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Abstract. It is shown that for arbitrary positive ¢ there exists a graph without K, and so that all its
subgraphs containing more than 1/2 + ¢ portion of its edges contain a triangle (Theorem 2). This
solves a problem of Erdds and Nesetfil. On the other hand it is proved that such graphs have
necessarily low edge density (Theorem 4).

Theorem 3 which is needed for the proof of Theorem 2 is an analog of Goodman’s theorem 8],
it shows that random graphs behave in some respect as sparse complete graphs.

Theorem 5 shows the existence of a graph on less than 10*? vertices, without K, and which is
edge-Ramsey for triangles.

1. Introduction

Let G = (¥, E) be a simple graph without loops or multiple edges (for notions from
graph theory we refer to [2]). An averaging argument shows that for any k > 2
there is a k-chromatic complete (complete k-partite) graph H = (V, E’) so that

1
I[ENE| > (1 —E)!E[ holds (cf. [2]). Since H contains no K,,,, we have the

following.

Proposition 1. For every k > 2, every graph with e edges contains a subgraph without

t
K, ., with more than (1 - ;)e edges. O

In the case of k = 2 we obtain a triangle-free subgraph with more than half of
the edges. Erdds and Nesettil [5] asked whether the constant 1/2 can be improved
if we make the additional assumption: G is K ,-free. We answer this question in the
negative by proving: (|G| denotes the number of edges of G).

Theorem 2. For an arbitrary positive ¢ there exists a K ,~free graph G so that all its
subgraphs G, with |Go| > (3 + ¢)|G| contain a triangle.

For the proof we need a result of independent interest (¢(G) is the number of
triangles in G).

Theorem 3. Suppose R = R(n, p) is the probability space of all random graphs on n
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vertices with edge probability p, 1 > p > n*""2, for some positive constant ¢. Let y be
a constant, 0 <y < 1 and suppose R is partitioned into edge-disjoint subgraphs R,
R, with |R,| ~ y|R|. Then for almost all R e R(n, p)

(R,) + 1(Ry) 2 202 gy

holds for all partitions _ﬁ = R, UR, with the above property.(We say that a statement
holds for almost all ReR if it holds with probability 1 — o(1), where o(1) -0 as
n—co.)

Remark. The corresponding statement for the complete graph was proved by
Goodman [8]. Thus our theorem shows that random graphs behave as complete
graphs, i.e. they are like sparse complete graphs. Note that our notation x 2 y
means that for any § > 0 we have x > (1 — 8}y for n > ny(d, ¢). Note also that the
constant (1 + 3(1 — 2y)*)/4 is easily seen to be best possible.

The graph G constructed in Theorem 2 is sparse —it has m****edges (0 < ¢ < 0.1
and m is the number of vertices). Replacing each vertex v of G by [1] = t other
m

vertices v, v, ..., v, and joining v;, v/, 1 <i,j < ¢, if and only if v and v’ are joined
in G we get a new graph which shows that for every fixed ¢ > 0 there exists a positive
constant ¢, (independent of n) and graphs having n vertices and ¢,n? edges and still
having the property of the graph from Theorem 1.2. Let ¢, be the supremum of all
¢,.’s with the above property. P. Erdds [5] conjectured that lim, ¢, = 0. We prove
this here and show the following slightly stronger statement.

Theorem 4. Let a positive integer k and a positive real ¢, 0 < ¢ < 1 be given. Then
there exists ny = no(k, c) and & = ¢(k, c) such that the following holds: If G is a graph

n
on n vertices and with ¢ 5 edges n > ny which has the property that every bipartite
1
subgraph of it has less then (5 + a) c (;) edges, then G contains K,.

P. Erdos and A. Hajnal conjectured that for every k there exists a graph G,
which contains no K, but if one colors the edges of G, by two (or in general p)
colors in an arbitrary way there is always a monochromatic K,. Folkman [7]
proved this conjecture for p = 2 and the general conjecture was settled by Nesetfil
and Rédl [12] - in fact they proved a more general theorem. However, there are
many numerical problems which remain. Let f(p,k,,k,) be the smallest integer n
for which there is a graph G with n vertices not containing K,, but if we color the
edges of g by p colors there is always a monochromatic K, . Graham [9] proved
that £(2,3,6) = 8 and Irving [11] proved f(2,3,5) < 18. On the other hand both
Folkman’s and NeSetfil, R6dl's upper bounds for f(2,3,4) are extremely large
(greater than ten times iterated exponential). P. Erdés [47] offered max {100 dollars,
300 swiss francs} for a proof or disproof of f(2,3,4) < 10*°, Unfortunately, we were
not able to settle this problem. However, the method of proof of Theorem 2 allows
to show the following.
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Theorem 5. f(2,3,4) < 7.02- 101,

It was pointed out by Noga Alon [1] that this result either proves or disproves a
conjecture of R.L. Graham [10, p. 36].

