Public Key Encryption that Allows PIR Queries

Dan Boneh Eyal KushilevitZ Rafail Ostrovsky ~ William E. Skeith IIF
February 23, 2006

Abstract

Consider the following problem: Alice wishes to maintain her email using a storage-provider Bob
(such as a Yahoo! or hotmail e-mail account). This storage-provider should provide for Alice the ability
to collect, retrieve, search and delete emails but, at the same time, should learn neither the content of mes-
sages sent from the senders to Alice (with Bob as an intermediary), nor the search criteria used by Alice.
A trivial solution is that messages will be sent to Bob in encrypted form and Alice, whenever she wants
to search for some message, will ask Bob to send her a copy of the entire database of encrypted emails.
This however is highly inefficient. We will be interested in solutions that are communication-efficient
and, at the same time, respect the privacy of Alice. In this paper, we show how to create a public-key en-
cryption scheme for Alice that allows PIR searching over encrypted documents. Our solution solves the
main open problem posed by Boneh, DiCreszenzo, Ostrovsky and Persiano on “Public-key Encryption
with Keyword Search”, providing the first scheme that does not reveal any partial information regard-
ing user’s search (including the access pattern) in the public-key setting and with small communication
complexity.

KEYWORDS: Searching on encrypted data, Database security, Public-key Encryption with special
properties, Private Information Retrieval.

*Stanford Department of Computer Science. E-mail: dabo@theory.stanford.edu

TDepartment of Computer Science, Technion. E-mail: eyalk@cs.technion.ac.il. Partially supported by BSF grant 2002-354 and
by Israel Science Foundation grant 36/03.

tDepartment of Computer Science, University of California, Los Angeles. E-mail: rafail@cs.ucla.edu. Supported in part by
Intel equipment grant, NSF Cybertrust grant No. 0430254, OKAWA research award, B. John Garrick Foundation and Xerox
Innovation group Award.

§Department of Mathematics, University of California, Los Angeles. E-mail: wskeith@math.ucla.edu, wskeith@ucla.edu.

1 Introduction

Problem Overview Consider the following problem: Alice wishes to maintain her email using a storage-
provider Bob (such as Yahoo! or hotmail e-mail account). She publishes a Public Key for a semantically-
secure Public-Key Encryption scheme, and asks all people to send their e-mails’ encrypted under her Public
Key to the intermediary Bob. Bob (i.e. the storage-provider) should allow Alice to collect, retrieve, search
and delete emails at her leisure. In known implementations of such services either the content of the emails
is known to the storage-provider Bob (and then the privacy of both Alice and the senders is lost) or the
senders can encrypt their messages to Alice, in which case privacy is maintained, but sophisticated services
(such as search by keyword) cannot be easily performed, and, more importantly leak information to Bob,
such as Alice’s access pattern. Of course, Alice can always ask Bob, the storage-provider, to send her a copy
of the entire database of emails. This however is highly inefficient in terms of communication.

In this paper, we will be interested in solutions that are communication-efficient and, at the same time,
respect the complete privacy of Alice. A seemingly related concept is tHiivadte Information Retrieval
(PIR) (e.g., [10, 17, 7]). However, existing PIR solutions either allow only for retrieving a (plain or en-
crypted) record of the database by address, or allow for search by keyword [9, 17] in a non-encrypted data.
The challenge of creating a Public-Key Encryption that allows for keyword search, where keywords are
encrypted in a probabilistic manner, remained, till this paper, an open problem.

In the solution presented in this paper, Alice creates a public key that allows arbitrary senders to send
her encrypted e-mail messages. Each such mesgageaccompanied by an “encoded” list of keywords
in response to whicld/ should be retrieved. These email messages are collected for Alice by Bob, along
with the “encoded” keywords. When Alice wishes to search in the database maintained by Bob for e-mail
messages containing certain keywords she is able to do so in a way that is communication-efficient and does
not allow Bob to learranythingabout the messages that she wishes to read, download or erase. In particular,
Alice is not willing to reveal what particular messages she downloads from the mail database, from which
senders these emails are originating and/or what is the search criterion, including the access pattern.

