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THE NUMBER FIELD SIEVE

CARL POMERANCE*
Dedicated to the memory of D. H. Lehmer

ABSTRACT. The most exciting recent development in the integer factorization
problem is the number field sieve. It has had some spectacular successes with
integers in certain special forms, most notably the factorization in 1990 of the
155 decimal digit number 2512 4 1. For arbitrary hard integers, it now appears to
threaten the quadratic sieve as the algorithm of choice. In this paper the number
field sieve, and the ideas behind it, are described.

1. Introduction

The problem of factoring integers is a good one to test our mettle as mathe-
maticians. First, it is as fundamental as a problem can be. Second, while having
the patina of centuries of history, the problem has taken on a new urgency for its
connection with public-key cryptography. Third, it is a very hard problem, but
not so hard that we do not occasionally gain an insight and make an advance.
In this paper I would like to describe the background and main ideas of one of
these advances, the number field sieve of John Pollard.

Twenty years ago, at the dawn of the continued fraction factoring algorithm of
Brillhart and Morrison, factoring hard 50-digit numbers seemed barely possible,
while 100-digit numbers could not even be dreamed about. Ten years ago, when
my quadratic sieve factoring algorithm first began to enjoy some success, we
indeed did dream of 100-digit numbers, and within a few more years, they were
falling regularly. Today, with the number field sieve, our dreams have moved on
to the hard 150-digit numbers.

Other advances have enabled us to factor broad classes of formerly unattack-
able numbers, and in the process have changed our thinking on which integers
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466 CARL POMERANCE

should be considered as hard to factor. Among these developments are the ellip-
tic curve method of Lenstra and certain optimal cases of the number field sieve
itself. One of these optimal cases is the Fermat number Fy = 2°!2 + 1. Despite
the fact that it has 155 decimal digits, it is particularly well suited to the number
field sieve. It was factored in 1990 into three prime factors — see [15].

To be sure, some part of our success in factoring has little to do with new
algorithms and theory, but rather with dramatic improvements in computers
and their availability. On the other hand, these advances in computing resources
helped to influence and shape the kinds of algorithms that were being developed.
For example, almost all of the newer methods are easily distributable to scores
or more of unextraordinary computers and most of our greatest successes were
accomplished by doing just this.

Several of the key papers on the development of the number field sieve are
collected together in the book [13]. Included there is Pollard’s original note
whose informal distribution started the whole ball rolling. The number field
sieve has also been suggested for use in computing discrete logarithms in the
multiplicative group of a prime finite field (and perhaps more generally). See
[11, 25] for more on this.

Thanks are due to Joe Buhler, Arjen Lenstra, Hendrik Lenstra and Walter
Gautschi for their critical comments on an earlier version of this paper.

2. Congruent squares

For which odd numbers n > 1 does the congruence z2 = y? mod n for integers
z, y force us to conclude that we must have x = +y mod n? Since 2 = y? mod n
is equivalent to n dividing (z — y)(z +y), clearly it is just odd primes n with this
property. Perhaps not so interesting as a primality test, this observation can be
quite useful in factoring n. For if 2 = y? mod n and x # +y mod n, then the
greatest common divisor of z — y and n is a nontrivial factor of n.

It is a simple matter to compute the greatest common divisor of two given
integers by means of Euclid’s algorithm. This has us replace the larger integer of
the pair with its remainder upon division by the smaller integer. If this remainder
is 0, then the smaller integer is the greatest common divisor, while if it is not 0,
we may repeat the process.

A wide class of factoring algorithms thus set out to find two squares z2, 3>
that are congruent mod n. It seems difficult to force the condition x # +y mod
n, which is necessary for splitting n. Thus, the factoring algorithms in this
class either use randomness or “pseudorandomness” to count on at least a fair
proportion of the congruent pairs of squares produced to lead to a factorization.

Thus, perhaps we should revise the question above and ask for which odd
numbers n > 1 do we have at least as many pairs of integers z, y with 2?2 =
y? mod n and x # +y mod n as we have pairs of integers x, y with = £y mod
n. Let us restrict our attention to pairs of integers z, y with (zy,n) = 1. The

problem is thus reduced to counting solutions to 2 = 1 mod n. This congruence
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has 2’ solutions if n has ! distinct prime factors, so that the answer to our revised
question is: for odd numbers n divisible by at least two distinct primes.

Hence, finding pairs of congruent squares may not be a good way to factor
n if n is a power of a prime. However, perfect powers are easy to factor. For
example, to factor a square, we can first find a real approximation to the square
root, round to nearby integers and see if one of them squared is our number.
The same idea works for higher powers, and for a given number n, we only have
to check exponents up to log, n, since if n = m* where n > m > 1 are integers,
then k = log,, n < log, n.