In the proofs we will assume several elementary properties of random graphs
(e.g. (3))- Since each of these properties holds with probability tending to 1, the same
holds for any finite number of them. For non-proved statements concerning random
graphs we refer to [6]. Note also that we shall often identify graphs with their edge
sets.

2. The proof of Theorem 3
Let {1,2,..., n} be the vertex set of R. Since the edges are chosen independently
each with probability p, we have

Prob({i,j, k} is a triangle) = p>. (1)

Consequently with probability tending to one we have

{(R) ~ (;) P, 2)

Similarly, the degree d, of vertex i satisfies
d;~np forevery i=12 ..., n (3)

Moreover, if X;, | X;| = x; is a subset of the neighborhood of the i-th vertex, one can
infer that

2 X 2.3

‘lRﬂ[XiJ |—<2>p = o{n’p’) )

holds again with probability 1 — o(1) simultanously for all vertices and all X;. Let

R be any graph having properties (2), (3) and (4) (almost all graphs have these

properties) and let R = R, U R, be a partition of the edges of R. Let us call the edges

in R, blue, those in R, red. Denote by x; the blue degree of the vertex i. It follows
from (3) and (4) that

d 2,3

[N (i) ~ (2")p ~F )

e = (3| = ot g

d, — x;
’lNR,(i)i —( 2 x‘)p

where Ng(i) denotes the edge set of the neighborhood of the vertex i in the graph
R (Ng, (i) and Ng (i) are defined analogously) and 4, is the size of the neighborhood
(vertex set) of vertex i.

Let 1,(z,) denote the number of non-monochromatic triangles with 2 blue (2 red)

= o(n*p’) (7)
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edges, respectively. Each edge in Ny (i) gives rise to a blue or to a non-mono-
chromatic triangle with two blue edges adjacent to i. Summing up over i we infer
using (6)

n

(R + 1= 3 5P 4 ofny). ®

=1

The same consideration for Ng (i) gives
n (4. — x,)?
3R+, =Y (-—2—")—3 + o(n*p?). (9)
i=1

From (5), (6) and (7) it follows that the number of edges in Ng(i) — (Ng, (i) U Ng,(i))
is asymptotic to x,(d; — x;)p. Since those edges give rise to non-monochromatic
triangles, we infer '

2ty + 1) = Y xi(d; — x;)p + o(n*p®). (10)

1

From (8) + (9) — (10) we obtain:

3(t(R) + (Ry) — (6 + 1) = 2 X (d = 25 + o(n*p?) (11)
As ¥.(d; — 2x) = 2|R| — 4|R;| = (2 — 4y)|R| holds, ¥ (d; — 2x,)? is minimal if

2 -

4
d; — 2x; = = |R| = pn(1 — 2y). Thus (11) yields in view of t, + t, + t(R,) +

t i

t(R,) = t(R)

3,3

4(t(R)) + 1(R)) 2 ¢(R) + P

1+ 3(1 = 29)?
4

(1 — 2y)* or using(2)

t(Ry) +t(Ry) = t(R). O
The Proof of Theorem 2. Let us consider a random graph Re R(n, p), with edge
probability p = n®"12, 0 < & < 0.1. The expected number of K,’s in R, E(k,(R))

satisfies E(k4(R)) = <Z> ps ~ 2—';-n and thus almost all

ReR have at most 2E(k,(R)) ~ %nﬁe K,’s. (12)

For R e R denote by e(R ) the set of edges in R which are contained in some K.

It follows from (12) that
1+6¢

E(¢(R)) 5

holds (13)

with probability 1 — o(1).
R — e(R) is clearly a graph without K, and moreover
1 1

1 3/2+ 32+
—_ ~ LR ~— € 14
IR — e(R)] k 5 ik (14)

n1+6£

holds with probability 1 — o(1).
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R has further the property that with probability 1 — o(1)each edge eis contained
in

~np? triangles in R and there are ~ (;) p edges in R. (15)

Consider now R € R from Theorem 3 having properties (12), (13), (14) and (15).
We claim that G = R — e(R)is a good choice for Theorem 2. Suppose for contradic-
tion &, > 0 is given and R, is a triangle-free subgraph of G with

1 1 _
|R11><§+eo>lcl~(5+so>|m. (16)

Set R, = R — R, and apply Theorem 3 with y = 1 + ¢,. Noting that R, is triangle-
free we obtain

(Ry) 2 G + 3gg> {R),

Let us count the number of pairs, say m; (i = 1,2) of the form (e, T), e is an edge
of the triangle T, ee R;, T is in R. It follows from (15) that

m; ~ |R;|np2. (17)

On the other hand each triangle in R, contributes 3 to m, and zero to m; while
the remaining triangles in R contributes at least 1 to m, and at most 2 to m,. Using
(17) we infer

% 3 G ; 3gg> {R) + G - 3gg> {(R) = @ ; 685) R)

m, <2 G _ 385) {(R) = @ _ 633> ().

