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9 Ramsey Theory
for Graphs

In this chapter we set out from a type of problem which, on the face
of it, appears to be similar to the theme of Chapter 7: what kind of
substructures are necessarily present in every large enough graph?

The regularity lemma in Chapter 7.4 provides one possible answer
to this question: every (large] graph ¢ contains large random-like sub-
graphs. If we are looking for a concrete given subgraph H, on the other
hand, our problem becomes more like Turan’s theorem (7.1.1), Wagner’s
theorem {7.3.4), or Hadwiger’s conjecture: we cannot expect an arbitrary
graph G to contain a copy of H, but if it does not then this might have
some Interesting structural implications for .

The kind of structural implication that will be typical for this chap-
ter is simply that of containing some other (induced) subgraph. For
example: given an integer r, does every large enough graph contain eil-
ther a K7 or an induced K77 Does every large enough connected graph
contaln either a K or else a large induced path or star?

Despite its superficial similarity to extremal problems, the above
type of question leads to a kind of mathematics with a distinctive flavour
of its own. Indeed, the theorems and proofs in this chapter have more in
common with similar rezults in algebra or geometry, say, than with most
other areas of graph theory. The study of their underlying methods,
therefore, iz generally regarded as a combinatorial subject in its own
right: the discipline of Eamsey theory.

In line with the subject of this book, we shall focus on results that
are naturally expressed in terms of graphs. Even from the viewpoint of
general Ramsey theory, however, this is not as much of a limitation as
it might seem: graphs are a natural setting for Ramsey problems, and
the material in this chapter brings out a sufficient variety of ideas and
methods to convey some of the fascination of the theory as a whole.
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9.1 Ramsey’s original theorems

In its simplest version, Ramsey’s theorem says that, given an integer
r = 0, every large encugh graph G contains either K™ or K7 as an
induced subgraph. At first glance, this may seem surprising: after all,
we need a proportion of about (r —2)/{r — 1} of all possible edges to
force a K7 subgraph in G (Corollary 7.1.3), but neither G nor G can
be expected to have more than half of all possible edges. However, as
the Turan graphs illustrate well, squeezing many edges into G without
creating a. K7 imposes additional structure on &G, which may help us find
an induced K.

So how could we go about proving Ramsey’s theorem? Let us try
to build a K7 or K7 in @ inductively, starting with an arbitrary vertex
vy € Vi := V(). II |G| is large, there will be a large set Vo C Vi < {1}
of vertices that are either all adjacent to 7 or all non-adjacent to .
Accordingly, we may think of 1 as the first vertex of a K7 or K™ whose
other vertices all lie in Vo. Let us then choose another vertex ve € V5
for our K™ or K. Since V; is large, it will have a subset Vi, still fairly
large, of vertices that are all ‘of the same type’ with respect to vs as
well: either all adjacent or all non-adjacent to it. We then continue our
search for vertices inside V3, and so on (Fig. 9.1.1}.

Fig. 8.1.1. Choosing the sequence vy, vo,...

How long can we go on in this way? This depends on the size of
our Initial set ¥: each set V; has at least half the size of its predeces-
gor Vi_1, so we shall be able to complete s construction steps if G has
order about 2%. As the following proof shows, the choice of s = 2r — 3
vertices v; suffices to find among them the vertices of a K7 or K.

Theorem 9.1.1. (Ramsey 1930)
For every r € M there exists an n € N such that every graph of order at
least n containg either K or K™ as an induced subgraph.

Proof. The assertion is trivial for » < 1; we assume that » = 2. Let
n = 2273 and let G be a graph of order at least n. We shall define
a sequence Vi,...,Vo,_o of sets and choose vertices v; € V; with the
following properties:

G) |Vi] =2%27¢% G=1,...,2r - 2);
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) Vi CVioa~{wa} (6=2,...,2r—2)

(iil) 21 is adjacent either to all vertices in V; or to no vertex in V;

(i=2,...,2r—2).

Let V1 € V(G) be any set of 2273 vertices, and pick vy € V; arbitrarily.
Then (i) holds for ¢ = 1, while (ii) and (iii) hold trivially. Suppose now
that Vi1 and v;_1 € Vi1 have been chosen g0 az to satisfy (i)—(iii) for
i—1, where 1 << ¢ < 2r— 2. Since

|v%71 “ {'Ui—l}| — 227‘—1—5 ]

is odd, V;_1 has a subset V; satisfying (1)—(iii}; we pick v; € V; arbitrarily.

Among the 2r — 3 vertices vq,...,va,_3, there are r — 1 vertices that
show the same behaviour when viewed as v;_; in (iii), being adjacent
either to all the vertices in V; or to none. Accordingly, these r — 1 vertices
and va,_o induce either a K7 or a K” in G, because v, ..., 1,2 € V;

for all 7. O

The least integer n assoclated with r as in Theorem 9.1.1 is the
Ramsey number R(r) of r; our proof shows that R(r) < 2?"~%. In Chap-
ter 11 we shall use a simple probabilistic argument to show that R(r) is
bounded below by 27/2 (Theorem 11.1.3).

In other words, the largest clique or independent set of vertices that
a graph of order n must contain is, asymptotically, logarithmically small
in n. As soon as we forbid some fixed induced subgraph, however, it may
be much bigger, of size linear in n: The Erdds-Hajinal conjecture says
that for every graph H there exists a constant dz > 0 such that every
graph G not containing an induced copy of H has a set of at least |G|°#
vertices that are either independent. or span a complete subgraph in G.

It Is customary in Ramsey theory to think of partitions as colourings:
a colouring of (the elements of) a set X with e colours, or c-colouring for
ghort, iz simply a partition of X into ¢ classes (indexed by the ‘colours’).
In particular, these colourings need not satisfy any non-adjacency re-
quirements as in Chapter 5. Given a c-colouring of [X]*, the set of all
k-subsets of X, we call a set ¥ C X monochromatic if all the elements
of [Y]* have the same colour,! i.e. belong to the same of the ¢ partition
classes of [X]*. Similarly, if G = (V, E) is a graph and all the edges of
H C G have the same colour in some colouring of E, we call H a mono-
chrematic subgraph of &, speak of a red (green, etc.) H in G, and =0 on.

In the above terminology, Ramsey’s theorem can be expressed as
follows: for every r there exists an n such that, given any n-set X,

L Note that Y is called monochromatic, but it is the elements of [Y]k, not of ¥,
that are {equally) coloured.
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every 2-colouring of [X]? yields a monochromatic r-set ¥ C X. Tnterest-
ingly, this assertion remains true for c-colourings of [X]* with arbitrary
c and k—with almost exactly the same proof!