In summary, the problem of factoring n for n odd and composite can be
reduced to checking if n is a nontrivial power and, if not, ﬁndlng solutions to

= y2 mod n in a random or pseudorandom fashion.

3. Multiplying congruences

/

How then are we to find solution pairs z, y to 22 = y? mod n? We exploit
the ideas that being a square is a multiplicative condition and that congruences
mod n may be multlphed Thus, if we have integers s,, t; for t=1,...,k where
Hs,—z , [1t; = ¥? and each s; = t; mod n, then z2 = y2 mod n.

Suppose we have a very large set of pairs s;, t; where each pair has s; =
t; mod n. Is there a nonempty subset Z of subscripts ¢ such that Il;cz si and
[;cz t: are both squares? And if there is such a set Z, is there an efficient way
to find it?

To make matters a little simpler, let us ask these questions just for one side of
the congruence. Given integers si, ..., s, is there a nonempty set Z C {1,...,k}
such that [];.; s; is a square? And can we find such a set Z?

For any integer s # 0, consider the “exponent vector” for s. This is the vector
v(s) = (v-1(s), v2(s), v3(s),...) where the subscripts are —1 and the primes, and

where
s = (_1)‘0_1'(8) Hpvp(s).
P

The exponent v_; (s) is taken to be in {0, 1}. For a given integer s, all but finitely
many of the exponents v,(s) are 0. Note that [],.; s; is a square if and only if

Zv_l(si), Z va(s4), Evg,(si), -

i€l ’ €T i€l

are all even numbers.

With this observation, we can reduce our question about squares to one on
linear algebra over the field Fy of two numbers. Thus, given s, ..., sk, we first
find the exponent vectors v(s1), ..., v(sk), next we reduce them mod 2 so that we
have a sequence of vectors v(s;) mod 2,...,v(st) mod 2 over Fo. Our problem is
to determine if these vectors are hnearly dependent and, if so, to find a nontrivial
relation. Since there is just one nonzero scalar, a linear dependency takes the
form 3, 7 v(si) mod 2 = 0. This corresponds exactly to [];.; s; being a square.
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4. Smooth numbers

We have been a little vague about the dimension of the vector space in the
preceding discussion. Clearly, the exponent vectors v(s) mod 2, as s runs over
the positive integers, span an infinite-dimensional vector space. Why then should
we expect v(s;) mod 2,...,v(sg) mod 2 to be linearly dependent?

In general, we should not expect this to occur. However, if the integers
81,..., S8 are chosen randomly from among the integers of a certain size, and if
k is suﬂimently large, then it will be highly likely that the vectors v(s;) mod 2
will be linearly dependent over F; that is, that some nonempty set 7 exists with
[,cz si being a square.

Let us formulate a precise problem. For z, k positive real numbers, say
we choose random integers sy, g, ..., ) independently and with the uniform
distribution from the interval [1,z]. Let Pr(z, k) denote the probability that
some nonempty set Z C {1,...,[k]} exists with [],.; s: a square. How large
should k be so that Pr(z, k) is greater than 1/2?

Let us prove the following result.

Proposition 4.1. For each € > 0 we have

Jim Pr(z, exp((1 + £)v/2logzloglogz)) = 1.
L=

Probf. We shall say a positive integer n is 2-smooth if no prime factor of n
exceeds z. Let ¢(z, z) denote the number of z-smooth integers n in [1,z]. Let

(42) z=-exp(v/(1/2)logzloglogz), k= exp((1+ €)y/2logzloglogz).

Say we choose sy, 2, . . ., 5[] from among the integers in [1, z] independently and
with the uniform d1str1butlon Then the expected number of ¢ < k with s; bemg
z-smooth is

[k]
(4.3) V@)

From [5], we have that

Y(z,z) = o/ulloONv a5 7 oo,

where u = log z/log z = y/2log z/loglog z. Thus,

P(z,2) = z - exp(—(1 + o(1))v/(1/2) log z log log z) = z /2"t

as  — 0o. (That is, the particular choice of z above satisfies ¥(z, 2) ~ z/z.)
Thus, the expression in (4.3) exceeds

k z 1+e

T zlte
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for all large . In particular, from the binomial distribution, the probability that
there are at least z values of i < k with s; being z-smooth tends to 1 as x — oo.