For n > ny(e) using (17) this leads to [R,| > |R, |, contradicting (16). O

3. The Proof of Theorem 4
Before we give a proof we introduce (without proof) the following easy Lemma (see
[14] for various generalizations).

Let G = (V, E) be a graph, we define the density d(G) of G by

4(G)

e

Lemma. Let G, = (V,, E,), (1V,| = o) be a sequence of graphs with the property that
V

whenever GY is the subgraph of G, having LE'JJ vertices then lim,_ ., d(G,) =

lim,, d{G}*) = ¢ > 0. Then for every k there exists n, such that G, contains a
complete graph K, for every n > n,.
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~

Let G, = (V,, E,) be a sequence of graphs not containing

Uy

2
every bipartite subgraph of G, has less than

K, |E,| = c,,( ), having the property that

1 ‘ U,
§+s,, Cy 2 edgeswherea,;—»O,anle,,]——»ooasn—»oo./

(Il = v,).
Suppose further that ¢, = ¢ > 0 as n — co and ¢ is as large as possible. Let, for

every n, GF = (V,*, E}) bea subgraph of G, induced on [925} ~subset of V, and having

as many edges as possible.

Suppose that there exists ¢’ > 0 and an infinite sequence

{G¥ }m-y = {H}} such that all of the graphs H contain a

(**)

1
bipartite subgraph H,, = (XTU X%, F,,) of (5 + e’) |E¥ | edges.

Set W,, =V, — V¥, by a simple averaging argument (Proposition 1) we can
find a bipartite subgraph (Y;"U Y;*, F,,) of (W,,,[W, ]*NE, ) which has at least
3E, N [W,,]?| edges. Thus the bipartite subgraph of G, with bipartition either
(XTUYXTUYS) or (XTUYS, X7U Y) has for m sufficiently large at least

1 ¢ . . .
=+ — ||E, | edges - which contradicts our assumption on the sequence {G,}i-,;.

2 4
Thus (**) does not hold and all but finitely many members of the sequence {G*}2,
have the property (*). Because of the maximal choice of ¢ we infer that

lim d(G,) = lim d(G}) = c. (***)

Consider now an arbitrary sequence of partitions V, = VUV n=1,2, ...
having the property ||V,}| — |V.?|| < 1. Let G}, G? be subgraphs of G,, n = 1,2, ...
induced on V! and V%, respectively. We have

D,

() + dc2)1 2] = o, (';) — (12 + &)e, (‘;)
2 :

and thus

v, —

d(GE) + d(G2) = (2 — dey)es 2t = ¢ + o(1).

Uy

This, combined with (***) yields that the assumptions of the Lemma are satisfied
and hence G, contains K, for every n > n,. O
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4. The Proof of Theorem 5

We will often use the following consequence of the Chernoff inequality [3] cf. 2.7
in[6]:
If0<p<land0 < ap < 1then

Z(T) p(1 — p)" ™/ < exp(mp(x — 1) + apmlog 1/a)

where the sum is over j such that j > apm (j < apm) provided a > 1 {« < 1), resp.

Definition. Let G be a graph with vertex set {0, 1,...,n} and let X < {0, 1, ..., n}
be a set of cardinality x + | and p a real number, 0 < p < 1.
We say that X has the property (a) if for every partition X = X, U X,

(a) the number of edges of G which are subsets of either X or X, is at least

+ 1j(x—2
0.74(1——)49————)1) and that X has the property (b) if for every partition
X=X,UX,

(b) the number of edges of G with one endpoint in X, and second in X is at most
(x + D){x—2) 0

1.285p 4

Consider a random graph R with vertex set {0, 1, ..., n}, where edges are chosen
independently, each with probability p. We shall divide the proof into eight steps:

I) Let X = {0,1,...,n}, | X| =x + 1 be a given subset of the vertex set of R.
Denote by g,(X) the probability that X fails to have property (i) (i = a,b) as

(l); [) i <|/\;2|> > %(x + 1)(x — 2) = y, we have

qa(x) < gx+1 ' Z <y)p1(1 . p)y—j
j<07ayp \J

1
2=+ —~0.26 +0.74In—
< exp [( + 0.741n 0.74) yp}

[ < exp[(In2 — 9,295 10 3p(x — 2))(x + 1)]

o) =2 ,->1_2285,y C > pi(1 — ppi

1.285
< exp[(In2 — 9.306-10*p(x — 2))(x + 1)1.

