Some Easy Theorems in Kolmogorov Theory Exposition by William Gasarch (gasarch@cs.umd.edu)

1 Introduction

Intuitively the string

is not random. Note that you could write a program of length $O(\log n)$ that print out 0^n . Intuitively the string

which is of length roughly the length of the string.

With this in mind Kolmogorov defined the following notion of complexity.

Definition 1.1 The Kolmogorov complexity of a string x, denoted C(x), is the length of the shortest program that prints out x. (To make this formal you would need to define (1) define a model of computation such as Turing Machines, and (2) prove that the complexity only differs from a constant depending on which model you are using. We will not bother with that.)

Note 1.2 We often call algorithms that print out a string x a description of x.

Lemma 1.3 For almost all n there is a string $x \in \{0,1\}^n$ such that $C(x) \ge n$.

Proof: Assume, by way of contradiction, that for all $x \in \{0,1\}^n C(x) < n$. Map each $x \in \{0,1\}^n$ to the program that prints it. Note that this map is 1-1. There are 2^n elements in the domain and $\sum_{i=0}^{n-1} 2^i = 2^n - 1$ in the range. Hence the map cannot be 1-1. Contradiction.

2 Classic proof that C is Not Computable

Theorem 2.1 *C* is not computable.

Proof:

Assume, by way of contradiction, that C is computable. Assume also that the program for C is of size s. Consider the following program (Where a is a constant to be named later.)

For each $x \in \Sigma^{as}$ compute C(x). When you find an x such that $C(x) \ge as$ print out that x.

This program is of size $s + \lg(as) + O(1)$. Its output is a string of length as. Pick a large enough so that

$$s + \lg(as) + O(1) < as.$$

But now the output is a string whose shortest description is of length as. Contradiction.

3 Easy Known Proof that $C \leq_T K$

Theorem 3.1 $C \leq_T K$.

Proof:

- 1. Input x. We want to know C(x).
- 2. For all Turing machines M of length $\leq |x|$ ask Does M(0) halt and output x? using the oracle for HALT.
- 3. Output the length of the shortest M such that $M(0) \downarrow = x$

4 Main Point

The proof that C is undecidable is unusual in that we do not use HALT. That is, the proof is not a reduction. Note also that $C \leq_T HALT$.

My students sometimes ask me Will there be a problem on the exam where we need to prove something is undeniable, but a reduction to HALT won't work? which is a stupid way to ask the smart question: Is there a set A such that $\emptyset <_T A <_T HALT$. The usual answer I give is that there are no natural such sets so they should not worry about it. However, the two results about C above suggest a natural set. We have C is undecidable but the proof did not show $HALT \leq_T C$ and we also have that $C \leq_T HALT$.

Hence this raises the question: Could C be that elusive natural intermediary degree- not decidable but not equivalent to HALT. Alas, this is not the case. There are two proof that this is not the case.

- 1. If there was a natural intermediary Turing degree then I would know about it.
- 2. In the next section we prove that $HALT \leq_T C$. Hence $HALT \equiv_T C$.

5 $HALT \leq_T C$

Definition 5.1 Let $C_s(x)$ be the shortest program that prints out x within s steps. Note that this is computable: write a simple PRINT(x) program, and look at all programs that are shorter than it.

Theorem 5.2 $HALT \leq_T C$.

Proof:

Here is the algorithm for HALT that uses C as an oracle. The constant a will be determined later.

1. Input(x) (we want to know if $M_x(x)$ halts). Let |x| = n.

- 2. Find s_0 such that, for all $y \in \{0,1\}^{an} C_{x,s_0}(y) = C(y)$. (This step uses the oracle for C.)
- 3. Run $M_x(x)$ for s_0 steps. If it halts then output YES. If not then output NO. (We still need to prove that this is correct.)

We need to show that if $M_x(x)$ does not halt within s_0 steps then it never halts. Assume, by way of contradiction, that $M_x(x)$ halts in $s \ge s_0$ steps. Then the following algorithm will be a short description of a string that has no short description.

- 1. Run $M_x(x)$. Let s be the number of steps it took to halt.
- 2. For all $y \in \{0,1\}^{an}$ computer $C_s(y)$.
- 3. Let y be a string of length an such that $C_s(y) \ge |y|$.
- 4. Output y.

The above algorithm can be described with

$$|x| + \lg(a) + O(1)$$

bits. Hence $C(y) \leq |x| + \lg(a) + O(1)$. By the definition of s we have

$$C(y) = C_s(y) \ge |y|.$$

Pick a such that

$$|x| + \lg(a) + O(1) < a|x|.$$

This yields a contradiction.