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ABSTRACT

We show that the game chromatic number of a planar graph is at
most 33. More generally, there exists a function 2 N — N so that
for each n € N, if a graph does not contain a homeomorph of K,
{hen its game chromatic number is at most f(n). In particular, the
(ame chromatic number of a graph is bounded in terms of its genus.
Our proof is motivated by the concept of p-arrangeability, which was
irst introduced by Guantao and Schelp in a Ramsey theoretic setting.
1994 John Wiley & Sons, Inc.

1. INTRODUCTION

let G = (V,E) be a finite graph, and let X be a set whose elements will
be referred to as colors. A function ¢: V — X is called a proper coloring
(or just coloring for short) if c(x) # c¢(y) whenever x and y are distinct
nodes from V with xy € E. If {c(x): x € V}| = 1, the coloring ¢ is also
called a t-coloring. The chromatic number of G, denoted x(G), is the least
positive integer ¢ for which there exists a coloring ¢ of G using a set X with
|X] = t as the set of colors.

In this paper, we will be concerned primarily with planar graphs. Because
il is important to the spirit of the results that follow, we note that there is
an elementary (and very fast) algorithm for coloring a planar graph with
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6 colors. By Euler’s formula, a planar graph always has a node of degrec
;nost 5.Givenagraph G = (Y, E) with n nodes, we can then label thzgnl'll;;i
0110 , ;czl,n .til,ex,, ts? tl.lalt f<or ‘each. i =2,3,...,n, there are at most 5 neighl
o ;_F' setixg: 1= j < i}. The grapl} can then be 6-colored by applying
rst-Fit to the no_des in the order of their subscripts in this labeling, i c.
node is colgred with the least positive integer distinct from the color; ';im‘* (
to those neighbors that precede it in the labeling. s
We now cons‘ider a modified graph coloring problem posed as a (wi
person game, with one person (Alice) trying to color a graph and the othe
(Bob) trylpg to prevent this from happening. Let G = (V, E) be a graph
tbe a posmve.integer, and let X be a set of colors with I’XI =t ilige
Bob compete in a two-person game lasting at most n = |V| m.oves 'l";
alterna'te turns, with Alice having the first move. A move consists of seieclm
a previously gncolored node x and assigning it a color from X distinct fros
the colors assigned previously (by either player) to neighbors of x. If aftcr
moves, the graph is colored, Alice is the winner. Bob wins if an.im as: i
reached before all nodes in the graph are colored, i.e., for every unc%l;;n‘c*
node x and every color & from X, x is adjacent to a node havin colc‘;
«. The game chromatic number of a graph G = (V E), denoted g(G) i
the least t for which Alice has a winning strategy. :I‘hi,s parameté\/ $ lI
defined, since Alice always wins when ¢ = |V/|. T

with color a, Bob responds by assigning color @ to the other node in this
"1t follows that a cannot be used by either player to color any other node

fiumber is at most 6.

The game chromatic number of a family F of graphs, denoted x(F),
i then defined to be max{x,(G): G € F}, provided this value is finite;
otherwise, we say that x,(JF) is infinite.

The concept of game chromatic number was introduced by Bodlaender
1], who showed that the game chromatic number of the family of trees is
at least 4 and at most 5. In [6], Faigle, Kern, Kierstead, and Trotter show
{hat the game chromatic number of the family of trees is 4. In this paper, it
4 also shown that the family of bipartite graphs has infinite game chromatic
-~ number.

With these remarks as background, we can now state the principal result

ol this paper.