So let us assume that there are at least z values of i < k with s; being 2-
smooth. Clearly, for a z-smooth number s, the coordinates of the exponent vector
for s are all O for primes larger than 2. By truncating these 0’s, we have the
exponent vectors lyingin a (m(z) + 1)-dimensional space, where 7(2) denotes the
number of primes up to z. But we have at least z such vectors and z > w(z) +1
for all z > 3. Thus, the exponent vectors (reduced mod 2) are linearly dependent
over [, and, as we saw in the preceding section, this leads us to a nonempty set
of indices ¢ where the product of the s;’s is a square.

This simple proposition (or rather, its proof) is crucial for understanding the
role of smooth numbers in combination of congruences factorization algorithms.
We are presented in some manner with random or pseudorandom integers s;
in some range, and we wish to find a nonempty subsequence whose product is
a square. Proposition 4.1 not only tells us we are likely to be successful by a
certain point, it suggests an efficient way to find such a subsequence. First, if
the numbers s; all lie below z, we take z by (4.2) and discard any s; which is
not z-smooth. When we have found sufficiently many values of 7 with s; being
z-smooth, a linear algebra step over [, on a system of size about z allows us to
find the sought-after subsequence.

I conjecture that Proposition 4.1 is best possible in that if “1 +¢&” is replaced
with “1 — ¢”, the limit in the Proposition is 0.

5. How to recognize smooth numbers

If we are presented with many randomly chosen integers s < z, and if we
choose z by (4.2), then only a few such numbers s will be z-smooth. In fact, as we
saw in the last section, the probability that s is z-smooth is about 1/z. If we are
to use the above ideas in an efficient factorization algorithm, we shall need to have
an efficient “smoothness test,” that is, an algorithm that can quickly recognize
the z-smooth numbers among many random (or pseudorandom) integers.

The first method that comes to mind is trial division, taking about z steps
to recognize whether s is z-smooth. This is the smoothness test used in the
continued fraction factoring algorithm. The “early abort strategy” (see [21])
does not complete the trial division on a particular number s if at increasing
points a factored portion of s does not exceed an increasing threshold. On
average, this method takes about 2!/2 steps as a smoothness test, though some
smooth numbers may be lost. If trial division in the early abort strategy is
replaced with the “fast factorials” method of Pollard and Strassen (see [21]), the
combined method takes about z1/4 steps on average.

The elliptic curve method factors smooth numbers much sooner than numbers
with several large prime factors. Used as a smoothness test, it takes 2° steps
to recognize a z-smooth number. More precisely, the elliptic curve method is
expected to take exp((1 + o(1))v/2log zloglog z) steps as z — oo. This is what
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we conjecture. What can be proved is that it recognizes most z-smooth numbers
in exp((log z)3/6%¢) steps (see [18, 23]). Recently, Lenstra, Pila and I showed
that a certain hyperelliptic curve method is expected to factor any z-smooth
number in exp((log 2)%/3+¢) steps (see [17] for the beginning of the proof).

©  The elliptic and hyperelliptic curve methods are not practical subroutines
in current combination of congruences algorithms, though they are of interest
in a rigorous treatment of factoring. It is not inconceivable, though, that the
elliptic curve method, perhaps augmented with an early abort strategy, could
be of practical use in a combination of congruences algorithm. And perhaps the
algorithm of [6] is a candidate.

If the numbers s are truly random, then we know of no better smoothness
tests. This is true even for certain pseudorandom sequences, such as in the
continued fraction factoring algorithm. However, there are other pseudorandom
sequences which quite nicely lend themselves to a very simple smoothness test.

The sieve of Eratosthenes is well understood as an efficient method of finding
all the primes to some point. In this sieve composite numbers are crossed off
until only primes remain. Let us look at these numbers that are crossed off.
They are marked as many times as they have prime factors used in the sieve.
Thus, smooth numbers will be crossed off many times over, and we might use
this phenomenon as a way of recognizing them.

To make this idea a little more precise, one should not count the number
of times a number is crossed off, which treats each prime factor of the number
with equal weight, but rather higher primes (below z) should carry more weight
since they make up a larger portion of the numbers that they divide. We weight
each prime in the sieve (the primes up to z) with its logarithm (say to base 2
and rounded to the nearest integer). Marking a location with a prime amounts
to adding the approximate logarithm of the prime to a counter at the location.
When the count at a particular location exceeds some threshold, the number
corresponding to this location is reported as a candidate z-smooth number. Since
reports are few, we can afford to use a slow method, such as trial division, to
check the candidates.

