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Abstract: We derandomize results ofddtad (1999) and Feige and Kilian (1998) and show
that for alle > 0, approximating Mx CLIQUE and GHROMATIC NUMBER to within n'—¢

are NP-hard. We further derandomize results of Khot (FOCS '01) and show that for some
v > 0, no quasi-polynomial time algorithm approximateaMCLIQUE or CHROMATIC
NUMBER to within n/2(°9""7 unless N = P.

The key to these results is a new construction of dispersers, which are related to random-
ness extractors. A randomness extractor is an algorithm which extracts randomness from
a low-quality random source, using some additional truly random bits. We construct new
extractors which require only lgg+ O(1) additional random bits for sources with con-
stant entropy rate, and have constant error. Our dispersers use an arbitrarily small constant
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times logn additional random bits for sources with constant entropy rate. Our extractors
and dispersers output-la fraction of the randomness, for any> 0.

Our constructions rely on recent results in additive number theory and extractors by
Bourgain, Katz, and Tao (2004), Barak, Impagliazzo, and Wigderson (FOCS '04), Barak
et al. (STOC '05), and Raz (STOC '05). We also simplify and slightly strengthen key
theorems in the second and third of these papers, and strengthen a related theorem by
Bourgain (2005).

1 Introduction

This work has two sources of motivation: inapproximability and randomness extractors. We begin with
inapproximability.

1.1 Inapproximability

MAX CLIQUE and CGHROMATIC NUMBER are central optimization problems. Their decision versions
were in Karp’s original list of NP-complete problem32]. The best approximation algorithms for
these problems give approximation ratios of the farfipolylog(n) [8, 24], which is not much better
than the trivial approximation afi. Yet no strong inapproximability results were known until Feige et
al. [18] discovered a connection between probabilistically checkable proofs (PCPs)andCMQUE.

The celebrated PCP Theorem of Arora et 8].then implied that it is NP-hard to approximateaM
CLIQUE to within n® for some constant > 0. This ratio was improved in7[ 6] until Hastad, in a
breakthrough, showed a hardness ratio'of, for anye > 0 [25]. The catch is that Bistad’s reduction

is randomized, so his theorem assumes thaNFPP. Assuming only NB: P, Hastad’s hardness ratio
becomesit/2-¢. In this paper we derandomizeitad’s randomized reduction:

Theorem 1.1. For all € > 0, it is NP-hard to approximatéMAx CLIQUE to within n-—¢,

The inapproximability of GROMATIC NUMBER has historically been even harder to prove than
MAXx CLIQUE, because advances have typically occurred through reductions frexn@diQUE. Lund
and Yannakakis were the first to show that itis NP-hard to approximareo®@ATIC NUMBER to within
n¢ for some constant > 0 [37]. Other reductions ensued, culminating in Feige and Kilian's proof of
a hardness ratio af' ¢ [19]. This uses Hstad’s result, so it assumes that ¥ZPP. Assuming only
NP+ P, the best previous hardness ratio explicitly stated appearsfo bé [6]. Previous work likely
implied something better, though certainly no better thi& €. In this paper we derandomize Feige
and Kilian's result:

Theorem 1.2. For all € > 0, it is NP-hard to approximat€CHROMATIC NUMBER to within nt—¢.

Engebretsen and Holmeritig] improved the hardness ratios for both problemso®V) under the
stronger assumption that NPZPTIME(2°°Y109)) " Khot [34] later improved thesel~°% factors to
n/2('°9”)177 for some constant > 0, under the same assumption. We derandomize Khot'’s results and
show NP-hardness with respect to quasi-polynomial time reductions. Because of the quasi-polynomial
time reductions, R-hardness is weaker than NP-hardnessSsisectior?. 1 for more details.
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Theorem 1.3. For somey > 0, it is NP-hard to approximateMax CLIQUE to within n/2009m*”,

TheorerP 1.4. For somey > 0, it is NP-hard to approximateCHROMATIC NUMBER to within
n/z(logn) *7.

The key to our inapproximability results is constructing an appropriate disperser, which is related
to a randomness extractor. Good dispersers were known to help derandomize inapproximability results
for MAX CLIQUE (e.g., b4, 48]), but it was not known for @ROMATIC NUMBER. Before discussing
dispersers, we discuss extractors.

1.2 Randomness extractors

Randomness extractors are motivated by the possibility of using defective sources of randomness. The
model for defective random source involves lower bounding the min-entropy:

Definition 1.5. Themin-entropyof a distributionX is He, (X) = mink{—log, P{X = x]}. A k-sourceis a
distribution with min-entropy at leagt Theentropy rateof ak-source on{0,1}" is k/n; we sometimes
call ak-source a raté-/n-source.

A randomness extractor is a function which extracts randomness fieavarce using a few addi-
tional uniformly random bits.

Definition 1.6 ([42]). Let U, denote the uniform distribution of bits. A function Ext :{0,1}" x
{0,1}9 — {0,1}™Mis a(k, &)-extractorif for every k-sourceX, the distribution ExtX,Uq) is e-close in
statistical (variation) distance tdy,. We say Ext is atrong (k, €)-extractor if the function EXk,y) oy
is a(k, €)-extractor, where denotes concatenation.

Besides their straightforward applications to simulating randomized algorithms using weak sources,
extractors have had applications to many areas in derandomization that are seemingly unrelated to weak
sources, including inapproximabilitg4, 51, 40]. Nisan and Ta-Shmalfl] survey these applications.

Like many objects in the study of pseudorandomness, the existence of excellent extractors is rel-
atively easy to establish via the probabilistic method. However, the explicit construction of efficient
extractors has proved to be much more difficult.

We wish to construct extractors for any min-entrdpwith d, the number of truly random bits, as
small as possible anah, the number of output bits, as large as possible. Different parameter settings
are needed for different applications. Constructing good extractors is highly non-trivial, because such
constructions beat the “eigenvalue boun83][ Starting with the first extractor of Nisan and Zucker-
man (2], a lot of effort has been expended constructing good extractors. See Shaltiel's gijviey [
more details.

In many applications, extractors are viewed as highly unbalanced strong expanders. In this view an
extractor is a bipartite grapB = (V,W, E) with V = {0,1}", W = {0,1}™, and(x, z) is an edge iff there
is somey € {0,1}9 such that Exix,y) = z Thus, the degree of each vertex\fis D = 29, and the
extractor hashes the inpxte V to a random neighbor among sneighbors inV.

Often this degre® is of more interest thad = logD. For example, in the samplers &4 the
degree is the number of samples; in the extractor coded8fD) is the length of the code; in the
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simulation of BPP using weak sourcégl] the degree is the number of calls to the BPP algorithm. Most
relevant for us, in the inapproximability of Mk CLIQUE [54] the size of the graph is closely related
toD.

