training times (values in
legend). Lines above the blue 45◦ line show networks whose dynamics operate in a chaotic
regime.

32

network dynamics better suited for random number generation. The presence of
chaos, though apparently not directly related to training time, does provide a basis
for creating dynamics potentially well-suited for random number generation.

9 Discussion

9.1 Results of Simulated Networks

Networks trained with anti-STDP & IP (as well as networks trained, then shuffled
and retrained with IP) performed on par with industry standard random number
generators. These networks also possessed dynamics that expressed several distinct
positive characteristics of good pseudo-random number generators. We summarize
these results here.

9.1.1 Statistical Results

The performance of our networks for well-chosen parameter sets on pseudo-random
number generator test suites indicates that this method of generation produces data
that passes most tests to determine “randomness”. Additionally, our networks per-
formed on par with industry-standard pseudo-random number generators. Networks
trained with anti-STDP & IP could be useful in areas of statistical simulation, as
well as cryptography. In particular, statistical simulation appears a strong candidate
for the use of these generated numbers. Though we speculate that it is, we cannot
rigorously determine that the update function used in our simulations is indeed a
one-way function [4] [5]. Our networks produced sequences of at least 8 × 107 bits
(roughly 106 valid “numbers”) that passed statistical tests. A data set of this size
would be sufficient for many simulation applications.

One aspect of random number generation which has not been stressed up to this
point is the question of efficiency. Other industry-standard methods, such as the
Blum-Blum-Shub algorithm and the Mersenne Twister (discussed in 4.4.4/5) are
simpler, easier to implement, and much faster than our neural networks at generat-
ing pseudo-random numbers. The Blum-Blum-Shub algorithm is also a cryptograph-
ically strong generator [3]. Our networks, due in large part to the size of the systems
involved and their high non-linearity, do not generate data efficiently. However, as
stated, they are speculated to be cryptographically strong, and certainly the problem
of inverting a network state (i.e., finding f(t) from f(t + 1)) illustrates the difficulty
of predicting future output without a knowledge of the update function and its initial
state.

33

9.1.2 Limit Cycles & Refractory Period

Empirically, our networks also showed strong performance. In particular, networks
trained with anti-STDP & IP resulted in the longest limit cycles for networks with
N = 100, k = 1 . . . 8 (see Figure 5). As stated in 8.3, our experiments did not take
full advantage of these networks’ potential. For k = 1 . . . 8, we did observe a constant
exponential growth in limit cycle length. We believe this behavior has an analogue in
the smaller network sizes tested for varying N, k. For good parameter sets based on
those results (k ≈ N/5, N/3), we believe any arbitrary network can be constructed
that will have good statistical and empirical performance. Indeed, using the values
of N, k mentioned above, a well-performing network could be chosen based on the
desired application, with increasing N for applications requiring longer output data
streams.

0 5
1

1.5

2

2.5

3

3.5

k

cy
cl

e
 le

n
g
th

N=5

0 5 10
2

3

4

5

6

k

cy
cl

e
 le

n
g
th

N=10

0 10 20

2

4

6

8

10

k

cy
cl

e
 le

n
g
th

N=15

0 10 20
0

5

10

15

20

25

k

cy
cl

e
 le

n
g
th

N=20

0 10 20 30
0

20

40

60

k

cy
cl

e
 le

n
g
th

N=25

0 10 20 30
0

50

100

k

cy
cl

e
 le

n
g
th

N=30

Figure 7: Graph of limit cycle lengths for networks trained with anti-STDP & IP, N =
5, 10, . . . , 30, k = 1, 3, 5, . . . , N and without a refractory period. Solid red lines represent
un-shuffled networks, while blue dashed lines represent shuffled, re-trained with IP.