This is all well and good if the numbers s are consecutive integers up to some
point. But what about more general sequences? A moment’s reflection reveals
that we can use this sieve idea whenever the numbers s are consecutive values of
a polynomial with integer coefficients. If we consider at least z consecutive values
of this polynomial, then the time spent sieving is only about O(loglog z) steps
per value, the O-constant depending on the choice of polynomial. (For z tending
to infinity, this O-constant tends to the number of distinct irreducible factors of
the polynomial.) Moreover, as we have seen, these steps are particularly easy
computer instructions such as adding low precision integers.

The comparison between 2 steps per candidate with trial division and loglog =
steps with sieving is striking. Our problem has us searching for z-smooth needles
in a huge haystack. Trial division would have us examine every straw by hand to
see if it is a needle. In contrast, when sieving is appropriate, it is as if we could
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pass a strong magnet over the haystack fed over a rapidly moving conveyor belt,
with the needles jumping to the magnet as they pass by.

6. The quadratic sieve

-

In §3 we described a general factoring scheme where one has at hand many
congruences s; = t; mod n and somehow ﬁnds a nonempty set Z of indices i where
[liczsi and [1;cz ti are both squares, say z? and y2. Then z2 = y2 mod n and,
as we saw in §2, this may lead to a nontrivial factorization of n via the greatest
common divisor of x — y and n.

Consider the congruences t2 = t? — n mod n, where ¢ runs over consecutive
integers. Since one side of these congruences is already a square, the problem is
reduced to finding a set 7 of values of t where [],c,(t* — n) is a square. The
search for 7 is reduced, via the ideas of §4, to a search for values of ¢ with t2 —n
smooth. Since this function of ¢ is a polynomial with integer coefficients, we can
use a sieve, as described in §5, to locate rapidly those numbers t with 2 — n
smooth.

This simple algorithm is the quadratic sieve factorization algorithm. As we
saw in §4, the number k of values of ¢t that must be examined depends on z, a
bound for the size of the numbers 2 — n that we hope are smooth. By taking ¢
in an interval near 1/n, the numbers 2 — n are O(n!/2+¢), so that the number k
in §4 is about exp(+/log nloglogn).

This expression is in fact the approximate heuristic complexity of the qua-
dratic sieve algorithm. To be sure, one must also account for the complexity of
finding a linear dependency among the exponent vectors mod 2. By using the
sparse matrix methods in [7, 8, 12, 20, 24, 26], this complexity is the same as
the sieving time; that is, about exp(v/lognloglogn).

A problem with the quadratic sieve is that the numbers t2 —n grow as t moves
away from /. In particular, if T values of ¢ are considered, all we can say about
the size of the numbers t2 — n is that they are O(T'\/n). The penalty for large
values of t2 — n is that they are less likely to be smooth.

This problem is neatly mitigated by an idea of Peter Montgomery (see [22]).
He has us replace t above with at + b, where a,b are integers satisfying b =
nmod a, || < a/2. Then the polynomial (at + b)> — n has all of its values
divisible by a. If also a is a square, then we are only concerned with whether

fos(®) = =((at + 8% — )

has smooth values. The advantage is that there are many choices for a,b, and
thus many polynomials that one may use. If one wishes to sieve 2M values per
polynomial, one chooses a near \/2_n/M and sieves over an interval centered at
0. A simple computation shows that f, 5(t) = O(M+/n), so that the numbers
we hope are smooth do not grow as we sieve over more and more numbers. We
just take more and more polynomials f,3(t). This is the multiple polynomial
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variation of the quadratic sieve. Another version of this idea was proposed earlier
by Davis and Holdridge [10].

The size of the numbers we wish to find smooth in the basic quadratic sieve is
about /n exp(v/Iognloglogn). This drops to about /nexp (1+/Iognloglogn)
in the multiple polynomial version. Both expressions are of the form n!/2t¢ so
both versions of the quadratic sieve have about the same heuristic complexity.
However, the drop to a smaller “c” makes a big difference in practice.

This thought underscores an important principle in combination of congru-
ences factorization algorithms: The smaller are the auxiliary numbers that you
hope to find smooth, the faster the algorithm will be. As we will see, in the
number field sieve, the auxiliary humbers are about exp((log n)?/3); that is, they
are much smaller than /n. This is why the method is so exciting and has so
much potential.

7. The number field sieve

Suppose f(t) is a monic polynomial irreducible over Z, suppose m is an in-
teger with f(m) = Omod n and a € C is a root of f. There is thus a natural
homomorphism ¢ from the ring of algebraic integers Z[a] to Z/nZ, where p(a) =
m mod n. That is, if g(t) is any polynomial over Z, then ¢(g(c)) = g(m) mod n.

