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ANALYSIS AND COMPARISON OF SOME INTEGER FACTORING ALGORITHMS

by
C. POMERANCE %)

1. INTRODUCTION

Although the problem of how te efficiently factor an integer is centu—
rieés old, in recent years mﬁ. extraordinary amount of interest has been fo- )
cused on the issue. There are at least two reasons. First, the problem has
taken on a glamorous tinge because of its comnection to the public-key
eryptosystem scheme 'of Rivest, Shamir and Adleman (see HOOGENDOORN [12]).
Second, and perhaps more fundamental, with the explosive growth of computers
in society, the analysis of natural algorithmic problems, including faetor—
ing, has prown into an area of its owm.

It should be pointed out that unlike with the companion subject of pri-
mality testing (see LENSTRA ,Tm”_. POMERANCE £247), thers have been no recent
dramatic breakthroughs concerning factoring. Nevertheless, advances have
been and are being made. Many of the new Hmwmm are based on the seminal
MORRISON-BRILLHART continued fractiom algorithm [211. With this algorithm
composite numbers of 50 digits with no small H.H“.wﬁm factors can be factored
(although this is probably about the limit of the basic algorithm).

Although the continued fraction algorithm has worked im practice, no
E..mouo_.._m analysis has ever been given for its running time, However, DIXON
[5] recently proposed a simplified version for which a rigorous rmning time
snalysis could be provided., Dixen's mwmoﬂ.u..nwh. is not a serious contender as
a practical method for factoring. Rather, its wvalue lies in the respectabil~
ity it brings both to the continued fraction m.HmOHmw‘..E and the heuristic
argument supporting the continued fraction algorithm discussed below,

Another similar algorithm, due to SCHROEPPEL [281, ingeniously replaces
time consuming trial divisions required in the continued fraction algorithm

and Dixon's algorithm with a procedure based on the siave of Eratosthemes.

%) Research partially supported by an NSF grant.
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To my knowledge, Schroeppel's algorithm has not proved practical.

In what follows T shall be concerned with carefully analyzing the rum-
ning times of these algorithms and how certain variations affect these times.
Where possible, rigorous arguments are given or sketched, At other times, an
argument is presented that yelies on certain explieit but unproved hypo-
theses, There has been a certain amount of disagreement in the literature

concerning the rumning times of the various algorithms. For example, with
L(n}. = exp{ (logn loglogn) w”_.

{all logarithms in this paper are natural logarithms), various people have
suggested that the comtimued fraction algorithm has a rumning time of

L{n) ero(l) on input of 2 composite number n, with the value of ¢ given as

¥2 -(SCHROEPPEL [281, MONIER [201), 2 (KNUTH [131), and v372 (WUNDERLICH [347,
[35] - although Wunderlich alsoc includes in his- analysis a variation which
below is called Large Prime). It is my hope that the careful analysis in
this paper will settle the controversy (provided the unproved hypotheses are
not controversial). On the particular issue of the continued fraction algo-
rithm, I side with Schroeppel and Monier, that is ¢ = ¥2 (with or without
the Large Prime variation). TUnlike prior results, the running time estimates
given in this paper are two-sided, not just upper bounds. )

A natural variation of ‘the continued fraction algorithm {aspects of
this idea are described in MORRTSON-BRILLHART [21], Remarks 4.2, 4.6 and in
ENUTH [13] p.384) is what is called below the early sbort strategy. I have
carefully analyzed the effect of this variation with different choices of
certain parameters and have come up with a particular choice of parameters
that are asymptotically optimal. Tt is hoped that these choicea can guide
factorers of finite numbers.

H_.u addition, proposed below is a new algorithm called the quadratic sieve,

It belongs to the same family as the other algorithms considered and appears to be
very fast. Tt s based on the well known fact that the consecutive values of a qua-
dratic polynomfil (in fact, any polynomial over the integers) can be factored
with a sieve. The quadratic sieve algorithmis very similar to a procedure suggest—
ed long ago by KRATTCEIK [15) (also see MORRISON-BRILIHART [211, p.199). In fact
itmay be fair £o say that the relationship of the quadratic sieve algorithm to
Kraitchik's method is analogous to the relationship of the modern continued frac-
tion algorithm to an eaxlier version due to LEHMER and POWERS [181. The quadratic
sieve algorithm can also be viewed as anatural outgrowth of Schroeppel's algo-

rithm. In preliminary work by GERVER [10], it appears to be computer practical.

91

Each of the algorithms discussed has a running time of the form

at+o(l . . : : .
m where n is the (composite) number being factored, o is a constant

Li{n)
that depends on the algorithm and L{n) is defined above. However there iz an
important dichotomy between Dixon's algorithm together with its variations
and the other algorithms discussed. The former can be analyzed rigorously,
but are probabilistic algorithms. The latter are deterministic algorithms,
but as mentioned above, the analysis contains certain leaps of faith.

By a "deterministic algorithm" we shall mean one in which the input.
completely pre-determines everything that follows. In contrast, by a "proba-
bilistic algorithm" we mean one in which random numbers are employed. Such
an algorithm tries to take advantage of lucky bresks that cannot be guaran—
teed to occur, but by the law of large numbers are expected, For a probabili-
stic algorithm we may talk of the probability that the running time is such
and so. Imdeed 100 independent m.Hmu.mEmnwmwu..oum on the same input could lead
to 100 different running times and perhaps even to different outputs (for
example, different factorizatioms of n),

When we say a deterministic factoring algorithm has a rvaming time of
L(n) a+o{l) a+8(n)
where 8(n) is some function that tends to 0 as m + = through the composites.

» we mean that the running tiwe to factor n is precisely L(n)

When we say a probabilistic factoring slgorithm has a running time of
Leny2o D

through the composites such that for every e > 0, there is an M such that

we mean that there is a function 8(n) which tends to 0 as n + »

with probability at least 1 — £ the rumning time to factor n lies between
Elmﬁhuuea.m (n) and E.H.nmugiw (n)
gorithm for n the running time will not be tco many times greater or less
than ﬁﬁﬁun._.m nﬂu. To emphasize this difference, when speaking of a probabili~
stic algorithm we shall say it has an empected rumning time of H_nuvoioﬁu .

. That is, on most implementations of the al-

With Dizon's algorithm and its ‘variations, probability enters the pie-
ture because the algorithms involve randomly choosing some auxiliary num
bers. With the other algorithms, the auxiliary numbers are deterministically
produced, In the heuristic analyses for these deterministic algorithms cer-
tain explicit hypotheses are made that essentially say that the auxiliary
nunbers are "pseudo-random" with respect to certain properties. Unfortumate-
ly T do not presently know how to prove these hypotheses, Thus it cammot be
ruled out that at almost every instamtiation of the algorithm in question
the running time is much less than what is elaimed - or much more,

The main results are summarized in the table. The exponents given are

on the base L(n). Thus, for example, Dixon's algorithm with the Pollard-
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¥3+0(1)

Strassen variation has expected running time L{n) and space require-

Y43+ (1)

for Dixon's algorithm and its variations have riporous proofs.

ments of L{m) . Reiterating what was said sbové, only the numbers
Dizon's algorithm with the Pollard-Strassen method, the early abort
strategy, and Coppersmith-Winograd elimination stands as the current chame
pion of fully proved factoring algorithms with an expected running time of
H.ﬁuv.\mxmiun_v

is the Pollard-Strassen method discussed below im Section 4. The rumming

174

. The fastest fully proved deterministic factoring algorithm

(log n) wHomHomn logloglogn), Shanks has a deterministic fac-

toring mHmowwnwE (see SCHOOF [271) which, if the Extendad Riemamm Hypothesis
1/5+e

time is QO(n
holds, has a running time of O(n ) for every £ > 0. If the quadratic sieve
algorithm with Coppersmith-Winograed elimination (discussed in Section 7) can
be rigorously analyzed along our heuristic lines, it would be a determinis-

1.0204 for all large composite

tic algorithm with running time less than L(n)
. :

It should be pointed out that just because alporithm A has higher ex-
ponents than algorithm B does not necessarily make it the worse algorithm
for all values of n. It may be that B is superior only for those n > 1p101¢
and for smaller n, A is the algorithm of choice. A little is said in Section
9 about the practical aspects of the algorithms considered.

It is suggested on a first reading that the proofs, mmumnwmu.“_.% those
in Sections 2, 3 and 4, be skipped or skimmed. Many of the ideas presented
are quite simple and can be understood even without knowing all of the inter—
"vening details.

This paper covers omly a small fractiom of the many types of factoring
algorithms kmown. For altermative treatment of some ¢f the algorithms pre-
sented here plus descriptions of meny others, the reader's attention is
called to BRENT and POLLARD [4], GUY [111, KNUTH [13], MONIER [20], SCHNORR
[261, sCHOOF [27], and VOORHOEVE [337.

Among the many people whe helped me with this paper Y should like to
acknowledge and thank Edward Azoff, John Brillhart, Rod Canfield, Andrew
Odlyzko, Robert Rumely, Samuel Wagstaff, Hugh Williams, and especially

Hendrik Tenstra.
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Basic Algorithm Variation Elimination Time Space
Method Expordent - Exponent
Dixon Gauss 2 1
P-5 Gauss 1,732 | v3 1.155 | ¥&/3
EAS Gauss 1.72 | 3 1.155 | /%73
P-5 & EAS Gauss 1,604 | VI8/7 | 1.069 | vB77
P-S & EAS oW 1.581 | V572 | 1.265 | /B75
Morrison~Brillhart
(continued fraction) Gauss 1.414 | V2 0.707 | V172
P-§ Gauss | 1.225 | /372 | 0.816 | ¥Z/3
EAS Gauss 1.225 | V372 | 0.816 | v2/3
P-5 & EAS Gauss 1.134 | /877 | 0.756 | v&/7
B-S & EAS C-W 1.118 | ¥5/& | 0.894 | v&]5
Schroeppel
{linear sieve) Gauss 1.5 |
c-W 1.248 1
Cull Gauss 1.225 | /372 0.816 V273
Cull C-W 1.117 0.895
Quadratic Sieve Gauss 1.061 | v978 0.707 | YI72
oW 1,020 0.818

Abbreviations: P-8, Pollard-Strassen method
: EAS, Early zbort strategy *
C-W, Coppersmith-Winograd method

2, H.wmm_ﬂﬁzgm AND A DOdeZ.HHoZ

The fenction L(n) H,mu.nuﬁ._\“_.om n.loglogn) introduced in the previcus sec-—

Q+0AGu where o is

tion will often simply be denoted L, The expression L(n)

a non-zexo constant, will often be abbreviated %, With this unusual conven—
tion, seemingly absurd equations can be obtained, such as
‘ 3 o a
e I S L AT o R

where in the last equation 7 is the prime counting function, This convention

serves to streamline many arguments and te have the important magnitudes
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stand out. I hope it does not prove too confusing for the reader, In any
event, all theorems will.be stated without the nondmnnu..mﬁ.

A ubiquitous function from number theory that will be of use here is
iw.wvu the number of natural numbexs not exceeding x free of prime factors
exceeding y. We cite the following theorem from CANFIELD, ERDUS, POMERANCE
[71:

THEQREM 2,1, If ¢ 48 an arbitwvary positive constant, then uniformly for

¥ 2 0 andy = (log Mv_._.m.

] Au"uuwv = X* ..Hlﬂ.—..u Aﬁv ]

where v = (log x)/log v.