34

It is important however to mention an aspect of the network that seems to play an
integral role in good statistical performance on pseudo-random number generation
tests. The built-in refractory period appears to be necessary to produce statistically
valid results in the tests performed on our experimental networks. In results not
presented in this paper, networks trained with anti-STDP & IP but without a re-
fractory period (in particular in the testing phase) produced results similar to those
of networks trained with STDP & IP (i.e., they passed none or essentially no tests).
We believe there are several reasons for this. First, the “self-disorganizing” property
of the anti-STDP routine is somewhat misleading, in that it does indeed enforce
some causality in the network. This causality, under an anti-STDP routine, could be
considered a sort of “reverse causality,” in that connections (and subsequent firing)
of neurons that initially do not fire consecutively are encouraged. This is essentially
the same as the STDP routine, but in the STDP case, neurons that fire consecutively
are then encouraged to do so in the future. The anti-STDP does, however, in general
cause more neurons in the network to fire because of the k parameter, which limits
the number of neurons active at a given timestep. For k � N , this results in the
“reverse causality” that affects more neurons that the STDP routine would. This
explains in part why networks with k > N/2 do not generate good pseudo-random
data.

The two-step refractory period, which excludes a neuron from firing until two
timesteps after its last activation, forms the two peaks seen in the limit cycle graphs
(Figure 4) in 8.3. Figures 7, 8 show limit cycle plots of the same networks shown
in Figure 4, but with refractory periods of length 0 (no refractory period) and 3.
It is not known exactly why this phenomenon occurs at k ≈ N/5, N/3 for a two-
step refractory period. The refractory period, in concert with k, does contribute
to the poor performance of the network for large k. It essentially forces an n-step
alternation between states, where n is the length of the refractory period+1. Since k
is large enough to grab more neurons than otherwise might be active (based on pre-
activation sums), the refractory period simply excludes that large group of neurons,
some of which are picked up again by the k-winner-take-all function. This oscillation
occurs quickly for large k and results in the extremely short limit cycles and poor
performance of networks trained with these parameter sets. We conclude therefore
that a two-step refractory period, with well-chosen k,N is the most effective neural
network configuration for producing statistically valid pseudo-random data based on
our experiments.

35

9.2 Comparison with other PRNGs / Applications

Our networks, as demonstrated in 7.1, performed as well as other industry-standard
pseudo-random number generators. They also performed on par with the networks
with random orthogonal weight matrices described in [4]. We draw certain con-
clusions about potential applications for our neural network-based pseudo-random
number generators based on these measures of performance as compared to other
generators .

Since the update and bit gathering functions of the highly non-linear systems
presented in this paper are essentially the same as those presented in [4], we conclude
that these networks could be viable generators for use in cryptographic applications.
The update functions of both of these systems are suspected to be one-way functions,
which provide a cryptographically strong and secure way of generating data. The
parity gadget implemented in our networks allows for the extraction of a hard-core
predicate, which provides a way to generate secure data from network state [5].
Limit cycles for the networks in [4] were longer than ours for equivalent N , but
since we could not practically determine cycle lengths for the networks we used for
pseudo-random number generation, we cannot compare cycle lengths for networks
that achieved similar statistical test results.

As stated above, we believe neural networks trained with anti-STDP & IP rep-
resent an effective method for generating pseudo-random data for use in scientific
simulation. The results we obtained from statistical testing were nearly identical to
those of industry-standard generators well-established for use in simulation. It is well
known that all PRNGs, despite good (or even perfect) performance on statistical test
suites, possess some statistical weakness. In this respect, our model presents a novel
alternative using non-linear systems which possess potential advantages over other,
more conventional pseudo-random number generation methods in certain contexts.
Our results support the conclusion that the neural networks described in this paper
would be an effective, if not efficient, method of pseudo-random number generation.

10 Future Work

Some issues that arose during our experiments merit further investigation. These
include different data gathering and generation methods, as well as more thorough
analysis and experimentation on several of the key aspects of our neural networks.
It is important to determine the lengths of limit cycles for networks with N = 100
and well-chosen k. Finding the cycle lengths of these networks, which we used for
pseudo-random number generation, was practically infeasible due to computational

36

0 5
3

4

5

6

7

k

cy
cl

e
 le

n
g

th

N=5

0 5 10
4

6

8

10

12

k

cy
cl

e
 le

n
g

th

N=10

0 10 20

5

10

15

k

cy
cl

e
 le

n
g

th

N=15

0 10 20
0

10

20

30

k

cy
cl

e
 le

n
g

th

N=20

0 10 20 30
0

50

100

k

cy
cl

e
 le

n
g

th

N=25

0 10 20 30
0

100

200

300

k

cy
cl

e
 le

n
g

th

N=30

Figure 8: Graph of limit cycle lengths for networks trained with anti-STDP & IP,
N = 5, 10, . . . , 30, k = 1, 3, 5, . . . , N and using a 3-step refractory period. Solid red lines
represent un-shuffled networks, while blue dashed lines represent shuffled, re-trained with
IP.