L

1.1 Theorem. The game chromatic number of the family of planar graphs
% at most 33. B

Furthermore, we will produce a very fast procedure for implementing the
 winning strategy. As an added bonus, we obtain the following more general
Example. ansider the planar graph shown in Figure 1. This graph hi ot
game chromatic number 6. To see that the game chromatic number i
at least 6, here is a winning strategy for Bob if the set X of colors i>
_{1, 2,3, 4‘, 5}.. Note that for each j = 1,2,..., 6, the two-element set {a; Llw |
is a dominating set, i.e., every other node in the graph is adjacent to atjl’é '
one of these two nodes. Each time Alice colors a node from {a N ésuy

1.2 Theorem. There exists a function f: N — N so that for each n € N,
i a graph does not contain a homeomorph of K, then its game chromatic

number is at most f(n). B

It follows from Theorem 1.2 that there exists a function g: N — N so
that G is a graph of genus n; then the game chromatic number of G is at

most g(n).

a

2. ARRANGEABILITY AND RAMSEY THEORY

let G = (V,E) be a graph and let L be a linear order on the node set
V. For each node x € V, we define the back degree of x relative to L
as {y € V:xy € E and x >y in L}|. The back degree of L is then the
maximum back degree of the nodes relative to L. The graph G = (V,E) is
said to be k-degenerate if there is a linear order L on V that has back degree
at most k. If G is k-degenerate, then x(G) = k + 1, since First-Fit will use
al most k + 1 colors when the nodes are processed in the linear order that
witnesses that the graph is k-degenerate.

Again, let L be a linear order on the node set V of a graph G = (V,E), and
et x € V. We define the arrangeability of x relative to L as HyeViy=x
in L and there is some z € V with yz € E, xz € E and x < z in L}. In
ligure 2, we illustrate a linear order L on the nodes of a graph. In this

FIGURE 1
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Progress in resolving this conjecture has been slow. However, in 1983,
/. (‘hvatél, V. Rodl, E. Szemerédi, and W.T. Trotter proved [4] a linear
ound on the Ramsey numbers of graphs of bounded maximum degree.

© © % o) Y .3 Theorem. For each positive integer d, there is a positive constant ¢ so
Y Yo Y3 Y4 Ys Xz, z, 2, mt il G is an n-node graph and ‘fhe maximum degree of G is at most d,
K ien the Ramsey number of G satisfies r(G) = cn. §
FIGURE 2

In [3], G. Chen and R. Schelp develop an interesting strengthening of

example, the back degree of the node x is 2. The set § = {x,y1,v2, \"i}« heorem 2.3.

shows that the arrangeability of x relative to L is 4.
The arrangeabi?ity of L is then the maximum value of the arrangeability
of the nodes relative to L. Following G. Chen and R. Schelp [3], we sy

that. the graph G is p-arrangeable if there is a linear order L on the nodg
having arrangeability at most p.

4 Theorem. For each positive integer p, there is a positive constant ¢
o that if G is an n-node graph and G is p-arrangeable, then the Ramsey
umber of G satisfies r(G) =cn. #

In order to demonstrate that their theorem applied to important examples
ol covered under Theorem 2.3, Chen and Schelp [3] then proved the

- © F g ( s ) g . {)“()Wlng leSlllt, Wthh 18 p

Proof. A linear order L on V that has arrangeability at most p also hi

back degree at most p. § .5 Theorem. Every planar graph is 761-arrangeable. R

Before closing this section, we make three remarks concerning
‘heorem 2.5 and the concept of arboricity. First, it is not immediately clear
o us why planar graphs are p-arrangeable for any value of p, regardless
i how large p is taken to be. Second, the proof of Theorem 2.3 depends
wily on Szemerédi’s regularity lemma [8] that he first used to resolve
he Erdos/Turdn conjecture: Any subset of the positive integers having
wositive upper density contains arbitrarily long arithmetic progressions. The
epularity lemma has become a much used tool in combinatorics (see [9]
or a short proof of the lemma), but it involves constants that are just barely
inite. For this reason, Chen and Schelp were not motivated to find the least
value of p for which every planar graph is p-arrangeable. Third, the family
l bipartite graphs used in [6] to show that the family of bipartite graphs has
nfinite game chromatic number is also a family of graphs of arboricity 2.
50 bounded arboricity is not enough to bound the game chromatic number.

