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Let K, = (al, as ,..., a,), ai’s integers >2, P > 1. By a K.-coloring of a 
graph G we mean a coloring of the edges of G by distinct colors cl, c, ,..., c, 
such that there are no complete subgraphs on ai vertices whose edges are all 
colored in color c< (i = 1,2,..., u). In this paper, we consider K,colorings of the 
set Hz* of all graphs on v  vertices which do not contain a complete subgraph on 
I vertices. The interesting cases are those with u > R&) > Z, where R(K,) is 
the Ramsey number associated with K,. Furthermore, we also construct a 
family of graphs E HLV with minimum v  which cannot be KT-colored. 

I. INTRODUCTION: SOME RESULTS ON RAMSEY NUMBERS 

Let KY = (a, , a, ,..., a,), ai’s integers 22, r 3 1. By a K,-coloring of a 
graph G we mean a coloring of the edges of G by distinct colors c1 , c2 ,..., c, 
such that there are no complete subgraphs on ai vertices whose edges are 
all colored in color ci (i = 1,2,..., r). From Ramsey’s theorem [l], there 
exist integers R(K,) such that, if G is any complete graph on R(K,) or 
more vertices, then G cannot be KY-colored while all complete graphs on 
R(K,) - 1 or fewer vertices can be K,-colored. The numbers R(K,) are 
known as Ramsey numbers with parameters K, . 

Trivially, we have 

(1) %d = a1 * 

(2) wh 9 a2 9..., a,,9 = m% 3 4 ,,.Y 4. 

(3) Q-K,.’ = (b, , bz ,..., bT) where (bl , b, ,..., b,) is any rearrangement of 
(4 , a2 ,..., q.), then R(K,‘) = R(K,). 

Except for those cases, very few other Ramsey numbers are known. 
We list them in Table I [2,3,6]. 

In view of relations (1) and (2), we shall assume the ai’s > 3 and r > 2 
inK,. 

Let Kp’ = (a1 , a2 ,..., ai - l,..., a,) and wi = R(Kp’) - 1. 
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TABLE I 

Known Non-trivial Ramsey numbers 

The following lemma and corollary are well known. We omit the proofs 
here since they are also quite easy. 

LEMMA 1. Let G be K,.-colored and G* any complete su~gr~~il of 6. 
Then ‘“in G*,” there are at most wi edges of color c,,+onz any vertex. 

COROLLARY. R(KT) < 2 + C: wi , with strict inequality if some wi is 
odd and C’i wi is even. 

LEMMA 2. Let G be a complete graph on vertices with an edge 
(vl , vJ removed. If G is K,-colored, then for i = I,..., I there exist 
vertices vy), (0 ii) .~.) vai+ such that all edges between vertices vl , vz , vl ,..~) v:~‘-~ 
are colored in color ci . 

ProojI Since G with edge (vl , VJ added is a complete graph on 
vertices and cannot be K,-colored, any coloring of edge (ITS, uz> with 
color C~ must introduce a monochromatic complete subgraph on at 
vertices of color ci . Since G is K,-colored, the monochromatic complete 
subgraph must contain edge (ul , VJ and hence vertices o1 and v, . 

II. THE CHROMATIG NUMBER OF A GRAPH G 

Let G denote the complement of a graph G and K; a complete graph on 
Ivertices. Let Ii = R, and Qz denote an I-gon. We write G = [G, , G, T~..j GiJ 
if G is the union of disjoint graphs G, , G2 9 . . . . Gk and G = (G, , G, ,..., G,) 
if G contains a subgraph [G, , G, ,..., Gk], with every vertex of G in some 
Gi . As usual, we let G1 < G, if G, is a subgraph of G, . Note t 
(6, , 6, ,..., Gk) differs from [G, , G, ,..., GkJ by having possibly some 
more edges. From the definition of the chromatic number of a graph, 
we have the following lemma: 

LEMMA 3. Let G be a given graph. Then x(G), the chromatic number 
of 6, is the minimum s such that G = (I$, I&, ,.‘., -KC). 
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THEOREM 1. Ifs = x(G) < R(K,), then G can be K,-colored. 

ProoJ Let G = (Kr, , $ ,..., &) and Ai denote the set of vertices 
in Kzi . Consider a K,-colormg of K, with vertices v1 , v2 ,..., v, . We color 
the edges of 

G* = Kz, , Kz, ,..., &,I 

as follows. If x E Ai and y E Aj , then the edge (x, v) is colored in the same 
color as edge (vi , vJ. Clearly, this is a IL,-coloring of G* because no two 
vertices in the same Ai have an edge between them in G*. Since G < G*, 
the theorem follows. 