We first prove the infinite version, which is easier, and then deduce
the finite version.

Theorem 9.1.2. Let k, e be positive integers, and X an infinite set. If
[X]* is coloured with ¢ colours, then X has an infinite monochromatic
subset.

Proof. We prove the theorem by induction on k, with ¢ fixed. For k =1
the assertion holds, so let & > 1 and assume the assertion for smaller
values of k.

Let [X]* be coloured with ¢ colours. We shall construct an infinite
sequence Xy, X1,... of infinite subsets of X and choose elements x; € X;
with the following properties (for all &):

(1) Xep1 © X~ {aa)

(i) all k-sets {z;} U7 with 7 € [qurl]k*l have the same colour, which
we associate with ;.

We start with Xy := X and pick xg € Xy arbitrarily. By assumption,
Xp is infinite. Having chosen an infinite set X; and 2; € X; for some i, we
e-colour [X; - {x;}]*~ ! by giving each set Z the colour of {z;}UZ from
our e-colouring of [X]*. By the induction hypothesis, X; - {z;} has an
infinite monochromatic subset, which we choose as X; 1. Clearly, this
choice satisfies (i) and (ii). Finally, we pick z;,1 € X;;1 arbitrarily.
Since ¢ is finite, one of the ¢ colours is associated with infinitely
many z;. These z; form an infinite monochromatic subset of X. O

If desired, the finite version of Theorem 9.1.2 could be proved just
like the infinite version above. However to ensure that the relevant sets
are large enough at all stages of the induction, we have to keep track of
their sizes, which involves a good deal of boring calculation. As long as
we are not interested in bounds, the more elegant route iz to deduce the
finite version from the infinite ‘by compactness’, that is, using Koénig's
infinity lemma (8.1.2).

Theorem 9.1.3. For all k,c,r = 1 there exists an n = k such that every
n-set X has a monochromatic r-subset with respect to any c-colouring

of [X]*.

Proof. As is customary in set theory, we denote by n € N (also) the
set {0,...,7n—1}. Suppose the assertion fails for some k,c,7. Then for
every n = k there exist an n-zet, without loss of generality the set n, and
a c-colouring [n]*® — ¢ such that n contains no monochromatic r-set. Let
us call such colourings bad; we are thus assuming that for every n = &
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there exists a bad colouring of [n]*. Qur aim is to combine these into a
bad colouring of [N]¥, which will contradict Theorem 9.1.2.

For every n = k let V,, # 0 be the set of bad colourings of [n]*. For
n > k, the restriction f(g) of any ¢ € V,, to [n — 1]* is still bad, and hence
lies in Vi,_1. By the infinity lemma (8.1.2), there is an infinite sequence
iy Tt 1, - - - of bad colourings g, € V,, such that f(g,) = gn_1 for all
n > k. For every m = k, all colourings g, with n > m agree on [m]*, so
for each Y € [N]* the value of g,(Y) coincides for all n > max Y. Let
us define g(Y) as this common value g,(Y). Then g is a bad colouring
of [N]*: every r-set § € N is contained in some sufficiently large n,
so 8 cannot be monochromatic since ¢ coincides on [n]* with the bad
colouring ¢y. O

The least integer n associated with k,¢,» as in Theorem 9.1.3 is the
Ramsey number for these parameters; we denote it by R(k,c,r).

9.2 Ramsey numbers

Ramsey’s theorem may be rephrased as follows: if H = K" and &
is a graph with sufficiently many vertices, then either G itself or its
complement & contains a copy of H as a subgraph. Clearly, the same is
true for any graph H, simply because H C K" for h := |H|.

However, if we ask for the least n such that every graph G of order n
has the above property—this is the Kamsey number R(H) of H—then
the above question makes sense: if H has only few edges, it should embed
more easily in G or G, and we would expect R(H) to be smaller than
the Ramsey number R(h) = R(K™).

A little more generally, let E(H1, Hz) denote the least n € N such
that H1 € G or Hy C @ for every graph G of order n. For most graphs
Hi, Hs, only very rough estimates are known for R{Hq, Hs). Interest-
ingly, lower bounds given by random graphs (as in Theorem 11.1.3) are
often sharper than even the best bounds provided by explicit construc-
tions.

The following proposition describes one of the few cases where exact
Ramsey numbers are known for a relatively large class of graphs:

Proposition 9.2.1. Let s,t be positive integers, and let T' be a tree of
ordert. Then R(T,K*) = (s—1){(t—1)+1.

Proof. The disjoint union of s — 1 graphs K® ! contains no copy of T,
while the complement. of this graph, the complete (s — 1)-partite graph
K:7, does not contain K*. This proves R(T,K*®) = (s— 1)(t— 1)+ 1.
Conversely, let & be any graph of order n = (s — 1)}(¢— 1) +1 whose
complement containg no K*. Then s > 1, and in any vertex colouring

Ramsey
number

R(k,e,7)
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R(H)

R{H:, Hy)

(1.5.4)
{5.2.3)
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of G (in the sense of Chapter 5) at most s — 1 vertices can have the
same colour. Hence, x{G) = [n/(s —1}] = ¢. By Lemma 5.2.3, G has
a subgraph H with ¢(H) = t — 1, which by Corollary 1.5.4 contains a
copy of T O

As the main result of this section, we shall now prove one of those
rare general theorems providing a relatively good upper bound for the
Ramsey numbers of a large class of graphs, a class defined in terms
of a standard graph invariant. The theorem deals with the Ramsey
numbers of sparse graphs: it says that the Ramsey number of graphs A
with bounded maximum degree grows only linearly in | H|—an enormous
Improvement on the exponential bound from the proof of Theorem 9.1.1.

Theorem 9.2.2. (Chvétal, Radl, Szemerédi & Trotter 1983)
For every positive integer A there is a constant ¢ such that

R(H) < c|H]|

for all graphs H with A(H) < A.

Proof. The basic idea of the proof is as follows. We wish to show that
H C Gor HC Gif |G| is large enough {(though not too large). Consider
an e-regular partition of &, as provided by the regularity lemma. If
enough of the e-regular pairs in this partition have high density, we may
hope to find a copy of H in G. If most pairs have low density, we try
to find H in G. Let R, R and R" be the regularity graphs of 7 whose
edges correspond to the pairs of density = 0; = 1/2; < 1/2 respectively.?
Then R is the edge-disjoint union of R’ and R".