led Chen and Schelp [3] to introduce and i i
2 investigate the concept of p
érrangeablhty. Let G = (V,E) be a graph. Define the Ramsey nuIr)nbcr f
» denoted (G), as the least positive integer ¢ so that if the edges of
complete graph K, on ¢ nodes are colored with two colors, then there i

always a monochromatic copy of G. If |V]| =
ey 4 mon py . If [V| = n, then the Ramsey numbe

r(K,). On the one hand, the ex i i i
r(K, , ponential form of this upper bound is correc
21; the seﬁlse tl}llat 1r(K,,) = 22, On the other hand, there are some intere%ting
ses where the lower bound is closer to the t i Lyl
s e o the truth. Examples include cyc
hRecaH that the arboricily. Qf a graph G = (V,E) is the least ¢ so (hl
the .edge set E can be partitioned into ¢ forests. The following beautilui
conjecture was made 17 years ago by S. Burr and P. Erdos [2].

3. ARRANGEABILITY AND GRAPH COLORING

ot G = (V,E) be a graph and let L be a linear order on V. For each node
\ € V, we say that a subset S C V is admissible for x if (1) y = x in
for every y € S, and (2) there is an injection f that maps the subset
' ={y € §: xy & E}to Vsothat yf(y) € E, xf(y) € Eand x < f(y»
in L, for every y € S'. The admissibility of x relative to L is then defined as
ihe maximum size of a subset S that is admissible for x, and the admissibility
ol L is the maximum value of the admissibility of the nodes relative to L.

2.2 (tfltl)n.]‘e}ctu?e. For each positive integer a, there exists a positive constani
csothatif G is an n-node graph having arboricity at most a, then the Ramsc:
number of G satisfies r(G) < cn. |
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Next we describe a scheme for coloring the selected node. Let x be the
«¢ (hat will be colored, and let c(x) = a.

A graph G = (V,E) is m-admissible if there is a linear order L on V il
has admissibility at most m. For the example given in Figure 2, note il :
the set § = {{C,)’2,Y3,)’4,)’5} is admissible for x relative to L. ’

The following results are immediate. sloring Rule. If CN(x) contains a subset {z1,...,2zn»} and these nodes
31Pp . o ' ve already been assigned distinct colors from {(«, 1),... , (e, m)}, assign

-1 Proposition. An m-admissible graph is m-degenerate., J§ lor # to x. Otherwise, assign color (a, j) to x, where j is the least positive
32 e ) feper for which x is not adjacent to a node assigned color (a, j).

-2 Propesition. A p-arrangeable graph is 2p-admissible.
We will now show that these rules yield a legitimate color for the
wle Alice has selected. In fact, we show something stronger. We show
il the same rules could—on any turn—be used by either player, under
assumption that they have always been followed by Alice. This will
ow that neither player can ever be trapped without a legal move. First,
werve that by following the rules given above, a player is avoiding (almost
|) conflict with color assignments made previously by Alice. This is
ymplished by the expedient of using a two-coordinate color where the
it coordinate is taken from a proper r-coloring of G. A player using this
sloring scheme must avoid conflicts with nodes colored by Bob and nodes

al one of the two players has colored *.

3.3 Proposition. An m-admissible graph is m? — m + 1-arrangeable,

Throughout the remainder of the paper, we let [g] denote the
{1,2,...,q}. The next theorem explains why the concepts of arrangeabil

and admissibility are important in the adversarial graph coloring enviri
ment.

3.4 Theorem. Let G = (V, E) be an m-admissible graph, and let x(G)
r. Then the game chromatic number of G is at most rm + 1.

