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A new entropy inequality for the Erdos distance problem

Nets Hawk Katz and Gabor Tardos

ABSTRACT. This note combines the techniques of two earlier papers [T] and
[K] for an improved lower bound on the long standing (see e.g. [E],[M],[SzT],
and [CSzT]) Erdés problem on distinct distances in the plane: Given n distinct
points in the plane what is the minimum number of distinct distances they
determine. We improve the 2(n19/22=¢) bound for this problem stated in [K]

to
48—1de
Q | n55—16e ,

where e is the base of the natural logarithm and € > 0 is arbitrary.

The proof of this lower bound (just as the proofs of the last three such
bounds) is based on the connection between this problem and the following
problem on distinct sums: Given an n by s real matrix with all sn entries
distinct, what is the minimum number of distinct pairwise sums formed by
adding two distinct entries of a common row of the matrix. The connection
between the two problems was discovered by J. Solymosi and Cs. Téth [ST];
the distinct sum problem was explicitly formulated in [T] where some bounds
were established. The paper [K] proves stronger bounds for the distinct sum
problem in the special case s = 5. This note combines the techniques of that
paper with those of [T] to obtain similar bounds for higher values of s.

Lower bounds on the distinct sum problem were also applied in [ST'T]
and [PT]. Plugging in our bounds, one can automatically improve the results
of these papers on the number of occurrences of the k most frequent distances
among n points and the number of isosceles triangles determined by n points
in the plane.

§1. Introduction, definitions

The results of this note follow by simply combining the techniques of two earlier
papers of the authors [K] and [T]. We will use the notation of [T] and many of
the lemmas there, so the reader is advised to read that paper first. Nonetheless we
recall the definitions from that paper.

For an n by s matrix A = (a;;) we define S(A) = {a;; +aix |1 <i<n,1<
Jj < k < s} the set of pairwise sums of entries from the same row. Let fs(n) be the
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minimum size |S(A)| for a real n by s matrix with all its sn entries being pairwise
distinct.

Both f3(n) and fi(n) are ©(n'/3). The order of magnitude of f,(n) for higher
values of s is not known. I. Ruzsa [R] gave the best known construction, which
establishes

fr(n) = 0 (nt77),
for any fixed k. The first lower bound was proved in [T]:

1
f2k—1(n) 2 nek,

with the values ¢, defined below. The paper [K] improves the lower bound for f5(n)
establishing

f5(n) =Q (n%*) ,
for any € > 0. As 1/¢, < 1/e < 7/19 for any k this also improves the lower bound
for all the functions fs(n) for s > 5 as fs(n) is clearly increasing in s. Nevertheless
we present here the formula defining ¢, as these values will play a role in the bounds

presented in this note.
For 2 < k <14 we let

For k > 14 we let

k
1 k3 — Tk? + 20k — 40
0=y

< i1 " (kT = 8k + 262 — 46k + 40)K!

1=

Either definition gives the same value for ¢4 and we clearly have that the values
¢, tend to e, the base of the natural logarithm, as k goes to infinity.

The proof of the lower bound in [T] is based on an involved calculation of
entropies of different functions. For a discreet random variable R, its entropy is
given by

H(R)=-> P[R=az]log PR = 1],

where the summation extends for all values z taken by R with positive probability.
Here and later in this note H denotes the binary entropy and log stands for the
binary logarithm. The entropy of a random variable is the amount of information
obtained by resolving its value. The idea which this note will refine is that because
of various arithmetic identities between entries of a matrix and their sums, the
amount of information obtained from resolving an entry can be controlled using
the amount of information obtained in resolving a sum.

Consider an n by s real matrix A with all its entries distinct. The basic probabil-
ity space considered is that of a uniformly distributed random row R = (Ry, ..., Rs)
of A. Clearly

H(R) =logn.
Let I ={1,2,...,s} be the set of column indexes. In [T] we considered subsets
U and V of I (not both the empty set) and defined pyy (R) to be the sequence of
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numbers consisting of the differences R; — R; for 4,j € U and for 4,5 € V and the
sums R; + R; for i € U and j € V. We defined

H(U7 V) = H(va(R)),

and formed the normalized averages

s SHUY),

Hi;=1- —
’ logn (7) (") &

for 4,7 > 0 with 1 <i+ j < s where the summation extends for all disjoint pairs of
subsets U and V of I with |U| =14, [V]| =j.

The paper [T] is based on establishing numerous linear inequalities connecting
the values H(U,V) (Lemma 3 of [T]) and using them to bound |S(A4)|. We are
going to simply quote these inequalities. The novelty in the paper [K] is basically
proving yet another similar inequality. This is not explicit in the paper, so we have
to prove the new inequality. We do this in the next section. In the third section we
combine all these inequalities to give our new lower bounds for |S(A4)|. In the final
section we discuss the implications of our result (including the improved bound on
the Erdds problem on distinct distances in the plane) and the possible directions
for further improvements.

§2 The new inequality
Let 4, j and k be three distinct indices from I. Let U = {i, j, k}.