The assertion about uniformity means that there is a function B(u) such

that 8(u)/u + 0 as u + « and such that if f(x,y) is defined by the equation

GnNqu = un.ﬂ.l_.._.+._h. nuﬁu%.v

then 1£(x,y)}] < 6(u) for all x 2 10, ¥ 2 (log Nu_+m. In fact, in (7], it is
shoyn that

2
D.Mww.ow uﬁlu_tﬂ + 0(u (loglog ﬂ% )
e (logw)

£(x,y) = —u ’
vwhere again the error term is uniform, bnnﬂmwwﬁ. in [7] only the lower bound
implicit in Theorem 2.1 is shown ~ the upper bound is found in an earlier
paper of DE BRUIJN [6].

Cérbining Theorem 2,1 with our umusual convention, we have, for example,
a o -(za)”
Y(o,L”} = o-], .

In fact we shall alyays apply Theorem 2.1 when y = L(x) m+oﬁv, vhere a is &
positive constant. For this restricted range of y we have a result that ia
more general than Theorem 2.1 that we shall occasionally need.

Let §{x,y,z) denote the nEmumH of natural numbers not exceeding x com~
poaed golely of the primes in the interval (z,yl. So, for example, Y(x,y,1) =

vix,yl.

THEOREM 2.2, Let ¢ > 0 be arbitrary. If u = (log x){log y and if

)
.

a5

1-1/1
y'm1/tog u,

z < then

$0x,y,2) = H.ﬁlﬁ+anﬁu

wniformly for (log 0! < vy < exp((log © 75, x = 10.

PROOF. The upper bound follows from Theorem 2.1 since ¥(x,y,z} £ w(x,y). We
may assume X is large. Let

u«ulm\ {3 log u) , %ul: (31logu} .

€_ = ﬂN

Then
@ vy 2] v,
H

where the sum is over those m which are the produet of [u] not necessarily
distinet primes in QJ uaMu. Indeed for each integer k counted by eAN\E..&TNV«
we have km £ x and every prime in km is in AN.SM”_ c (z,y]. Moreover, if

km = k'm' where m' is also the product of [ul primes in ?q_ usN”_ and k' is
counted by P(z/m' -s._.Nv. thenm =m', k = k',

Note that if m is the product of [u] primes in ?.H .s.m“_u then

go that for large =

2/ (3 log u} 1 u H:ﬁw log 5.

2.2) M:Hnm v, FoX > x}JI > xfm = .N\EM =

Let u(m) = 1 + [(Log(x/m))/log ﬂ_u_. S8ince log LI log y as x + =, we
have from (2.2)

u
(2.3 ﬂ.w zulm) 2 Iiogw °
Algo let wi{m) = On\no_\:nau. Then
1-3{1log u)/u
1 .

(2.4} w, > wm) >w

Indeed, from (2.2) we have
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(log w,)/log(x/m)
1 (x/m) > wim}

=
L]

(1+(log(x/m)) /1log a_u:H

[\

(x/m)

log w, log w,
expllog (/m) ooy O - Togtarmy !

V]

_ EM..G.om w,)/log (x/m)

> awnﬁom ¥)/log(x/m) | awla logu)/u.

The product of any set of u{m)y distinect primes from (z,w(m)] does not

um
exceed w(m) (m) = x/m. Thus from the first inequality of (2.4) we have

Y/mw,2) > bix/mum),s) 2 Aiﬂnavunitv.

u(m)

From the second inmequality in (2.4) and from the assumption y 2 (log NV_+m R
we have wim)/zz exp((14€)/3), so that for large X, we have w(m)/z > m:m >
4f3. Thus for large x, we have

Twlm)) - r(z) > wim)/ {4 logw(m)),

so that
TR ﬁ%ﬂﬁa
> A%ﬂmﬂuﬁu
(2.5) . - w. mﬂu?no& (log ufm) + loglogw(m) + log 4)}

> Ww » exp{-u(m) (log u(m) + loglogy + log 4} 1
x
= 5+ expi-u(m) (log u- loglog u + loglog'y+0(1})}

from (2.3). Also, from the assumption y < exp((log Huva“ we have
-1
loglog y < & ~ logu. Thus from (2.3) and (2.5) there is a comstant C rhat

anmhmw at most on & such that

$Gefm,wy,2) > 2 exwp(=Cu)
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for all large x. Putting this estimate inta (2.1) we haye

(2,6) V(x,y,2) > xve OO T ol

so it remains to estimate this last sum. We have (where p represents a prime

variable and we use the well-known formula for I m.l_u
p<X

It E:m =( J Hul_v_”nu\_unuu

Wy <Py
= (loglog w, - loglog w; + oe” logy uunﬁ.“_\_”cu_
= (og((1 - g/ (L —gpae) + 0™ 108108 %)y oy
1 u
> nﬂﬂv fTul!

exp{-u{log u + loglog u + 0(1))}.
Thus from (2.6),
¥(x,y,2) 2 x+ exp{-u(logu + loglogu+{(1))},

which completes the proof of the theorem.

REMARK. For z = 1, Theorem 2.2 reduces to Theorem 2.1 with y<exp({logx)  ®).
Thus the above argument is an independent proof of the lower bound in Theorem
2.1 For this restricted set of y. ’

3. DIXON'S ATGORITHM

We shall only wish to apply factorization algorithms to composite num—
bers with no small prime factors. 8o in this and all subsequent sections we
shall assume that n is composite and not divisible by any prime p £ L. If n
is composite, this fact can usually be quickly ascertained with atf most a
few pseudoprime tests (or one could use the probabilistic compositeness
tests of SOLOVAY-STRASSEN [30] or RABIN [251}. To test for all prime factors
p £ L by trial divisions takes L steps.

In [9], Dixon describes the following algorithm. Say we wish to find a

non-trivial factorization of n. If m is an Integer, denote by Q(m) the least
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. i e 2 : -
non-negative residue of m modn., Let a < | be a positive constant to be

chosen later. We perform. the following steps. !

1. Randomly choose a number m € [1,n] and form Q(m).

2. Try to factor Q(m) by trial division with the primes p < 12,

3; If Q(m) completely factors in Step (2), store m, Q{m), and its factoriza-
ticn.

These steps are repeated enough times uvntil we have m(L®) +1 completely fae-
tored a?.c_m. To each factored Q(m) we associate a vector v{m) ¢ AN\NNVdFmW
whera the i-th coordinate of v{(m) is 0 or ! depending on whether the i-th
prime appears an even or an odd number of times in the prime factorization

of Q(m). Since we have w(L%) +1 vectors, each with m(L?) coordinates ,» there
is a linear dependency, Perform Gaussian elimination to find such a depend~

ency. Since we are working over Z/2Z, this dependency may be expressed as
<AE~V + <AEMU + ...+ douwv = Q,
Thus we may compute a number X such that

2.

)

Qm)Qmy) 1.0 Qm)

{sctually, we only compute the least non-negative residee x = Xmodn.) If ¥
denotes the least non-negative residue of mym,. . .E_nﬂam n, then we have

u«m = EWHW . HN = DQJU@AHNU ves DAEWU = Mmaowu.

We finally compute the greatest commen factor of m and x+7y. In [9], Dixon
proyes that if n is composite, then with probability at least 1/2, this last
step will produce a non-trivial factor of n. Thus, say, if n is composite
and the above procedure is repeated 10 times, then we are more than 99,93

certgin of finding a non-trivial factorization bf n.

Bunrilng time analysis

The most time consuming. of steps (1), (2), (3) is step (2) .which has a
running tfme of 1.2, Say we have to repeat steps (1), (2),(3) H._u times before
we find ﬂﬁ.mv +1 completely factored Q(m)'s. Then the running time for this

atb

stage of the algorithm is 17 ., (Note that at this point, we are not sure

whether B = B(n) approaches a positive constant or not.) The Gaussian

{

e s s
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. elimination stage of the algorithm takes 132 steps., The formation of the num—

bers x, ¥y and (n,x+y) takes only 1.2 steps, Thus the total rumning time is

. max{a+b,3a}
(3.1) pRaxia a ,

so It remains only to find b and choose a optimally. To make a long story
short, it turng out that we may chcose b = a+ nmmul_. Thus the optimal choice
for a is 1/2. )

It ia at least heuristically clear that we should choose b = a+ Ammul_.
Indeed, ome might expect that the probability that Q(m) completely factors
with the primes p < L is about nlue?.ﬁmu. Moreover, by Theorem 2.1 this
quantity is H.lﬁmmvlu. Thus to ohtain L? completely factored Q{m)'s, one
should get 1242237 yalues of m. The nice thing sbout Dixon's algorithm iz
that we are able to prove this heuristic guess. .

Because of a variation of Dixon's algorithm studied in the next sectiom
we treat now a situation more gemeral than is jmmediately Hwncww.mn. In par-
ticular, to prove Theorem 3.2 below, only Theorem 2,1 is required, but in-
stead we mmwmm_.u. use the more general Theorem 2.2.

' We {ntroduce some motation. If T is a f£infte set, by |T] we shall mean
the cardinality of T. Let Hﬁ.un.u:mu denote the set of integers counted by
Y¢x,y,2). That is,

T(x,y,2) = {m < x: plm, p prime » z < p < yhL

Thus 1T(x,y,z)| = v(x,y,z). By HDAH-%..NV we shall mean the set of residues

modn whose squares are in T(x,y,z) and coprime to n. In symbols,
Hﬂ?.%«uu = {m e [1,n]: (m,n) =1, Q(m) € I(x,v,2)}.

Qur goal is to show that in certain circumstances, _.H_oﬁwvuq.nu_ and ¥{x,y,2)
agree up-to a factor of ronC. CQur proof begins along the lines of Dixon's
Lemma 2. What is new hexe is Lemmz 3.2 below which depends on Theoxenms 2.1
and 2.2, In Its place, Dizon uses a trivial estimate. By taking the middle
ground of using a crude lower bound estimate for ¢(z,y) in the proof of
Lemma 3,2 one could obhtain the upper hound estimate for the chuu.“n.m time of

Dixon's algorithm achieved by SCHNORR [26] and KNUTH [131,
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If s = tt' for t,t' e T, for some i, then by the multiplicativity of

TRMMA wL.. Suppoee 2 £y < x <n and that all prime faetors of n exceed ¥.

|

Then ; Legendre symbols we have & € Qn T(x,y,2). Let e(s) denote T annul_iw.vl_
where the sum is over all ordered pairs t, t! where s = tt' and t,t' ¢ T,
Nsopueon-wquv z _HDAH.,%..NV_ = en\w.w.van M anﬂuvlmu for mnH_Bm i. .wwmn ce(s) v_o implies s € Qn T{x,y,z). Moreover, since
T(/E,¥,2) w(e) Tt(t")” £ t(et")”, we have efs) < 1 for all s. Thus from {3.2), (3.3), _
where w(n) denotes the mumber of distinet prime factors Sn n and T(t) denotes (3,4) we have
the mumber of positive divisors of t. :
I7,6e,7,201 = 2°® 10 n 16y, 2|
FROOF. Let Q denote the group of squares in (Z/nZ) . Then 0 (@)
‘ =3 menﬂv w e(s) = Bnﬂv M mm
(Z /) 1q = (@f2m)" @ ’ s=1 =1 *
. - T R ROMCOR
Ydentifying Z/2Z with the multiplicative group {1,-1}, we have the canoni-
cal projection which completes the proof of the lemma,
(Z/oz)* - AN\NN.VB?V : We shall be interested in Hﬁoﬁx.%um: in three situations:
. ) =x=1n% yv=1% z=1,
where () = ﬂnﬂ\ﬂ—vu.-.uﬁﬂ\ﬂﬁmﬂuuu“ Hhu-..uUEAﬂC being the distinct prime (i) == ﬁ—nu y= H_Ru z = H.mu !
. .. |
factors of n and nﬂ\vm.u the Legendre symbol., Thus the function x(t) describes . iii) x = ﬂn. y = ﬂnu z = H.m. |
meﬁuu quadratic residue classes modn, where 0 < e £ 1, 0 <8 <a < 1. In addition, recall that we are assuming n :
If t € Q, then by the above, t = Q(m) for precisely g {m) values of is composed solely of primes p = L. Thus the inequality H.obsob £ n implies |
m £ [1,n]. Thus we have. w(n) {logn)/loglogn, so that i
o o(l ,
(3.2} 1T4(x,y,2} ] = 2@ g o 1x,y,29 < 20y 5,2, (3.5) 2@ _ el |
which estghlishes the first inequality in the lemma, - Thus from Theerem 2.1,
Label the menﬁu quadratic Hmmu..m:m clasges of hH\uNmu* with the integers (a3~
. .- - ~a(20
i= .._.....umanﬂu. Let T, demate the set of t ¢ T(/x,y,z) that .wmu.oum to the (3.6) . meouveﬁﬂﬁ.ﬁnu e o |
I-th class, fet T = UI., so that T = T(/x,v,2). Let ’ ,
) apd from Theorem 2,2,
-1 Im _ i
s=F o™, s, =7 o 8" =7 t(t)
1 3 L] .IH
: . ~-o (2
T T T ‘ (3.7 220y (2%, 1 wmu oo

By the Cauchy-Schwarz inequality, we have

In the following lemma we comsider situations (i) and (i) at once.

