Duplicator Spoiler Games
Exposition by William Gasarch (gasarch@cs.umd.edu)

1 Introduction

Roland Fraissé [?, 7, 7] proved theorems about logical expressibility using a back-and-forth method.
Andrzej Ehrenfeucht [?] formalized Fraissé’s method by invented Duplicator-Spoiler Games®.

In this exposition we will define Duplicator-Spoiler games for linear orderings and prove the
connection to logical expressible for these games. We follow the treatment of [?] which is out of

print.

2 Duplicator-Spoiler Games For Linear Orderings

Definition 2.1 A linear ordering £ is defined as a set L paired with an ordering <, denoted
L = (L,<), such that

1. Va,y€ L) [z <y orz >y, but not both].

2. Vo,y,ze€l)fr<yhy<z = z<z|.
We now define Duplicator-Spoiler Games played with linear orderings.

Definition 2.2 Let £; = (L1,<), L2 = (L2,<). The m-round Duplicator-Spoiler Game on
(L1, L2) is defined as follows.

1. There are two players: the Spoiler and the Duplicator.

2. There are m rounds. During round i (1 < i < m) the Spoiler selects an element from either
set and the Duplicator selects an element from the other set. The element selected from L;
is called a; and from Lo, b;.

3. If (Vi,j,1 <4,5 <m) [a; < a; <= b; <bj], then the Duplicator wins. Otherwise, the
Spoiler wins.

Definition 2.3 Let £ and L5 be two linear orderings. Let m € N. If Duplicator wins the m-
round Duplicator-Spoiler game on (L1, £2) then £; and L9 are m-game equivalent which we denote
ﬁlEgLﬁg.

Geometrically, we imagine lines being drawn from elements of one set to another, each line
representing a pair of inequalities. If two lines cross, the inequalities are not consistent from set to
set and the Spoiler wins. Because of this, a line, or round, reduces any game into two new ones.

Convention 2.4 Unless otherwise specified, we will assume the Spoiler and the Duplicator play
optimally. In other words, if one player can implement a strategy that wins every time then the
player is assumed to implement said strategy.

'Duplicator-Spoiler games are also referred to as Ehrenfeucht-Fraissé games.



Notation 2.5 The following notations will be used throughout.

e Let F,, be the finite linear ordering of m elements.

Let w be the linear ordering {1 < 2 < 3 < --- }. Note that this is equivalent to {2 <4 < --- }.
The base set is unimportant.

Let w* be the linear ordering {--- < -3 < =2 < —1}.

Let Z be the linear ordering {--- < -2<-1<0<1<2---}.

Let Q be the natural ordering of the rational numbers.

Let R be the natural ordering of the real numbers.

Definition 2.6 Let £1 = (L1,<1), L2 = (L2, <2). The linear ordering £ + L3 is formed as follows.
We can assume that L; N Ly = () by changing the elements’ labels. Let the base set for £1 + Lo
be L1 U Ly. Let the total order be as follows.

1. Va,ye L) [z <y <= z <1yl
2. (Vao,yelo) [z <y < z <29

3. VxeL)(Vye€ L) [x <yl

BILL-DO EXAMPLES LEADING UP TO N and N+Z.

3 The Connection to Logic

We first define formulas and two notions of the complexity of formulas: quantifier depth and number
of free variables.
We will now define formulas and quantifier depth (qd) rigorously.

Definition 3.1 Our language contains the symbols A, V,—,3,V, =, < and variables x1,zs,.... We
may use x, Yy, z for notational convenience.

1. A variable is free if it is not quantified over. When we write (say) ¢(z) the x is a free variable.
There may be other variables; however, they are quantified over.

2. An atomic formula is any formula of the form z; < z; or z; = z;. If ¢(x;,x;) is an atomic
formula then qd(¢(z;,z;)) = 0.

3. If ¢(Z) is a formula then —¢ (%) is a formula and qd(—(¢(Z))) = qd(¢(Z)).
4. If v(Z) and (y) are formulas then

e v(Z) A O(Y) is a formula and qd(v(Z) A 6(y)) = max{qd(y(Z)),qd(6(¥))}.
e (@) vV O(y) is a formula and qd(y(Z) V 0(¥)) = max{qd(y(Z)), ad(6(¥))},



5. If ¢(&, x) is a formula then (3x)[¢(Z, )] is a formula and qd((3z)[p(Z, x)]) = qd((Z, z)) + 1.
Note that (3x)[¢(Z, x)] has one less free variable then ¢(Z, x).

Definition 3.2 A sentence is a formula with no free variables.

Let ¢ be a sentence like (3z)(Vy)[z < y|. Is this sentence true or false? This is a stupid question:
you need to know which linear order is being talked about. The next definition gives a succinct
way of saying this.

Definition 3.3 Let £ = (L, <) be a linear ordering.