Proof. We take the set X of colors as {*} U {(a, j): @ € [r], Jj € |m
As the game is played, we will denote the color assigned to a nodc ;\:
denoted by g(x). When g(x) = (a, j) for some j € [r], we let g1(x) -

We now describe a winning strategy for Alice. This strategy is giveri
‘term's of a decision process for selecting a node to color and for then colori
it w1th one of the colors from X. The fact that the strategy results in « ¢
for./'khce requires us to prove that this decision process always results i
leg1t1mgte assignment. Alice’s strategy is based on a fixed r-coloring ¢ of:
and a linear order L of the node set that has admissibility at most m.

In the remainder of the argument, we will describe a number of dilfcr
subsets of the set of nodes. In order to assist the reader in keeping track
these sets, Fhey will be defined as acronyms of capital letters.

At some intermediate point in the game, we let C denote the set of colt
nodes, and we let U denote the set of uncolored nodes. For each node .. I
P(x) denote the set of nodes that precede x in L, let F(x) denote the sc! i
nodes that follow x in L, and let N (x) denote the set of neighbors of x. 'l’:‘li
let CN(x) = C N N(x), let PN(x) = P(x) N N(x), PU(x) = P(x) (1
P[{:N(X) = P(x) N U N N(x), etc. ‘

ory € C, let T(y) = {x € UN(y): if g(y) # *, then = ¢(
and forx € U, let D(x) = {y € CN(x): ifir();)) # *, then 283 = :Ei

On her first turn, Alice colors the L-least node v with the color (c(n‘)’
At each succeeding turn, she selects the node she will color as fol]ows;

lnim. At any stage in the game, if the next player uses the Selection Rule
determine a node x to be colored and Alice has consistently followed both
» Selection Rule and the Coloring Rule at each preceding turn, then

|[PUN(x) U D(x)l = m.

"roof. 'We proceed by induction on the number of turns. The base step is
ivial since there are no colored nodes at the start of the game. Now consider
i inductive step. Let x be the uncolored node that has been selected, and let
{v) = a. Since Alice has always used the Selection Rule and the Coloring
ule, we know that all the nodes in D(x) except possibly those assigned
olor * have been colored by Bob. We now show that any node in F D(x)
as been colored by Bob.
Suppose to the contrary that Alice colored some node y € FD(x) with
. Since Alice has consistently played by the rules, we know that at the
woment she colors y, it is adjacent to at least m nodes in D(y). Note
ml x € PUN(y). Thus |[PUN(y) U D(y)| > m, which contradicts the
iductive hypothesis.

lor each z € FD(x), let y, denote the element that Alice chooses to
olor immediately after Bob colors z. Then let ¥ ={y.;:z € FD(x)}.
lolc that if y € Y, then Alice has colored y, unless y = x. In particular,
' (Y PUN(x) = &. We now show that Y N PD(x) = &. ‘
Suppose to the contrary thaty € ¥ N PD(x). Choose z € FD(x) so that
/ y,. Since y € D(x) and Alice colored y, we know that Alice assigned
 color *. If Bob assigned color * to z, then our inductive hypothesis would

|

ISJ(;!((act)io;l gulle. Let v denote the node colored by Bob on his last turii.
v , let x denote the L-least node in PT(v). If PT(v) = ¢ ‘
be the L-least node in U. ) W=
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have been violated when Bob colored z, so we may assume that g(z) # #
Since z € D(x), we conclude that g(z) = (@, j), for some j € [r]. Now
the fact that Alice chose to color y rather than x implies that ¢(y) = «. This
is a contradiction, since x and y are adjacent.