Before the work of Ta-Shma et altg], all explicit extractors had degrézat least some unspecified
polynomial inn = log|V|. In contrast, a non-explicit construction achie@s= O(n) = O(log|V|),
which matches the lower bound. Ta-Shma et al. were able to achieve degfé@(nlog*n) for k >
V/nlog?n, but could only output abou¢/+/n bits. In the case wherle= Q(n), they could outputn =
Q(K) bits, but then they achieved degi@e- n-polylog(n). Our new construction achieves linear degree
and linear output length for constant-rate sources.

Theorem 1.7. For all constanta, 6, ¢ > 0 there is an efficient family of strongk = dn, €)-extractors
Ext:{0,1}" x {0,1}9 — {0,1}™with m> (1— )§n and D= 29 = O(n).

We now define the related notion of a disperser. While dispersers are usually defined with respect to
an error parameter, here it is more convenient to use the paramsterl — €.

Definition 1.8. We may view a function DIS[N] x [D] — [M] as a bipartite grap(iN}], [M],E) where
(x,2) € Eiff DIS(x,y) = zfor somey € [D]. For aselX C [N], letl'(X) = {DIS(x,y) | xe X,y € [D]} be
the set of neighbors of. We say DIS is &K, s)-disperseiif, for any X C [N] with |X| > K, | (X)| > sM.
We say DIS is atrong (K, s)-disperser if the function DI, y) oy is a(K, s)-disperser, where denotes
concatenation.

Whens is very small (so the error is close to 1), the probabilistic method can be used to show
that there exists dispersers with degree even smallerthaamelyO(n/logs™). In this paper, we
succeed in matching this degree explicitly for constant-rate sources. These dispersers are the key for our
inapproximability results.

Theorem 1.9. For all constanta, 8 > 0 and s= s(n) > 0, there is an efficient family of strongk =
N9, s)-disperserdDIS : [N = 2" x [D] — [M = 2" such that D= O(n/logs*) and m> (1— «)&n. For
subconstand = §(n), the dependence is B (1/8)°®n/logs! and m= §°%n.

1.3 Techniques

Our techniques are based on a combination of random walks on expanders and additive number theory.
Random walks on expanders have been used to amplify the success probability of RP and BPP algo-
rithms without using many additional random bits29, 13]. This yields a disperser for sources with en-

tropy rate greater than 1/23]. By using Chernoff bounds for random walks on expandeis31, 52],

we can construct extractors in a similar way. However, random walks provably fail when the entropy
rate drops below 1/2, so they were not considered relevant for this case.

We handle entropy rates below 1/2 by first condensing the input until its entropy rate exceeds 1/2, and
then applying a random walk on an expander. Condensers have been used before to build exactors [
47]. We condense using techniques developed from additive number theory.

Our basic condenser requires only one additional random bit, and is very simple. Choose p prime
and form the line-point incidence graph oy, whereq = 2P. This bipartite graph has as independent
sets the lines and points in the pla]ﬁé with an edge between a point and a line if the point lies on
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the line. View the input distribution as a distribution over tifeedges. On input an edge, use the one
random bit to output a random choice of its two endpoints. If the input distribution has min-entropy
rate &, then roughly speaking one of the two outputs will have min-entropyd&ate 6. The proof of
correctness is simple, given the line-point incidence theorem from Bourgain-KatA-Tjao [

This basic condenser improves that of Barak et&l. Wwhich requires two random bits. The im-
provement is not necessary for our results, as we apply the basic condenser iteratively to achieve entropy
rate.9. In fact, we use Raz’s condenséB], which is strong in the sense that with high probability over
the constant-bit seed, the min-entropy rate will increase. We iteratively apply the Raz condenser in a
manner similar to$3], to improve the output length to-1 o fraction of the input min-entropy, for any
o> 0.

Although not needed for our other results, we further simplify and slightly strengthen other appli-
cations of additive number theory. These applications are based on the important theorem of Bourgain-
Katz-Tao [L1] and extended by Bourgain-Glibichuk-KonyagitQ[: in a field Fq whereq is either prime
or 2° for p prime, if |A| < p®, then max|A+A|,|A-A|) > |A*** for a global constan& > 0. (See
Section2.8 for more details, including the recent extension to non-prime fields.) Barak-Impagliazzo-
Wigderson §] used these ideas to show that K .9, if A, B, andC are independent rai@-sources
taking values irf g, thenAB+C is close to a rat¢d + o) 5-source. We show th#@tandC do not have to
be independent. Instead, the lemma follow&AfC) is independent frorB. Our overall proof is simpler
than that in fi]. We further strengthen a theorem of Bourga®h &nd show that the functioA(A+ B)
also gives a rate improvement.

This paper is organized as follows. After some preliminarieSaation2, we give our basic dis-
perser and extractor constructions in SectiBred4, respectively. We next show how to improve the
output length of both constructions 8ection5. We then give the inapproximability of Max Clique and
Chromatic Number in Sectior&and?, respectively. Finally, we improve the additive number theory
applications inSection8.

2 Preliminaries

Some common notation we useior concatenation angh| for the set{1,2,...,n}. All logarithms are
to the base 2.

When letters denote integers we often use a capital letter to denote 2 to the corresponding small letter,
e.g.,K = 2. When letters denote random variables we often use capital letters for random variables and
corresponding small letters for their instantiations.

For readability, we often assume various quantities are integers when they are not necessarily. It is
not hard to see that this does not affect our analysis.

We often use the term efficient to denote polynomial-time computable.

2.1 Reductions and quasi-NP-hardness

Our NP-hardness results are with respect to polynomial-time, many-one reductions.
Quasi-polynomial im means 2Y°4" NP andP are the quasi-polynomial analogues of NP and P,
respectively. As usual with inapproximability results, we analyze the appropriate gap problem.
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Note that no language isftNcomplete with respect to polynorpial-time reductions. For if there were
such a language, it would be in TIME'9")°) for somec; but then N° C TIME (2(°9"°™") | contradicting
the time hierarchy theorem.

Therefore, we consider Rthardness with respect to quaS| polynomial-time, many-one reductions.
Then any NP-hard language is als@/ard. Moreover, if an R-hard language is iR, then N0 = P.
Of course, =P — NP C P.
2.2 Distance between distributions
For a probability distributiorX, X(s) denotes HX = g. For a setS, X(S) denotes BX € §.

Definition 2.1. Let X; andX; be two distributions on the same spdee The statistical, or variation,
distance between them is

%0 %] = (S - Xe(S)| = 5 5 PXfs) -

We sayX; andX; aree-close if | X; — Xz|| < €, and aree-far otherwise. We say a distribution on
{0,1}" is e-uniform if it is e-close taU,, the uniform distribution om bits.
A useful method of computing the distance to the clokesiurce is the following.

Lemma 2.2. The distance of X to the closefssource isy smax(X(s) —27,0).

Of course, only thosswith X(s) > 2~ contribute to the above sum.

2.3 Flat sources

Definition 2.3. A source is a probability distribution. A flat source is a source which is uniform on its
support. The support of a distributiohis denoted supX).

The following lemma shows that it suffices to consider Klgburces.

Lemma 2.4 ([L2]). Any k-source is a convex combination of flat k-sources.