1
< 2**lexp [(0.285 +1.285 1n——~—> yp]

II)  Let p(n) denote the probability that the neighborhood N, (in R) of a fixed
vertex ke {0, 1, ..., n} has cardinality smaller than 0.97pn.
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pnp< Y (n) pi(1 — p)"™" < exp[—4.5467- 10~ *np].
i<0.97pn \

III) Let P, denote the probability that the neighborhood of every vertex ke {0, 1,
..., n} have properties (a) and (b).
As g,(x) and q,(x) are clearly decreasing for

o = 10%In2 N
YT T 9295 T
we have for
0.97pn > x, (18)
B, >1—(n+ 1)[p(n) + 4.(0.97pn) + 4,(0.97pn)]. (19)

IV)  Let s(n) denotes the probability that for a fixed pair of distinct vertices k,
l1e{0, 1, ..., n} there are more than 3p*(n — 1) triangles in R having common
edge {k,1}.
We have

-1 . .
s(hy<p ). (n . )pzf(l — p*)"T! < pexp(—1.295p*(n — 1)).
>3-y \ J

Thus, particularly for the probability S, that every edge of R is contained in
at most 3p*(n — 1) triangles we get

S,>1- p<” ; 1)exp( —1.295p%(n — 1)). (20)

V}  Let k,(G) denotes the number of complete I-gons in graph G. Then we have

Bim)= (")

and
D(k4(R)) = E(ki(R)) — E*(k4(R))

) (30 o
IO (21

Thus, according to Chebycheff inequality we have

ka(R) — (" : 1)p6 > 0.01 (" : 1)p5} < 1002_DQ_

n+1 12
ObL
- 1,6-10° 72-10° 9,6-10° 1

(21)
n + pn? +p3(n3——n)+ n+1\ o
L )P

1-R,< Prob{
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ka(R) — p* (" ;’ 1)} > 0.01p? (" ”; 1)}

36-10° 18-10°
< + .

n pn?

Similarly one can show

1—Q,,=Prob{

(22)

VI) Let G = (V, E)be now a graph such that the neighborhood N, has properties
(a)and (b)forevery ke {0, 1, ..., n}. Consider a coloring y: E — {1, 2}. Denote
by T; the number of triangles which are monochromatic and by T, the
number of triangles which are colored by two colors.

Then it follows by (a) and (b) that

37T, + T, > 037-3-T
and 27, <€0.6425-3T

where T = T(G) is the total number of triangles in G. It follows immediately
from above inequalities that

T, > 0.04875T.
Moreover, if every edge G is contained in at most 3p*(n — 1) triangles (for
1
real p, 0 < p < 1) and G contains at least 0.99 ? ; p? triangles then we

get that the minimal number of edges that can destroy all monochromatic
triangles is at least

n+1
0,04875-0.99 3
0,04875 04875-0 ( )p

> > 2,681-1073n2p.
pn—1) — 3p%(n — 1) = mP

+1 | ,
VII) Suppose now that k,(G) < 1,01 <n 4 )pG. Destroy all 4-gons by removing

+1
at most 1.01 <n 4 )p6 edges.

1
If(l.Ol)(n : >p6 < 2,681-103n2p

(23)
or equivalently p> < 63,7-1073n"2
then there are still some monochromatic triangles left and we are done.
VIII) Set
p =0,576n"25. (24)
Then (23) holds. Note that (23) gets the following form
10°In2
s 2 +2=12337 (25)

” [0,576)7097-9,295

which holds for n + 1 = 7.02-10*?
Now (19), (20), (21) and (22) imply, for the above choice of p and n that
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P, > 0,99
S, > 0,99
R, > 0,99
Q,> 0,99

Hence, there exists a graph G € R (with 7,02- 10" vertices) such that
«) neighborhood of any vertex has properties (a) and (b)

B) ka(6) < Lot ("j; l)pﬁ

k5(G) > 099 (" ;“ 1) P

y) every edge of G is contained in at most 3p*(n — 1) triangles

. +1 .
After deleting at most 1,01 (n 4 ) p® edges which destroy all complete
4-gons we get (as shown in VII) the desired graph. O
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