(3.3} eﬁ\m.%uuvm < 88', )
LEMMA 3.2, For 0 < ¢c £ 1, 0 £ 8 < o, we have
2w 57 -
(3.4) §° < o8 5%, _ -1 ”
. wmu y st def ) ) € o2y oo He ) :

a?n\m.wnvﬁmv
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2
PROOF. Let T = .Hovn\ .H.nuH_mvu let N denote a large, temporarily fized inte-
ger, and let ¢ = ¢/(2N). Then )

s-Jiw=1 J1=3 § 1
T

teT d]t deT d'eT
m.mnn\N\m.‘

= ¥ w@%a,1%,18

deT

N N
< ] I TORLTIR R

i=1 deT 1=1 L

nﬁwlwummnﬂhﬁwm

say. We note that

ce/2

-]
1A

v 1 e@a,t,h

£
d=<n

7 e @y @ e,1%,18

d<n®

1A

@2y ef2-e) e

den®

- af/2 (/20 27,
by Theorem 2.2. Also

st= 1 wa®%a,101h
deT
HO\Mlnmn

s 7 afa . pelyoGe e

deT
.ﬂn\wlmmm.

by Theorem 2.2 and partial summation, Finally, if 1 < i < N, we have by the

same techniques

- r—— —
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s1 = ¥ @*2/a) @10y o 2?7412, 1%
1 deT. '
nnpl_ummmmnu.m
< ] @arteli e
.n._m.H
ﬂ?.l_ummm

nn\wwlnn\ 2-g) (2a) -1

Thus putting together our estimates we have

< /2y (e/2-6) (20) L .

87 =
i

5

I o1

!
i
Since this result holds for each integer N, we have

~1
g1 mﬂn\mrro?nu ,

which proves our lemma,
We can now prove

THEOREM 3.1. If 0 < c £ 1, 0 < 8 < ¢ < 1, and n-ia composed solely of primes
exeeeding L(n), then

oy =1
Am.mu M_HDAH_.DuH_Au.uQ.uHu_ = ﬁﬂﬁnﬁnulﬁmmnu +Dﬁ—uu
- 4 .
(3.9) _Ho?n“v@gur@m:. - nniuulnﬁﬁ +o:uu
(3.10) ._aoﬁanuun.uw?um: = %))

PROOF. Note that Lemma 3,1 and (3.6), (3.7) immediately give the upper °
bounds in (3.8), (3.9). Allowing the possibility § = 0, we have

e?n\m.ﬁﬂ.rmv - nn\mrro (4o) -

from Theorems 2.1 and 2,2, Thus Lemmas 3.1 and 3.2 give the lower bounds in
(3.8), (3.9).
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For (3.10), let _H: denote the set of prime numbers in the interval

c/2 . !
AH. »0 ] which do not &.&.mm n and belong to the i-th quadratic residue
class, Thus ‘
94 (n) \m
c
I Tl = .qou.n\.mv - .__.Q...mv - w{n) ~ lluJ.lu.
i=] * @ log n® 2

so that from (3.5) nﬁmﬂm is some i with ‘_.H. > o\mhoﬂv. But if PPy € Ti,
i

B
then PPy € Q0 T(@® uﬂ L7}, Such =2 muomﬁnn PP, can occur in this fashion in
at most one other way, namely as PoPy- Thus

17901 | 2 190 26@%,0%,1%1 2 4 j271% 2 052,

This inequality immediately gives the equality (3.10),
Recall nwmn in the implementation of Dizen's algorithm we repeat steps
(1}, (@), () H. times, where b i chosen so that we are virtually assured
of ohtaining 1? values of m for which Q(m) completely facrors with the primes
» € L% If (m,n).> 1, then Q(m) will not completely factor with the primes
p= H.m. since a < | and n is not divisible by any prime p = L. However, dmn%.
few of our randomly chosen m will satisfy (m,n) > 1 since it is possible to
show $(n)/m 2 1-1/L where ¢. denotes Euler's function. Thus we have ﬁd
values of m with (m,n) = 1.
By (3.8)
_Ho.orrmu:_ = uw?.mmv H.
Thus given P random values of m € [1,n] with (m,n) = 1, we expect H.w..nm.wul_
of these m to fall in .H (u, 12 ,1). Thus we choose b = w+ ﬁnmulu. By (3.1) the
rmning tfme for all om Dixon's algorithm is
max{2a+ 2a)"!, 32}

By choosing a = 1/2, we thus bave

THEQREM 3:2. Diwon's algorithm has expested mmming time L)?e ) g,
8pace required is H.ero Gu

‘FROOF. We have already shown the assertion ahout the rumning time. To see
the assertion sbout the space, note that the most mwmwmlnoﬂwﬁﬁmﬂm part of

the algorithm fs the construction of the matrix upon which we perform the
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‘ i s s : o s a a
Gaussian elimination. This matrix is L™ % L~ where we have chosen a = 1/2,

32

REMARKS. Dixon claims L as an upper bound for the running time for his

algorithm, but we have introduced some efficiencies into his proof. Both
SCHNORR {261 and KNUTH [13] had already sharpened Dixon's proof to give a
M\n upper bound for the running time. As we have already remarked, the dif-
ference between their analysis and ours is nwmn. they used an elementary esti-
mate for .Y(x,y) rather than Theorem 2,1, Note that ﬁ»mo&mﬁ 3,2 is sharp -
the expected Hﬁnhu.nm time is bounded above and below by H. . (All of the run-

ning time estimates in this paper ere sharp.)
4, VARTATIONS OF DIZON'S ALGORTTHM

Already in MORRISON-BRILLHART [21], several variations of the centinued
fraction N.HWOwa#E were proposed as a possible means of speeding things up.
In this section we analyze three natural variations in the context of Dixon's
algorithm. All three make sense for the continued fraction algorithm, hut we
shall enly be able to mu.e.m smﬂﬂwmnwn arguments there. However, with Dixon's
mHmOHHEuE we_are able to give HHmo_.dﬁm proofs. With our most elaborate com—

bination of varfations we are able to. lower the emponent 2 in Theorem 3.2 to

/572 = 1.581.

‘Targe Prime

This variation was suggested .in MORRYSON-BRILIHART [21] and is commonly
used by people implementing the continued fraction algorithm (for example,
see WUNDERLYIGH {361). We now describe and analyze the Dixon algorithm ana-
logue. .

If the unfaetored porxtion x of Q(m} after trial division up to y is
less than v.m. nwmp x 18 prime., Thus if D?b completely factors with the
uﬂHEmm up to 12 , we uswally find this out earlier mmmn.Hm all the trial divi-
sion steps have been executed. However, the majority of Q(m) do not complete—
ly factor with the primes up to 12 and for these Q(m) we must spend the full
time (but see the "early abort strategy" below). Thus this idea.canmot lower
the asymptotic running time.

But gay ¥ € Q.m Hmmu_ That is, after trial division up to L®, the um-
mhnnonmmmeHnHou,HﬂmnonHw:n.km H.m_w. gﬂmoaﬂum.mmmmpumwm uﬂwﬁm mmnl

tor in ﬂ.m Nmu and all other prime factors are in (1,L 21, Since such Q(m)
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are discovered with no extra work, why not use them?

At first glance it would seem that using these Hmu."mm primes makes the
Gaussian elimination step more complex - instead of working with an 12 x 1?
matrix, we have perhaps an H_mw H.mm matrix. However, by the following de-
vice, called a "cull", there is very little extra cost at the elimination
stage. First, the factored Q(m)'s are placed in order of their largest prime.
We then pass through the list of corresponding 0 -1 vectors v{m) exactly
onee. Tf v(m}'s last | is not already shared by a neighbouring v{m), this
vector is completely deleted. If it is shared by a neighbour, the two vec—
tors are added (mod2}, thus elimfnating the large prime. (Of course, if
there are k vectors with the same large prime, we add the first to each of
the k¥ -1 other vectars.) After the cull we are left with O- I vectors where

the coordinates corresponding to primes in ﬂ.m 2a

1 are all 0. We thus have
reduced our large matrix to a matrix with only L2 colunms, What makes this
idea werk is that each Q(m) has at most ome prime in (12, H.mmn_. If a Q(m} had
more primes in this interval, the process would probably not be mnnoﬁvewmrmm
in one pass down the matrix, )

To keep the space requirement and running time down, the cull procedure
can be performed on the factored Q(m)'s themselves rather than with Ehe Ve~
tors v(m). Since any Q(m) has at most logn/log 2 prime factors, even if we

had as many as H.M values of Q{m) Hﬁdoua.mn ub the eull, the space and run—

ning time would both be at most nH. G.om nu Nm,.

S0 we see we can cheaply integrate into our algorithm those Q(m)

with a single prime in ﬂ.m. 2a

1 and all other primes in (1,171, The ques-
tion is, how many new Q(m) are now included? We now show that unfortunate-

ly there are not many more.

THEOREM 4.1. Assume that n 48 diviaibls by no prime up to L(n). Let O<a <1
and let Y denote the mmber of m € [1,n] such that Q(m) 78 divisible by at
most one prime, couwnting §~N3@H@nv¢&u in the.interval (L(n)? H.Emmu and

that all other mﬁ.am fastors of Q(m} ave in (1,L(n) %1, Then
- ﬂﬁﬁﬂvlﬁmmu +oﬁ_v.

PROOF. zm.n‘_.mmu.ﬂw have M = _.Ho (n,1%,11], ﬁwmua the notation is mmmwumm in §3.
Thus by Theorem 3.1, M = n-1-(2a)” _. On the other hand, if t < n is divisi-
ble by at most one prime from Qum. H.mmu and all other primes of t are in
(1,L%], then t = Q(m) for at most NEQ.C values of m ¢ [1,n]. To see this,
one uses the argument at the beginning of the proof of Lemma 3.1, making

separate cases for (m,n) = 1, (m,n) > 1. Thus, if p denotes z prime variable,

|
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M < 220 ¥ ¥ @/p,1%)
H.m.AHw“h_Nm.
-1
_ neabuu.ﬁlmmmu M 1/p
L<per?®

Meguu.u._lammul_ - F.rlAMmDI

where we use Theorem 2.1 and (3.5).

* We remark that the resultwould be the same even if we allowed §(m) to have

a nm.

k primes in (L°,L "] for any fixed k and c. Following the proof of Theorem

3.2 but now using Theorem 4.! rather than Theorem 3.1 gives us

“THEOREM 4.2. The empected rumning time for Dizon's algovithm with. the Large

. e o + . . 1+o (1
Prime’ variqlionie H.?um oﬁ.:.. The space requirved s L(n) ( u.