Of what interest to us are f,a, m and ¢? Well, suppose we could find a set
S of polynomials g over Z such that [] ¢ g(e) is a square, say B2, in Z[a] and
[I;es 9(m) is a square, say y%, in Z. Let x be an integer such that ¢(8) =
z mod n. Then ,

=B’ =0 =¢ | [[o(@ | =[] 9(m) =y* mod n.

geS geS

That is, we have found a pair of squares that are congruent mod n and we may
attempt to factor n by computing (z — y, n).

The reader is an expert now and may be a bit suspicious. This scenario will
be promising only if we can find choices for g € Z[t] such that g(m) is small and
so likely to be smooth. And how in the world are we to combine various numbers
g(a) to get a square in Z[a]? Do we have a notion of smoothness in Z[o], and
can we factor g(a) into primes'to get an exponent vector?

Let us first attack the question on g(m), for it is much easier. Suppose we
wish our polynomial f(t) to have degree d. The size of d as a function of n
will be discussed momentarily, but for now we assume that d > 1 and n > 24’
Before the polynomial f is chosen, we do the somewhat surprising thing of first
choosing the integer m. We let m = [n!/¢]. We write n in the base m, so we
find integers ¢, c1,...,cq in {0,1,...,m — 1} with

n= cdmd + cd_lmd_l +---+4+¢p.
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It is easy to show we must have ¢4 = 1. Let
£O) =t 4 cant?™ 4+ co.

Then f is a monic polynomial in Z[t] and f(m) = n. Is f irreducible? It
probably is since most primitive polynomials over Z are. In fact, though, if
f is not irreducible then we are in luck. Using the algorithm of [14], we can
factor f into irreducibles in time polynomial in logn, and if the factorization is
nontrivial, by substituting m for ¢, we get a nontrivial factorization of n (see
[3]). In this event we cancel plans to spend a lot of effort splitting n, for we have
just succeeded! '

So let us assume that f is irreducible over Z. Suppose we take for our poly-
nomials g(t) the linear polynomials a — bt, where a,b run over small coprime
numbers with b > 0, say 0 < b < B, 0 < |a] < B. Since m is about n!/¢, we
see that the integers a — bm can be rather small compared with n, especially if
we do not have to take B large and we can choose d with some size. Further,
it is easy to see how a sieve might be used to pick out pairs a,b with a — bm
being smooth: we fix b and sieve over a, then choose the next b and sieve again,
continuing until we exhaust the choices for b. '

Well, I have put off the questions on how to produce squares in Z[a] long
enough. If Z[o] happens to be a unique factorization domain, we can get a
glimmer of what it means for a — ba to be a smooth element, namely it factors
into “small” primes. But we cannot count on any special properties of Z[a].

Consider the norm map N from the field Q(a) to Q. If ¢ = a3,03,...,04
are the conjugates in C of o, and g € Q|t], then N(g(a)) = Hf=1 g(a;). The
norm map is multiplicative and it sends algebraic integers to Z. In particu-
lar, N(Z[a]) C Z. We thus have the following simple result: If S is a set of
coprime pairs (a,b) of integers and [], ) es(a — ba) is a square in Z[a], then
12 5)es N(a — ba) is a square in Z.

Can we at least arrange for this necessary condition to hold? Note that for
any numbers a,b € Q with b # 0, we have

Wia—t0) = TT(a b = [ (& - o) =147 (%)

=a®+cg_1a% b+ -+ c1ab® ! + cob®.

Thus, the norm of a — ba is a polynomial with integral coefficients in the two
variables a, b.

For integers a, b, let us say that a — ba is z-smooth if N(a — ba) is z-smooth.
So now it should be clear how we may find a set S of coprime integer pairs
(a,b) such that [[, s N(a — ba) is a square in Z. Namely, we use a sieve
to detect pairs a,b where a — ba is z-smooth, create exponent vectors from the
prime factorizations of the corresponding norms, and use linear algebra over [y
to create a square.
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But is it good enough for our purposes that the product of the norms is a
square? Consider the following example. In Z[i] we have the elements 2 + i.
They both have norm 5, so their product has norm 52. However, their product
is 5, which is not a square in Z[¢]. It should be clear what it is we are throwing
away when we look at norms. A particular prime number p in Z may factor into
several prime ideals in an algebraic extension, each having norm a power of p.
The norm map lumps all of these prime ideals together. Is there any way for us
to tease them apart?

Let us look a little more closely at how we would sieve the integers N(a — ba)
as a,b run over integers. If we are trying to detect pairs a,b where a — ba is
z-smooth, then we only consider prime numbers p with p < 2. Let us denote
by R(p) the set of integers r € {0,1,...,p — 1} with f(r) = 0 mod p. Then for
a,b coprime, p is a divisor of N(a — ba) if and only if a = br mod p for some
r € R(p) and b # 0 mod p. Thus, the prime factor p of N(a — ba) comes with a
unique signature, a particular number r of R(p).