2.4 Dispersers

Dispersers were defined Definition 1.8. There are two possible notions of efficiency: one relative to
the input size lod\ + logD and the other relative to the graph side- M. For the inapproximability
results, we only need the second, weaker, notion.

Definition 2.5. We say DIS [N] x [D] — [M] is efficientif it runs in polynomial time in its input size
logN +logD. We say DIS ispolynomial-time constructiblé the disperser graph is constructible in
polynomial time in the number of verticés+ M.

Of course, efficient implies polynomial-time constructible.
The following simple lemma is useful whé&h= O(1).
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Lemma 2.6. A (K,s)-disperser is also a stron(K,s/D)-disperser.
We also use the following simple lemma.

Lemma 2.7. Given an efficientK, s')-disperseDIS; : [N] x [D1] — [N] and an efficientK’ = sN’, s)-
disperseDIS; : [N'] x [D2] — [M], we can build an efficieriK, s)-disperseDIS : [N] x [D1D2] — [M].
If moreoverDIS; is a strong(K’, s)-disperser, the®IS is a strong(K,s/D1 )-disperser.

Proof. Take DISX,y1 0Y2) = DISz(DIS1(X,y1),Y2). It is straightforward to verify that DIS is €K, s)-
disperser. To see the final statement of the lemma, supposedBong. Then DI y; oY) oYz is a
(K,s)-disperser, so DI, y10y2) oyi oYz is a(K,s/Dj)-disperser. O

While we need the notion of strong disperser for the inapproximability of Chromatic Number, the
notion that suffices for this is captured in the following simple lemma.

Lemma 2.8. Let DIS : [N] x [D] — [M] be a strong(K,s)-disperser. For a set X_ [N], let ['y(X) =
{DIS(x,y) | x € X}. ThenDIS has the property that for any X [N] with |X| > K, there is a y such that
IFy(X)| > sM.

2.5 Expander graphs

Expander graphs are related to dispersers, and we use random walks on expanders to build our dispersers.
We define expansion via eigenvalues. Gebe a connected regular undirected graph, anéd le¢ the
transition matrix of a random walk d&. (If M is the adjacency matrix ardithe degree, theA=M/d.)
We call G a A-expander if all eigenvalues @f other than 1 are at mogtin absolute value. Smallér
mean better expansion. We will ne€@rgular 2 °-expanders onnodes, for a constant> 0.

Extending earlier constructions which required large prings 38|, Morgenstern 39] gave ex-
plicit constructions which achieve this withapproaching 12. However, because the number of ver-
tices is not 2' and there are restrictions on the degree, it is easier to use expanders by Gabber and
Galil [20]. They gave an explicit construction of 8-regubaiexpanders onnodes, for evem, where
A =5/2/8 < 1. (See the survey2p] for the statement in this form, and for many other aspects about
expanders.) The neighbors of a vertex may be computed with a constant number of arithmetic opera-
tions. By taking thgc/3)th power of the graph, we get &-Pegular)A®/3-expander, as we need (though
this requires that |8).

2.6 Somewhere-random sources

The concept of somewhere-random sources will be useful in constructing dispersers.

Definition 2.9. An elementary somewhere-k-souisea vector of sourcegXy,...,X), such that some
X is ak-source. Asomewhere-k-sourde a convex combination of elementary somewhessurces.

Note that there may be arbitrary dependencies among;thEurther note that in a somewhdte-
source which is not elementary, 2l may have low min-entropy.
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2.7 Condensers

Condensers and somewhere condensers will be essential in our extractor and disperser constructions,
respectively.

Definition 2.10. A function C : {0,1}" x {0,1}9 — {0,1}™M is a (k — ¢, £)-condenseiif for every k-
sourceX, C(X,Uq) is e-close to somé-source. When convenient, we c@lla ratetk/n — ¢/m,¢)-
condenser. The condenser is strong if the averageyow€i0,1}¢ of the minimum distance aE(X,y)
to some/-source is at MowH.

Definition 2.11. A functionC : {0,1}" x {0,1}9 — {0,1}™is a(k — ¢, &)-somewhere-condensiifor
everyk-sourceX, the vectorC(X,Y))yc 0,134 is £-close to a somewheresource. When convenient, we
callC arate{k/n — ¢/m, e)-somewhere-condenser.

Note that a k — ¢, €)-strong-condenser is(& — ¢, €)-somewhere-condenser. We will also need the
following.

Lemma 2.12. If C : {0,1}" x {0,1}9 — {0,1}™ is a (k — ¢,&)-somewhere-condenser, then it is a
(2%, (1—g)2'~™)-disperser.

Proof. This follows because a distribution whichdsclose to arf-source must have a support of size at
least(1—¢)2’. O

When composing condensers, we will need the following type of lemma.

Lemma 2.13. Suppose Zis €;-close to ar¢s-source, and for all z€ supfZ;), the distribution(Z; |
Z; = 77) is ex-close to ardy-source. Then Zo Z; is €1 + g;-close to ar?; + ¢>-source.

Proof. LetW; be an arbitrary;-source which ig;-close toZ;. Forw; € supgZ;) NsupgW ), define
the distribution of(W, | Wy = wy) to be an arbitrary,-source which isez-close to(Z; | Z3 = wy).

Forw; € supgWi) \ supfZ1), define the distribution of\Ws | Wi = wy) to be the uniform distribution.
ThenW, oWs is an/yq + ¢>-source, which i€, + e2-close toZ; o Z5, O

We build extractors by first condensing and then applying a weaker extractor. The idea of condensing
before extracting was used if4, 47], and a simple lemma fromi[f] shows that this works.

Lemma 2.14 (B7]). Suppose that €{0,1}" x {0,1}% — {0,1}" is an efficient (strongjk — ¢, &1)-
condenser, anéxt : {0,1}" x {0,1}% — {0,1}™is an efficient (strong}/, &,)-extractor. Then

Ext'(x,y10Y2) = EXt(C(X,y1),Y2)

is an efficient (stronglk, €1 + &,)-extractor.
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2.8 Sum-product theorem

The following sum-product theorem underlies our condensers.

Theorem 2.15 (L1, 10]). There is a constant > 0 such that for any field = Fq where q is either
prime or 2P for p prime, the following holds. For any non-empty A, |A| < q°,

max(|A+A, |A-Al) = Q(|A[T).

Here the.9 can be increased to any constant less than 1, but the cownstaifitlikely decrease.
Note that forg = 2P, whenA = {0, 1} thenA+ A= A- A= A, however, theQ handles this problematic
case. We use results based on earlier versions of this theorem, when the full bounds were not known to
hold for fields of size 2. Although the result quoted above isn’'t apparent for such fields in the credited
papers, it follows from Corollary 2.56 o8], which credits those papers. For the best constaas of
this writing see B3]. For a self-contained exposition of the prime case, 88 [

3 Disperser construction

We first use random walks on expanders to construct low-degree dispersers for high min-entropy. This
construction could work for any min-entropy rate bigger tha, but to output almost all the random-
ness we need rate close to 1.