We are not saying that the Large Prime variation is useless. To the con~
trary, those actually using the method (in the context of the continued frac—
tion alpgorithm) find it very helpful. What we are saying is that the idea
only affects the "o(I}" in the running time. In contrast, the remaining vari-

ations we shall discuss actually lower the exponent somewhat.

The Pollard-Strdésen method

The naive way to see if Q(m)- completely factors with the uﬂ.ﬂmm up to
1? is to use trial division. This is in fact the method used in Section 3,
By this method it takes I* steps to ascertain whether Q(m) so factors by
this methed. In [267, SCHNORR suggests using a factorization method of
Pollard in place of tridl division.. Tn fact, POLLARD has two methods [22],
[23] which can find the largest divisor of Q(m) consisting solely of primes

p € L? in time 122

. One method, known as the Pollard=—p method (zo-called
because a certain diagram in the description of the algorithm is in the
shape of a "p"), is probabilistic and might cause some problems im a rigor-
oug proof of the running time of Dizon's algorithm, Thus for our theoretical
analysis It is preferable to use the second method which is deterministic
and fully proved. This method is based on the fast Fourier transform. We
present a simplified version due to STRASSEN [31], also employed by Schnorr.

Let y be a square and let z = ¥y. We shall show that for every integer
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t, the least prime factor of (t,y!) can be found in Dﬁnﬁomm

z + loglog t)
log t logleg t logloglog £} bit operations. Since Q(m) H.uwm at most O(log n)
prime factors, by an iteration of this method we car find the largest divi-
sor of Q(m) composed solely of primes p s L* in time ﬁm\N.

The idea is to write

N
w.unzauv_\_“n._lbu”:
j=1
and te compute each (t,(j=)!/[(j=1)z]!}; the first one of these which is
larger than 1 isolates the least prime factor of (t,y!) in an interval of
length z im which it can be quickly found. Consider the polynomial
z-1

£x = T (=i},
i=0
Then £(jz) = (j=)}!/[(i-1}z]!. Moreover by [32; mmn. 4] all of the f{jz)medt,
j=1,...,2, can be found in a rotal of O(z Hom % log t loglog t logloglog t)
bit operations (ef. [3, Sec. 4.5]1). Since each

(t,2(iz) mod £) = (t, (J=) /[ (i-1)z1)

ean be found in 0(log t(loglog ﬂum logloglog t) bit operations, by [13, exer—
cise 4.5.2,32], they all can Be computed in 0(z log t{loglog ﬁum logloglog t)
bit operations., Finally, when the first of these which exceeds 1 is found,
it takes 0(z) additional trial divisions of 0(log t loglog t logloglog t) bit
operations each ﬁo find the least prime in (t,f(jz) mod t). Thus there are a
total of 0(z G.ow N+Homuom t)log t loglog t logloglog t) bit operations, as
claimed.

To ascertain n_pm effect of uaing the Pollard-Strassen methed in place
of trial division in Dixon's algorithm, recall that if we use the primes up
to L% , then we expect to get H_m,_.a.mmutu values of Q(m}. Previously, for each
{or almost all) Q{m), we taock 2 steps to see if Q(m) completely factors
with the uumﬁmm p £ L%, With the Pollard-Sirassen method, it only takes L? a/2
steps, Thus the total running time is

max{3a/2+(2a) " ,3a}

Choosing a = ¥1]3, we have

3
{
H
]
;
|
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THEOREM 4.3. The expected running time of IMzon's numow@&yu with the Pollard-
V340 (1) vE[3+a (1)
Strassen method is L{n) . The space requirved i L(n) .

REMARK, In [26], SCHNORR obtdins an upper bound of H._\w for thé running time

of Dixon's algorithm with the Pollard-Strassen method,

The early dbort strategy

For the overwhelming majority of the m chosen in Dixon's mHmonwﬁ,E one
mnst spend the full allotment of time, 1? for trial division, H,m\m for the
Pollard-Strassen method, only to find that Q{m) cannot be used. If there were
some way to weed out most of these bad Q{(m) before too much time was u..ﬂ_n.mwl
ed, we could mummm things up. A natural idea that many have had is to gbort
working with Q(m) if at some pre-chosen voh:u it does mot laok too H_.H#mu.w
to be composed solely of the primes below L%. We now make this jdea precise
and show that we can indeed lower the exponent in the running time.

We first consider the ‘mu..numnm.on where Dixon's algorithm is altered with
just one go or no go decision on 2 Q(m). We then generalize to k decisions
for a fixed but arbitrary k. Finally, we combine the early abort strategy
with the Pollard—Strassen method.

If 0 < a,e,® < I, then u.u% Dixon's algorithm with one sarly abort and
parameters a,c,8 we mean the following variation of Dixon's algorithm. As

before we try to factor the Q(m) with the primes up to 12, However, now

Ea l-¢

after trfal division to L°°, if the unfactored portion of Q(m) exceeds u =,

we abort the procedure with Q{(m) and get the next m.
We now ask for the probability that Q(m) will be aborted at 82 and al-
so the probability that Q(m} will not get aborted and eventuzlly completely

factor.

THEOREM 4.4. Let O < a,c,6 < 1 and assume n 18 divistble by no prime

p = L{n). Let M, denote the numben 8». m ¢ [1,n] such that Q(m) has a divisor
m, compozad m.ammwm of primes p < H.ﬁuu and o?o?; ﬂuln. Let M, denote
wrm mmber of m with the eame property and also Q(m} €8 composed solely of

primes p < L(n)®, Then

u

M |nanm.u.L+n.Cu

1 n*L(n)

u.HAuu..nﬁmmu..ulcr.E .ANELIAC .

M,
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PROCF. Using the notation from Section 3, we evidently have .

c _da I-e _1-¢ _Ba
z_w_m.oou ,L .::.H_oop ,a L ],

c _fa I-c _a _Ba
M, 2 1T,@%,L5 DT, @ 70,10,

Thus from Theorem 3.1 we have the lower bounds in the theorem.

We shall find the upper bounds a bit more tedious. Our first task is to
éstimate for a given u the number of m e [1,n] with Q(m) = u. If {u,m) = 1,
we have already seen in Section 3 that this pumber is either 0 or meﬁﬂu,. How—
ever, i€ (u,n) > 1, there is some trouble. Suppose g > 2 is prime, k > 0,

k=2b =0 are Integers and Amwﬁ. Then it is possible to show that

-b
1mn_.r,\w s 1if Aﬁlnwul =1, baeven, b < k
. E.._lw
o , if ¢ q ) =~
1]
sm_”_.axu_ 0 , ifbodd, b<k
o Zudq )
...n_uu.,\mu_u if b =k,
As a consequence we have
(6. 1) 7o1=m I, s n 2/ = 2 aa .
nel1,n] n_a__n BM: .mwu nw__n
Q@) =u ®su(g )

To estimate M, frem shove, note that

1-. -
where t rung over T(n n..ﬂ_ nuﬁmmu and s runs over .H.cpxn.ﬁmm-;. Furthermore,
since all of n's prime factors exceed L, we have (ts,n) = (t,n}. Thus from

(4.1) we have

M < 220 7y < 20 ® P 1A
ts dn

ajt s
tenl™®
=2® 7 T /e
din dlt
ﬂm.puln
-1
< 4@ vm AT @pLeeD
dln dit . )
tenl™C -

. -1
< msmnu M /A (n/d) (log nuﬁlnnmmmu
din

-1
= uhlnnmmwv v—, 1/vd .
dln

-1
AHH.InAMmmV oo+ 1 )
qln /q-1

-1
nﬁlﬁﬁmmmv (1+ hlu\MuEnuu

1A

-1
L c(26a)

7

where we have used Theorem 2.] and (3.5), and where q runs over the prime
factors of n (which all exceed L}.

Similarly we Rave

= 1
K W W_, Hm_”wnuﬂu
Q{m)=ts

-¢ .a _Ba

where t now runs over H?H yL ,L°7) and s runs over Hﬁu\n.ﬁmm

,1) m.m before.
Now we have (ts,n) = 1, so0 that

G2 owy = 2@ py L@y g 109y
. ts t

We shall find it convenient to break up this last sum. Let N be a large
temporarily fixed integer and let e = (I-c)/N. Let
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T(e) = ) o/,

-l. —
teT(n' ¢,12,1%%)

Then from (4.2),

N-1
w, < 2°® ey = 20 4 PO Y inentey - pies @enyen

i=0
< g0 | pu@) zwu 1~ (etie) (262)" y y
‘ 3=0 o aglmelrne T
_teT ﬁu_lnlu.m.rﬂ 1)
< maouv + NEﬁﬂuﬂ zw_ H....ﬁn..+“_.mu (26a). -1 {l-c—(i+1)e) .
i=0

where we use Theorem 2.1. Since the exponent of the summand is least nega—
0, we have from (3.5),

tive when 1 =

v e Ewn@man_ - (l-c-g) (2a)"~
2

Finally letting N + =, so that £ + 0, we have our upper hound for Em

THEOREM 4.5. Dizon's algorithm with one early abort and parameters s, c, B
has axpected running time H.?uin & where

v = max{a+ 6a+ nﬁnmmplu + (1-c) nmmuluu 2a+ (1-¢) nmmuluu 3a}.

PROOF. We shall need, as before, A choices of m for which Q(m) is composed
mOHmwu_. of the primes p < 12, Every such Q{m] obtained in the algorithm has
the additional H.Hovmﬂnuq that there is a divisor m, of Q(m} composed mchH%

of the primes MAH £ and such ﬂmm.n Qm)}/m, = n_ €. By Theorem 4.4, we thus

-1
should expect to use H_m.+_um..~mm.V * (-e) nmmv values of m before 1L good

values are found. For each m chosen we must at least do trial division to

A which takes 1.°2 steps. ‘Thus the rumning time for trial division to 192

'y

is

(4.3) H.m+¢m+nnNmmu!H+Glnu (2a)~

Also by Thecrem 4.4, the expected number of m for which we do not abort at

H.mm a+{1-c) (2a)-1

and continue trial division to L2 #s L . The time for each

:
i
|
1
:
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such m is L®, so the total time for trial division to L?

Gy e

Finally the Gaussian elimination mnmurmmmuﬁuhu..ﬂmnwﬂmom Hmm. ku..mno_ﬂ..

pletes the proof of the theorem.

Thus our remaining problem is to choose the parameters a, e, 8 optimal-
ly. It is mot too difficult to see that the minimum expected running time is
attained when the exponents in (4.3) and Q. 4) are equalized. The optimal

choice of parameters turns out to be
a=7vj7, e¢=1/7, 8 =1f2,

We call Dixon's algoritim with one early abort and this set of parameters
gimply Dixon's algorithm with ome esrly abort, We have

THEOREM 4.6. Dizon's algorithm with one early abort has empected vunning
time L) /2" 78T

oGu The space requirved & L(n)

We now consider the sitiation for more than one early abort. Suppose

(4.5) 0 < munwuau...n i; Cptesate < 13 m_a....nmw..
By Dixon's algorithm with k early shorts and parameters 858 5nas .nwum_ see ...mw
we mean the following, As before, we try to factor each Q(m) with the primes

B

S A However, if after trial -division to L°i? the unfactored portion of

Q(m) exceeds ﬂHloH ~e..—Cj

» then we abort Q(m} and get the next m, Thus for
trial division to be completed to ﬁm. our number Q(m) must .mﬁnnmmmmcﬁ.w pass
k tests. ’

Tn an analogous fashion to Theorem 4.4 we can prove

- THECREM 4.7. Say the procedure <e to follow Dizon's algorithn with k early

aborts and paremeters By€ 5e0eyCpy0y5000,0,. For i=1,...,k Let M, denote
the mmber of m e [1,n] for which Q(m) <s not aborted at H.npvgm...lﬁnﬁvmu.w
Alse let LI denote the mumber of m e [1,n] for vhich not only <a Q(m) not
aborted, but Q(m) eventually factors completely with the primes up to L{(n)®
Then




A;Sf&:ﬁ:.éwﬁfaufi: .
M. = n*L{n) for i = 1,...,k,

1
. - u.Euu-o_Gm_muLJ:-nwﬁmw&:_ - (me;m. me) (28) 4o (1)
+1 .