Now to obtain H € G or H C G, it suffices by Lemma 7.5.2 to
ensure that H is contained in a suitable ‘inflated regularity graph’ R/
or RY. Since x(H) < A(HY+1 < A+1, this will be the case if 5 = a(H)
and we can find a K211 in R’ or in R”. But that is easy to ensure: we
just need that K™ € R, where r is the Ramsey number of A 41, which
will follow from Turdn’s theorem because R is dense.

For the formal proof let now A = 1 be given. On input d := 1/2
and A, Lemma 7.5.2 returns an ey. Let m := R(A+ 1) be the Ramsey
number of A4 1. Let ¢ < ¢y be positive but small encugh that for k =m
(and hence for all & = m)

1 1
P ] e 1
€ < " — 1 llC ? ( )
then in particular ¢ < 1. Finally, let M be the integer returned by the
regularity lemma (Thecrem 7.4.1) on input € and m.

2 In our formal proof later we shall define R’ a little differently, so that it complies

properly with our definition of a regularity graph.
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All the quantities defined so far depend only on A. We shall prove
the theorem with
28+ M
1—¢ °

Let H with A(H) A be given, and let s := |H|. Let G be an arbitrary
graph of order n = ¢|H|; we show that H C G or H C G.

By Theorem 7.4.1, G has an e-regular partition {Vg, V1,..., V3 with
exceptional set V) and [Vi| = ... = |Vi| = ¢, where ma < k < M. Then

C =

nf|V0|> 176> 1—¢

£ = k /nM/csM

> DAFLy =allafds, (2)

Let R be the regularity graph with parameters ¢,#, 0 corresponding to
this partition. By definition, K has & vertices and

k
IRl > (] -2

(i -2
0L
i

z ty_1(k)

edges. By Theorem 7.1.1, therefore, X has a subgraph K = K™,

We now colour the edges of R with two colours: red if the edge
corresponds to a pair (V;, V;) of density at least 1/2, and green otherwise.
Let R’ be the spanning subgraph of R formed by the red edges, and R”
the spanning subgraph of R formed by the green edges and those whose
corresponding pair has density exactly 1/2. Then R’ is a regularity graph
of G with parameters ¢, £ and 1/2. And R” is a regularity graph of G,
with the same parameters: as one eagily checks, every pair (V;, V;) that
is e-regular for G ig also e-regular for G.

By definition of m, our graph K contains a red or a green K", for
r:= x(H) < A+ 1. Correspondingly, H € R, or H € R”. Since
¢ < e and £ = 2s/d® by (2), both R’ and R" satisfy the requirements
of Lemma 7.5.2,80 H C G or HC G as desired. O

So far in this section, we have been asking what is the least order
of a complete graph & such that every 2-colouring of its edges yields a
monochromatic copy of some given graph H. Rather than keeping &G
complete and focusing on its order, let us now consider its structure too,
i.e., minimize G with respect to the subgraph relation. Given a graph H,
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let us call a graph G Eamsey-minimal for H if G is minimal with the
property that every 2-colouring of its edges yields a monochromatic copy
of H.

What do such Ramsey-minimal graphs look like? Are they unique?
The following result, which we include for its pretty proof, answers the
second questlon for some H:

Proposition 9.2.3. If T' is a tree but not a star, then infinitely many
graphs are Ramsey-minimal for T'.

Proof. Let |T| = r. We show that for every n € N there iz a graph of
order at least n that is Ramsey-minimal for 7'

By Theorem 5.2.5, there exists a graph G with chromatic number
x(G) > r? and girth ¢(G) > n. If we colour the edges of G red and
green, then the red and the green subgraph cannot both have an r-
(vertex-)colouring in the sense of Chapter 5: otherwize we could colour
the vertices of G with the pairs of colours from those colourings and
obtain a contradiction to x () > 2. So let ' € G be monochromatic
with x(G") > r. By Lemma 5.2.3, G’ has a subgraph of minimum degree
at least », which contains a copy of T' by Corollary 1.5.4.

Let G* C G be Ramsey-minimal for T'. Clearly, G* is not a for-
est: the edges of any forest can be 2-coloured (partitioned) so that no
monochromatic subforest contains a path of length 3, let alone a copy
of T'. (Here we use that T is not a star, and hence contains a P*.) So G*
contains a cycle, which has length g{(G) > n since G* C &. In particular,
|G*| = n as desired. O

9.3 Induced Ramsey theorems

Ramsey’s theorem can be rephrased as follows. For every graph H = K*
there exists a graph & such that every 2-colouring of the edges of G
yields a monochromatic H € (&; as it turns out, this is witnessed by
any large enough complete graph as <. Let us now change the problem
slightly and ask for a graph (¢ in which every 2-edge-colouring yields
a monochromatic induced H C G, where H iz now an arbitrary given
graph.

This slight modification changes the character of the problem dra-
matically,. What Is needed now 1s no longer a simple proof that & 1is
‘hig enough’ (as for Theorem 9.1.1), but a careful construction: the
construction of a graph that, however we bipartition its edges, contains
an Induced copy of H with all edges in one partition class. We shall call
such a graph a Ramsey graph for H.
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The fact that such a Ramsey graph exists for every choice of H is
one of the fundamental results of graph Ramsey theory. It was proved
around 1973, independently by Deuber, by Erdds, Hajnal & Pdsa, and
by Rodl.

Theorem 9.3.1. Every graph has a Ramsey graph. In other words, for
every graph H there exists a graph (G that, for every partition {F1, Fs}
of B((G), has an induced subgraph H with E{(H) C Ey or E{H) C E5.

We give two proofs. Fach of these is highly individual, yet each offers a
glimpse of true Ramsey theory: the graphs involved are used as hardly
more than bricks in the construction, but the edifice is impressive.

First proof. In our construction of the desired Ramsey graph we shall
repeatedly replace vertices of a graph G = (V, ) already constructed
by copies of another graph H. For a vertex set 7 C V let G[[/ — H|
denote the graph obtained from &G by replacing the vertices w € U7 with
copies H(u) of H and joining each H (u) completely to all H (v") with
uw' € B and to all vertices v € V ~. I/ with uv € F (Fig. 9.3.1). Formally,

Fig. 9.2.1. A graph G[U — H] with H = K°
U — H] is the graph on
U xV(H)) U ((V~U) x{0})
in which two vertices (v,w) and (v", w') are adjacent if and only if either

v’ € E,orelse v =1 € U and ww' € E(H).?