Proposition 3.1. For any o > 0, there is af, co > 0 such that for any e= c(n) > ¢, there is an efficient
family of strong(K = N8 2-¢)-disperserdDIS : [N = 2" x [D] — [M = 2™ such that D< an/c and
m> (1— a)n. (Lety > 0 be the constant frorBectior2.5. We can takeg=2/yandf = ay/5.)

Proof. We use the disperser df][ Sets= 2", andm= (1— o)n. LetG be a 2-regular 2 "°-expander
on [2™] (seeSection2.5). To find the neighbors of a vertexc [2"], use then bits definingu to choose
a random vertexp € [2™] and then take a random walk, ...,vp on G. Connectu to vy,...,vp. We
ignorevg so that we cleanly get=m+ Dc, andD = (n—m)/c= an/c.

First consider when the bits describing the random walk are uniformly random. In this case we can
use the tight analysis given by KahaB9[. For SC [2"] ands= |5 /2™, Kahale showed that

Pr(Vi)vi € S <s(s+ (1-9)24)P 1< (s+21)P.

Sinces= 2 < 2-7°, this probability is less than® 7P < 2-(7/2)eD < o—(v/2)an,

When the bits describing the random walk are chosen from a source with min-etifrep§)n,
each string which before had probabilitynow has probability at mos#2-2-". Therefore, the error
probability grows by at most??, and hence is at most”27*/2n. Therefore, this is &K = N*-# s)-
disperser for any < ya /2.

We still need to show that this disperser is strong. To do this, we must consider the situation where
instead of oné&Swe now haveD suchS, |S| = s2™, where the average of theis at mosts. By the
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result of Kahale given as Theorem A.5 &Y, for a uniformly random walk

Pr(¥i)vi € §] < mﬁm < \/ _ﬁ(xu (1-22)s)
D/2

< (éimml—ﬂ)s)) < (74502,

The third inequality follows from the arithmetic-geometric mean. This baisadA?)P/? is at most the
square root of Kahale’s earlier bound, so it’s at most®4". By choosingB < yo./4 the proposition
follows. O

To give a construction for all positive entropy rates, we use the following theorem, which follows
from the condenser irb] or [43]. While [5] only gives an ordinary disperser, hgmma2.6it is also a
strong disperser for essentially the same parameters, since D is constant.

Theorem 3.2 (b, 43]). For anyf,0 > 0, there is an efficient family of rated — 1— 3, = 27Q(n))_
somewhere-condensers @ = 2" x [D] — [M = 2™ where D= O(1) and m= Q(n). For subconstant
8 = &(n) the dependence is B (1/8)°M and m= §°Wn.

Remark 3.3. In the original paper, the construction for subcons@mequired a large prime. How-
ever, there is no longer a need for this, given the new sum-product theorem for fields of ¢$see2
Subsectior2.8).

Applying Lemmas2.12and2.6, we deduce

Corollary 3.4. For anyf3,8 > 0, there is an efficient family of strorg = N®,M~F)-disperserDIS :
[N =2"] x [D] — [M = 2" where D= O(1) and m= Q(n).

We can now give our disperser construction, although for now we obtain output length a small
constant fraction odn, rather than almost all of it.

Theorem 3.5. For any § > 0 and s= s(n) > 0, there is an efficient family of strong = N9.s)-
disperserdDIS : [N = 2" x [D] — [M = 2" such that D= O(n/logs™') and m= Q(n). For subconstant
8 = &8(n) the dependence is B (1/8)°Yn/logs ! and m= §°Wn.

Proof. Let DIS; : [N = 2" x [D1 = O(1)] — [N’ = 2"] be an efficient stronK = N®, (N’)~1)-disperser
from Corollary 3.4, with " = Q(n). Let DIS; : [N'] x [D2 < '/Igs™1] — [M = 2], be an efficient
strong(K’ = (N') 9, s)-disperser given bfProposition3.1, with m=n'/2. ApplyingLemma2.7 yields
the desired disperser. O

To improve the output length td — @) dn, we need to use better condensers, and we defer the proof
to the next section.
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4 Extractor construction

Readers interested solely in the inapproximability results can skip direc8gttion6, as the current
dispersers suffice to prove those results.

Our extractor construction is essentially the same as our disperser construction. We first show how
to extract when the entropy rate is close to 1, by using random walks on expanders. Then we use Raz’s
recent condensedf] to reduce to the high-entropy case.

Proposition 4.1. For all «,& > 0, there exists3 > 0 such that there is an efficient family ¢ =
(1— B)n, g)-extractorsExt : {0,1}" x {0,1}4 — {0,1}™with m> (1— a)n and D=2 < an.

Proof. Setm= (1— a)n andc = 3 (say). LetG be a 2-regulari-expander orj2™ with A bounded
away from 1 (se&ection2.5). To find the neighbors of a vertaxe [2"], use then bits definingu to
choose a random vertey € [2™] and then take a random walk;, ..., vp on G. Connecu to vy,...,Vp.
As beforen = m+Dc, andD = (n—m)/c= an/c.

Let SC [2™] have densityt = |S|/2™. First consider when the bits describing the random walk are
chosen uniformly, and let the random variaflelenote the fraction of; which are inS. Gillman [21]
(see also Kahale3[L]) proved a Chernoff bound for random walks on expanders. We use the improved
constants obtained by Heal®7]:

Prilii — | > &) < 2exg—(1—2)e?D/4).

(Dinwoodie [L4] essentially improved the constant 4 above to 2, but only states it from a worst-case
vertex so there is another term.)

For large enough (to get rid of the multiplicative 2), this error is at most® for a = (1—
A)e?a/(4c). When the bits describing the random walk are chosen from a source with min-entropy
(1— B)n, the error probability grows by at mosf2 Thus this is ak = (1 — B)n,&)-extractor for
B<a O

We can make these extractors strong by using a better Chernoff bound.

Proposition 4.2. For all a,& > 0, there existy3 > 0 such that there is an efficient family of strong-
(k= (1—pB)n,e)-extractorsExt : {0,1}" x {0,1}¢ — {0,1}™ with m> (1— a)n and D= 29 < an.

Proof. We use the same construction. For the proof, we must now show near uniformifyDovele™].

We therefore conside8 C [D] x [2™], soS= Ui{i} x S. Again consider when the bits describing the
random walk are chosen uniformly, and now let the random varialidenote the fraction of; which

are inS. Wigderson and Xiaog2] improved Gillman’s theorem above for this case. We again use
Healy’s improved constant2T7]):

Pri|ft — u| > €] < 2exp—(1—A)e?D/4).
We can then conclude with the same argument as above. O

For dispersers, we combined the high-entropy construction with somewhere-condenseradrom
orem3.2 For extractors, we need to use the improved strong condenser due té3Raz [
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Theorem 4.3 (A3]). For any constant$, d,e > 0, there is a constant d such that there is an efficient
rate{8 — (1— ), €)-strong condenser €{0,1}" x {0,1}9 — {0,1}™ such that m= Q(n).