Thus |PUN(x) U D(x)| = |[PUN(x) U PD(x) U Y| = m, since |}
(x)| = |¥| and PUN(x) U PD(x) U Y is an admissible set for x. B

@) 1) u(2)

To complete the proof of our theorem, we need only remark that if a play
uses the Selection Rule to choose x, then the Coloring Rule can always |
used to provide x with a legal color. g

us(2)
“4(2)

FIGURE 3

4. PLANAR GRAPHS ARE 8-ADMISSIBLE . ‘ '
R Then let SA(z) = {e (u;(z),u j+~1(z)): j € [d]}. Of course, vzle)m;f:ﬁle(il tllléi

In this section, we present the following theorem, which also yields clinition to be 1nterp1;eted cyclllcally $0 thﬁtdul(z) = L;?z;‘ilc iiz l' cdoen A

improvement of the bound in Theorem 2.5. A = U{SA(z): z € C'}. Edges in SA are calle stron;g a g q& :

arked previously, we also intend that SA(z) N SA(Z') = & th‘:n z ’ zI )

s

4.1 Theorem. Let G = (V,E) be a planar graph. Then there is a linet ow let G"=(V,E'U S}?)’ _?nd ;mce/ gﬁ S >1s4a 511::;122 tl;n(l)lftl(g;rl?lzn-thr;

order L of node set V that has back degree at most 5, admissibility at ni , G" can be drawn so that if z . = h, o Ctcial s

8 and arrangeability at most 10 ilerior of the star-shaped region R, bounded by the strong

. ith end points in U, are the node z and real edges of the form xu;(z)

iee Figure 4).

Nowglet U denote the subgraph of G” induced by the unchosen nodes.

y successively removing strong artificial edges that belong to two-sided

ices, we obtain a planar multigraph U; such that the following holds:

Proof. Fix a plane drawing of G that has no edge crossings. We wil
define the linear order L as a labeling x1,x,,...,x, of the nodes in V. Tl
definition proceeds in reverse order and begins with the choice of x, a ,
node of degree at most five in G. Note that the admissibility of x,, is at mog
5 and the arrangeability of x, is 0. ,

At step i, we assume that we have chosen nodes Xit1s Xid2yenny Xy, fif
that each of these nodes have back degree at most 5, admissibility at mos
and arrangeability at most 10. Next, we describe how the node x; is chos
The ordering on the nodes xi, x,, . . . , X6 is arbitrary so we may assume (I
i > 1.

We call the nodes in the set C = {Xit1:Xi42, ..., x,} the chosen nod
and we let U = V — C denote the unchosen nodes. Of course, the noe
x; will be chosen from U. We refer to the edges in E as real edges. |.¢ : uz(z)
G’ = (V,E’) denote the planar graph obtained by removing all real ey ; u,(z)
with both end points in C. For each z € C, let U, denote the unchoses
neighbors of z, and let d, = [U,|. Then let C' = {7 € C: d, = 2}.

For each z € C’, we let A, = {e,(x,y): x,y € U, x # y}. Then ue
A = U{A;: z € C'}. We refer to the elements in A as artificial edges, unil
we consider e,(x,y) as an edge having x and y as end points. We intend
to distinguish between the edges e,(x,y) and ey(x,y) whenever z # 7. O
course, we also distinguish between real and artificial edges.

For each z € C’, we label the nodes in U, as u1(z), u2(z), ..., uq(z), where
d = d, and the labeling proceeds in clockwise order around z (see Figure 1)
The choice of the starting node u;(z) is arbitrary.

{1) U; contains no two-sided faces.
(2) If z € C and d, = 4, then U; contains a face F, whose boundary
cycle consists of the nodes from U,. Furthermore the edges of F;

belong to E U SA. ‘ o
(H Ifz, 2 € C,d, = 4 and d, = 4, then the face F, contains z in its

interior while 7z’ is in its exterior.

u3(z)

u4(z)

FIGURE 4
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For each z &€ C' with d, =4 and for each j €[d,],
WA;(z) = {e (u;(z),v(2): v EU, and v & {ujsy,u;—1}}. We
WA(z) = U{WA;(z): j € [d,]} and WA = U{WA(z):z € C,d, -~
The edges in WA are called weak artificial edges.