We remark that, as with Theorem 4.4, the proof of the lower bounds is
relatively simple and follows easily from Theorem 3.1. The proof of the upper
bounds is tedious but essentially relies on nothing more than Theorem 2.1,

For 1 =-1,...,k let
. -1 -1 -1
£, =~ a+0,a+c;(20,8) +...+c, (26,a) +(I=e) - -e)(2a)
and let

£ =28+ (e -..-c) 2a)7

In the same fashion as Theorem 4.5 follows from Theorem 4.4 we have from
Theorem 4.7, )

THEOREM 4.8, The expected running time for Diwon's algoriilm with k early

aborts and parameters YL PRI

max{f_ ,...,£  .,3al+a(l)
L(n) i ket ] .

50 we now try to choose the parameters 85C 51n :nw.m_.. ...mw optimally,
This task, which is a bit messy, can be done by induction on k. Again, as

with k = 1, the optimal choiece occurs when the functions m_....,m are

k+1
equalized. The optimal choice is

. 2
. a= (3 + dy12 e, =22 _ - g =

i
T+l : i ﬁf,_um ? i T+l

We call Dixon's algorithm with k early sborts and this get of parameters

simply Dikon's algorithm with k early aborts.

TBEOREM 4.9. The ezpected muming time for Dimon's algorithm with k early
aborts ta Ly > &I my snose vequived s L@/ BTG e (1)

If we now allow k to slowly tend to = as n >~ =, we call the resulting

alporithm Dixon's algorithm with the esarly aliort strategy.
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THEQREM 4.10. Dixon's algorithm with the early abort strategy has mﬁﬁmnw&
¥3+0(1) ¥4/3+0(1)

rurming time L{n) . The space required €& L(n)

We'thus find that the early abort strategy has the same effect on the rumning
time of Dixon's algorithm as does the use of the Pollard-Strassen method to
replace trial division. We now consider a combination of the two variations.
That is, we use the Pollard—Strassen method instead of trial division and we
use k optimally chosen early ahorts. The rumning time analysis for this al-
gorithm is very similar to the above. We simply replace the functions ‘

L PPRPRYS with g 3e-rsBy, | VHETE

g; = I - mwm\mu i=1,...,k,

By = Tiar — 272
However, if we use Gaussian elimination, which takes H_um steps, we find
that with an otherwise optimal choice of parameters, this step will dominate the
.H,Ebu..um time, But there are asymptotically faster methods for finding a lip-
ear dependency than Gaussian elimination. For example, there is a recent
algorithm of COPPERSMITH and WINOGRAD [8] which can find a linear dependency
among a& set of vectors in AN\NNUN in time bounded by oﬁaﬁu where

r < 2.495548.

In general, we shall say that an algorithm to find a linear dependency among

a set of vectors in AN\NNUN has exponent r, if the rimning time for the algo-
rithe is g °OW
time Omﬁwu and ot generally in' time anm.Im... for any € > 0, It is evident

, Thus Gaussian elimination has exponent 3 since it trums in

that no elimination method has exponent r < 2. We shall say more about the
problem of elimination in Sectiom B. ‘

We now return to Dixon's algorithm with k early aborts and with the
Pollard-Strassen method. If we use an elimination method with exponent
r > 5/2 +-1/(2k+2), the optimal choice of parameters is

-1/2 . 2
k e, m—22 . o =

i
a= (2r-3+ ) . = a —_ .
k27 i Qwium i kel

If we use an elimination method with exponent r < 5/2 + 1/(2k+2), the opti-

mal choice of parameters is
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= _ = = |-u...".
Tz 0 % 8y = & -

We' have

THEOREM 4.11. Using an elimination method with exponent r, the Pollavrd-

Strassen method, and k optimally chosen early aborts, Dizmon's algorithm has
ezpected minning time

Len) ¥ (2r-3+K/ GTM:-:NJ,QE. if ¥ > 5/2 + 1/ (2k+2)

1/2
3k :
L) W @) oy e, 1/ (2k42) .

_Finally, letting k tend ta « slowly with n, we have

THEOREM 4.12. The expected running time For Dzon's algorithm with the
Pollard-Strassen method, the sarly abort strategy, and an elimination method
with exponent r ie

~ -1f2
T R A N T

Ly 27240 (1) , if T =52,

The space requived ia

_ -1/2
1(n)2(25-5/2) +on“ if r > 5/2,

1.(n)"875%a (1) , if <5/

REMARK. The algorithm of Theorem 4,12 with Coppersmith-Winograd elimination

stands as the fastest factorization m“_.mou.mnmﬂ,mou which there is a rigorous

proof. However, we do not advocate Implementing ‘any version of Dixon's algo-
rithm - .n#m interest here is purely theoretical. The remaining factorization
algorithms in this paper have not heen rigorously proved, but the slowest

among them has a heurfstie rumning time that is less than our champion of
Theorem 4,12,
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5. THE CONTINUED FRACTION AIGORITHM

Unlike the other algorithms discussed in this article, the continued
fraction algorithm has actually been used io factor large numbers. For ex—
ample, recently WAGSTAFF (see [3]) factored

4121
116173 -1y

a 49 digit number with no small factors, using the continued fraction algo-
=i thm. ‘ _ :

The only differemce between the continued fraction algorithm and Dixon's
algorithm is in the producticn of the guadratic residues, Tm Dixon's algo-
rithm this was done by randomly choosing values of m m [1,n] and reducing
uwm mod n, omﬂmm.ﬂu..ﬂm Q(m). Tn the continued fraction algorithm, the quadratic
residees are produced m a deterministic fashion. Namely, if wm.\_uu.. is the
j-th comtinued fraction comvergent to Vi, thenm we let the quadratic residue
Q; be defined by
Dwumwawwumwwaonﬂ.
In the Hﬁnbu..nm‘om the mwmouwwwﬂ the numbers ow are not computed from this
definition since the numbers a;, vw grow geometrically. Rather there is a
simple iterative procedure (described in MORRISON-BRILIHART [21]) for pro-
ducing the ou.. and the mwﬁom n.

From the elementary inequality (for n nmot a square)

%

ol
1

1

K ik S
LILI

<

it is easy to see that
G.1) -2/f < Q; < 2/,

Note that-Q, might very well be negative, while in Dixon's algorithm the
quadratic residues Q(m) are always non-negative., This minor problem is
treated By :wu..mw the "prime" -1 iIn the facterization of Q; if Du.. <0, In
the final elimination step of the algorithm, when we find ou..ﬂ...uau..w whose
product is a square, we use the "prime" ~1 an even numher of times - just

like every other prime.
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The chief mmdmbﬂmmm. that the continued fraction algorithm has over
Dixon's algorithm can be found in the inequality (5.1). Since’ _ow_ < 2/,
it should be easier to factor Q; using 2 set of small primes than it should

be for a random Q(m), which is usually much larger.

The chief difficulty in the theoretical analysis of the contipued frac-

tion algorithm lies in the deterministic nature of the Q;- How cen we be
sure that the Q, behave as ordinary numbers do in the interval [-2+h,2/&]7
In fact, if the period of the contfnued fraction for vn is short, then there
can only be a few differemt values of Du,.. (This phenomenon will usually doom
the continued fraction algorithm. However a very simple device can be used
in this sitoation: use vPn rather than vn where £ is a small square-free
integer - gsee [21].)}

' Further complicating things is that the Q; do not behave completely
like ordinary integers. First of all, they are probably not uniformly dis-
tributed in [-2/n,2v0]. However it is likely they are at least roughly uni-
mmwawwmmu..mnumb:nmm. For more on this, see KNUTH [14]. Also from the equation

a; lvu..u.u Q.

;» We see that if p is an odd prime and pJn, then

. < I
plQ; implies C)

< Hm. we there—

Since (n/p) = 1 usually for roughly one-half of the primes p
fore might expect Q; to less likely factor with these primes than would a -
random integer in the imterval [-2vR,2vn], However, if (n/p) = 1, then P
probably has en ephanced chance of dividing Q;- For a random integer m, the.
chance that plm is 1/p, But if (nfp) = 1, there is a heuristic argument that
the chance Eow is 2/(p+1), or almost twice as much, To see this, we assume
that the uMIH possible values of the pair a,; mod p, wu..ﬁomﬁ (note that the
0, 0 pair canmot oeccur since Am. w.v = 1) are equidistributed. But for each
woulumﬂo <m.u.ﬁm of b, Bomw. Eumum are precisely 2 values om a. Ec.:. for which
v_w. - b2 ;8 Thus nﬂm chance that Eo should be MQL:@ IC = 2{(p+1). For
the prime p = 2, a similar amalysis gives the chance 1/3 for N_o..

In order to make a heuristic analysis em ﬁ..m. continued fraction algo~—

rithm, we make the following

HYPOTHESTS 5.1, There is a conatant ny mmar that €f n = n,, we have the fol-
lowing. There is some ‘tnteger L « [1 Hnm uu such that the period for the
continued fraction for YIn is at least _u: 1oo . For thia integer £ and for
any a, 1/10 < a < 1, the mumber of primes p < L()® for whick v | fn and
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(fn/p) =1 sm nw least n(Lm)?) /3, If a. ;/b; 8 the i-th convergent to VIn
and Q; m. - b} ? then the Q; are %mgm%& in [-2VIn,2/Tn] with respeot
to a mm%g@x %Hﬁnwsa: of them having all of their prime factors below some
point as ave all of the integers in [-2/Tn,2/Tnl.

For simplicity, in the following we shall always assume £ =

As with Dixon's algorithm we trial divide each Q; with the primes p <12,
except now we only use those p £ 1? for which (n/p) = 1. ¥When we have enough
completely factored Q;, as with Dixon's algorithm we use an elimfnation step
to assemble integers x, y with NN = %m mod n. It is certainly possible for

= tymodn and thus for (x+y,n) to fail te Be a non~trivial factor of m.

We now make & heuristic assumption that this unfortunate event will not occur
too often. Since we need to make similar mmmcam.ﬂ.wonm for each of the varia-
tions of the continued fraction zlgorithm and for the later mHmoE..anm consi-

dered we make a more general mmmchﬁm.o?

" HYPOTHESTS '5.2. B.wmp& 8 a constant o, such that ¢f n = n, and if n:m_ of the

atgorithms in Sections 5, 6, 7 i8 run Ngﬁ enough 80 wmﬁ.w 1 + [log u”_ patrs
%, ¥ ave assenbled with % = wuaom n, then at least one pair will satisfy
x # tymod n.

. o, 2 2 p e .
Since a random pair x, ¥ with ¥ = y modn satisfies x # *ymodz with

H.Howm.‘uu..H.u..nu« at least 1/2 (for composite n) and since M =1 n:mv“_.ommu. < o=,
the Borel-Cantelli lewma suggests that Hypothesis 5.2 is plavsible. Shanks
has noticed, however, that for certain u such as Nmo mOl 1, the nature of
the quadratic residues om. can comspire to produce many trivial pairs x, y
with unm = wmﬂcm n., Thus in the case of the continued f£raction algorithm and
its variations, we interpret Hypothesis 5.2 to Emmn that some non-trivial
pair x,’ ¥ will be found azmong the first 1 + _Uow nl paizrs ﬂ.mﬂ we work with
the continued fraction expansion for vfa for some £ = How n. That is, if we
are having very bad luck m.u..nmmnm a non—trivial pair =, y, we discard all
‘caleulations, choose another multipliez-f,-and mnmhn.d.mouwm..wm anew, We conjec—
ture thet this drastic procedure will prohibit:Shankae?: observed conspiracy,
but we do not advocate its use in practice.- .