Applying Lemma2.14to Raz’s condenser and the extractor above, we obtain the desired theorem,
except that the output length is linear instead of(the «)-fraction we claimed.

Theorem 4.4.For all 8, ¢ > Othere is an efficient family of stronde= n, €)-extractorsExt : {0, 1}" x
{0,1}9 — {0,1}™ with m= Q(n) and D= 29 = O(n).

5 Improving the output length

The results in this section were obtained jointly with Avi Wigderson.

We now would like to obtain output lengfil — a )k, for an arbitraryoc > 0, while maintaining the
linear degree. The initial idea is to do a construction similar to that by Wigderson and the &#hdfr [
the output length is significantly less theruse an independent seed to extract more bits from the same
input. We can’t do this directly, because even two runs of the extractor gives d2grée which is too
expensive. Yet we can achieve this with the condenser, which uses only a constant number of random
bits. Thus, our intermediate goal, which is interesting in its own right, is:

Theorem 5.1. For any constantsx,3,5,¢ > 0, there is a constant d such that there is an efficient
rate{8 — (1— ), €)-strong condenser €{0,1}" x {0,1}9 — {0,1}™ such that m> (1 — c)8n.

Yet this theorem cannot be achieved by applying the above idéhdorem4.3. The reason is that
the error cannot be controlled. If the output lengthyris we would like to iterate about/¥ times, but
we cannot do this if the initial error is bigger thgnin Theorem4.3, as well asTheoren.2, the output
length may depend on the error. Hence we construct an improved condenser, which follows from the
improved merger of Dvir and RaZ§]. In this merger, the output length doesn’t depend on the error.

Lemma 5.2. For any § > 0, there existy > 0, such that for any > 0, there is a constant d such that
there is an efficient ratéé — (1 — &), )-strong condenser €{0,1}" x {0,1}¢ — {0,1}™ such that
m> yn.

Proof. Fix § > 0. By Theorem3.2, there is an efficient ratés — 1— §/2,&; = 2-2(") somewhere-
condense€; : {0,1}" x {0,1}% — {0,1}™, whered; = O(1) andmy = Q(n). By the main theorem
of [15], there is a “strong mergeV : ({0, 1}"‘1)2dl x {0,1}9 — {0,1}™ with d = f(d;) = O(1) and
m= Q(my) such that whenever the inp¥t on ({0, 1}m1)2dl is a somewhere ratd — 6 /2)-source, then
the average overe {0,119 of the distance ol (Xy,y) to the closest ratél — §)-source is at most/2.
The lengthm may be chosen independently &falthoughd depends orz. Hence the required strong
condenser i€(X,y) = M((C1(X, Y1)y, c (0,134 Y)- O

The following lemma is the condenser analogue to the corresponding extractor lendfh in [

Lemma 5.3. Suppose that C: {0,1}" x {0,1}% — {0,1}™ is a strong(k — ¢1,&1)-condenser and
C,:{0,1}" x {0,1}% — {0,1}™ is a strong(k — m; — s — {5,&5)-condenser. Then C{0,1}" x
{0,1}%+% _, f0,1}™+M given by

C(X7 Y1 o YZ) = C]_(X, yl) OCZ(X7 YZ) )
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is a strong(k — ¢1+ (2, €1+ €2+ 2°)-condenser.

Proof. Let X be ak-source. Foy € {0,1}%, let &’ denote the minimum distance 6f(X,y) to some
¢;-source. Fixy; € {0,1}%. Let Sdenote the set of low-probability elements in the output:

S={z| PriCs(X,y1) =7 <27 ™*9}.

Then P{C(X,y1) € § < |52~ (M+S) < 275, Forz¢ S, X conditioned orCy (X,y1) = zis a(k—my —s)-
source. Hence, under such conditioning, for each {0, 1}%, C5(X,y») is within €32 of somel,-source.
Putting this together as ibemma2.13 C(X,y; oy») is within s{l + 254 8%/2 of some/; + ¢>-source.
Since the average af" is at mostg;, this completes the proof of the lemma. O

Applying this lemma inductively, we can show:

Lemma 5.4. Suppose C{0,1}" x {0,1}9 — {0,1}™is an efficient strongk — ¢, €)-condenser. Then
for any positive integers,§ we can construct C {0,1}" x {0,1}'¢ — {0,1}'™, an efficient strong
(k+(t—1)m+s—tl,te+ (t —1)27°)-condenser.

Proof. We prove this by induction onh For the base cage= 1 we can take&C’ = C. Now assume the
lemma for a giveri. SetC; to be the condenser given by the lemmatioand seC, = C. Applying
Lemma5.3 gives the condenser for- 1. O

We can now provélheorem5.1 We would like to condense additional entropy, as long as there
is aedn entropy left in the source. We also want the output entropy rate to-b@,land if in each
iteration we have this entropy rate, then overall we do as well. These two goals mean we should use a
condenser converting rated to rate 1— 3. This condenser has some output lengthso we need to
iterate ¥y times. This determines the error we need, which is why it is crucial we can pick the error
after knowingy.

Proof of Theorenb.1 Let «, 3,0,€ > 0 be given. ByLemma5.2, for somey > 0 there is an efficient
strong ratetaed — (1— B),€')-condense€ : {0,1}" x {0,1}4 — {0,1}™, wheree’ will be chosen later
andm> yn. Sett = (1— )5 /v and applyLemmab.4with ansto be chosen later. This gives an efficient
strong(dn—yn+s— (1— B)(tm),ie’ +2-5)-condense€’ : {0,1}" x {0,1}'4 — {0,1}'™. Choosing
s= ynande’ small enough ste’ + 275 < ¢ gives the theorem. O

Combining our condenser fronTheorem 5.1 with our extractor fromProposition 4.1 via
Lemma2.14 we obtain our main extractor construction:
Theorem 1.7. For all constantx, d,¢ > 0 there is an efficient family of strongk = dn, €)-extractors
Ext:{0,1}" x {0,1}¢ — {0,1}™ with m> (1— a)dnandD = 2¢ = O(n).

By combining the same condenser with the earlier disperseragosition3.1, we obtain our main
disperser construction:
Theorem 1.9. For all constantx,§ > 0 ands = s(n) > 0, there is an efficient family of strond< =
N9, s)-dispersers DIS[N = 2" x [D] — [M = 2] such thaD = O(n/logs ) andm> (1— a)&n. For
subconstand = §(n), the dependence B= (1/5)°Yn/logs * andm= §°"n,
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6 Max Clique

In this section, we show how our dispersers yield inapproximability results fax MLIQUE. We
assume some familiarity with PCPs. Since the inapproximability exMCLIQUE follows from the
proof of the inapproximability of @ROMATIC NUMBER, readers not familiar with PCPs may prefer to
read the next section, which doesn’t use them.

Historically, Feige et al.J8] were the first to show how to obtain inapproximability results foxM
CLIQUE using PCPs. Bellare, Goldreich, and Sudélrshowed that free bit complexity is the parameter
of a PCP which gives the best inapproximability results.