LEMMA 1.
2H({i},{s}) + 2H({s}, {k}) + H{i}, {k}) > H({i, k},{j}) — 2H(U,0) + 3logn.

PrOOF. The important new idea in [K](which appeared in a slightly different
context in [KT]) is to consider (instead of a single random row) random pairs of
rows of the matrix A and a specially defined function v on them. Consider the
following distribution [R,S] on pairs of rows of A: select R uniformly randomly
from the n rows of A and then select S uniformly randomly among those rows of
A satisfying

puo(R) = pue(S)-
Throughout this section, we use square brackets instead of parentheses for tuples
of random variables so as not to conflict with the notation of the previous section.
Notice that S is also distributed uniformly among the n rows and we have

H(R) = H(S) = logn, (1)

H([R,S]) = 2logn — H(U, D). (2)
The equivalence of the three definitions of the following function comes from
puo(R) = puo(S):
v(R,S) = (Ri + Ri) +2S; = (Ri + R;) + (S + Sk) = (R; + Ry) + (Si + 5j).
First we use subadditivity of the entropy which states that for random variables
X and Y we have H(X) + H(Y) > H([X,Y]). We also use monotonicity stating

that if the value of X determines the value of Y then H(X) > H(Y). These are
obvious from an information theoretic point of view.
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Clearly, v(R, S) and R; + Ry, together determine S;, and since all the entries
of A are distinct, S; determines the entire row S. Furthermore, S determines the
pattern pyg(R) and thus, together with R; + Ry they determine the values R; and
Ry and by that the entire row R. By the subadditivity and the monotonicity of
the entropy we thus have

H(v(R,S)) + H(R; + Ry) > H([R, 5]). 3)

Next we use the submodularity of the entropy function: if either one of the ran-
dom variables X and Y determines the value of the variable Z, then H(X)+H(Y) >
H([X,Y]) + H(Z). This inequality implies the other information inequalities we
used. It is usually referred to as the non-negativity of the conditional mutual in-
formation. For this, and all other simple properties of the entropy we use in this
note see e.g. Lemma 3.2 on page 49 of [CsK].

As either one of the pairs [R; + R;,S; + Si] or [R; + Ry, S; + S;| determines
the value of the function v (as their sum) we have

H([R; + R;,S; + Sk]) + H([R; + Ry, S; + S;])

> H([R; + R;,S; + Sk, R; + Ry, Si + S;]) + Hw(R, S)). @

By the subadditivity we have
H(R; + Rj) + H(Sj + Sk) > H([R; + R;,S; + Sk]), (5)
H(R; + Ry) + H(Si + S;) > H([R; + Ry, Si + Sj])- (6)

The row R determines the pattern pyg(S) and, together with S; + S; they
determine S; and S; and thus the entire row S. We apply submodularity to X =
R,Y =[R;+ R;,Sj + Sk, Rj + Ry, Si + Sj], and Z = [R; + R;, Rj + Ry], observing
by monotonicity that H[R, R; + R;,S; + Sk, R; + Ry, S; + S;] > H[R, S] to obtain
H([Ri+R;j, Sj+ Sk, Rj + R, Si+ 5;]) + H(R) > H([R, S]) + H([Ri + R;, R; + Ry)).-

(7

Simply add the Inequalities (3-7) to get

H(R; + Ry) + H(R; + R;) + H(Rj + Ry) + H(S; + S;) + H(S; + Sk)

> 2H([R, S]) — H(R) + H([R; + R;, Rj + Ry]).

Here H(R; + Ry) = H({i},{k}) as R is uniformly distributed among the rows
of A. Similar arguments about the other four terms simplify the left hand side of
(8) to H({i},{k}) + 2H({i},{s}) + 2H({j},{k}). The first two terms of the right
hand side of (8) is given by Equations (1) and (2). Finally for the last term of
(8) we have H([R; + R;, Rj + Rx]) = H({i,k},{j}) as R is a uniformly distributed
random row and (R;+ R;, R;+ R) and the pattern py; 1153 (R) mutually determine

each other, so they have the same entropy. Applying all these simplifications to
Inequality (8) the statement of the lemma, follows. O

(8)

§3 Combining the old and new inequalities

We start with the standard averaging argument that shifts focus from the
variables H(U, V) to the variables H; ;.

LEMMA 2. 5H1,]_ — Hz,]_ + 2H3’0 <3.
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ProOOF. Consider the inequality claimed by Lemma 1 for all possible triples
(i,4,k). Simply sum all these inequalities and then a rearrangement gives the
statement of this lemma. |

Our lower bound method works for odd values of s > 5. We assume s = 2k —1
for some k > 3.