III. K,-COLORINGS OF GRAPHS THAT Do NOT CONTAIN A COMPLETE 
SUBGRAPH ON 1 VERTICES 

Let H,” denote the set of all graphs on v vertices that do not contain a 
KE subgraph. In this section, we concern ourselves with K,-coloring of such 
graphs. Let N(K, , I) denote the minimum v such that there exists a graph 
G E H,” which cannot be K,-colored. We also obtain some lower bounds 
for N(K, , I). It is clear that N(K, , I) > u if and only if all graphs in H,” 
can be K,-colored. 

THEOREM 2. No(,) R(K,) + 1) = R(K,). 

This is immediate from the definition of R(K,). 

THEOREM 3. N(K, , R(K,)) >, R(K,) + 2 with equality holding if and 
only ifG# cannot be K,-colored, where G# = [Q5 , IR(,+J. 

Proof. Let G be any graph E Hz” with v = R(K,) + 1, I = R(K,). Then 
G must contain either [K, , KS, IR(T(,)--3] or [KS, IR~x+] as a subgraph. 
Note that 

Thus x(G) < R(K,) - 1. By Theorem 1, G can be K,-colored, and hence 
N& 2 m4 3 mu + 2. 

Let G be any graph E H,” with v = R(K,) + 2 and I = R(K,). Since G 
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cannot contain a set of 1 or more independent vertices, G must contain t 
following as a subgraph: 

B 

? 9 
P 

A 

b 3 0 0 0-d 
v 

1-2 

If there is any edge between the vertices in set 

G = w, 2 & , K, , I&l and @)<k-l]:=R 

If there is no edge between the set of vertices A and the set of vertices B 
and no edge between the vertices in the set B (in 12)~ then all pairs 
of vertices in A must be connected by an edge in G ts prevent a & in G, 
Hence G = (& , I,-,) and again x(G) < R(K,) - 1. In either case 4; can 
be &-colored by Theorem 1. Therefore we may assume G to contain t 
following as a subgraph, with no edge between the vertices in set 

Label the vertices in A as o1 , v2 , vQ , v4 , v5 . If there is an edge between 
any vertex in B and either vertices v4 or v5 in G, theen G = (KS ) K, , Ka , I,-,). 
If edge (v4 9 q,) is in G, then G = (& i K, , Iz-& In either case, x(G) < 
R(K,) - 1. Hence we may assume G does not contain those edges. Now 
consider the following two sets of 1 vertices in G, 

& = (VI 2 214 , v5 > m,  32 = iv2 , 04 3 v:, 3 3 

There must be an edge connecting two vertices in each set to prevent a 
KE in G. The only possibilities are as follows: 

In & 3 edge (vl , ~3, h y v5> or (ul f b). 
In S, , edge (v2 , v3, (vg j v6) or (vz , b’), b, b’ E 

Of the nine possible choices of one edge each from S, and S, , we see 

6% 3 v3 with h, v5> or h, v5b 

gives G = [Q5 , I&j. The other possibilities give either 
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or G = (KS, K2 , I,.+) with x(G) < R(K,) - 1. Hence, if G # G#, G can 
be K,-colored and N(K, , R(K,)) > R(K,) + 2. 

THEOREM 4. Let K, = (a, , a2 ,..., aJ with ai 3 3, r 2 2. If 

WJ = $ UW:)) - 11 + 2 = ($ wi) + 2, 

then G# cannot be K,-colored, and thus N(K, , R(K,)) = R(K,) + 2. 

Proof. Let us denote by Q the set of 5 vertices in Q5 and I the set of 
R(K,) - 3 vertices m IR(i+-3 . Assume G# can be K,-colored. We show 

(P) If x is any vertex in 1, then the edges from x to all edges in Q must be 
monochromatic. 

Proof. Let di, i = I,..., r be the number of edges from x to the other 
vertices in I which are colored in color ci . Since G# is K,-colored, 

0 < di < wi , for i = 1,2 ,..., r by Lemma 1. 

Since 

c di = R(KJ - 4 = (f, wi) - 2 
1 

we have only two possibilities: 

(a) 3i, j, 3 di = wi - 1, di = wj - 1 and dk = wg for all k = l,..., r 
andk # i,k ij, 

or 

(b) 3i, 3 di = wi - 2, and dk = wk for all k = l,..., r and k i i. 