Definition 6.1. FPCR(r, f) is the class of promise problems recognized by PCP verifiers usargiom
bits andf free bits, achieving perfect completeness and soundness

Theorem 6.2 (B, 18]). If NP C FPCR(r, f), then it is NP-hard to distinguish whether a graph 2ri f
vertices has clique number at le&Stor at most &'.

Hastad 5 showed how to reduce the soundness by paying only a tiny amount in the free bit
complexity. Specifically, he showed:

Theorem 6.3 (R5]). For any f > 0, there is ar such thatNP C FPCB_(O(logn), f¢).

The quantityf is called theamortized free bit complexitynd can be less than 1 &stad’s result
shows it can be any positive constant).

The following follows fromTheorem6.2and the amplification of a PCP via a good disperser, as first
suggested ing4].

Lemma 6.4. Supposd\NP C FPCR(r, f) and there is a polynomial-time constructikii, s)-disperser
DIS : [2R] x [D] — [2]. ThenNP C FPCR o=(R,Df), and hence it iNP-hard to distinguish whether a
graph on2®*PT vertices has clique number at le&@$t or clique number at most K.

This suffices to prove our theorem.
Theorem 1.1 Itis NP-hard to approximate Mx CLIQUE to within n'~¢ for anye > 0.

Proof. Equivalently, we will show a factor ofi®=%¢. Fix ¢ > 0. Theorem1.9 says that for ang =
s(n) there is an efficient family ofK = N¢,s)-dispersers of degre® < c(logN)/logs™?1, for some
c=c(e). Let f < e/c, and applyTheorem6.3 to get an/ andr = r(n) = O(logn) such that NFC
FPCR«(r, f£). Now lets=27¢, so there is an efficierK = (27)¢,27¢)-disperser DIS [2R] x [D] —
[2"]. Apply Lemma6.4 with this disperser, and note thatf < (cR/¢)- (¢/f) = f-cR< eR. Henceitis
NP-hard to distinguish cliqgue number at lea8tfeom clique number at most®? in graphs on 2+&R
vertices. Moreover, since the output length is linear in the input lefijth O(logn), so the reduction
is polynomial time. O

To obtain inapproximability up to am*°() factor, we can use the following theorem b@istad and
Khot [26], which is basically the same as that obtained by Samorodnitsky and TrediSjdouf gives
perfect completeness.
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Theorem 6.5 (R6€]). For any/ = ¢(n) which is one less than a perfect square,
NP C FPCB-«(O(¢logn),2v{+1).

We can now prove:
Theorem 1.3, For somey > 0, it is NP-hard to approximate Mx CLIQUE to within n/2003m" 7,

Proof. Sete = €(n) = 1/logn. By Theorem3.5 (or the strongefTheorem1.9), there is ac such
that for anys = s(n) there is a polynomial-time constructible family ¢ = N¢,s)-dispersers of de-
greeD < (logn)¢(logN)/logs ™. Let £ = 9(logn)?¢*V) ands= 2. Apply Theorem6.5 to get

r = r(n) = polylog(n) such that NFC FPCR(r,3v/¢). We'll use the polynomial-time constructible
(K = (2R)¢,27)-disperser DIS [2R] x [D] — [2]. Apply Lemma6.4with disperser DIS, and note that
Df < (R(logn)®/¢) - (3v/¢) = R/logn = eR. Hence it is NP-hard to distinguishing clique number at
least & from clique number at most?2'°9" in graphs on 2+1/109MR yertices. Sincdr = polylog(n),

the theorem follows. O

7 Chromatic Number

Now we show how our dispersers imply the NP-hardness of approximatmp@ATIC NUMBER to
within n'~¢ for any e > 0. We derandomize Feige’s and Kilian’s prod®] of the same inapproxima-
bility ratio but under the stronger assumption that NP is not in ZPP. As in their proof, we work with
the fractional chromatic numbey;, which up to logarithmic factors is the same as the chromatic num-
ber x [35). They also make use of the independence numsbelust axx(G)x(G) > |[V(G)|, so too is
o(G)x:(G) > |V(G)| (hereV (G) denotes the vertices @).

Feige and Kilian start with a gragh (from a family of graphs) which has a constant hardness ratio:
eitherG has chromatic number at leasor at mostc’ < c. They actually need’ = ¢, wherey > 0 is
arbitrary, as well as a corresponding bound on the independence namber

Theorem 7.1 ([L9]). For all ¥ > 0, there is an s> 0, such that there is a polynomial-time reduction
from an NP-complete language L to chromatic number with the following properties. On input x, the
algorithm outputs a graph G- (V,E) such that

1. Ifx e Lthenys(G) <s7;

2. Ifx ¢ Lthena(G) < sV

, and hencegs (G) > 1/s.

(The parametesis not exactly the soundness of the PCP; rather, it is the soundness tilmeg2re
f is the free bit complexity. Also, Feige and Kilian don’t state this as a theorem, but it can be deduced
from their Lemma 2 and the parameters achieved in their Section 5.6. They state their parameters as:
for anyy,¢ > 0, they can ses = O(27¢) and if x € L then x(G) < 231, This is equivalent to our
statement above, for a slightly different choiceyof

Feige and Kilian next amplify the hardness ratio using randomized graph products. That is, they
take a suitably-sized random subgrapiof the product grapleP which has hardness ratid (G') |1 €.
GP is defined with respect to the following “OR” graph product.
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Definition 7.2. For graphsG = (V,E) andH = (W, F), define the grapl& x H as having vertex set
V xW, and edgeg(v,w), (V,w)} where{v,v'} € E or {w,w'} € F.

Note that(vy,...,vp) is adjacent tqwy, ..., wp) in GP if any (vi,w;) is an edge irG. It is straight-
forward to show thatr(G x H) = o(G) - a(H). Using the definition of¢s as a linear program and linear
programming duality, Feige showed thgt(G x H) = x(G) - xt(H) [17].

We derandomize the randomized graph powering. This was done earlier in the clique ggtbag [
the results there are not tight enough. On the other hand, for cliques, two types of bounds are needed
— one if the clique number is large, and one if it's small. For chromatic number, one of the two cases
becomes easy. Jf+(G) is small, it will suffice to use the trivial boungk (G') < x(GP) = x(G)P.

We can define a derandomized graph poweringoef (V,E) with respect to any disperser DIS :
X x [D] — V as follows. Define DI&) = (DIS(x,1),DIS(x,2),...,DIS(x,D)) and DISX) = {DIS(X) |
x € X}. Now define the graph DIEP) to be the induced subgraph @GP on vertex set DISX).

Lemma 7.3. Given a graph G= (V,E) and a dispersebIS with degree D, let G= (V’,E’) = DIS(GP).
Then

1 x:(G) < (x1(G)°.
2. If a(G) < s|V| andDIS s a strong(K, s)-disperser, them(G') < K, and hencegs (G') > [V’|/K.