Let E(U;) denote the edge set of U;. For each j € {1,2,...,5).
H; = (U,E;) be the multigraph with

We now show that x has back degree at most 5, admissibility at most 8,
i arrangeability at most 10. The first statement is trivial since xy € E;
i every j € [10] whenever y € U and xy € E. Let T = T(x) = {y €
/i xy € E} U {y € U: there is some z € C’ with e.(x,y) € SA(z)} and
7/ = Z(x) ={z € C: d, = 4,x € U,}. Our arguments for the last two
inlcments are simplified by the following observation concerning the
wlative sizes of these two sets.
E; =EU) U U{Aj(z): z € C,d, =5} U U{A1(z): z € C,d, = 4}
Claim. T = [Z].
For each j € {6,7,...,10}, let H; = (U, E;) be the multigraph with
Proof. For each z € Z, the edge xz lies (except for the end
hoint x) entirely in the interior of the face F, whose boundary edges
long to E U SA. Each such F, contains 2 boundary edges incident
with x, and these edges are either real or strong artificial edges.
Since an edge is a boundary edge of at most two faces, the claim
llows. §

E;, =EU)) UU{A;-s: z € C,d, = 5} U U{Ax(2): z € C.,d, = 4}.

For each j € [10], the multigraph H; is planar. Furthermore, H; ca
be drawn without crossings by inserting each weak artificial edge ol (li
form e,(x,y) present in H; in the star-shaped region R,, which is alwiy
contained inside the face F; in the drawing of U;. In Figure 5, we illustraiz
how this process works for the node z of Figures 3 and 4 in the drawing
Hs. In this instance, the face F; has been formed by deleting (at least) thy
strong artificial edges with both end points in U,.

It is important to note that for such a drawing of H;, there are no two-sidei
faces. Now for each j &€ [10] and for each x € U, let deg;(x) denotc (h
degree of x in H;. Also, let H = {H;,H,,...,Hyo}. That each H, €
is a planar multigraph with no two-sided faces implies that

Now let S be an admissible set for x. We show that |S| = 8; in fact, we
show that |S — {x}| = 7. Note that any node in S — {x} is adjacent to x by
4 real edge or an artificial edge. Let $; = {y € § — {x}: xy E E}U {y €
{x}: there is some z € C with d, = 4 and e,(x,y) € SA(z)}. Note
that $; CT.LetS, ={y €S — 8;:y # x}. For each y € §,, there is a
inique z = z, € Z with yz € E. It follows that the weak artificial edge
-.(x,y) appears in at least 4 of the 10 planar multigraphs. This implies that
ihe total degree of x is at least 10|T| + 4(|S[, so that 10|T| + 4{S,| < 60.
Using the claim, we know that |T| = |Z| = |S,|. These two inequalities
jmply that |T| + |S;] = 7, so that |S| = 8.

We now show that the arrangeability of x is at most 10. Let S be an
rangeable set for x. As before, let Si{y €S — {x}: xy € E}U {y €
5 {x}: there is some z € C with d, = 4 and e,(x,y) € SA(z)}. Also,
let S, ={y€ES — Si:y # x}

For each z € Z, there are at most 2 nodes in U, N §,. It follows that
|$,] = 2|Z|. By the claim, |S,| = 2|T|. Since the total degree of x is at least
10|T] + 4]Z], it follows that |T U S,] = 9. Since S C {x} U T U §,, we
mclude that |S| = 10. This completes the proof of our theorem. §

2|E;| = Z deg;(x) < 6|UJ.

x€eU

It follows that there is a node x = x; € U for which

10
total degree(x) = Z deg;(x) < 60.
=1

j=

uz(z)

4.2 Corollary (Theorem 1.1). The game chromatic number of planar graph
s at most 33. B

4.3 Corollary. If G is an outerplanar graph, then there exists a linear order
1. on the node set that has back degree at most 2, arrangeability at most 3,
and admissibility at most 3.