37

limitations. A faster computer (or cluster of computers) could be used to make more
rigorous estimates about the lengths of limit cycles for these networks. We pre-
dict that these results would support our conclusions and show a steady exponential
growth in cycle length for increasing N . This determination would then further sup-
port our conclusion that limit cycle length is directly related to level of statistical
performance on pseudo-random number generator tests. Furthermore, longer sim-
ulations of neural networks trained with anti-STDP & IP would allow for a more
thorough analysis of data generated later in the simulation run, as well as of the
entire data run. This analysis could potentially determine whether our networks do
indeed have independently and identically distributed output data across the entire
simulation output sequence. Additionally, an analysis of data generated from net-
works that continue to use plasticity in a post-training phase would be an interesting
supplement to our research. Aside from this, more investigation should be done into
determining the exact effects of an arbitrary n-step refractory period on the dynamics
of our networks.

References

[1] Abbott and Nelson. Synaptic plasticity: taming the beast. Nature, 2000.

[2] Abdi. A neural network primer. Journal of Biological Systems, 1994.

[3] Blum, Blum, and Shub. A simple unpredictable pseudo random number gener-
ator. SIAM Journal on Computing, 15(2):364–383, 1986.

[4] Yishai M. Elyada and David Horn. Can dynamic neural filters produce pseudo-
random sequences? Artificial Neural Networks: Biological Inspirations - ICANN
2005, 2005.

[5] Oded Goldreich and Leonid A. Levin. A hard-core predicate for all one-way
functions. Proceedings of the twenty-first annual ACM symposium on theory of
computing, 1989.

[6] Pascal Junod. Cryptographic secure pseudo-random bits generation: The blum-
blum-shub generator. Unpublished, 1999.

[7] Stuart Kauffman. Understanding genetic regulatory networks. International
Journal of Astrobiology, 2003.

38

[8] Andreea Lazar, Gordon Pipa, and Jochen Triesch. Time series prediction, fad-
ing memory and error correction in recurrent networks shaped by plasticity.
Unpublished, 2006.

[9] Pierre L’Ecuyer. Random number generation. In Handbook of Computational
Statistics, 2004.

[10] Pierre L’Ecuyer. Personal correspondence, 2006.

[11] Irwin B. Levitan and Leonard K. Kaczmarek. The Neuron: Cell and Molecular
Biology. Oxford University Press, 1991.

[12] George Marsaglia. Documentation of the diehard test suite.

[13] George Marsaglia. diehard website: http://www.stat.fsu.edu/pub/diehard/.

[14] Matsumoto. Mersenne twister website: http://www.math.sci.hiroshima-
u.ac.jp/∼m-mat/mt/emt.html.

[15] Matsumoto and Nishimura. Mersenne twister: a 623-dimensionally equidis-
tributed uniform pseudo-random number generator. ACM Transactions on Mod-
eling and Computer Simulation, 8(1):3–30, 1998.

[16] NIST. Website of the national institute of standards and technology prng test
suite: http://csrc.nist.gov/rng.

[17] pLab. Website of plab: http://random.mat.sbg.ac.at/generators/.

[18] Rukhin, Soto, Nechvatal, Smid, Barker, Leigh, Levenson, Vangel, Banks, Heck-
ert, Dray, and Vo. A statistical test suite for random and pseudorandom num-
ber generators for cryptographic applications. NIST Special Publication 800-22,
2001.

[19] Steven H. Strogatz. Nonlinear Dynamics and Chaos. Westview Press, 1994.

[20] C. van Vreeswijk and H. Sompolinsky. Chaos in neuronal networks with balanced
excitatory and inhibitory activity. Science, 1996.

[21] Stefan Wegenkittl. On empirical testing of pseudorandom number generators.
Proceedings of the international workshop on Parallel Numerics ’95, 1995.

[22] William W. Wu. Generalized shift register pulse sequence generator patent
application. Technical report, Communications Satellite Corporation, 1971.

39

View publication statsView publication stats

https://www.researchgate.net/publication/241854183