Thus by Hypotheses 5.1.and 5.2 wa need to o.m...nm,.mﬂ e completely factor-

ed ou...m. By Theorem 2.1 we have
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~1
‘enm\muﬁmv - \mﬁlgmu ,

a+(4a)”]

80 that by Hypothesis 5.1 we must generate L values of Q; in order to
find the requisite L% of them which are composed solely of the primes p = L2,
The time to generate a Q; is Oﬁ_.om...muu. The time used to trial divide a Q;
with the primes p < L* for which {afp) = 1 is, by Hypothesis 5.1; L%, The
Gaussian.elimination step has a running time of H.wm. Thus the rumnning time
for the continued fraction algorithm is

H.Emhamm.v Qr.wulu 23a} .

Thus the optimal choice for a is 1/vVB. We have

THEOREM 5,1, Asauming Hypotheses 5.1 and 5.2, the rumning time for the con-

tinued fraction algorithm s L(n) _\M.u.ocv. The space requived is

Hmsu_\ N+oQu.

REMARR, This result was already known to SCHROEPPEL 287 and MONIER [20].
However fn their analysis they assumed Theorem 2.1 without proof. Using an-
elementary lower bowmd estimate for Y(x,y) that is weasker than Theorem 2.1,

RNUTHE [13] gives 12 as an upper bound .for the running time,

We now consider the effect of the variations discussed in Section 4 on
the running time of the comtinued fraction algorithm, For a description of
the variations, we refer the reader to Section 4.

THEOREM 5.2, Asewming Bypotheses 5.1 and.5.2, the running time for the eon—

tinued Praetion algorithm with Large Prime ©8 L(a) \m+oﬁ5. The space vequir—
ed iz H_.Anuu\.\miuﬂv.

RFMARRS, This result follows in a fashion similar to Theorem 4.2, Although

the variation does not change the exponent in the running time, it has prov-
ed useful In practice. WUNDERLIGH [347, [35] claims a runming time of Hg
for this .mmnwmﬂ,bn. The reason for the difference is that Wunderlich assumes N
contrary to the spirit of Theorem 4,1, that nonmu...nmﬂwum Q. with at most one
prime in ﬂ_muﬁnmu and all other primes “_..ﬂ.CvH_m.H_ is not Ewn_p different from
considering Q with all prime factors in Q.H_mm”_.

—————— —

time spent on each Q; is L
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-1
at(4a
As we have argued above, we expect to use L (42) .

values of ow in
the implementation of the continued fraction algorithm. If we replace trial
division up to L? with ‘the Pollard-Strassen method (see Section 4), the

m\M. Thus the total running time will be

uuwmw

H_Emwm 3a/2+(4a)

Choosing a = 1/v6, we have

THEQREM 5.3, .bmmsgm:m Bypotheses 5.1 and 5.2, the vunning time for the con—
tinued fraction algorvithm augmented with the Pollard-Strassen method is

10y T2 | gy ennoe vequived is nm) 230

/3

REMARKS, SCHNORR [26] obtains L'" as 2 running time upper bound for this
variation. Again, the reason for this difference is thathe uses m\ﬁmﬂlw_vmm.wﬁ form
of Theorem 2.1. SCHROEPPEL [28] achieves a rumning time of L for the
continued fraction algorithm with the Pollard—p method, He assumes Theorem

2.1 without proof and also the Pollard-p method is assumed.

We now consider the continued fraction algorithm with k early aborts
and parasmeters a, n_.....nwr m_.....mw (which satisfy (4.5)). uw. this we
. ioss ia
mean that a value of Q. is aborted if after trial divisiem to L 17 the wm-
3 t(l—eq-a.ueq)
factored portion exceeds n . :
Section 4 except that we now take advantage of the fact that each _o.m_ < 2v/n,

. The analysis is the same as in
The fumetions m_ P, wmw+u are replaced by mﬁu. ve .m.wi where

- - -1 _
F; = a+Ba+ nwﬁkmu..mu H._....._..uwQ.EHnm.u L (I-e =...~ e ) (4a) !

"

fori=1,,..,k and

By =284 (-cy- e —c) Ga)

We have :

THEOREM 5.4. Suppose 1/10 < a < 1, ey > 0,0y 2 o, eyttt < 1, and
0 <8< ... < 8, < 1. Then assuming Eypotheses 5.1 and 5.2, the rurning
time for the continued fraciion algorithm with k early aborts and parcmeters

. max{F1,esFrpts3at+o(l)
3Cpreeealys mHu.-.um.w. Zg L{n) 1 »Fhtl .
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The optimsl choice of parameters occurs when the m.m. are all equal. This

choice is

“j2 e o o i
s By, . = .
_n+_ * 1 nw.v.._vm i

= {6+—

With this choice of parameters, we call the algorithm the continued frae-

tion algorithm with k early .m.r_anm.

THEQRFM 5.5. hmmg.swﬁ Hypoiheses 5.1 and 5.2, the continued fraclion algo-

oy irsyriTi)
rithm with k early aborts has rurming iime L{n) 3/2+1/(2k42) +oQu

. The space
2/Y6+2] ?+C+oﬁ5

required ©s L{n)

Letting k + = slowly with n, we call the resulting algorithm the con-

tinued fraction algorithm with the early abort strategy.

THEQREM 5.6, Assuming Hypotheses 5.1 and 5.2, the continued fraction algo-

3/2+0(1)

rithm with the early abort strategy has mpming time L(n) . The apace

required 18 L(n). 2 m+om5.

When we combine k early sborts with the Pollard-Strassen method, the

aznalysis of the running time requires that we change the functions Flaees

....mw.m_ to nm....“.mwi where
G. ~F, -~+08.a For i =1 k
1= F -7 RERFLE

As in Section 4, the elimination method we use mow plays 2 role. If we use
an elimination method with expoment r > 5/2 + :._Amw..+5u then an optimal
choice of parameters is
Gros-ty"1/2 2ia’ o o i
» i L) I .
T+l i ch.lvm i kHl
If we use an elimination method with expoment ¥ = 5/2 + 1/(2k+2), then an

optimal choice of parameters is

“1/2 2ia i
ke I bree RS -

We have

|
W
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THEOREM 5.7. Assuming Hypotheses 5.1 and 5.2, the runming time for the con-
tinued fraction algorithm with the Pollard-Straseen method, k optimally
chosen early aborts, and am elimination method with exponent r is

e -1/2
LTS/ e T o) 5, 1
1/2
(5/4+1/f (4k#4)) "  “4+0 (1) 5 1
L({n) e, Ifrsg+ o .

Finally, letting k + = slowly with n, we have

THEOREM 5.8. Assuming Hypotheses 5.1 and 5.2, the running time for the con-—

tinued fraction algorithm with the Pollavd-Straseen method, the early abort
alrategy, and an eliminaiion method with exponent t is

Y12/ thr—5) +o (1)

L{n) if r > 5/2,

SCLLION if ¥ < 5/2.
The epace required is

i&xﬂﬂﬂwﬂacv if * > 5/2,

L(m 5o () if r s 5/2.

6. SCHROEPPEL'S LINEAR SIEVE ALGORITHM

Several years ago SCHROEPPEL [28] advanced a variation of the comntinued

fraction algorithm that did away with continwed fractions! His idea was to

find another means of producing residues near Yo that had the adventage that ’

they could collectively be factored by a sieve, much like the sieve of
Eratosthenes, Unfortunately, these residues are not specifically quadratic
residues. This requirement is arranged fer in the elimination step. Im this
section I shall describe Schroeppel's algorithm and give a heuristic rumning
time analysis. In addition, I shall describe a variation that gives an im-
provement in the running time.

Let K = [/n) and consider the function

5(4,B) = (K+A4) (K+B) -n,
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where A, B are integers much smaller in absolute value than K. Then S(A,B)
is pnot many times bigger than vo. Specifically, if o £ B are positive con—

stants and
lal 1%, (Bl <1¥, Acs,
then
1s(8,B)] € 022418+ 2) = nl/ 2B,

so that |8¢A,B)}] < .n:N+oCu. We would like to find pairs bm.. wu.. such that

:Wu_ mﬂbp‘wuwu..v is a square, as im Dizon's algorithm and the continued frae—
tion algorithm, But now, in addition, we want each distinct value of bu .
...ubw. m___.......ww to be assumed an even number. of times, Then

\'4 . . . .
m, 1 Qn.rf..v Qm.mwu..u is also a square. So if we can find such a fortuitous col-

H“_m.oﬁ_..au. of pairs .m,wv mwu then we can fird integers x, y such that Nm mu«wanm .
Thus, as before, we have a good chance for (x+y,n) being a mon-trivial fac-
tor of n. .

To £ind such 2 collection of pairs bu... mw we try toe factor the S(A,B)
with the primes wp to L? by a sieve procedure described below. To each
mﬁbouwcu composed solely of the primes p < Hm“ we associate a G- 1 wvector
with

v £, ra® + o™+ f14

coordinates as follows. The first coordinate is 1 if mgc.mﬁ_v <0 and 0
otherwise. The next (L") coordinates are given by the parity of the expon-—
ents of the primes p £ L in the prime- factorization of mn.?oum% . The last
0021 + [LP1 + 1 coordinates are all 0, except for the Agth and B;-th co-
ordinates, which are 1 (umless bo =B, in which case this cocordinate ia 0).
If we can find V+ 1 such vectors, they must he linearly dependent. A linear

dependency corresponds to a set of pairs A, By, 1= 1,00,k such that

uﬂu
k k
.m_ mo»u..,wwv and wm_ nwgu..v R+uu...u
are both squares.

If A= bo is fixed, then mgo.mu is a linear fumctiom in the variable
B, Thus for fized bo. the set of mm.?oumu for ._PO < B = LB can be factored by
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a sieve. What this means is that if plS(A,,B), then ﬁ_mgoumi%v for every
integer k and if p is prime and p [ n, then Hu_mnbo.w_u implies B' = B+ kp for
some k. Thus once we f£ind one B with meohmu divigible by p we can easily
mark every mnbo.wu which is divisible by p. The time it takes to de this is
essentially just the number of such multiples of p, which is Aﬁmt»ou\.n. If

a

we repeat this procedure for each p < L¥, rhe total time required for a fix-

mmbo is

wPony T 1/p ~ @P-a)10g10g 17,

| .m.MH.m,
o

Now summing over all _bou <L B

That is, in time H_nm.m. we can ascertain all of the A, B such that S(A,B) is
composed momeu*.om the primes p < 12, We have ignored the problem of find-
ing the first B such that w_mnbo.uu. but this can be quickly done since it
just involves solving a linear congruence mod p, In addition, we have ignor-
ed the problem of finding the exact exponent on p in the prime factorization
of mgcumv . This can be fotnd by either sieving with the higher powers of p,
by trial division by the higher powers of p on those mgm.wu which are mul-
tiples of p, or a combination of both approaches, The running time with any
of these E.mﬂ_pomm does not change our zbove calculation of H.p..._.m.

We would like to know rmﬂ many completely factored values of S(A,B) we

will find, We now make a reasonable assumption about the nunbers S(A,B).