Proof. The first part follows becausg:(G') < x:(GP) = (x:(G))P. For the second part, suppose
a(G') > K, and letX be an independent set @i of sizeK. Note thatj(X), as defined iLemma2.8,
corresponds to the set @h coordinates oX. By the strong disperser property, for somne [D],
ITi(X)| > s]V| > a(G). Hencel'i(X) is not an independent set@ so it contains an edge, s@y:,w; }.
If v; is theith coordinate ofv, andw; is theith coordinate ofw, then because we are using the OR
graph product{v,w} is an edge irG’. Sincev,w € X, this contradicts our assumption théatwas an
independent set. O

We are now ready to prove our theorem.
Theorem 1.2 Itis NP-hard to approximate ©IROMATIC NUMBER to within n'~¢ for anye > 0.

Proof. Fix € > 0. Theoreml.9says that for ang= s(n) there is an efficient family of strongk = N¢, s)-
dispersers of degrd2 < cn/ logs 1, for somec = c(g). Sety = g/c, and use the Feige-Kilian reduction,
which comes with ars = s(y). Using thiss, applyLemma?7.3 using an efficient strongK = N¢,s)-
disperser. In polynomial time we construct a gr&glon N vertices such that ke L,

21 (G) < s77P < 2N — NE |
If x¢ L, thena(G') < N¢, soy;(G) > N¢. Thus it is NP-hard to distinguish graphs with fractional
chromatic numbeN¢ from graphs with fractional chromatic numbiit—¢. Converting to chromatic

number loses only a logarithmic factor, so the theorem follows. O

To derandomize Khot'’s results, we use his reduction in pladéhebrem?.1:
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Theorem 7.4 (B4]). For anyp > 0, there is a quasi-polynomial-time reduction from an NP-complete
language L toaCHROMATIC NUMBER with the following properties. On input x of size n, the algorithm
outputs a graph G= (V,E) such that

1436,
1)

1. |V| < 2(logm
2. Ifx e L theny (G) < 2(09n”:
3. Ifx ¢ L thena(G) < 2-(09n* v/,

We can now show:

Theorem 1.4 For somey > 0, it is NP-hard to approximate KROMATIC NUMBER to within
n/z(logn)lfy_

Proof. We use the polynomial-time constructikid?, s)-strong disperser frorfiheorem1.9, with s =
2-(097* and$ to be chosen shortly. This has degie (logN)/(5%(logn)?#). Sets = (logn)—#/2,
Applying Lemma?.3, it is NP-hard to distinguish between graphshrertices with chromatic number
N9 from those with chromatic numbef@n’P < N(logn)#/2, O

8 Simplifying and strengthening additive number theory applications

We now give our simple one-bit condenser and improve other lemmas #p8 9]. We first define
incidences of lines and points.

Definition 8.1. For P a set of points andl a set of lines] (P,L) denotes the number aicidencesi.e.,
the number of ordered paif®, /) where the poinp lies on the line’.

We rely heavily on the following theorem on point-line incidences. Bourgain, Katz, andITho [
showed how this theorem follows from the sum-product theorem $eetion2.8). The constant 1.9
below can be increased to any constant less than 2, but the comstélhtikely decrease.

Theorem 8.2 (Incidence Theorem11, 10]). Let F=1IFy, where q is either prime &P for p prime. Let
P, L be sets of points and lines irfBf cardinality at most M< p'®. Then there exists an > 0 such
that the number of incidences

I(PL) = O(M¥2 %),

8.1 Condensing with one random bit

Barak et al. §] consider a condenser which uses two extra bits of randomness; here we show that one
bit of randomness suffices. Of course, one bit is necessary, so this is optimal. Our proof is also simpler,
proceeding directly from théncidence Theoren8.2 There is nothing special about the constant .9
below; any constant less than 1 will do.

Our condenser is simple to describe. We work over a fietdFg, whereq = 2P for p prime. Define
the point-line incidence graph as the bipartite gr@ph (V, W, E) with verticesv = F? the set of points,
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andW the set of lines oveF, and(p, /) is an edge iffp and/ are incident. Our condenser is based on
the functionh: E — V x W which maps an edge to its two endpoints. An equivalent viel igfthe
map fromF? to (F2)? which maps(a, b, c) to ((b,ab+c), (a,c)). This is because the poifi, ab+ c)
lies on the liney = ax+c.

Our condense€ : F3 x {0,1} — F2is simplyC(e,i) = h(e);. The two-bit condenser of Barak, et al.
is very similar: their correspondirtgmaps(a, b, c) to the length 4 vectofa, b, c,ab+c).

Theorem 8.3. Suppose’ < .9 and o = w(1). The function C above is a rat&¢ — (1+ a/2)8, ¢)-
somewhere-condenser, where- q-%%/20, Herea is the constant from thimcidence Theorer@.2

Before we proceed, it is convenient to introduce a modified notion of somewhere-random source,
which we call somewhere light.

Definition 8.4. A vector of sourceX = (Xy,...,X/) is e-close to somewhere-k-ligiftthe probability,
when(xi,...,X;) is output according t&X, that nox; are light is at most¢. We sayx; is light if Pr[X; =
Xi] < 27k,

The following lemma describes the relationship between this notion and that of somewhere-random.

Lemma 8.5. Assume2 ' < 1—¢. If X = (Xy,...,X) is e-close to somewhere-k-light, then X({g —
1)27' + ¢)-close to a somewherge—t)-source.

Proof. Partition the support of into £+ 1 bins so that bim contains vector§xy, ..., x,) wherex; is light
(break ties arbitrarily), and bin 0 contains vectors with no light coordinates. The probability of a bin is
the sum of the probabilities of vectors in the bin. By assumption, bin 0 has probability atmbst

bin(x) denote the bin ok. Consider any bim # 0 with probability at least 2 (sincef2™! < 1— ¢ there

is at least one such bin). For at, ..., %) in bini,

P{X = x | bin(X) = i] < PrX = x]/Prbin(X) = i] < 2'-27.

Hence, if we letr' denote the distribution of conditional on biiX) =i, we get thal, has min-entropy
at leastk —t, and hence&r' is a somewherék — t)-source. For any binwith probability less than 2,
and fori = 0, letY' be the uniform distribution. Define the distributiyn= 5; Pribin(X) = i]Y'. Then
Y is a somewhergk —t)-source and the distance ¥fto Y comes only from bin 0 and bins with low
probability, and is at most + (¢ — 1)271. O

We now work with the modified notion. The main idea is to convert the statistical problem to a
counting problem, which we do via the following lemma.

Lemma 8.6. If (X,Y) is note-close to a somewhere-k-source, then there exists setsupgX),T C
supgY), S, |T| < 2¢1 /¢, such that

PriX e SAY € T] > g/2.

Proof. Letr = k+1g(2/¢). By Lemma8.5 (X,Y) is not e/2-close to somewhenelight. Setting
S={s|X(s) >2 "} andT = {t|Y(t) > 27"} yields the lemma. O
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We can now prove the theorem.