This idea suggests that we may create somewhat more complicated exponent
vectors when a — ba is z-smooth and a,b are coprime. For each prime p < 2
and each r € R(p), define the function v, ,(a — ba) to be the exponent on p in
the prime factorization of N(a — be) if a = br mod p, and define v, »(a — b) to
be 0 otherwise. We also include a coordinate for the sign of N(a — ba), so our
exponent vectors v(a — ba) will have 1+ 3° ., #R(p) coordinates.

Is it true that if [[, )cs(a — ba) is a square in Z[a], then } ., ;s v(a —
ba) mod 2 is the zero vector over F3? Yes it is true, but the proof is not trivial.
With some effort, it is shown in [4] that the exponent vector map is well defined
on the subgroup H of Q(a)* generated by elements a — bo: with a, b coprime
rational integers, and in fact this map is a homomorphism. Thus squares have
even exponent vectors.

Is the converse true? That is, if 3, ;)5 v(a — ba) mod 2 is the zero vector,
must [], yes(a — ba) be a square in Z[]? Unfortunately no, as the following
two examples show. In Z[i], consider the associate elements 2 + ¢ and —1 + 2i.
Since they both have positive norm, they have the same exponent vectors: all
0, except vs 3 = 1. The sum of their exponent vectors has all even coordinates,
but (2 + 4)(—~1 + 2¢) = i(2 + 1)? is not a square in Z[i]. Or consider Z[5:]. If
the element 5¢ is written as @ — b - 53, then a = 0, b = —1. Thus 0 € R(5) and
vs 0(5i) = 2 (since N(5¢) = 25 = 52). But 5i is not a square in Z[5i] (nor is it
the associate of a square).

Although the answer to our last question was no, in some sense it should not
be considered an emphatic no. The condition that 3, ;ycsv(a — ba) mod 2 is
the zero vector takes us a long way towards concluding that [], ;)cs(a — ba)
is a square in Z[a|. There are just a few small obstructions keeping us from
this promised land, and in the next section we shall show how a certain simple
device allows us to overcome these obstructions. For now though, let us assume
that this problem is solved and try to put the above ideas together to form a
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factorization algorithm.

Recall that we wish to construct two squares, not just one. We accomplish
this with still more complicated exponent vectors. For a coprime pair a, b with
both a — bm and a — ba being z-smooth, we consider the vector v(a,b) which
has the usual exponent vector v(a — bm) in its first 1 + 7(2) coordinates and the
exponent vector v(a — ba) in its next 1+ 3_ ., #R(p) coordinates. If we find a
set S of coprime integer pairs (a, b) with Z(a p)es v(a,b) mod 2 being the zero
vector, then both [], ;yes(a — bm) will be a square in Z and [], 4 cs(a - ba)
will be a square in Z[a] (modulo the few obstructions still to be discussed), and
we have fulfilled our main goal.

What is the size of the numbers we wish to find smooth? These numbers are
the integers (a — bm)N(a — ba) where a,b run over coprime integer pairs with
0 < b < B, |a] £ B. We have already seen that we would like to have d, the
degree of our polynomial, be large to make m small and so make |a — bm/| small.
The norm form N(a — ba) contains the coefficients of our polynomial f, which
are bounded by m, so it may seem that we should like to make d large to keep
N(a—-ba) small as well. However, N(a—ba) is a homogeneous polynomial in the
variables a, b of degree d. Thus, when a,b are at the upper end of their range,
N(a — ba) may well be as large as (d + 1)B%n!/¢. When multiplied by a — bm,
the absolute value of the product may well be as large as (d + 1)B4+1n2/¢, This
shows that we should not choose d too large.

There is a delicate aspect to our problem concerning the parameter B. We
will be sieving over approximately B? pairs (a, b), so surely this will be a lower
bound for the running time. Thus, we would like to take B small. But if we do
so, we may not have found enough pairs (a,b) with (a — bm)N(a — ba) being 2-
smooth. Further, the larger we take B the larger the numbers (a — bm)N(a — ba)
get, and so the less likely they are to be z-smooth.

Nevertheless, it is more or less routine to solve this optimization problem. Let
€ > 0 be arbitrary but fixed, let 3 = (8/9)1/3 4+ ¢ and let

B = exp(B(logn)'/3(loglogn)?/?), d =[(2/8)'/*(logn/loglogn)'/3].