‘HYPOTHESIS 6.1. The numbers |S(A,B)1 for |A] < L)%, A s B < L@)® ave dio-

tributed with vespect to a certatn fraction of them having all of thein
prime factors below seme point as are all of the iniegers in
T.u:mﬁ?up;n&miz. ,

With this hypothesis, we therefore expect that the probability that
S(A,B) completely factors over the primes up to i? is

-1

-1 ’ :
o+h-(4a) _completely factored

by Theorem 2.1. Thus we expect a total of L
max{a, B}

values of S(A,B). However, we must produce V+1 = completely fac-—

tored S(A,B}'s. Thus our parameters a, o, B should be chosen sc that

(6.1) o+ B - (4a)”)! = maxfa,gl.

. P . +
» we have the total time spent sieving is AL
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An iomediate consequence of (6.1) is that
o +B=a+ valmw_..

so that B = 1/2 and, a fortiori,

max{a,g} 2 1/2,

The value 1/2 can be attained by making the choice a = g = 8 = 1/2, which -

also satisfies (6.1).

For the elimination step, we must work with a matrix of size (V+1} x v

where v = [2exta,B} z H__\m. Thus this step has rumning time at least H.H.\NNH_

if we use an eliminatrion method with exponent r. Again the choice a2 = ¢ =

B = 1/2 allows us to attain the laower bound. We have

THEOREM 6.1. Assuming Bypotheses 6.1 and 5.2, the rumning time for Sehroeppel 's
algorithm with an elimination method with exponent r 18 L(n) r/2+0(1).

REMARK, This result was also obtained by MONIER [20] who gave separate run-—
ning times of L for the sieve step and ﬁm\m for the elimination step (using
Gaussian elimination). Monier assumed our Theorem 2.1 without proof.

SCHROEPPEL [28] claims a running time of L, but he ignores the alimination

step.

Of the three speed-up variations discussed in Section 4 only Large Prime
is applicable with Schroeppel's algorithm, .But, for the same reason as be-
fore, this varlation momm. not lower the exponent on the rumning time. In any
event, . this variation, as are the others, iz afmed at reducing the time it
takes to obtain completely factored ﬂmmwmﬂmm. In Sechroeppel's algorithm, how—
ever, the readblock is the elimination step. A successful variation would Be
one that can ‘speed up elimination.

‘The (V+1} x V¥ matrix that we work with is very sparse - most entries are
0. In fact, in each row at most 2 entries smomg the last [T®] + [LF] + 1 are
non-zero., It would be nice to take advantage of this fact in the elimination
procedure, but it is not apparent how to do this. If there were just ! non—
zero entry, rather than 2, we could proceed with a cull as described in Sec-
tion 4 in comnection with the Large Prime veriation. We now describe an al-
ternative method of assigning a vector to a completely factored 5(A,B) that
will indeed let us use a cull, To each m@d.mcu composed solely of the primes
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p < LZ we assign a 0- | vector with

IR
h

e

VR s+ @ILIe D ¢ @F12 P340

coordinates as follows. The first _+ihmv coordinates are as before, The
next 2[1%1+ 1 coordinates are all 0 except for the >o|ﬁr coordinate which is
1. Similarly the last [L¥]+ nw.mu + 1 coordinates are all 0 except for the
mol.._p coordinate which is 1.

With this different method of assigning 0- 1 vectors to factored
S(A,B}'s we can use a cull. Tn fact in each vector, exactly one entry among
the last [1%] + _”H.m”_ + 1 entries is non—zero. Thus we first order the rows
so that the last [1%] + [LP1 + | colums appear in echelon form, We then
make one pass down the matrix. If a B-value (that is, a non—zeroc entry in
the last %1 + ﬁH.m”_ + 1 columns} is not repeated in a neighbouring row,
then this row is culled out. If it is repeated, say k times, then the first
such row is subtracted from the other k-1 rows and is then culled out, Thus
max{z,p}

in time L we can eliminate the last [1*] + _”H.mu + 1 colums from our

matrix. If we now choose a, @, B so that B > max{a,a}, this ides could pro-

max{z,8}

duce a met speed-up for the algorithm., (To achieve the Eime L for

the eull, the D=~1. vectors must be treated as sparse vectors as was remarked

in comnection with the Large Prime wvariation of Dixon's algorithm,)

. . ok
The running time for the sieve step will still be L 8

time for the cull is, as we have seen, H.m. The running time for the elimina-

remax{a,ol

. The running

tion step in the smaller matrix is L . Thus the total running time

for Schroeppel's algorithm with a cull is
(6.2) H_Bm.xﬁa._.mqnm.ﬂnw

However, if we insist on V'+1 = é completely factored values of
53(A,B), we do not get an jmprovement, That is, if we still have (as in

(6.1)) .
=1
o+ B - (4a) = B,
then

(6.3) mak{a,a} > maxia, (42} '} > 1/2.
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Thus from (6.2), the running time would still be at least HH\N.
But do we really need V' + 1 completely factored S(A,B)'s? After the
cull procedure we actually need only W+ I vectors, where

w4 xad ¢ @i+,

So the question is now, how many completely factored S(4,B)'s do we need to
be assured (or nearly assured) of having W+ 1 vectors left after the cull
procedure. From (6.3) we may as well assume that o < QfmulHu for otherwise
our running time is again at least H.H._.m. Thus the number of factored S5(A,B)'s
is LY vhere

= S T

8

If we have LY objects randomly placed im " cells and if we cull out

‘one object per occcupied cell, how many cbjects do we expect to be HmEmwnl
ing? In fact it is WH_N.Tm 48 we Dow see.

LEMMA 6.1, Let y, x be positive dniegers and let S denote the set of fune-
bions £ 11,2,...,5% + {1,2,...,x}. If £ € 8, let Y(€) = y- |Rng(E) |, where
Bng(f) denotes the image of £. Then with the uniform distribution on S, the
expected value of ¥ is

¥y - x + x(1 |Nluuw

and the variance ig
x(1=% ) - x(1-22H7 4 P a-2 H - g- P

In particular, if v = ® where 0 < 8 < | 25 fimed, then as x + =,

1, 38-2 2

(D + 0T a0 2 2,

J1 281
=g x
PROOF. If £ € 8, let X(f) = x~ |Rng(f)] = x-y+¥(f). It will be more con-
venient for us to compute the expectation and variance of X. Note that the
variance of X is clearly the same as the variance of ¥ and E(X) = x-y+E(Y).

Kl

129

Let Nu..mmv =0 if i ¢ Bng(f) and 1 otherwise. Then X = M_ + .. ...Mu..n. so
that .

EX) = E(X)+... +E(X) = 2E(X)) = x(1 -x 1Y
and our assertion about E(Y) follows. Alsc

EED =

M|

)
E(X.X.}.
i=1 j=1 *3

2. _ -1,y ce s gs i -1,y
Now mnNm.u tmﬂﬁwu = (1=x )7. Algo if i # j, then mnNu..N“._u = (1-2x ).
Thus i

WANMV = NQ[NIHV% + O...M..Hu Dlmunluuw

and the rest of our assertions follow from some simple calculaticns.

m_ § = v/B, we thus see that after
the cull procedure we almost surely have .H.M;«...m vectors left. Thus we should
26 _ W+1 = H_Emwﬁmwnw. That is,

Applying the lemma with y = LY, x = L
choose a, o, B8 so that L
26 + B =~ nmmvn_ = max{a,a}.

Thus 2¢ + § - Ammu.l_wq.. go that

o+ 8= (2a)

Hence the exponent in the runming time, given by mm.m.uu satisfies

max{a8,ra,ra}l = max{o+g,ra} > max{(2Za)~ .Hmu. > vT]Z.

Moreover, ¥r/Z can be attained by choosing .
a=a-= _\_\wM. B = (r-1)/V2r,

With this cholce we have our other requisite as well, namely ¢ % Q.,mu

Note that the space requirement is apparently ﬁﬁH+mV\\.|u the zsize of
the matrix before the cull. But, in ‘fact, less space is required. Until now
we have made the "matural” choice of fixing each A and sieving over the B's

~ natural because it makes sense to sieve over as long an interval as
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possible, If instead we fix B and sieve over the A's then all of the factored

S(A,B)'s with a given value of B are found at one time and the cull procedure

can be immediately applied to this smaller set. Thus the space required is
Y2/r

the size of the matrix after the cull, or L » (This is also the size of
the interval sieved,)

THEOREM 6,2, Assuming Hypotheses 6.1 and 5.2 and that the funetion £ that
takes a completely factored $(A,B) to B iz psewdo-random with respect to the
property of Lemma 6.1, then the yurning time for Schroeppel’s algorithm with

a eull and with an elimination method of exponent r 48 L)' 7270, m,
VZJreo (1)

space required ia L{(n)

REMARK. The Large Prime variation cannot be profitably used with Schroeppel's
algorithm with a cull, Tndeed, this strategy Hmn.E..ﬂmm a cull of its own and
a cull on one set of data destroys the ability to perform 2 cull on another
set of data.

7. THE QUADRATIC SIEVE AICORITHM

The advantage of Schroeppel's linear sieve algorithm over the previons
algorithms is that a gieve process is substituted for trial division or the
Pollard-Strassen method. The disadvantage of Schroeppel's algorithm, how-
ever, is that the residues produced are mot quadratic residues, The task of
producing quadratic residees is given over to the elimination step which
then enters the picture as an important time bottlenmeck and as a large user
of space. In this section I shall describe what T call the quadratic sieve
algorithm - it mwmwmm the advantage of Schroeppel's algorithm, but not the
disadvdntage. .

Briefly, the quadratiec sfeve algorithm can be described as the case
A = B of Schroeppel's algorithm. That is, if K = [¥a], we let

S(A) = (R+A)? -,

so that S(A) = 5(4,A) in the notation of Section 6. Then, ‘quite evidently,
8(A) is a quadratic residue mod n. These quadratic residues, as with the
nonwu..ﬂnmmmﬂmnwwonmwmow.wﬂ.ﬁn.mumnnHmmlnnﬁmwo<mu\m.Hﬁmmnnuu...m_h_M H.U«

then ’

151 < /AP +2) = /P,
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What is not so chvious is that the S5(A) can be mmnﬂoﬂmm with a sieve,
but this is nevertheless the case. In fact, the nopmmn_._m?.m values of any
polynomial cen be factored by a sieve-type procedure. We describe the pro-
cedure for our particular vc“_.u..poﬁ...w..u. 5(A). For each prime p, we find the

solutions of the congruence
(7.1} 8(A) = Omod p.

umnE.._mm of the nature of S(A), (7.1) has solutions precisely when (n/p)=1,
pln, or p = 2. Say (n/p) = 1., Then (7.1) has two solutions A (p)s buﬁuu.
(These solutions may be found by the probabilistic method of BERLEKAMP [2]
or LEAMER [17] in time bounded by 0((log p) nu or by trial and error in nu...,Bm
bounded by 0(p(log p) ®3.) Then {7.1) holds if and only if

A= b._ (p)modp or A= b.nmuu mod p.