1. Let ¢ be a sentence. £ |= ¢ means that ¢ is true when interpreted in L.

2. L1 and Ly are m-truth-equivalent, denoted £1=_ Lo, if, for all ¢ with qd(¢) < m
L1 E¢iff Lo = o

We want to prove the following theorem:

Theorem 3.4 Let L1 and Lo be two linear orderings. Let m € N. The following are equivalent:
1. ﬁlEgﬁg.
2. ElE%EQ.

However, this is one of those cases where it is easier to prove a harder theorem. We will (1)
extend Duplicator-Spoiler games to the case where some of the moves are already specified, and
(2) extend the definition of |= to formulas with parameters. We will then show that those notions
are equivalent.

Definition 3.5 Let £1 = (L1,<), L2 = (L2, <), @ € L¥, and be L% The m-round Duplicator-

=,

Spoiler Game on ((L1,d), (L2,b)), is defined as follows.
1. There are two players: The Spoiler and The Duplicator.

2. There are m rounds. During round ¢ (1 < i < m) Spoiler selects an element from either set
and Duplicator selects an element from the other set. The element selected from L1 is called
a1 and from Lo, by

3.If(Vi,j,1<i,j<m+k)[a; <a;j < b; <bj], then Duplicator wins. Otherwise, Spoiler
wins.

Definition 3.6 If Duplicator wins the m-round game then (L1;@)=C (L2;b).

The game is essentially the same as the original Duplicator-Spoiler game; however, the first k
rounds have already been played.
Note the following



Fact 3.7
1. (El;ﬁ)zg(ﬁg;l;) iff @ and b are of the same order type.

2. Assume (L1;d)= m+1(£2, ) If Spoiler plays a and Duplicator’s winning response is b then
(L1;a@,a)=C (Lq: b, b).

Let ¢(Z) be a formula with k free variables. For example, if £ = 1 then (3z)[z < y] would be
such a formula. Is this sentence true or false? This is an even stupider question than the one about
sentences: you need to know which linear order £ = (L, <) is being talked about AND you need
to know the k elements of L that you intend to plug into ¢. The next definition gives a succinct
way of saying this.

Did I say succinct? If by succint I mean long and boring inductive definition then yes, it is
succint. All we really want to say is

(L; @) = ¢(Z) iff the statement ¢(a@) is true in L.

Why don’t we just say that? Because we need the inductive definition in order to prove things
about |=. Alas, in order to prove things rigorously we must be a bit pedantic.

Definition 3.8 Let £ = (L, <) and @ € L*. Let ¢(&) have k free variables. We define (£;a@) = ¢(Z)
inductively.
1. (L;a1,a2) E (x < y) holds iff a; < az).
2. (L;a1,a2) E (x = y) holds iff a1 = as9).
d) E —¢(Z) holds iff it is NOT the case that (£, d) = ¢(Z).
= ¢1(Z) A ¢2(Z) holds iff (£, @) = ¢1(F) and (£, d) = ¢2(7).

@)
) = 01(Z) V ¢2(Z) holds iff (£,d) = ¢1(Z) or (£,d) |= ¢2(7).
@) = (3z)[¢(Z, z)] holds iff there is an a € L such that (£;d,a) | ¢(d,a).

@l

(
(
(L;
(L;
(L;
(L,

7. To summarize: If ¢(%) has k free variables and @ € L¥ then (£;@) = ¢(Z) means that ¢(a) is
true in L.

Definition 3.9 Let @ € L¥ and b € L5, (£1;@)=L (La;b) if, for all ¢(Z) with qd(¢) < m and k
free variables,

(£1;) F o(7) iff (L2:D) = $(7).
Definition 3.10 Let m > 1. A formula is m-simple if it is of the form (3z)[(Z,z)] where
Qd($(Z,2)) <m 1.
We leave the proof of the following easy lemma to the reader.

Lemma 3.11 Let m > 1. If qd(¢(%)) = m then ¢(Z) can be written as a boolean combination of
m-simple formulas.



The following is our main theorem.

Theorem 3.12 Let £ :_§L1, <) and Lo = (La, <) be two linear orderings. For all m € N, for all
k€N, forall@ € LY and b € LS. The following are equivalent:

1. (L1;3)=C (La:D)).
2. (El;&’)zﬁ(ﬁg;g).

Proof: = We prove this by induction on m.

Base Case: m = 0. Assume @ and b are k-tuples. We prove two implications.
First Implication:

(L1;@)=5 (La;b) = (L1;3)=L (L3 D).
Assume (L£1;@)=§ (Ls; 5)) Then, for all 1 <1i,j < k

a; < aj iff b; < bj.
Hence (£1;@) and (L2, b) have the same order type.

We need to show, for all ¢(Z) of quantifier depth 0 that have || free variables, (£1;@) = ¢(Z)
iff (L2;b) |= ¢(F). This means that they agree on all formulas of quantifier depth 0. Formulas of
quantifier depth 0 are Boolean combinations of atomic formulas. One can easily show but induction
on formation that since (£1; @) and (Lo, l;) have the same order type they will agree on any boolean
combination of atomic formulas on |d| free variables.