Then the expression = (d + 1)B%t1n?/¢, which is a bound for the numbers we
wish to find smooth, is less than exp((88 + €)'/2(logn)?/3(loglogn)!/3). By
Proposition 4.1, it will likely suffice if we have exp((1 + 6)v/2log zloglog x)
such auxiliary numbers, for some fixed § > 0. But this expression is less than
exp((1288/9 + 2¢) /4(log n)/3(loglog n)?/3), if we choose § as an appropriate
function of €. Note that (1288/9 + 2¢)1/4 < 28, so the B? auxiliary num-
bers we have should indeed be sufficient for the task at hand. Thus, an upper
bound for the heuristic running time of the algorithm is about B2, that is, about
exp((64/9)'/3(log n)'/3(loglog n)?/3). (Note that the number (8/9)1/3 in the ex-
pression for 3 is chosen as the real root v of (128v/9)!/4 = 2v and that d is
chosen so that B¢ ~ n?/¢, The smoothness bound z is that given by (4.2); it is
about B. Some of the inequalities given in the above argument hold only when
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n is sufficiently large depending on the choice of €. For a fuller treatment of the
heuristic complexity of the number field sieve, see [4].) \

It should be noted that the exponent (64/9)'/2 in the heuristic complexity of
the number field sieve can be reduced using an idea of Coppersmith [6]. However,
this improvement is not likely to prove practical until the numbers factored
become very large.

8. Obstructions

As we just saw, in the number field sieve we hope that numbers (a —bm)N(a—
ba) are smooth, where a,b run over small integers. A bound z for the size of
these numbers is about exp((logn)?/3), where n is the number we are trying to
factor. The smallness of this bound, when compared to the analogous bound of
about /n with the quadratic sieve algorithm, is so encouraging that it gives us
great motivation to overcome any remaining obstructions.

To overcome these obstructions, however, we should at least have an idea of
what they are. One problem comes from the fact that the ring Z[a] may not be
the full ring O of integers in Q(a). Thus, even if E(a,b)e s V(a—ba) mod 2 is the
zero vector, we may not have H( a,b)es (@ — ba)O being the square of an ideal in
O. Even if it is the square of an ideal I in O, it may be that O is not a principal
ideal domain, so I may not be principal. Even if I = () is principal, because
O may have a complicated unit group, it may be that H(a,b)e sla —ba) # 42
There are two more problems, but let us deal with these three first. v

These three obstructions deal with three algebraic objects: O/Z[q], the class
group of O, and the unit group of O. These three groups are each related
to a different aspect of the “obstruction group” G. To describe G, first take
the subgroup H of Q(a)* mentioned above. Then G is the subgroup of H of
elements with even exponent vectors modulo the group of squares in H. In the
obstruction group every element other than the identity has order 2, and so it
may be thought of as an F, vector space. In [4] it is shown that the dimension of
this vector space is less than logn/log2. Surely, such a low-dimensional vector
space should not be hard to deal with!

In (1], Adleman suggested a particularly neat device for dealing with this
vector space. Suppose [ is large compared with logn/log2, say | =~ 3logn/log2.
And say we have ! “random” multiplicative maps x1,...,x: from the 2-smooth
members of Z[a] to {1,—1}. A necessary condition for [, ;cs(a — ba) to
be the square of an element in Z[a] is that each H(a,b)e s xi(a — ba) is equal
tol for s = 1,...,l. If we write v;(a — ba) for the member of {0,1} with
xi(a — ba) = (—1)¥(a=%) then we can enlarge our exponent vectors by these
[ coordinates and get an even stronger necessary condition for H( apyes (@ — ba)
to be a square. Since the three obstructions described above have dimension so
much smaller than I, and since the maps xi,...,Xx: are random, it should be
highly likely that we overcome these three obstructions.

So where are we to find these multiplicative maps x1,...,x:? We can take
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these as quadratic characters modulo primes exceeding our smoothness bound z.
In particular, if ¢; is a prime exceeding z, and s; is an integer satisfying f(s;) =
0 mod gi, f'(s;) Z 0mod ¢;, then we may take for xi(a — ba) the Legendre

symbol (“—";—f_’i) (provided that a # bs; mod g¢;, which will be the case if a — ba

is z-smooth). We may consider these choices of x; as pseudorandom, and in fact
with these characters we can overcome the three mentioned obstructions.

There are just two problems left, one minor and one major. The minor prob-
lem is that even if [, y)es (a—ba) = B2 for some B € O, it may be that § ¢ Z|a).
We solve this by multiplying the square H( ab)e s(a—bm) with the square f’ (m)?
and multiplying 82 by f’(a)?. It is not hard to show that for any § € O, we
have f'(c)8 € Z[a), so f'(c)?B? is indeed the square of an element of Z[a).