We prove the following formal strengthening of Theorem 9.3.1:

For any two graphs Hy, Ho there exists a graph G =

G(Hi, Hs) such that every edge colouring of G with the

colours 1 and 2 yields either an induced H; C G with all (x)
its edges coloured 1 or an induced Hy C G with all its

edges coloured 2.

% The replacement of V ~ U by (VT x {0} is just a formal device to ensure that
all vertices of G[U — H] have the same form (»,w), and that G[U — H] is formally
digjeint. from G.

G — H]

H{u)

G{H:, Hy)
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This formal strengthening makes it possible to apply induction on
|H1| + | H2|, as Tollows.

If either Ay or Hs has no edges (in particular, if |H| + |H2| < 1),
then () holds with G = K7 for large enough n. For the induction step,
we now assume that both H; and H: have at least one edge, and that
(%) holds for all pairs (H{, H) with smaller |H{| +|Hj|.

For each ¢ = 1,2, pick a vertex x; € H; that is incident with an
edge. Let H] := H; — x4, and let H]' be the subgraph of H] induced by
the neighbours of z;.

We shall construct a sequence G°,. .., G™ of digjoint graphs; G™ will
be the desired Ramsey graph G(H1, Hs). Along with the graphs Gy, we
shall define subsets V¢ C V(G?) and a map

£VIu UVt VoyL uynt
such that
Fr) =it (1)

for all ¢ = 1. Writing f% := fo...o f for the i-fold composition of f,
and f0 for the identity map on V0 = V(G?), we thus have fi(v) ¢ V°
for all v € V& We call f(») the origin of .

The subgraphs G¢[V?] will reflect the structure of G° as follows:

Vertices in V' with different origins are adjacent in G% if )
and only if their origing are adjacent in G°.

Agsertion (2) will not be used formally in the proof below. However,
it can help us to visualize the graphs G% every G (more precisely,
every G*[VY); for ¢ = 1 there will also be some vertices € Gf — V%) is
essentially an inflated copy of GC in which every vertex w € G° has been
replaced by the set of all vertices in V* with origin w, and the map f
links vertices with the same origin across the various G%.

By the induction hypothesis, there are Ramsey graphs

Gy:= G(H1,Hy) and G2 := G(H}, Ha).

Let G be a copy of Gy, and set VY := V(G®). Let W{,..., W/ ;| bethe
subsets of V® spanning an Hf in G°. Thus, n is defined as the number
of induced copies of Hi in G°, and we shall construct a graph G¢ for
every set W/ 1, i=1,...,n. Fori=0,...,n—1, let W/} be the image
of V(HY) under some isomorphism Hf — GO[W/].

Assume now that G°,...,G* Y and V°,...,Vi~! have been defined
for some ¢ > 1, and that f has been defined on V1 U...UV*! and
satisfies (1) for all § < 4. We construct G* from G*~1 in two steps. For
the first step, consider the set 77! of all the vertices v € V=1 whose
origin £ 1(v) lies in W/’ ;. (For ¢ = 1, this gives UY = W{'.) Expand
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(-1 to a new graph Gi-1 (disjoint from G*~1) by replacing every vertex
u € U1 with a copy Ga(u) of Gs, i.e. let

@i—l 5 Gi_l[U?:_l —*GQ}

(see Figures 9.3.2 and 9.3.3). Set f(u') := u for all u € U1 and

Fig. 9.2.2. The construction of G

v € Ga(u), and f(v') := v for all ¥/ = (v,0) with v € Vi-1 . Ui-L
(Recall that (v, @) is simply the unexpanded copy of a vertex v € G¥1
in G*1)) Let V? be the set of those vertices o’ or o' of G for which
f has thus been defined, i.e. the vertices that either correspond directly
to a vertex v in Vi1 or else belong to an expansion Ga(w) of such a
vertex uw. Then (1) holds for 7. Also, if we assume (2) inductively for
i— 1, then (2) holds again for i (in G‘Fl). The graph Gi~1 is already
the essential part of G% the part that looks like an inflated copy of GP.

In the second step we now extend G=! to the desired graph G by
adding some further vertices z ¢ V. Let 7 denote the set of all families
I of the form

F=(H@)|ueUh),

where each H{(u) is an induced subgraph of Ga{u) isomorphic to H{.
(Less formally: F is the collection of ways to select simultaneously from
each Gz(u) exactly one induced copy of H{.) For each F' ¢ F, add a
vertex (F) to G and join it, for every u € U1, 1o all the vertices in
the image H{ (uv) € H{(u) of H{ under some isomorphism from H{ to
the Hi(w) C Ga(u) selected by F' (Fig. 9.3.2). Denote the resulting graph
by G*. This completes the inductive definition of the graphs G°,...,G™.

Let us now show that & := G" satisfies (). To this end, we prove
the following assertion (x*) about G* for i = 0,...,n:

Vi

Hi{u)

a(F)
Hi'(w)

Gz’
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For every edge colouring with the colours 1 and 2, G* con-
tains either an induced Hy coloured 1, or an induced Hg
coloured 2, or an induced subgraph H coloured 2 such that (4]
V(H) C V? and the restriction of f* to V(H) is an isomor-
phism between H and G°|W/| for some k < {i,...,n—1}.

Note that the third of the above cases cannot arise for ¢ = n, so (x+) for
n is equivalent to {*) with G := G*.

For ¢ = 0, (++) follows from the choice of G® as a copy of G; =
G(H+, HS) and the definition of the sets W;. Now let 1 < ¢ < n, and
assume (##) for smaller values of <.

Let an edge colouring of G% be given. For each u € {/*~1 there is a
copy of Gy in G%

Gi 2 Gg(u) b G(Hi,HQ)

If Go(u) contains an induced Hy coloured 2 for some u € U1, we are
done. If not, then every G3(u) has an induced subgraph Hi{u) ~ H{
coloured 1. Let #' be the family of these graphs H{(u), one for each
we UL and let x := o(F). If, for some u € U1 all the z—H{ (u)
edges in G* are also coloured 1, we have an induced copy of H; in G*
and are again done. We may therefore assume that each H{(u) has a
vertex 1, for which the edge zy,, is coloured 2. The restriction ¥, — u

of f to
et =y |ue Uiil} Cc vt

extends by (v,0) — v to an iscmorphism from
G-l .= @t [ﬁf—l U {(0,0) | v e V(@Y \Uf—l}}

to G771, and so our edge colouring of G? induces an edge colouring
of G#1. Tf this colouring yields an induced H; € G¥ 1 coloured 1 or an
induced Hy € G coloured 2, we have these also in Gi-1 C & and are
again home.