Thus if we have a list of comsecutive values of 5(A), we can m_._:.(nwn_f% find
all of them which are multiples of p by marking every p-th one starting at
m‘oEm &) = A {p) mod p and by marking every p~th one starting at some
A, = bu.@u mod p. Thus, our sieve procedure requires two passes down the list
for each p for which {n/p) = I. Divisibility by higher powers of p can be
decided, as in Section 6, by ‘either trial division, sieving by higher powers
of p, or Aa% a combination approach. .

mw.%i“uos we work with the primes B < 1? where 1/10 < a < 1, As m.m._. Sec—
tion 3 we assume that n is divisible by no prime p < .. Say we consider the
3(A) for fAl =< H_d. The problem of deciding the correct power of 2 in each
S(A} is simple — this can be done by a sieve procedure or trial division in
time H_w. 8o say now 2 < p < L%, We solve (7.1} for each such p, finding when
(n/p} = 1 the two mo.“_.nnwou.m f (P, bmﬁwu. The time required for this step is

either L? or H_mw

mmvmu&.b.m on:whether we use a clever or stupid method (we
shall agsume the latter). We then use. the above-described sieve to determine
for each such p and each A with 14| < H.m. the correct exponent on p in the
prime “mmn_.”oﬁw.nmnwon of S(A). As in Section 6, the time required m.m.
3 Prp = 1P,
p<t?
(n/p)=1

provided there are at least a few small primes p for which (ufp) = 1.
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The question now, as it has been in all of our previous algorithms, is

how many of our residues are composed solely of the primes p < )

HYPOTHESIS 7.1. There is a constant N, such that ©f n = n,, we ke the
following. For any a, 1/10 < a < 1, the mumber of primes p < Lin)? for which
pln and (nfp) = 1 s at least w(L(n)?)/3. For any b > 1/10, the numbers
|SCA) | with |Al = H.?v_u are distributed with vespect to a certain fraction
of them having all of their prime factors below some point ag are all of the
integers in [1, _\unmwnnv +2)].

s.wnw this rﬁvonﬁmmmm and Thecrem 2.1, we can indeed predict how many
of the L dmwﬁmm of 8(A) are composed solely of the HuHHHmm p < 2, Namely,

-1
there are H. - (42) such values.

The elimination stage of the algorithm is exactly the same as with
Dixon's algorithm or the continued fraction algorithm. We thus wish to

choose b so that we have L? factored values of S(A). Thus we choose
: -1 i s . :
b = a+ (4a) ', If we use an elimination alporithm with exponent r, the run-

ning time for the quadratic sieve algorithm will be

Hﬂmwﬁmm. a+(4a) ! sral

. .2 -1
The space requirement is L ? for the matrix and ﬁm._.Em& for the sieve,

However the latter requirement can be eased by breaking our long interval

into smaller intervals of length H_mm. There is a certain start-up cost for

sieving a new interval, but this is mhmm. Thus without changing the running

time we can thus get by with a space requirement of H.Nm. We choose

= 1/¥4(x~1)

and obtain
THEOREM 7.1. Assuming Hypothesee 7.1 emd 5.2, the rurming time for the qua—

dratic sieve algorithm using an elimination method with _exponent r is
HAEH.\_SHI +a(l) 1/vVe- +onC

« The space required is L{(n)

REMARES. The function r/vir—4 = H+oﬁn.h|mvmv as r + 2. Thus nrm._.m exponent
is not very semsitive to changes in v, In fact the running time exponent
for. the quadratic sieve algovithm ﬂ...ﬂw Gaussian eliminatfon is only sbont
4% higher than the exponent with Coppersmith-Winograd elimination. There

!
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are several possible variations of the gquadratic sieve algorithm, but none
of these change the exponent in the rumning time. Among’ these are the Large
Prime variation discussed in Section 4, the use of a multiplier £ so that
fn’ is a gquadratic residue for more small primes than is n, and the use of
the polynomials 8;(A) = (Lival+4)” - i’n for various small i,

8. ELTMINATTCN ALGORTTHMS

In mmnn..ron 4 we said that an mwmoﬁpﬂg for finding a linear dependency
among & set om vectors in AN\MNV hag exponent r i1f the rumming time is
r+o(l)
k
ponent. That is, an algorithm:for mwltiplying  two kxk matrices has exponent

r if the number of arithmetic operations involved is #H+on3 . {Note that

. A more usual notion though is that of a matrix wultiplicatioe ex-

when working over Z/27Z, the number of arithmetic operations is proportiomal
to the ronming time.) In this section we show that a matrix multipliecation
algorithm of exponent r can he used to construct an elimination algorithm
of exponent r. ) .

But first we say a word about matrix multiplication. The naive algo-.
rithm clearly has exponent 3. About 12 years ago, Schonhage introduced a
matrix multiplication algorithm with exponent smaller than 3. His method
is based on a tricky way of M.HE“_.ﬁmﬁHquﬁm 2x2 matrices over a mon-commutative
ring using only 7 E_._Hﬂ.u..wu.“_..nmwwoum and a bounded number of additions. Iterat-
ing this precedure for larger matrices gives rise to an w“_.mcHwnrH with ex—
ponent log7/log 2 = 2.807. This result began a long series of better md
better algorithms. The current champions are COPPERSMTTH amd WINOGRAD [8]
who have shown n_um existence of an m“_.mnﬂwwmnp with exponent smaller than
2,495548, Por the history before this development, the reader is referred
to the survey of LAZARD [16]. .

So say now we are working with a particelar matrix multiplication algo-

rithm M that requives M(k) arithmetic operations to multiply two general kxk

matrices. Suppose S is a set of k+ ] vectors each with k coordinates in Z/27Z,

I£ T c B, let A, denote the matrix whose rows are the vectors in T.

Suppose m < k, m is a power of 2, and A is an wxk matrix. In AHO,
HOPCROFT, .and ULLMAN .[1], Fig..6.4, an algorithm is described td find matri-
ces L, U, P where L is w*m unit lower triangular, U is w<k upper triamgular,

and P is a kxk permutation matrix, such that

A = LUP,
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provided A has rank m; if A has rank < m, the algorithm will indicate this
fact as well, Moreover, if M is used for all matrix muliiplications, the
running time will be 0(M(k)). By embedding A in a possibly larger matrix,
we' can drop the restriction that m be a power of 2.

By using this algerithm on PH. for T a proper subset of §, we can find
wherher the vectors in T are independent or dependent. Thus with a binary
search, we can £ind in 0(M(k)log k) avithmetic steps a subset Tj < S and a
vector v € 5~T,, such that T, is independent but T, 1) mdouv is dependent,
Thus Yo isg “_..ﬂ the span of Ty-

Say T, = Aduu.....dﬁu... Our problem is to find P in #/2% such

that XVt +NB<E = Vg» that is,

_”u_nH . NEubHo = v

But from the decomposition .WHo = ﬁodomo.. which we can find f£rom the above
algorithm, this equation is easy to solve. Since 2y is a permutation matrix,
its inverse can be found in time 0(k) (see [1], p.239). Moreover, since U

0
is upper triangular, a solution j 1eeeyy EO

|
_UJ . u«H“_dc = qoﬁo s
if a solution exists (and it will in our case), can be found by a back sub-

stitution technigue in oQ,..MV arithmetic operaticons. We can similarly solve
_uhu . NEuH.o =[yy-.. uﬂE”_.

In summary, we can find the linear dependency we need for our integer
facterization algorithms fn O(M{k)log k) arithmetic operations. Thus if
.Eﬂnu - #H+Dnuv . b

ing algorithm also is k

, then the rumiing time for the corresponding dependency find-
r+o(l)

9. PRACTICAL CONSIDERATIONS

We remarked im Seetion 1 that an asymptotic rumning time apalysis is
by no means the last word on an algorithim. In this section I speculate on
the "real world" applicability of the various ideas in this paper.

To begin, I am douhtful that a substitute for Gaussian elimination

should Be used. Because we are working with matrices over #/27Z, computers

(
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can be programmed to handle long strings of entries as a single multi-digit
object when one row is subtracted from another, Thus, mu".ﬁrccmr Gaussian eli~
mination reguires nw.m steps for a kxk matrix, the coefficient ¢ can be made
mmwnww small. Perhaps a more important problem than speeding up the elimina—
tion step is to find a convenient way of solving the space problem, In each
algorithm discussed, the space constraint is caused by the problem of work-
ing with the final matrix. Perhaps the research in fast matrix multiplication
can help with this problem since these ideas involve iterative procedures
where only pieces of a matrix are needed in core at any given time.

I am also doubtful that the Pollard-Strassen method should be used to
replace trial division in the.continved fraction algorirhm, However use of
the Pollard-p method is a distinct possibility. The asymptotiec time analysis
should be the same. The reason we used the Pollard-Strassen method in our
discussions is because it is fully proved and deterministic.

I am optimistic about the early short strategy either by itself or sup-
plemented with the Pollard—p method. Samuel Wagstaff and I did a statistical

analysis of the data computed during his 70 hour factorization of

S121_)

atl-nie?

using the continued fraction algorithm with Large Prime. We predict that if
everything were left the same except that after trial division to 100 a value
of ow gets shorted if the unfactered portion exceeds EGu then the running
time would have been only 20 hours. In further fine tuning of the early abort
strategy, Wagstaff and I are currently achieving asbout a 10 fold speed up
over the straight continued fraction algorithm with Large Prime for numbers
of about 50 decimal dipits.

In 361, WUNDERLICH suggests progreuming the continued fraction algo-
rithm on a parallel processor such as the Fnglish ICL-DAP. In particular

he suggests that the pair a,modn, Q; be computed on a sequential processor

and then a large batch of Dw_m he trial divided in parallel. The assumption
is that the mmHom n, aw generation only accounts for a small percentage of
the total rumming time, so that it is not too important to Improve this part
of the program. While this is undoubtedly true asymptotically, in practice
the mu..ﬁ.om n, Q; generation dees take 2 significant amount of time, say 5 to
10%. Moreover, if the early ahort strategy is utilized, then less time is
spent on average with a pair mm.Eom n, Q;, so that the time spent generating

the pairs may take even 30% of the total running time. There are ways to
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speed up the generation of these pairs (for example, the costly reduction
" of a; medulon can be delayed so that it is done only whén i = 1,2 mod 100),
but it may be advantageous to find a way to produce the a, mod n, ou.. pairs
in parallel, Usimg an idea of SEANKS [2913, it is in fact possible to cheap-
ly jump ahead in the continued fracticn expansion from Q; to o.m where j=~ 21
when i ig large. Thus, an alternative to working with an exotic parallel pro-
cessor might be to simultaneously implement the continued fraction algorithm
on & large bank of unextraordimary computers, each sequentially working on
a different interval of comsecutive terms in the continued fraction expan- .
sion.
noﬂmmuﬂwﬁm the two sieve algorithme, I feel that the quadratic sieve
iz superior to the linear sieve. Even so, T am not sure that the quadratic
sieve is practical. The main drawback mow the quadratic sieve as compared
with the continued fraction algorithm appears to be the size of the guadrat-
fc residves S(A). Most of the |5(A)] are about n:m.fm

But for a fixed n, say about _cmo oT _cmo. £ may well be as large as 1/6.

/3

the continued fraction alporitbhm's quadratic residues Q; alyays satisfy
CARESE

residues of course makes it less likely they will completaly factor over a

vhere € + 0 as n + =,

- . 2 :
Thus the quadratiec residues would be mear n for such n. In comparison,

and some are much smaller. A larger magnitude for the quadratic

set of small primes. On the other hand, an advantage of the quadratic siave
algorithm over the continved fraction algorithm is that with the former al-
most all of the steps can be performed with single precision numbers, Indeed,
when sieving, every time there is 2 "hit" with a prime p (or with a prime
power ﬂLU» instead of dividing p into S8(A) to produce the quotient, one can
instead subtract log p from Ho.m 5(A) where these logs are only singly pre—
cise. If after several subtractions, the value of the logarithm left is eclose
to 0, then §(4) has been completely factored, while if the value is below a
certain bound, then S(A) has factored but for a single large prime which can
be found by division. The overvhelming majority of values of S(A) are not
completely factored; for them no division is necessatry. GERVER [10] has re-
cently used the quadratic sieve algorithm to factor a 47 digit composite
factor of 3%%5 4 taking 70 hours on an HP3000, It remains to be seen if
fine tuning the algorithm can produce better results. A final rémark is that
it would be very easy to simultaneously use many computers with the quadra-
tic sieve algorithm (at least for the sieving step) since each computer can

sieve over its own interval.
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