Comparison with Related Work Recently, there was a lot of work asearching on encrypted data

(see [4] and references therein). However, all previous solutions either revealed some partial information
about the data or about the search criterion, or work onlgrimate-keysettings. In such settings, only
entities who have access to the private key can do useful operations; thus, it is inappropriate for our set-
ting, where both the storage-provider and the senders of e-mail messages for Alice have no information
on her private key. We emphasize that, in settings that include only a user Alice and a storage-provider,
the problem is already solved; for example, one can apply results of Goldreich and Ostrovsky [13], Song
, Wagner and Perrig [21], or Chang and Mitzenmacher [6]. However, the involvement of the senders who
are also allowed to encrypt data for Alice (but are not allowed to decrypt data encrypted by other senders)
requires using public-key encryption. In contrast to the above work, in this paper we show how to search,
in a communication-efficient manner, on encrypted datapualaic-key settingwhere those who store data
(encrypted with a public key of Alice) do not need to know the private key under which this data is en-
crypted. The only previous result for such a scenario in the public-key setting, is due to Boneh et al. [4]
and Abddalla et al. [#]; however, their solutiorevealspartial information; namely, the particular keyword

that Alice is searching for is given by her, in the clear, to Bob (in other words, only the content of the email
messages is kept private while the information that Alice is after is revealed). This, in particular, reveals
the access pattermf the user. The biggest problem left in the papers was to create a scheme that hides
the access pattern as well. This is exactly what we achieve in this paper. That is, we show howatb hide
information in a semantically-secure way.

As mentioned, private information retrieval (PIR) is a related problem that is concerned with communication-
efficient retrieval ofpublic (i.e., plain) data. Extensions of the basic PIR primitive (such as [9, 17], men-
tioned above, and, more recently, [16, 12, 19]) allow more powerful keyword search but in all of them the
data remains un-encrypted. Therefore, none of those can directly be used to solve the current problem.

n fact, [4, 1] deal with the same storage-provider setting we describe above.

Our Techniques We give a short overview of some of the tools that are used in our solution. The right
combination of these tools is what allows for our protocol to work.

As a starting point, we examiri®&oom filters Bloom filters allow us to use space which is not propor-
tional to the number of all potential keywords (which is typically huge) but rather to the maximal number of
keywords which are in use at any given time (which is typically much smaller). That is, the general approach
of our protocols is that the senders will store in the database of the storage-provider some extra information
(in encrypted form) that will later allow the efficient search by Alidoom filters allow us to keep the
space that is used to store this extra information “small”. The approach is somewhat similar to Goh’s use
of Bloom filters [13], the important difference is that in our case we are looking for a Public-Key solution,
whereas Goh [13] uses the private-key solution. This makes our problem far more challenging, and our use
Bloom filter is somewhat different. Furthermore, we require the Bloom filters in our application to encode
significantly more information than just set membership. We must modify the standard definitions of Bloom
filters somewhat to accommodate the additional functionality.

Recall that use of Bloom filters requires the ability to flip bits in the array of extra information. How-
ever, the identity of the bits that are flipped should be kept secret from the storage-provider (as they give
information about the keywords). This brings us to the main technical challenge of this work: we need a
way to specify an encrypted lengthunit vectore; (i.e., a lengthn vector with1 in its ¢-th position and)’s
elsewhere) while keeping the valiilsecret, and having a representation that is short enough to give our pro-
tocol communication efficiency beyond that of the trivial solution. Perhaps somewhat surprisingly, we show
that a recent public-key homomaorphic-encryption scheme, due to Boneh, Goh and Nissim [3], allows us to
obtain just that. For example, one can specify such a lengthit vector using communication complexity
which is\/m times a security parameter.

Finally, for Alice to read information from the array of extra information, she applies efficient PIR
schemes, e.g. [17, 7], that, again, allow keeping the keywords that Alice is after secret.

We emphasize that all the communication in the protocol is sub-linear iifhis includes both the
communication from the senders to the storage-provider Bob (when sending email messages) and the com-
munication from Alice to Bob (when she retrieves/searches for messages). Furthermore, we allow Alice to
deletemessages from Bob’s machine in a way that hides from Bob which messages have been deleted.

Our main theorem is as follows:

MAIN THEOREM (informal): There exists Public-Key Encryption schemes that support sending, reading
and writing into remote server with the following communication complexity:

e O(y/nlogn) for sending a message from any Sender to Bob
e O(polylog(n)) for reading by Alice from Bob’s (encrypted) memory.
e O(y/nlogn) for deleting messages by Alice from Bob’s memory.