Proof of TheorenB.3. Instead ofC, we analyze the equivalent functidm We may assume that the
input toh is uniform on a set of edges of sike= 2¢ = g%, and sek’ = (1+ o/2)(2k/3). Suppose
the output(X,Y) of h is note-close to a somewheié-source. LeP = SandL =T be the sets of size
less tharKy = 2K+1 /¢ given byLemma8.6. Assuming without loss of generality that< .1, note that
Ko < q251+ 06/2 < ql.8~1.05 < ql.9.

We calculate the number of incidendg®, L) in two ways. On the one hand, since each edge is an
incident point-line pair, and at leasf2 fraction of these pairs lie iR x L, the number of incidences
[(P.L) > eK/2. On the other hand, by thecidence Theoreri.2,

I(Pa L) —_ O(Kg/z_a) _ O(K(l+(x/2)(3/2—a)2/3/82) _ O(Kl_a/G/SZ) )

Combining these, we get a contradiction for= K~%/29, and the theorem is proved. O

8.2 AB+C theorem from two sources

In this section and the next, we consider a scenario where we have several independent weak sources,
but no truly random seed. The sum-product theorem implies thatH, andC are sets of the same
sizeK, then the sefB+ C is noticably bigger thaK. Barak et al. #] showed the significantly stronger
statistical statement: i, B, andC are independent distributions with min-entropyach, then the
entropy rate ofAB+ C is noticably larger thak.

Here we show how to improve the entropy rate with just two sources, by alloviagdC to be
correlated. Our proof is also simpler than that4h [Again, there is nothing special about the constant
.9 below; any constant less than 1 will do.

Theorem 8.7. Supposed < .9 and f = w(1). If (A,C) and B are output from independent rate-
o-sources, where B,C are elements of a field E Fq, where q is prime o2P where p is prime.
Then AB+C is g *%/?-close to a ratefl + a)§-source, wherex is the constant from thincidence
TheorenB.2

We prove this using thimcidence Theorer.2. The relevance of lines comes in viewifgy c) as the
liney = ax+c. In order to get a suitable set of points, we use the following simple lemma. This lemma
is key in deducing a statistical theorem, which is about distributions, frormttidence TheorerB.2,
which just bounds set sizes.

Lemma 8.8. Suppose X is-far from a k-source. TheASC supgX), |S < 2, such thaPrX € § > ¢.

Proof. TakeS= {s| X(s) > 27X}, so|S| < 2%. Lemma2.2implies that the distance &f to the closest
k-source isy s.5(X(s) —27K) <PiiX € S. O

We can now prove the theorem by taking the set of points 18 bé&.

Proof of TheorenB.7. Let (A,C) be output from a flat Rsource, and from an independent flak-
source. Suppos@B-+C is e-far from ak’ source, wherd = (1+ a)k. Let Sbe the set of size less
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thanK’ = 2¢ given byLemma8.8. Define the set of linek to be the support ofA,C), where(a,c) is
associated with the linex+c. Let P be the set of points supB) x S.
We calculate the number of incidences in two different ways. On the one hand, note that when the
line (a,c) applied tob lands inS, it corresponds to an incidence. SincéAB+C € § > ¢, and since
the distributions are flat,
I(P.L) > e|L| - |supp(B)| = ek,

whereK = 2¢ < |F|°. On the other hand, sinde| = K? < [F|*® and|P| < K-K' = K2F* < |F|*9, by
thelncidence TheorerB.2

I (P, L) = O(K(2+a)(3/2—a)) — 0(K3—a/2) ]

Hence we may take = K~%/2 and the theorem follows. O

8.3 Rate-improving function for two equal-length sources

Note that the previous theorem improves the rate from two independent sources, where one has twice
the length of the other. In this subsection, we do this from two sources of equal length, by giving
a statistical version of a theorem by Bourgain. Bourg&nshowed that for a primeg, the function
g: Fq xFq — Fq given byg(x,y) = x(x+Y) has the following “expanding” property. Fp&| > |B| > q®,
8 <1, g(AB) > ¢°*P for somep = B(8) > 0.1 With the new sum-product theorem holding also
for g= 2P, p prime, Bourgain’s theorem will also hold in this case.
We show the statistical analogue of this theorem. Equivalently, our theorem says tiA& the
theorem holds whe@ = A?, and furthermore the entropy rate is measured with respect to the length of
A, rather thar(A,C).

Theorem 8.9. Supposed < .9 and ¢ = w(1). If X,Y are output from independent rafiesources on
F =g, then gX,Y) is q-*%/4-close to a ratefl + a/2)§-source. Herex is the constant from the
Incidence Theorer@.2

Proof. We follow Bourgain’s proof, but some care is required to make it statistical. XLahdY be
independent random variables uniformly distributed over AetadB of sizeq®. Assume without loss
of generality that they don’t contain 0. Supp@g,Y) is note-close to a + 3-source, where we will
chooseB ande later. Let

S={zeF |Pg(X,Y) =2 >q )},

i.e.,Sis the set of size less thafi™# guaranteed bizemma8.8, such that Fig(X,Y) € § > ¢.

The difficulty in proving the theorem is that directly, this probability being at leades not give
many lines (iny), so we cannot apply thecidence TheorerB.2 We follow Bourgain and find many
more lines by exploiting the linearity in

To this end, we begin with a collision probability lower bound. Let

T ={y|Prg(X,y) € §>¢/2}.

1Bourgain’s proof also uses thecidence TheorerB.2, but it was done independently of our use of theidence Theo-
rem8.2in Subsection8.1and8.2
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Then|T| > §|B| > £0°. Fixy € T. LetZ be distributed aX, but independent ok andY. Then

_ & _
Prlo(X.Y) =9(Z.Y)] > Prig(Z,y) € g~ P = a7

Let X; also be distributed as, but independent of all previously defined random variables. We now
show that a function in botK, X;, andY, which is linear inY, still has significant probability of being
in S. This will give us many more lines.

X

KOG Z Y218 2 5 PIXXCH) € SPH 0+Y) -2 =]

- yz PIX(X+Y) € SP{Xy (X1 +Y) =Z(Z+Y)]
eT

3
TS Eqeeh S E g b

= 133 8
Therefore, there is a fixedsuch that
Pr [X(x+ﬁ(x +Y)—z)eSJ>8—3 B (8.1)
X, X1,Y z 1 8 - '

This says there are many lines (lineay)rwhich, when applied to many valuesyfland inS. This
will contradict thelncidence TheorerB.2 In particular, let’ y, (y) denote the line

XX X3
Ry (@ + 71 ~2zX),
and letL denote the set of all such linesxag; range oveA.
Of course,|L| < |A]2 = ¢?%. We also showL| > g?? /3 by observing that, for fixed w, there are at
most 3 nonzero solutions K x; to
XX1

XX
T x2+71—zx.

We define the point® = B x S, so|P| < ¢?**8. By Equation 8.1) and the fact that the paifx,x;)
overcount lines by at most a factor of 3, the number of incidences is at%ﬁérﬁ. By thelncidence
Theorem8.2, the number of incidences @(q(25+8)(3/2-@)). Comparing these gives the theorem, with
B = ad/2 ande = q *5/4,

O
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