By (xx) for i — 1 we may therefore assume that G*~1 has an in-
duced subgraph H' coloured 2, with V(H') C V*~1, and such that the
restriction of fi=1 to V(H’) is an isomorphism from A’ to G°[W}| ~ H},
for some b € {i—1,...,n—1}. Let H' be the corresponding induced
subgraph of G*=1 C @¢ (also coloured 2); then V(') C V7,

FVHN) = FNVEY) = W,

and fi: 0 GY[W]] is an isomorphism.

If k = ¢, this completes the proof of () with H := H'; we therefore
assume that k < ¢, and hence k& = ¢ — 1 (Fig. 9.3.3). By definition
of U1 and Cﬁv”'*l, the inverse image of W/ under the isomorphism
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Fig. 9.2.3. A monochromadtic copy of Ha in Gf

feH G%W{_l] is a subset of /1. Since 7 is joined to precisely those
vertices of /1’ that lie in [Afi_l, and all these edges xy,, have colour 2, the
graph B and = together induce in G* a copy of Hs coloured 2, and the
proof of (#x) is complete. O

Let us return once more to the reformulation of Ramsey’s theorem
considered at the beginning of this section: for every graph H there
exists a graph & such that every 2-colouring of the edges of G yields
a monochromatic H C G. The graph G for which this follows at once
from Ramsey’s theorem is a sufliciently large complete graph. If we
ask, however, that G shall not contain any complete subgraphs larger
than those in H, ie. that w(&) = w(H), the problem again becomes
difficult—even 1if we do not require 4 to be induced in G.

QOur second proof of Theorem 9.5.1 solves both problems at once:
given H, we shall construct a Ramsey graph for H with the same clique
number as H.

For this proof, i.e. for the remainder of this section, let us view
bipartite graphs P as triples (V1,V2, F), where V1 and V5 are the two
vertex classes and E C V) x V5 1s the set of edges. The reason for this
more explicit notation is that we want embeddings between bipartite

bipartite
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graphs to respect their bipartitions: given another bipartite graph P/ =

(VI,V4, £, an injective map : V4 UVe — V] UV will be called an em-

bedding of Pin P’ if (V) C V/ fori =1,2 and ¢(v;)e(ve) is an edge of

F’if and only if 1 v iz an edge of P. (Note that such embeddings are ‘in-

duced’.) Instead of @: V4 UVs — V] U V] we may simply write ¢: P — F'.
We need two lemmas.

Lemma 9.3.2. Every bipartite graph can be embedded in a bipartite
graph of the form (X, [X]*, E) with E = {zY |z ¢ Y }.

Proof. Let P be any bipartite graph, with vertex classes {a1,...,a,}
and {by,...,b,,}, say. Let X be a set with 2n +m elements, say

X ={T1, o Bay Yooy Uns Blye vy Zm )]

we shall define an embedding ¢: P — (X, [X]*+L, E).

Let ug start by setting w(a;) := z; for all i = 1,...,n. Which
(rn+1)-sets Y C X are suitable candidates for the choice of @(b;) for
a given vertex b;7 Clearly those adjacent exactly to the images of the
neighbours of b;, i.e. those satisfying

Yn{zy,...,zx} = @(Np(b:). (1)

Since d(b;) < n, the requirement of (1) leaves at least one of the n+1
elements of ¥ unspecified. In addition to ¢(Np(b;)), we may therefore
include in each ¥ = ¢(b;) the vertex z; as an ‘index’; this ensures that
@(b;) # @(b;) for i # j, even when b; and b; have the same neighbours
in P. To specify the sets ¥ = ¢(b;) completely, we finally fill them up
with ‘dummy’ elements y; until |¥Y| = n+ 1. O

QOur second lemma already covers the bipartite case of the theorem:
it says that every bipartite graph has a Ramsey graph—even a bipartite
one.

Lemma 9.3.3. For every bipartite graph P there exists a bipartite
graph P’ such that for every 2-colouring of the edges of P’ there is
an emhbedding ¢: P — P’ for which all the edges of ¢(F) have the same
colour.

Proof. We may assume by Lemma 9.3.2 that P has the form (X, [X]% E)
with F = {zY¥ | z € Y }. We show the assertion for the graph P’ :=
(X7, [X’]"“/,E")j where k' := 2k — 1, X' is any set of cardinality

‘X!| :R(kl’Q(‘fz)’ k|X|+k—1),
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(this is the Ramsey number defined after Theorem 9.1.3), and
Fo= {al¥ | eV

Let us then celour the edges of P’ with two colours o and 3. Of the
Y’| = 2k — 1 edges incident with a vertex Y’ € [X']¥', at least k must
have the same colour. For each Y’ we may therefore choose a fixed k-set
7' C Y’ such that all the edges 'Y’ with ' € Z’ have the same colour;
we shall call this colour associated with Y. )

The sets Z’ can lie within their supersets ¥’ in (% ways, as follows.
Let X' be linearly ordered. Then for every Y/ € [X']® there is a unique
order-preserving bijection ay/: Y’ — {1,...,K'}, which maps Z’ to one
of (‘l:) possible images. )

We now colour [X] ¥ with the 2(‘2) elements of the set

{1, B} x {e, B}

as colours, giving each Y/ € [X'|* as its colour the pair (oy+(Z"),7),
where 7 i3 the colour @ or £ associated with Y. Since |X’| was chosen
as the Ramsey number with parameters &', 2('?;] and k| X|+k—1, we
know that X' has a monochromatic subset W of cardinality &|X|+&—1.
All Z' with Y' € W thus lie within their ¥’ in the same way, i.e. there
exists an § € I{l,. .., k'}]* such that oy (Z') = § for all Y’ € [W]*, and
all Y/ e [W]*" are associated with the same colour, say with a.

We now construct the desired embedding ¢ of P in P’. We first
define ¢ on X = {z1,...,z,}, choosing images p(x;) = w; € W so that
w; < wy in our ordering of X’ whenever ¢ < §. Moreover, we choose the
w; 80 that exactly k—1 elements of W are smaller than w,, exactly & —1
lie between w; and w; 1 fori=1,...,n—1, and exactly & — 1 are bigger
than w,,. Since |W| = kn+ & — 1, this can indeed be done (Fig. 9.3.4).