Organization: In Section 2, we further explain and develop the tools needed for our solutions. Section
3 defines the properties we want our protocols to satisfy. Finally, Section 4 gives the construction and its
analysis.

2 Ingredients

We will make use of several basic tools, some of which are being introduced for the first time here, in this
paper. In this section, we define (and create, if needed) these tools, as well as outline their utility in our
protocol.

2.1 Bloom Filters

The Bloom filter provides a way to probabilistically encode set membership using a small amount of space,
even when the universe set is large. The basic idea is as follows:

3

Choose an independent set of hash functiphg”_,, where each functioh; : {0,1}* — [m].
SupposeX = {z;}_; C {0,1}*. We set an arra§’ = {t;}'*, such that; = 1 <= 3;j € [k] and
j' € [l] such thath;(z;) = . Now to test the validity of a statement like € S”, one simply verifies that
hi(a) = 1,Vi € [k]. If this does not hold, then certainly ¢ S. If the statement does hold, then there is
still some probability that ¢ S, however this can be shown to be negligible. Optimal results are obtained
by havingm proportional tok, and in this case it can be shown that the probability of an inaccurate positive
result is negligible a% increases, as will be thoroughly demonstrated in what follows.

This work will use a variation of a Bloom filter, as we require more functionality. We would like our
Bloom filters to not just store whether or not a certain element is in a set, but also to store some values
associated to the elements in the set (and to preserve those associations).

Definition 2.1 A (k, m)-Bloom Filter with Storagés a collection{h;}%_, of functions, with; : {0, 1}* —
[m] for all 4, together with a collection of setéB; }72, . To insert a pair(a, v) into this structurey is added
to By, (q) for all i € [k]. Then, to determine whether or notc S, one examines all of the sel;,,) and
returns true if all are non-empty. The set of values associatedantht' is simplyﬂie[k] Bh,(a)-

Let us now further analyze(@, m)-Bloom filter with storage to estimate the total size of such a structure,
and hopefully to find an optimal construction.

For the purpose of analysis, the functidnswill as usual, be modelled as uniform, independent ran-
domness. Recall that far € {0, 1}*, we defineH,, = {h;(w) | i € [k]}.

Claim 2.2 Let ({h;}%_,, {B;}7L,) be a(k, m)-Bloom filter with storage as described above in Definition
2.1. Suppose the filter has been initialized to store somé sétsizen and associated values. Suppose
also thatm = [cnk]| wherec > 1 is a constant. Denote the relation of element-value associations by
R(-,-). Then for any: € {0, 1}*, the following statements hold true with probabillty- neg (%), where the
probability is over the uniform randomness used to modehthe

1.
(0€8) <= (Buw#2 Vie k)

() Bhiw) = {v | Rla,v) =1}
i€[k]

Proof: (1.,=) Certainly if B;,,,) = @ for somei € [k], thena was never inserted into the filter, and
a ¢ S. («) Now suppose thab,,, ,) # @ for everyi € [k]. We'd like to compute the probability that for
an arbitrarya € {0,1}*,

H,c | J Hy

wes

l.e., a random element will appear to beSrby our criteria. We model each evaluation of the functions
h; as independent and uniform randomness. There were a totél (@fot necessarily distinct) random sets
modified to insert thex values ofS into the filter. So, we only need to compute the probability thatall
functions place: in this subset of thé3;'s. By assumption, there are a total (@£ | sets where > 1is a
constant. LetX} ;» denote the random variable that models the experiment of throwlrals into [cnk|
bins and counting the number that land in the fifdbins. For a fixed insertion of the elementsSinto our
filter and lettingk’ be the number of distinct bins occupiell;, ;- represents how close a random element
appears to being i according to our Bloom filter. More preciselyy[X}, - = k] is the probability that a
random element will appear to be ffor this specific situation. Note tha}, ;/ is a sum of independent
(by assumption) Bernoulli trials, and hence is distributed as a binomial random variable with parameters,
(k, £, wherek’ < nk. Hence,

’ enk

Pr(Xyw =k] = (u)k < (1)’6

cnk c

4

So, we've obtained a bound that is negligiblekinndependent of’. Hence, if we lety}, be the experiment
of samplingk’ by throwingnk balls into[cnk] bins and counting the distinct number of bins, then taking
a random sample from the variabl, - and returning 1 if and only ifX}, ;» = k, thenY}, is distributed
identically to the variable that describes whether or not a randaem{0, 1}* will appear to be it according

to our filter. Now, since we haver[X}, ;» = k] < neg(k) and the bound was independentfit is a trivial
exercise to see th&tr[Y;, = 1] < neg(k) which is exactly what we wanted to sholll.

