
Some Easy Theorems in Kolmogorov Theory
Exposition by William Gasarch (gasarch@cs.umd.edu)

1 Introduction

Intuitively the string

00

is not random. Note that you could write a program of length O(log n) that print out 0n.
Intuitively the string

01101000110000001110101010001100011010010010101001010110101010111110000

is random. The shortest program to print it out might just be

print(01101000110000001110101010001100011010010010101001010110101010111110000)

which is of length roughly the length of the string.
With this in mind Kolmogorov defined the following notion of complexity.

Definition 1.1 The Kolmogorov complexity of a string x, denoted C(x), is the length of the short-
est program that prints out x. (To make this formal you would need to define (1) define a model
of computation such as Turing Machines, and (2) prove that the complexity only differs from a
constant depending on which model you are using. We will not bother with that.)

Note 1.2 We often call algorithms that print out a string x a description of x.

Lemma 1.3 For almost all n there is a string x ∈ {0, 1}n such that C(x) ≥ n.

Proof: Assume, by way of contradiction, that for all x ∈ {0, 1}n C(x) < n. Map each x ∈ {0, 1}n
to the program that prints it. Note that this map is 1-1. There are 2n elements in the domain and∑n−1

i=0 2i = 2n − 1 in the range. Hence the map cannot be 1-1. Contradiction.

2 Classic proof that C is Not Computable

Theorem 2.1 C is not computable.

Proof:
Assume, by way of contradiction, that C is computable. Assume also that the program for C

is of size s. Consider the following program (Where a is a constant to be named later.)
For each x ∈ Σas compute C(x). When you find an x such that C(x) ≥ as print out that x.
This program is of size s+lg(as)+O(1). Its output is a string of length as. Pick a large enough

so that

s + lg(as) + O(1) < as.

But now the output is a string whose shortest description is of length as. Contradiction.

1

3 Easy Known Proof that C ≤T K

Theorem 3.1 C ≤T K.

Proof:

1. Input x. We want to know C(x).

2. For all Turing machines M of length ≤ |x| ask Does M(0) halt and output x? using the oracle
for HALT .

3. Output the length of the shortest M such that M(0) ↓= x

4 Main Point

The proof that C is undecidable is unusual in that we do not use HALT . That is, the proof is not
a reduction. Note also that C ≤T HALT .

My students sometimes ask me Will there be a problem on the exam where we need to prove
something is undeniable, but a reduction to HALT won’t work? which is a stupid way to ask the
smart question: Is there a set A such that ∅ <T A <T HALT . The usual answer I give is that
there are no natural such sets so they should not worry about it. However, the two results about
C above suggest a natural set. We have C is undecidable but the proof did not show HALT ≤T C
and we also have that C ≤T HALT .

Hence this raises the question: Could C be that elusive natural intermediary degree- not decid-
able but not equivalent to HALT. Alas, this is not the case. There are two proof that this is not
the case.

1. If there was a natural intermediary Turing degree then I would know about it.

2. In the next section we prove that HALT ≤T C. Hence HALT ≡T C.

5 HALT ≤T C

Definition 5.1 Let Cs(x) be the shortest program that prints out x within s steps. Note that this
is computable: write a simple PRINT(x) program, and look at all programs that are shorter than
it.

Theorem 5.2 HALT ≤T C.

Proof:
Here is the algorithm for HALT that uses C as an oracle. The constant a will be determined

later.

1. Input(x) (we want to know if Mx(x) halts). Let |x| = n.

2

2. Find s0 such that, for all y ∈ {0, 1}an Cx,s0(y) = C(y). (This step uses the oracle for C.)

3. Run Mx(x) for s0 steps. If it halts then output YES. If not then output NO. (We still need
to prove that this is correct.)

We need to show that if Mx(x) does not halt within s0 steps then it never halts. Assume, by
way of contradiction, that Mx(x) halts in s ≥ s0 steps. Then the following algorithm will be a
short description of a string that has no short description.

1. Run Mx(x). Let s be the number of steps it took to halt.

2. For all y ∈ {0, 1}an computer Cs(y).

3. Let y be a string of length an such that Cs(y) ≥ |y|.

4. Output y.

The above algorithm can be described with

|x|+ lg(a) + O(1)

bits. Hence C(y) ≤ |x|+ lg(a) + O(1).
By the definition of s we have

C(y) = Cs(y) ≥ |y|.

Pick a such that

|x|+ lg(a) + O(1) < a|x|.

This yields a contradiction.

3