We now define ¢ on [X]*. Given Y ¢ [X]*, we wish to choose
Yy =Y ¢ [X’]kl so that the neighbours of ¥’ among the vertices
in (X)) are precisely the images of the neighbours of ¥ in P, i.e. the
vertices ¢(x) with © € ¥, and so that all these edges at ¥’ are coloured a.
To find such a set Y, we first fix its subset 4’/ as {@(z) | ¢ € ¥}
(these are & vertices of type w;) and then extend 7' by &' — k further
vertices uw € W~ (X)) to a set ¥V’ < [W]H, in such a way that Z’ lies
correctly within Y, Le. so that oy (Z’) = 5. This can be done, because
k—1 = k' — k other vertices of W lie between any two w;. Then

Y'neX) =2"={e(@) |zeY},

g0 Y’ has the correct neighbours in (X}, and all the edges between Y’
and these neighbours are coloured o (because those neighbours lie in Z’
and Y’ is associated with ). Finally, ¢ is injective on [X]*: the images
Y’ of different vertices Y are distinct, because their intersections with
(X)) differ. Hence, our map ¢ is indeed an embedding of P in F'. O

zi

associated

Ovi

wlx

@l 13
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Fig. 9.53.4. The graph of Lemma 9.3.3

Second proof of Theorem 9.3.1. Let H be given as in the theorem,
and let n := R(r) be the Ramszey number of » := |H|. Then, for every
2-colouring of its edges, the graph K = K™ contains a monochromatic
copy of H—although not necessarily induced.

We start by constructing a graph G, as follows. Imagine the ver-
tices of K to be arranged in a column, and replace every vertex by a row
of (?) vertices. Then each of the (?) columns arising can be associated
with one of the (?) ways of embedding V(H) in V{K); let us furnish
this column with the edges of such a copy of H. The graph G° thus aris-
ing consists of (?) disjoint copies of H and (n—r) (:f) isolated vertices
(Fig. 9.3.5).

In order to define G° formally, we assume that V(K) = {1,...,n}
and choose copies Hy,..., Hen of H in K with pairwise distinct vertex
sets. (Thus, on each r-set in 'V (K) we have one fixed copy H; of H.)
We then define

ViEY = ) [t dpeming § = 1y = (3 5

and
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Fig. 9.2.5. The graph G°
(%)
E(G°) := U (G, ), 5) | & € E(H)Y.

The idea of the proof now is as follows. Our aim is to reduce the gen-
eral case of the theorem to the bipartite case dealt with in Lemma 9.3.3.
Applying the lemma, iteratively to all the pairs of rows of G, we con-
struct a very large graph & such that for every edge colouring of G there
is an induced copy of G? in & that is monochromatic on all the bipartite
subgraphs induced by its pairs of rows, i.e. in which edges between the
same two rows always have the same colour. The projection of this
GY C G to {1,...,n} (by contracting its rows) then defines an edge
colouring of K. (If the contraction does not yield all the edges of K,
colour the missing edges arbitrarily.} By the choice of | K|, some K™ C K
will be monochromatic. The Hj inside this K7 then cccurs with the same
colouring in the jth column of cur G°, where it is an induced subgraph
of G°, and hence of G.

Formally, we shall define a sequence G, ..., G™ of n-partite graphs
G*, with n-partition {Vf,...,V*} say, and then let G := G™. The
graph G° has been defined above; let V,..., V¥ be its rows:

V= {@)li=1...(1}.

Now let eq,...,e, be an enumeration of the edges of K. For &k =

0,...,m —1, construct G*+! from G* as follows. If expy = i1z, say,
let P = (fo,VJZ,E) be the bipartite subgraph of G* induced by its
i1th and isth row. By Lemma 9.3.3, P has a bipartite Ramsey graph
P = (W, Wa, E). We wish to define G*t1 5 P’ in such a way that every
(monochromatic) embedding P — P’ can be extended to an embedding
G* — G**1 respecting their n-partitions. Let {¢1,...,04} be the set of
all embeddings of F in P/, and let

V(GHY) = Vi UL oV

V.O

e, M

1,1z

P.’
Wi, Wy

Yo, d
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where
Wi fori =1,
‘/ik_’_l = WQ fOI‘ T = ig
1 (VEx{p}) forid {i,ia}.

(Thus for i # i1,i2, we take as VikJrl just ¢ disjoint copies of VE) We
now define the edge set of G**1 50 that the obvious extensions of ¢, to
all of V(G*) become embeddings of G* in G*+1: for p = 1,...,q, let
(% V(G*) — V(G*11) be defined by

_ | eplv) forvelP
Pp(v) := {fv,p) forv¢ P

and let

E(@* Yy . U{%(v by (o) | ' € E(GF)).

Now for every 2-colouring of its edges, G*T! contains an induced copy
¥, (G*) of G* whose edges in P, i.e. those between its ¢1th and 4ath row,
have the same colour: just choose p so that ¢, (P) is the monochromatic
induced copy of P in I that exists by Lemma 9.3.3.

We claim that G := G™ satisfies the assertion of the theorem. So
let a 2-colouring of the edges of G be given. By the construction of
G™ from G™~!, we can find in G™ an induced copy of G™~! such that
for e,, = #¢' all edges between the ¢th and the i'th row have the same
colour. In the same way, we find inside this copy of G™ ' an induced
copy of G"™ 2 whose edges between the ith and the ¢'th row have the
same colour also for i’ = ep,_1. Continuing in this way, we finally arrive
at an induced copy of G® in G such that, for each pair (i,4'), all the
edges between VY and VJ have the same colour. As shown earlier, this
7% containe a monochromatic induced copy H; of H. O

9.4 Ramsey properties and connectivity

According to Ramsey's theorem, every large enough graph G has a very
dense or a very sparse induced subgraph of given order, a K" or K7. If
we aszume that G is connected, we can zay a little more:

Proposition 9.4.1. For every r € N there is an n € N such that every
connected graph of order at least n contains K7, K , or P" as an induced
subgraph.
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Proof. Let d+ 1 be the Ramsey number of r, let n = ddTQ(df 1), and
let G be a graph of order at least n. If (¢ has a vertex v of degree at least,
d+1 then, by Theorem 9.1.1 and the choice of d, either N () induces a
K" in G or {v}UN(v) induces a K ,. On the other hand, if A(G) < d,
then by Proposition 1.3.3 G hag radius > r, and hence contains two
vertices at a distance = r. Any shortest path in &G between these two
vertices contains a P7. g

In principle, we could now look for a similar set of ‘unavoidable’
k-connected subgraphs for any given connectivity k. To keep these ‘un-
avoidable sets’ small, it helps to relax the containment relation from
‘induced subgraph’ for & = 1 {as above) to ‘topological minor’ for & = 2,
and on to ‘minor’ for & = 3 and &k = 4. For larger k, no similar results
are known.