Second Implication:

(L3 @)=F (L2;b) = (L13@)=F (C2:D).
Assume (L1; @)= (Lo;b). Then for all 1 <i,j <k
(L1;@) | x; < xj iff (La;b) E x < Zj.
Hence a; < a; iff b; < b;. Therefore (L1; @)= (L2; b).
Induction Step:
Induction Hypothesis: The statement of the theorem. However, we state it with the parameters
that we need: For all @ € L’f, a € Ly, be L’;, b € Lo the following are equivalent:

i (Lh C_ia a)EZ’L(L% 57 b)
i (L17 6:1 a)E'r%(L% l_;: b)

Let ke N, ade L’f, be L’f. We need to prove two implications.

First Implication:
(Li;@)=G 11 (La3b) = (L13@) =41 (La3b).
Assume (L1; @)=5, 1 (Lo; b). (We won’t use this until later.) We need to show that (L1; a)=0 1 (Lo; b).
Now we need to show, for all formulas ¢(&) with |@| free variables, of quantifier depth < m + 1,
(L1;@) = ¢(2) iff (L2;b) = ¢(Z). We prove this by induction on the formation of ¢(Z).
CASE 1: If ¢(%) has quantifier depth < m then, by (L1;@)=C (Lo;b) = (L1;@)=L (Ly:b). (a

=,

weaker statement than we have) and the induction hypothesis we have (L£1;d) = ¢(2) iff (L2;0) =
$(2).



CASE 2: (This is the main case of interest.) ¢(Z) is m-simple. ¢(Z) = (Jz)[(Z, x)].

(£1;@) = o(T)
iff

(L1;d) E (3z)[(Z, 2)]
iff
there is an a € L such that

(L1:d,0) = (7, 2).

KEY: We call @ WITNESS TO THE TRUTH! of (3x)[¢(#, x)]. We need to find an analogous
witness in Ly. We use the game to find WITNESS TO THE TRUTH!. Duplicator’s winning move
is an analog of a and is used to locate the WITNESS TO THE TRUTH!.

Recall that (L; CT)ES; 41(La; g) Hence Duplicator has a winning strategy. If Spoiler were to
make the move a € Ly as his first move then Duplicator has a response. Let b be that response.
Note that by Fact 3.7 (£q;d, a)5g+1_1(£2; b, b). By the induction hypothesis applied to ¥ (Z, x)

(L1:d,a) |= (& @) iff (L2;5,b) = (7, 7).

Hence
(L1;d,a) = ¥(F, )
iff
(L2;b,b) = ¥(Z, )
iff
(L2:6) = (32)[3(&, 2)].
iff

—.

(L2;b) E o(Z).
Therefore we have

(£1;0) = o(2) iff (L2;0) = ¢(Z).

CASE 3: ¢(&%) is a boolean combination of m-simple formulas. This is an easy induction of
formation.

By Lemma 3.11 we have covered all of the cases.
Second Implica’gion: .
(L1;@)=h11(L2;0) = (L1;a)=541(L2;b)

We need to find a winning strategy for Duplicator.

Assume that Spoiler plays a € L; (the case where he plays b € Ly is similar). Duplicator needs
to find a b € Ly that is analogous to a € L.

Let F be the set of all formulas ¢ (Z, x) such that



e qd(v)) <m.

o (L1;d,a) = (&, x).

KEY: There are only a finite number of formulas in F'.
Note that

(Lisd,a) = N\ ©(F ).

PYeF

Hence
(£1;@) F Go)[ \ ¥(@ 2)].
YeF
KEY: qd((32)[Ayer ¥ (Z,2))] = m + 1. Hence, since (L’l;d’)ETTnH(Lg;E)
(L2:0) | (F)[ N\ (&, 2)].

Yer

Let b be the witness. Hence

(L2;0,0) E N\ w(#,2)].

PpeEF

KEY: We use the logical equivalence to get the witness which will give us the winning move for
Duplicator.
We claim that if Duplicator plays b then he can win the game. Note that we now need to show

(L1;d, a)=0,(L2; b, D).
By the induction hypothesis it will suffice to show
(L1;d,a)=D(L2:0,b).
Let ¢(Z, x) be a formula such that qd(¢(Z, z)) = m and |¥| = |@|. Assume
(L1;d,a) = o(T, ).

Then ¢ € F.
Since

(L2:0,0) E N\ w(,2)].

YeF
We have that

(L2:,b) | (7).



4 Genearlization

Section 2 was about the Duplicator-Spoiler Game on a linear order. However, this can be general-
ized.

Exercise 1 Define Duplicator-Spoiler games on pairs of graphs. State and prove an analog of
Theorem 3.4.

Exercise 2 Define Duplicator-Spoiler games on pairs of hypergraphs. State and prove an analog
of Theorem 3.4.
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