Since dk = wk implies that the edges from x to Q cannot be colored in 
color ck by Lemma 1, (a) implies that the five edges from x to Q can be 
colored only in colors ci or cj . Hence there are at least two vertices q1 , q2 
in Q such that edge (Q , &) E G# and edges (x, 43, (x, q.J are both colored, 
say in color ci . Since di = wi - 1, x is then connected to all vertices of 
the complete subgraph on wi + 1 = R(Kp’) vertices by edges all colored 
in color ci . Again, by Lemma 1, this is impossible. Possibility (b) implies, 
however, that all 5 edges from x to Q are colored in color ci . 

Let us then partition the vertices in I into sets S, , S, ,..., S, according 
to the color of the edge from that vertex to Q, i.e., x E Si if and only if all 
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edges (x, q), q E Q are colored in color ci . Let j & / be the ~ard~~ality of 
set Sg , then 

0 G / si 1 < wi , for i = 1,2,..., r by Le 

and 

~~IS,l=X(K~)-3=~~~-1. 
1 

Hence there exists an i such that 

/ Asi 1 = wi - 1 

and 

ISjl=wj, j=l,Z ,..., r andjfi. 

We have now the following configuration: 

Si 
q q/ 1‘s I2 I3 

q4-45 

Q5 

s2 

si 

Since 1 Sj / = wi for j # i, all edges in the pentagon Q5 must be colored 
in color ci . Now consider the subgraph G’ formed by the wi + I = R(Kp’) 
vertices q2 , q3 , & , all of which are connected to q1 by edges colored in 
color ci . Since G# is K+olored, G’ must be Kp’-colored. But G’ is a 
complete graph on R(Kp’) vertices with edge (qz ) qJ removed. Hence, 
by Lemma 2, there exists at least a vertex u in & such that edges (0, q2) and 
(a, q3) are colored in color ck f ci . Here we need the assumption that 
Y 3 2 and aj > 3 for j = 1,2,..., r. This is imposs,ible since all vertices 
in Si are connected to q2 and q3 by edges colored in color ci . Hence G* 
cannot be KY-colored and Theorem 4 is proved. 

Among the known Ramsey numbers, R(3,3), R(3? 5), R(4,4), and 
R(3, 3, 3) all satisfy the hypothesis of Theorem 4. Therefore, we have the 
following corollary: 

N((3, 3), 6) = 8, 
N((3, 5), 14) = 16, 

N((4,4), 18) = 20, 

iv((3,3,3)> 17) = 19. 
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The unique graphs G# which give the above equality are given by 
@ = iIQ5 , &I, [Q5 , Ll, IQ5 , LA and [Q5 , LA respectively. 

The question whether N((3,3), 6) exists was first asked by Erdiis and 
Hajnal[7]. J. H. van Lint (unpublished) first showed that N((3, 3), 6) < 14 
and R. L. Graham in [8] showed that N((3,3), 6) = 8 by producing the 
graph 

G# = [Qs , &I. 

To show that the assumption 

R(K,) = i [R(lp) - 11 + 2 
1 

is essential in Theorem 4, we give the following example in Theorem 5. 

For K, = (3,4), R(K,) = 9 < R(3,3) + R(2,4) = 10. Let G# = [Q5, &I. 

THEOREM 5. G+ can be (3,4)-colored. Hence 

iv((3,4), 9) > 11. 

ProoJ We represent G# as follows 

where A = B indicates that all vertices from A are joined to all vertices 
in B. Let c1 be black and c2 be red. We will color the edges of G# such that 
there are no black triangles and no red complete quadrilaterals as follows: 

(1) all edges in Qs red, 

(2) x to all vertices in Q5 black, 

(3) x to all vertices in K5 red. 

Let the vertices in Q5 be labeled q1 , q2 , q3 , q4 , q5 with red edges (ql , q2), 
(q2 , q3), (q3 , qJ, (q4 , q.4, (a , ql) and the vertices in 4 be labeled kl , k, , 
k3 , k4 , k5 with black edges (4, kJ, 6% , &I, (k, , k4), 6% , k&G% , k3 and 
red edges (kl , &I, (k, , kA (k3 , k& (k4 , kd, (k5 , h). 

The colorings of the edges connecting Qs and K5 are given in Table II. 
The complete (3,4)-coloring of G# is given in Fig. 1. 