Proposition 9.4.2. For every v € N there is an n ¢ M such that every
2-connected graph of order at least n contains C” or K, as a topological
minor.

Proof. Let d be the n associated with r in Proposition 9.4.1, and let &G be
a 2-connected graph with at least ddj(d— 13" vertices. By Proposition
1.3.3, either G has a vertex of degree > d or diam(G) = rad(G) > r.

In the latter case let a,b € G be two vertices at distance > r. By
Menger’s theorem (3.3.6), (7 contains two independent a—b paths. These
form a cycle of length > r.

Assume now that G has a vertex v of degree > d. Since G is 2-
connected, G — v is connected and thus has a spanning tree; let T be
a minimal tree in &G — v that contains all the neighbours of v. Then
every leaf of T' is a neighbour of ©. By the choice of d, either T" has a
vertex of degree = v or T contains a path of length = », without loss of
generality linking two leaves. Together with v, such a path forms a cycle
of length = r. A vertex u of degree > r in T can be joined to v by r
independent paths through T, to form a T'Ho ,. O

Theorem 9.4.3. (Oporowski, Oxley & Thomas 1993)
For every r € N there is an n € N such that every 3-connected graph of
order at least n contains a wheel of order v or a K3, as a minor.

Let us call a graph of the form C% + K2 (n = 4) a double wheel, the
1-skeleton of a triangulation of the cylinder as in Fig. 9.4.1 a ¢rown, and
the 1-skeleton of a triangulation of the Mobius strip a Mdbius crown.

Theorem 9.4.4. (Oporowski, Oxley & Thomas 1993)

For every r € N there is an n € N such that every 4-connected graph
with at least n vertices has a minor of order 2 r that is a double wheel,
a crown, a Mébius crown, or a Ky .

(1.3.3)

(1.3.3)
{3.3.6)
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Grr (S r)

Fig. 9.4.1. A crown and a M&bius crown

Note that the graphs listed in Theorems 9.4.3 and 9.4.4 are them-
selves 3-connected resp. 4-connected, as required.

At first glance, the ‘unavoidable’ substructures presented in the four
theorems above may seem to be chosen somewhat arbitrarily. In fact,
the contrary is true: these sets are smallest possible, and as such unique.

To make this precise, call a graph property non-trivial if it contains
graphs of infinitely many isomorphism types. Given two such properties
P,P’" and an order relation < between graphs (such as the subgraph
relation €, or the minor relation =), write P < P’ if for every G € P
thereis a G € P’ such that G < G'. If P < P as well as P = P, call
P and P’ equivalent and write P~P’. For example, if < is the subgraph
relation, P is the class of all paths, P’ is the class of paths of even length,
and & is the class of all subdivisions of stars, then P ~ P’ < § £ P.

Given a non-trivial graph property G, call a finite set {Pq,..., Py} of
non-trivial graph properties P; C G a Kuratowski set for G and < if the P;
are incomparable (Le., P; & P; whenever ¢ # j) and for every non-trivial
graph property P C G there is an ¢ such that P; < P. Such a Kuratowski
get {P1,..., P} is unique up to equivalence: if {Q4,..., Q¢} is another
Kuratowski set for G then £ = k and, with suitable enumeration, Q; ~ P;
fori=1,...,%k (Why?)

The essence of our last four theorems can now be stated more com-
prehensively, as follows. Let us say k-connectedness for the class of all
k-connected finite graphs, and connectedness for 1-connectedness.

Theorem 9.4.5.

(i) The stars and the paths form the (2-element) Kuratowski set for
connectedness and the subgraph relation.

(ii) The cycles and the graphs K, . (r € N) form the (2-element) Kura-
towski set for 2-connectedness and the topological minor relation.

(ili) The wheels and the graphs K3, (r € N} form the (2-element)
Kuratowski set for 3-connectedness and the minor relation.

(iv) The double wheels, the crowns, the Mdbius crowns, and the
graphs Ky, (r € N) form the (4-element) Kuratowski set for 4-
connectedness and the minor relation. O
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Exercises

1.~
2.7

5.1

gt

Tt

10.

11.

12.

Determine the Ramsey number R(3).

Deduce the case k = 2 (but ¢ arbitrary) of Theorem 9.1.3 directly from
Theorem 9.1.1.

An arithmetic progression is an increasing sequence of numbers of the
form a,a+d,a+2d,a+ 3d... . Van der Waerden's theorem says that
no matter how we partition the natural numbers into two classes, one of
these classes will contain arbitrarily long arithmetic progressions. Must
there even be an infinite arithmetic progression in one of the classes?

Can you improve the exponential upper bound on the Ramsey number
R(n) for perfect graphs?

Construct a graph on R that has neither a complete nor an edgeless
induced subgraph on |B| = 2% vertices. (So Ramsey’s theorem does
not extend to uncountable sets.)

Prove the edge version of the Erd8s-Pésa theorem (2.3.2): there exists a
function g: N — IR such that, given k € N, every graph contains either k
edge-disjoint cycles or a set of at most g(k) edges meeting all its cycles.

(Hint. Consider in each component a normal spanning tree T'. If T" has
many chords a2y, use any regular pattern of how the paths 2T’y intersect
to find many edge-disjoint cycles.)

Use Ramsey’s theorem to show that for any k,£ € N there is an n e N
such that every sequence of n distinct integers has an increasing sub-
sequence of length k+ 1 or a decreasing subsequence of length £+ 1.
Prove that 1 = kf + 1 has this property, but that n = &4 does not.

Show that for every & € N there is an n € N such that among any
n points in the plane, no three of them collinear, there are k points
spanning a convex k-gon, i.e. such that none of them lies in the convex
hull of the others.

Show that for every k € M there is an n € M such that, for every partition
of {1,...,n} into k sets, at least one of the subsets contains numbers
x,4, z such that z+y = 2.

Let (X, <) be a totally ordered set, and let & = (V, E) be the graph
on V= [X]? with B .= {(z,9)(&",v) |z <y =2’ < ¢'}.
(1) Show that & contains no triangle.
(ii) Show that x () will get arbitrarily large if |X| is chosen large
enough.