Proof. 1t is straightforward to modify the proof of Theorem 4.1 to
construct the desired linear order. In fact, in this case, we do not even have

FIGURE 5
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to consider a family of outerplanar multigraphs. By maintaining the propert

¢ : show that the game chromatic number of G; is at least 7 by providing
that the back degree of L is at most 2, all artificial edges are strong. §

winning strategy for Bob when the colors come from [6].

On her first move, Alice colors a node from one of the copies of Gy.
tob will color only in the other copy of Gz, and on his first turn assigns
olor 1 to the node x. Alice makes her second move, and Bob then selects
inc of the copies of G; containing the node he colored on his first turn, but
onlaining no nodes colored by Alice. In this copy, Bob assigns color 2 to
, Note that the nodes in T = {a, b, ¢} form a triangle, and each node in T
wljacent to both x and y. Let S = {3,4,5,6}. As the game progresses, we
iill delete nodes from T and colors to S. Also, it will always be the case
il the nodes in 7T must be assigned colors from S.

Alice now makes her third move. Bob’s strategy unfolds as follows.

4.4 Corollary. The game chromatic number of an outerplanar graph is #
most 10. §

5. LOWER BOUNDS

In this section, we produce lower bounds on the game chromatic numb
admissibility, and arrangeability of planar graphs. The result for admissibility
is tight, and the gap for arrangeability is modest, but we leave a relativels
large gap with our lower bound on game chromatic number.

In Section 1, we gave an example of a planar graph with game chromati
number 6. We can do just a bit better.

(1) Bob will never color a node from 7. Until Alice colors a node from
T, Bob colors nodes of degree 2 adjacent to both a and b with distinct
colors from §. Clearly, Alice must eventually color a node from T.

(2) When Alice first assigns color & to a node u from T, Bob assigns a
color B € S — {a} to one of the nodes of degree 2 adjacent to the
other two nodes in 7. Let S = S — {a, 8}, and T = T — {u}. Note
that |T| = |S| = 2, and that the two nodes in 7 must be assigned
colors from §.

(3) Now Bob colors nodes of degree 2 that are adjacent to both nodes of
T with distinct colors from S until Alice colors a node from 7.

(4) When Alice assigns color y € S to anode v €T, let § =S8 —
{y} ={6}and T = T — {v} = {w}. Bob then assigns color & to one
of the degree 2 nodes adjacent to w.

(5) Bob wins because w is adjacent to 6 nodes assigned distinct colors
from [6]. B

5.1 Theorem. The game chromatic number of the class of planar graph
is at least 7.

Proof. . Consider the planar graph G; shown in Figure 6. This diagr:
is intended to suggest that for each pair selected from {a, b, ¢}, there arc
common neighbors of degree 2.

Then form a planar graph G, by taking two copies of G and identifyin
the nodes labeled w;. Then form G3 by taking two disjoint copies of G

In the argument to follow, we let G¢ denote the planar dual of the graph G.
.2 Theorem. There is a planar graph with admissibility 8.

Proof. Consider the planar graph G shown in Figure 7.

Observe that G is constructed as follows. Begin with the 8 node cube. Add
he 6 nodes and 12 edges of the planar dual of the cube. Performa ¥ — A
ransformation at each node of degree 3. Insert a 4-gon at each place where
«pes of the cube and its dual cross. Now let H = G denote its planar
{ual. For each node x in H, let N(x) denote the set of neighbors of x. It is

aightforward to verify the following properties of H.

(1) There are 24 nodes of degree 8.

(2) Each node of degree 8 is adjacent to four other nodes of degree 8,
three nodes of degree 4 and one node of degree 3.

(3) If x is a node of degree 8 and z;, z», and z; are its three neighbors
of degree 4, then there are three nodes x;, x;, and x3 so that for each
i €3]

FIGURE 6
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4.4 Iixercise. There is an outerplanar graph with game chromatic number
Al least 5. B

i, CONCLUDING REMARKS AND OPEN PROBLEMS

wo obvious open problems that remain are to tighten the bounds we have
oduced for the game chromatic number of planar and outerplanar graphs.
We have recently shown that the game chromatic number of the class of
plunar graphs is at least 8, and by the results presented in this paper, it is at
inos( 33. For the class of outerplanar graphs, our bounds are 6 and 8.