It is a trivial matter to check that there are no black triangles. Since KS 
does not contain a red triangle, no red complete quadrilateral can involve 
x, and consequently any possible red complete quadrilateral must have 
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TABLE II 

41 r b r r b 

42 b r b r P 

q3 r b r b r 

44 r r b r b 

95 b I r b r 

93 

I%. I _ (3, +coloring of p,& , &I: (- - -4 b?a& (-----I ~~~~ 

two connected vertices in Qs and two others in & . An inspection of Table IT 
shows that the 5 pairs of rows (a , cd, (q2 , q& (q3 9 cd, (a T 4, h ,a) 
all have just one red entry in a common column. I-Pence there are no red 
complete quadrilaterals and Theorem 5 is proved. 

In 191, R. L. Graham and J. H. Spencer showed that N((3,3), 5) < 23 
by producing a graph G E HF which cannot be (3,3)-colored. They raised 
the question whether N((3, 3), 5) > 10. In the following, we show that 
N((3, 3), 5) 9 10 by proving the more general Theorem 6: 
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THEOREM 6. N(K, , R(KT) - 1) > R(K,) + 4. 

Proof. Let G E H,” where v = R(K,) f 3 and I = R(K,) - 1. We 
show that x(G) < I = R(K,) - 1 and hence G can be K,-colored. This 
in turn means that N(K, , R(K,) - 1) 3 R&J + 4. 

Since G does not contain a Kz subgraph, we may assume G to contain 
the following subgraph: 

v, "3 "5 

1 7 P 
0 0 

"2 "4 "6 

” 
0 0 0”’ 0 

(1) If there are any more edges between two vertices in B, then 
t.7 = (K, , K2 , K2 , & , L) and x(G) < 1. 

(2) If there are no edges joining the set of vertices in V to B and no 
edges between two vertices in B, then every pair of vertices in V must be 
connected by an edge in G to prevent a KL in G. But then G = (K, , It-J 
andx(G) <I- 1. 

Therefore, we may assume G to contain the following subgraph: 

"4 "3 "5 "7 
O-O 

7 P I 
0 0 0 

"2 v4 v6 \O 

\ I 
V l-3 

v 

with no edges between the vertices in B, and no edges from either v6 
or v, to B. Furthermore, if G contains the edge (v6 , v,), then G = 
(KS, Kg , K2, 1r.J and x(G) < 1. Hence (v6 , v, , B) form a set of Z - 1 
vertices in G with no edges. To prevent a Kt in G, vl , u2 , v3 , v, must each 
be joined to some vertex in the set (v6 , v7, B) by an edge. Suppose v1 is 
joined to some b E B. Then any edge from v2 to (v, , v, , B) produces either 
G = (K, , K2, K, , K, , Zz+) or G = (KS, K2 , K, ,1&; the latter case 
arises when v1 and v2 are both joined to the same b E B. Suppose v1 and v2 
are both joined to either v6 or v, , then G = (& , K, , K2 ,1&. Similar 
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arguments hold for v3 and v4 and we must have G containing the following 
subgraph: 

b-3 

with no edge from (vl , v2 , Q , v4) to B. 
Consider now the two sets of 1 vertices (vl , up , vg , B) and (vz ) v4 , ug , 

in G. There must be an edge joining some two vertices in each set 
prevent a I& in G. In view of the above arguments, the only possibilities 
left are: an edge (v5 , b), b E B, or one edge from each of the triangles 
(vl 3 v3 2 4 and (v, , up , v ). 5 The former gives G = (dir, , KS , K, , Kz , Ii-,) 
while the rest of the possibilities give either 6; = (K3 , K, 7 I,-,) or 
G = (K3, K3, It-,). Hence we have pro that G E NzB implies 
x(G) < I = R(K,) - 1 and hence G can be -colored by Theorem I. 
Hence N(K, ) R(K,) - 1) 3 R(K,) + 4. 

COROLLARY: 

N((3,3), 5) b 10 
N((3,4), 8) 3 I.3 

N((3,5), 13) >, 18 
N((3,6), 17) 2 22 
N((3,7), 22) 3 27 
N((4,4), 17) > 22 

N((3,3,3), 16) 2 21 

Admittedly, the bounds given by Theorem 6 are still quite weak. 
can presumably show that N(K, , Ii&.) - 1) > R(K,) + 5 by using 
essentially the same procedures, except that the work may be too lengthy 
to present. However, since the results obtained so far for the existence 
of N((3,3), 4) by J. H. Folkman [IO] seem to indicate that N((3,3), 4) 
enormous, any reasonable bound for N(K, , R(K,) - 2) in general may 
very difficult. 
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