We collect all the inequalities we need for our bound. All of them come from
[T] except the statement of Lemma 2 which basically comes from [K]. We will freely
use the trivial fact of H; ; = H;; (see e.g. Lemma 4/a of [T]) and use the following
equivalent form of Lemma 2:

5Hy; — Hy 5 +2Hp3 < 3. 9)
By Lemma 4/e (convexity) of [T] we have
2H,,1 < Hou + Hi o, (10)

Hiy— Hy3 <2(Hop — Hip). (11)
By Lemmas 4/c and 4/f of [T] we have

Hl,l —+ H0,2 S 1. (12)
Finally we also need an inequality of the following form:
H>3 < a3Hyz3, (13)

where the constant a3 is to be determined later. Such an inequality is proved in
the proof of Theorems 8 and 10 of [T]. We sketch the argument here. For the
reader’s convenience we restate Lemmas 5, 6, and 9 of [T] as parts a, b, and ¢ of
the following lemma.

LEMMA 3.

a.) We have Hy_9 1 < kBT1H0,k*1

b.) Suppose we have H;_1; < aHy; for some 3 < j < k and a > 0. If
(j—3)a < 2 then we also have H;_» j_1 < BHy j_1 for = ?i—g >0and (j—4)8 <
2 is also satisfied.

c.) If k > 14 we have Hy_3 5o < kgf:i4H07k*2'

We use Lemma 3/b recursively to find an inequality of the form (13). The base
case for k < 14 is ax—1 = 3/(k + 1) provided by Lemma 3/a, while for k¥ > 14
Lemma 3/c provides the base case: ajy_2 = (2k + 3)/(k* — k + 4). We proceed
by reverse induction obtaining inequalities with progressively lower subscripts until
as = (2+ a3)/(3 + az) = ¢, — 2 is found. This is done in detail in [T] Theorems
8 and 10. Here ¢ is the value defined in Section 1. Thus we have that Inequality
(13) holds with

1
3 - Ck
For k = 3 the above argument is not valid (the base case of the reverse induction is
as = 3/4 so we cannot argue about as). But for k£ = 3 Equation (14) gives az =1
and thus Inequality (13) follows simply from the monotonicity condition Lemma
4/b of [T].

a3 = - 3. (].4)
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Let us combine the Inequalities (9-13) with the positive coefficients az, 6 — as,
2, 4, and 2, respectively. We get

(16+30¢3)H1,1 <10+ 2ag. (15)
Using Lemma 4/d of [T], Inequality (15) and Equation (14) we get
log |S(A)] S1_Hy, > 6+as _ 10—3ck_
logn ’ 16 +3a3 24— T¢y

We have just proved the following

THEOREM 4. For any k > 3 we have

10—3cy,
f2k+1(n) Z n24=Tey, |

4. Corollaries and concluding remarks
First we use that ¢ tends to e, the base of the natural logarithm to state

COROLLARY 5. For any € > 0 there exists an s > 0 such that for all n > 0 we

have
10—3e

folm) > m¥¥=H

Using the connection between the distinct sum problem studied in this note
and the distinct distance problem of Erdés found in [ST] and stated explicitly in
Corollary 14 of [T] we have

COROLLARY 6. For any constant € > 0 the following is true. Any collection P
of n distinct points in the plane has an element from which the number of distinct
distances to the other points is

48—14e
0O (n 55—16e _6) .

The main results of the papers [STT] and [PT] automatically improve when
plugging in the new bound for fs(n) stated in Corollary 5. We state the improved
bounds here for completeness. Both of these results follow from bounds on the
number of incidences between a set of points and another set of systems of concentric
circles. The bounds on the number of these incidences also improves but we refrain
from stating the complicated upper bound here.

COROLLARY 7. For any constant € > 0 the following is true. Any collection
of n distinct points in the plane the number of occurences of the “most popular” k

distances is
55—16e
5 k 89—26e T€
O ns - - .
n3

COROLLARY 8. For any constant € > 0 the following is true. Any collection of
n distinct points in the plane determine

117—34e
[0) (n 55—16e ""f)
isosceles triangles.

The special cases of Theorem 4 for the first few values of k are as follows:

f5(n) 2 ’I’L%,
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f7 (TL) > ’I’L% )
fo(n) > nis.
All these are slight improvements of the Q(n7/1°¢) bound of [K].
The numeric values of the exponents in the Corollaries 5 and 6 are

10 — 3e
24 —Te
48 — 14e
55 — 16e
These represent slight improvement over the corresponding exponents

7
L =0.368421...
-5 = 0.368 ,

19
2= 0.863636 . ..

=0.371107...,

= 0.864137....

of [K].

Note that the lower bounds of [T] on |S(A)| work for all matrices A with the
property that no two rows share more than a single common entry. Our results
here use however that all entries of A are distinct.

The improvements of [K] and this note over the results in [T] were possible
because a new probability distribution (on pairs of rows) was considered. We expect
that our results could be further improved by considering another distribution or
simply the entropies of another functions of these distributions. Whenever one
discovers a linear constraint on the entropies which contradicts the optimal solution
under the present constraints, it is a straightforward (but sometimes technical) task
to solve the new linear program and find an improved bound this way. In this note,

we have followed precisely this approach based on the new inequality implicit in
[K].
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