A third open problem is to determine the least p for which every planar
siuph is p-arrangeable. We suspect that the upper bound of 10 provided
in Theorem 4.1 is tight. For outerplanar graphs, the upper bound of 3 on
ihe arrangeability and admissibility provided by Corollary 4.3 is tight—for
hoth parameters.

1.et C, be the class of graphs that do not contain the subdivision of the
gomplete graph K, on n vertices as a subgraph. Then it is well known that
liere is some constant ¢ = ¢, so that the average degree of any graph in C,
5 at most c. It is then easy to modify the proof of Theorem 4.1 to obtain a
sound on the admissibility and arrangeability of graphs in C,. In particular,
ihe pame chromatic number of any proper minor closed class of graphs is
tounded. Also, there is a bound on the game chromatic number of a graph
in tcrms of its genus. We have no feel for what the best bounds for these
functions might be.

We do not have a good lower bound for the inequality in Theorem 3.4,
and we do not know if the bound in Theorem 3.5 is tight.

More generally, it seems to us to make good senmse to investigate
general classes of optimization problems that exhibit the key features of
the uncooperative (adversarial) graph coloring problem we have studied in
this paper.

FIGURE 7

(a) The degree of x; is 8;
(b) x and x; are not adjacent; and
(c) x; and z; are adjacent.

Now let L be any linear order on the nodes of H, and let x be the li
node of degree 8 to occur in L. We show that the admissibility of x in /., i ¢
least 8. Let y;,y,,y3, and y, be the four neighbors of x that have degrce
Note that y; < x in L for each i € [4]. Now let {x,, x,, x3, 21, 22,23} be (i
set of 6 nodes satisfying the third property listed above. For each j € [3], |
uj = z; if z; < x in L; otherwise, let u; = x;. Finally, let w be the unijii
node of degree 3 adjacent to x. Set v = w if w < x in L; otherwisc

v = x. It follows that the set S = {yy, y2,y3, Y4, U1, U, u3, v} is admit
for x. §

e

5.3 Corollary. There is a planar graph with arrangeability at least &.

Proof. Let G be any planar graph with admissibility 8. Form a plani
graph H from G as follows. For each edge e = xy in G add 7 new nod
of degree 2 each adjacent to both x and y. We claim that the arrangeabilif
of H is at least 8. To show this, let L be any linear order of the nodcs ¢
H. Then let M be the restriction of L to the nodes of G. Choose a node
and set § of 8 nodes from G so that S is admissible for x relative to M., |
§ is arrangeable for x relative to L, then the arrangeability of L is at lcasi §
Now suppose that S is not arrangeable for x relative to L. Then therc i4
node y € § so that xy is an edge in G, but none of the 8 nodes of degree
adjacent to both x and y added in the formation of H follows x in L. Thi
implies that the back degree of x in L is at least 8, so that the arrangeabili
of L is at least 8.
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ABSTRACT

A triangle-free graph is maximal if adding any edge will create a
triangle. The minimal number of edges of a maximal triangle-free
graph on n vertices having maximal degree at most D is denoted
by F(n, D). We determine the value of limpwF(n, cn)/n for 2/5 <
¢~ 1/2. This investigation continues work done by Z. Flredi and
A. Seress. Our result is contrary to a conjecture of theirs. © 1994 John
Wiley & Sons, inc.

1. INTRODUCTION

A maximal triangle-free graph is a triangle-free graph that ceases to be
iriangle-free upon adding any new edge (connecting two existing vertices)
{0 its edge set. The smallest maximal triangle-free graph on n vertices is
{he star with n — 1 edges. We shall be interested in maximal triangle-free
rraphs with few edges, satisfying a constraint in the form of an upper bound
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