A family of sets is called a A-system if every two of the sets have the
same intersection. Show that every infinite family of sets of the same
finite cardinality contains an infinite A-system.

Prove that for every r € N and every tree T’ there exists a k ¢ N such
that every graph G with x{@) = k and w(Z) < r contains a subdivision
of T in which no two branch vertices are adjacent in 7 (unless they are
adjacent in T).
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13. Let m,n « N, and assume that m — 1 divides n — 1. Show that every
tree T of order m satisfies (T, K1) = m+n—1.

14.  Prove that 2° < R(2,¢,3) < 3¢! for every ¢ e .

(Hint. Induction on c.)

15.  Explain why, in the proof of Theorem 9.2.2, choosing € small enough
can ensure that the regularity graph K contains a copy of K*, although
some of the pairs (V;, V) in G may not be e-regular. Your explanation
may use that Z,_ (k) ~ % @], but should contain no calculations.

16.7 Derive the statement (*) in the first proof of Theorem 9.3.1 from the
theorem itself, ie. show that () is only formally stronger than the
theorem.

17.7 How is n defined in the first proof of Theorem 9.3.17 Could it be zero,
and if so how does the proof work then?

18. Show that, given any two graphs H; and Hj, there exists a graph
G = (G(Hi, Hz) such that, for every vertex-colouring of ¢ with colours
1 and 2, there is either an induced copy of H; coloured 1 or an induced
copy of Hy coloured 2 in &,

19.  Show that the Ramsey graph & for H constructed in the second proof
of Theorem 9.3.1 does indeed satisfy w(G) = w(H).

20. In the second proof of Theorem 9.3.1, is it really necessary to equip
G for i ¢ Jiy,is} with separate disjoint copies of Vi, one for every p,
or could we define G*T! from G* by just replacing P with P’ and
joining it to the other V;* in the right way?

21.7 Show that any Kuratowski set for a non-trivial graph property is unique
up to equivalence.

22.  Deduce Theorem 9.4.5 (iii) from Theorem 9.4.3, and vice versa.

Notes

Due to increased interaction with research on random and pseudo-random®
structures (the latter being provided, for example, by the regularity lemma),
the Ramsey theory of graphs has recently seen a period of major activity and
advance. Theorem 9.2.2 is an early example of this development.

For the more classical approach, the introductory text by R.L. Graham,
B.L. Rothschild & J.H.Spencer, Ramsey Theory (2nd edn.), Wiley 1990,
makes stimulating reading. This book includes a chapter on graph Ramsey
theory, but is not confined to it. Surveys of finite and infinite Ramsey theory
are given by J. Nefetfil and A. Hajnal in their chapters in the Handbook of
Clombinatorics (R.L. Graham, M. Grotschel & L. Lovész, eds.), North-Holland

1 Conerete graphs whose structure resembles the structure expected of a random
graph are called pseudo-random. For example, the bipartite graphs spanned by an
e-regular pair of vertex sets in a graph are pseudo-random.
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1995. The Ramsey theory of infinite sets forms a substantial part of combi-
natorial set theory, and is treated in depth in P. Erdds, A. Hajnal, A. Maté &
R. Rado, Combinatorial Set Theory, North-Holland 1984. An attractive col-
lection of highlights from various branches of Ramsey theory, including appli-
cations in algebra, geometry and point-set topology, is offered in B. Bollobés,
Graph Theory, Springer GTM 63, 1979.

Ramsey’s original theorem, Theorem 9.1.1, is from F.P. Ramsey, On a
problem of formal logic, Proc. Lond. Math. Soc. 2 (1030}, 264-286. The Erdés-
Hajnal conjecture is taken from P. Erdds & A. Hajnal, Ramsey-type theorems,
Discrete Appl. Math. 25 (1989), 37-52. A survey on the state of the art a cou-
ple of years ago was given by M. Chudnovsky, The Erds-Hajnal conjecture—
a survey, J. Graph Theory 75 (2014), 178-190, arXiv:1606.08827.

Theorem 9.2.2 iz due to V. Chvatal, V. Rédl, E. Szemerédi & W.T. Trot-
ter, The Ramsey number of a graph with hounded maximum degree, J. Comb.
Theory B 34 (1983), 239-243. Our proof follows the sketch in J. Komlés &
M. Simonovits, Szemerédi’s Regularity Lemma and its applications in graph
theory, in (D.Miklés, V.T.Sés & T.Szényl, eds.) Paul Erdds is 80, Vol. 2,
Proc. Collog. Math. Soc. Janos Bolyai (1996). The theorem marks a break-
through towards a conjecture of Burr and Erdds (1975), which asserts that the
Ramsey numbers of graphs with bounded average degree in every subgraph are
linear: for every d < I, the conjecture says, there exists a constant ¢ such that
R(H) < c|H| for all graphs H with d(H") < d for all H' C H. This conjecturs
has been verified approximately by A. Kostochka and B. Sudakov, On Ramsey
numbers of sparse graphs, Comb. Probab. Comput. 12 (2003), 627-641, who
proved that R(H) < |[H|' oW,

Qur first proof of Theorem 9.3.1 is based on W. Deuber, A generalization
of Ramsey’s theorem, in {A. Hajnal, R. Rado & V.T.3&s, eds.) Infinite and
finite sets, North-Holland 1975. The same volume contains the alternative
proof of this theorem by Erdos, Hajnal and Pésa. Rodl proved the same
result in his MSc thesis at Charles University, Prague, in 1973, Qur second
proof of Theorem 9.3.1, which preserves the clique number of H for &7, is due
to J. Negetiil & V. R&dl, Simple proof of the existence of restricted Ramsey
graphs by means of a partite construction, Combinatorica 1 (1981), 199-202.
These authors later refined their methods to obtain an even stronger version
of Theorem 9.3.1, with a proof that doubles as a construction of graphs of
large chromatic number and girth (Theorem 11.2.2); see J. NegetFil & V. R&dl,
Sparse Ramsey graphs, Combinatorica 4 (1984), 71-78.

The two theorems in Section 9.4 are based on B. Oporowski, J. Oxley &
R. Thomas, Typical subgraphs of 3- and 4-connected graphs, J. Comb. The-
ory B 57 (1003), 239-257. The have been generalized to arbitrary &, but for
a weaker ‘global’ notion of connectivity as often used in graph minor theory,
by Benson Joeris, Connectivity, tree-decompositions and unavoidable minors,

PhD thesis, University of Waterloo (2015).