(2.) This argument is quite similar to part @) If R(a,v) = 1, then the value has been inserted and
associated with and by definitiony € By, (,) for everyi € [k]. () Now suppos@ € S andv € By, (,) for
every: € [k]. The probability of this event randomly happening independent of the relBtiemaximized
if every other element ir%' is associated with the same value. And in this case, the problem reduces to a
false positive for set membership with — 1)k writes ifa € S, or the usuahk if a ¢ S. This has already
been shown to be negligible in part &

In practice, we will need some data structure to model the sets of our Bloom filter with storage, e.g. a
linked list. However, in this work we will be interested in oblivious writing to the Bloom filter, in which
case a linked list is clearly impossible to implement as the dynamic size of the structure would leak infor-
mation. So, we would like to briefly analyze the total space required for a Bloom filter with storage if it is
implemented with fixed length buffers to represent the sets. Our hope is that witleg (k) probability no
buffer will overflow.

Claim 2.3 Let ({h;}f_,, {B;}L,) be a(k,m)-Bloom filter with storage as described in Definition 2.1.
Suppose the filter has been initialized to store some s#tsizen and associated values. Again, suppose
thatm = [enk] wherec > 1 is a constant, and denote the relation of element-value associatioR$-by.

If for everya € S we have that{v | R(a,v) = 1}| < Athen

Pr[max{|Bj|} > a| < neg(a)
j€lm]

Again, the probability is over the uniform randomness used to modél;the

Proof: To begin, let us analyze the situation case\of 1, so there will be a total ofik values placed
randomly into the[cnk]| buffers. LetX; be the random variable that counts the sizeBgfafter thenk
values are randomly placedy; of course has a binomial distribution with parameters, -L-). Hence

’ enk

E[X] = (1/c). If (14 6) > 2e, we can apply a Chernoff bound to obtain the following estimation:
Pr[X; > (1+4)/c] <27%¢

Now, for a givena we'd like to computePr[X; > «]. So, se{1+6)/c = aand hencé/c = a —1/c. The
bound then gives us:
Pr(X; > a] < g-atl/e — 9g=ag(l/e) — peg(a)

Then by the union bound, the probability tleaty X ; has more values thamis also negligible inv. Now

in the case oh > 1, what has changed? Our analysis above treated the functions as uniform randomness,
but to associate additional values to a specific element ef S the same subset of bufferé/{ in our
notation) will be written to repeatedly- there is no more randomness to analyze. Each buffer will have at
most\ — 1 additional elements in it, so our above bound becomg$a — A) which is stillneg(«) as\ is

an independent constanil

This leads us to the following observation:

Observation 2.4 One can implement g, m)-Bloom filter with storage by using fixed length arrays to store
the setsB;, with the probability of losing an associated value negligible in the length of the arrays. The
total size of such a structure is linear in the following constants and variables:

1. n — The maximum number of elements that the filter is designed to store.

5

2. k — The number of functions) used, which serves as a correctness parameter.

3. a — The size of the buffer arrays, which serves as a correctness parameter. Natesthatld be
chosen to exceell the maximum number of values associated to any single element of the set.

4. | — The storage size of an associated value.
5. ¢— Any constant greater than 1.

So, for our application of public-key storage with keyword search, if we assume that there are as many
keywords as there are messages, then we have created a structureifrsiZz¢ = O(n logn) to hold the
keyword set and the message references. The only other factors of the size are either correctness parameters
or constants.

Furthermore, with an added factor of a correctness parameter to the buffer lengths, one can implement
andobliviously updatean encrypted Bloom filter with storage, using the probabilistic methods of Ostrovsky
and Skeith [19].

As a final note on our Bloom filters with storage, we mention that in practice, we can replace the
functionsh; with pseudo-random functions in which case our claims about correctness are still valid, only
with a computational assumption in place of the assumption abouy; theing truly random, provided that
the participating parties are non-adaptive

2.2 Modifying Encrypted Data in a Communication Efficient Way

Our next tool is that of encrypted database modification. This will allow us to privately manipulate the
Bloom filters that we constructed in the preceding section. The situation is as follows:

e Adatabase owner holds an array of ciphertdxt$”_; where the ciphertexis = £(v;) are encrypted
using a public-key for which he does not have the private key.

e A user would like to modify one plaintext valug in some way, without revealing to the database
owner which value was modified, or how it was modified.