So now assume that f'(a)? e pyes (a—ba) = * for some v € Z[a]. We have
worked long and hard to get to this point. But we cannot attempt to factor n
unless we can actually find the element v of Z[a]. This is the major problem
mentioned above. Note that this problem also occurs with the quadratic sieve
when we locate a set of integers 7 with [],.,(t — n) being a square. But in
that case, our exponent vectors give us the prime factorization of the square and
so the prime factorization of the square root. Moreover, the square root need
only be computed modulo 7, so this is not a difficult problem.

We still have exponent vectors for our numbers a — ba, but unless we are
working in a unique factorization domain it is not so easy to use them. A brute-
force method is to multiply out the huge product and somehow take its square
root. More subtle methods for solving the “square root problem” are discussed
in [4, 9, 19]. Suffice it to say that a subroutine for doing this can be fashioned
so that asymptotically this phase of the algorithm takes a negligible amount of
time compared with sieving and the linear algebra with the exponent vectors. In
practice though, this problem is not trivial, though it should not be considered
as a barrier to running the algorithm — see [2].

9. The special number field sieve

For some numbers n it may be possible to find a polynomial f (t) for use in
the number field sieve where f has especially small coefficients. For example, in
the case n = Fy = 2512 + 1, we may take f(t) = t> + 8 and m = 2'%. Then
f(m) =8n =0 mod n.

When f has such small coefficients, the complexity of the algorithm is reduced.
In particular, when the coefficients of f have negligible size, the bound (d +
1)B¢+1n2/2 on the numbers we wish to find smooth, where d is the degree of f
and B2 is the size of the sieve, is reduced to (d+1)B%*'n!/¢. This in turn reduces
the complexity of the number field sieve to exp((32/9)'/3(log n)1/3(loglog n)?/3).

There can be other advantages to working with special polynomials such as
5 + 8. In particular, if we are working in a unique factorization domain, explicit
factorizations of the auxiliary numbers a — ba into prime elements and units can
allow us to overcome the obstructions of the previous section without characters.
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In addition, such factorizations allow for a simple solution of the square root
problem.

It is naturally with the special number field sieve that we have seen the most
spectacular factorizations. For more on the experience with this, see [16].

One lesson that the special number field sieve has for the general case is that
it is very desirable to find a polynomial with small coefficients. An averaging
argument shows that we cannot hope to do very much better than the “base
m method” of §7, but that there is room for improvement. One of the simpler
improvements we have is to choose m as [n!/(¢+1)] and write n in the base m as
before. The resulting polynomial is not monic, but this is not a big problem to
overcome. No one has yet come up with a substantially better way of choosing
a polynomial in the general case.

10. Conclusion

It seems clear that there is a correlation between algorithmic developments
and thé evolution of computer hardware. Though Lehmer and Powers in 1931
had almost all of the ingredients of the continued fraction factoring algorithm,
they did not make the leap to smooth numbers and exponent vectors reduced
modulo 2 as did Brillhart and Morrison, almost surely because these ideas are not
well suited for the hand computations that Lehmer and Powers did. Similarly,
Kraitchik, 50 years before the introduction of the quadratic sieve, had suggested
finding a set of integers 7 with [],.,(t* — n) a square as a way of factoring
n. Because he did not have a large computer to work on, the idea of sieving
to discover smooth values of t — n and then combining them via linear algebra
mod 2 did not occur to him.

In some sense the number field sieve for general integers may be a little ahead
of its time. Although heuristically it is the asymptotic champion, it has not yet
factored the largest composite number of no special form and with no small prime
factor ever factored. This honor still belongs to the quadratic sieve. We believe
we are close to the crossover point now, namely 120 to 130 decimal digits. But
to factor such numbers takes an enormous amount of computing power, despite
our clever algorithms. Given perhaps an order of magnitude improvement of the
speed (and size) of computers, I believe the number field sieve would emerge as
the clear method of choice for the hardest numbers.

It is perhaps a little too self-serving, though, to say that others should first
improve their aspects of the problem. Rather than sitting on our hands, let
us instead find ways to improve the number field sieve now, or perhaps even
find a wholly new factorization method. At one point some suggested that
exp(v/lognloglogn) might be the true complexity of factoring, only because
we had several different methods with this complexity and none faster. Now
we have the number field sieve and it has heuristic complexity of the shape
exp(c(logn)'/3(loglog n)2/3). Is this now the limit of what we can do? It may
be, but it is unlikely an advance will be made by people who think they cannot
succeed.
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