Furthermore, we would like to minimize the communication between the parties beyond the(iuigl
solution which could be based on any group homomorphic encryption. Using the cryptosystem of Boneh,
Goh, and Nissim [3], we can accomplish this with communicat®@f,/n), wheren is the size of the
database.

The important property of the work of [3], for our paper, is the additional homomorphic property of the
cryptosystem: specifically, in their system, one can compute multivariate polynomials of total degree 2 on
ciphertexts. l.e., it is the encryption map and if

F= Z ainin

1<i<j<u

then from an array of ciphertexts;; = £(z;)}}*,, then there exists some functiéhon ciphertexts (which
can be computed using public information alone) such that

D(F(c1y.oycu)) = F(21, .00y y)

2In the case of malicious message senders, we cannot reveal the seeds to the random functions and still guarantee correctness,
however, we can entrust the storage provider with the seeds, and have the message senders execute a protocol for secure two-party
computation with the storage provider to learn the value of the functions. This can be accomplished without the storage provider
learning anything, and with the message sender learningfofily) and nothing else. An example of such a protocol can be found
in the work of Katz and Ostrovsky [15] if we disallow concurrency, and the work of Canetti, Lindell, Ostrovsky, and Sahai [8] to
allow concurrency. Here, the common reference string can be provided as part of the public key. These solutions, of course, require
additional rounds of communication between the senders and the storage provide, and additional communication. However, the
size of the communication is proportional to the security parameter and is independent of the size of the database. We defer this
and other extensions to the full version of the paper.

Applying such a cryptosystem to encrypted database modification is trivial. Suppgy‘,—’/f: , is our
database (not encrypted). Then to increment the value of a particular element at g@sitibhby some
value«, we can proceed as follows: Create two vectars of length,/n where,

Vi = Gjj»

wj = adjj

So that
o a if (i =4i"ANj=73%)

Vit = { 0 otherwise
Then, we wish to add this valugw; to thes, j position of the database. Note that, for each we are just
evaluating a simple polynomial of total degree twownw; and the data element;. So, if we are given
any cryptosystem that allows us to compute multivariate polynomials of total degree two on ciphertexts, then
we can simply encrypt every input (the database, and the vectansand perform the same computation
which will give us a private database modification protocol with communication compléxiyn).

We formalize as follows. Supposk’, £, D) is a CPA-secure public-key encryption scheme that allows
polynomials of total degree two to be computed on ciphertexts, as described above. Suppose also that an
array of ciphertextdc; = £(x;)};-, is held by a partyS, which have been encrypted under some public
key, Apuniic. Suppose that is a square (if not, it can always be padded<by./n + 1 extra elements to
make it a square). DefinB(X,Y,Z) = X + Y Z. Then by our assumption, there exists somsuch

thatD(F(E(z),E(y),£(2))) = F(x,y, z) for any plaintext values; y, . We define a two party protocol
Modify;, (I, o) by the following steps, whereanda are private inputs tor:

1. U computes®, j* as the coordinates oéfi.e.,i* and;* are the quotient and remainderigf., respec-
tively).

2. U sends{v; = 8(5ii*)}£, {w; = S(aéjj*)};/fl to S where all values are encrypted undgy, ;..

3. S compute@(eij,@i,@j) for all 4,5 € [\/n], and replaces each; with the corresponding resulting
ciphertext.

By our remarks above, this will be a correct database modification protocol. It is also easy to see that
it is private, in that it resists a chosen plaintext attack. In a chosen plaintext attack, an adversary would
ask many queries consisting of requests for the challenger to execute the protocol to modify positions of
the adversary’s choice. But all that is exchanged during these protocols is arrays of ciphertexts for which
the plaintext is known to the adversary. Distinguishing two different modifications is precisely the problem
of distinguishing two finite arrays of ciphertexts, which is easily seen to be infeasible assuming the CPA-
security of the underlying cryptosystem and then using a very standard hybrid argument.

3 Definitions

In what follows, we will denote message sending partiesthya message receiving party will be denoted
by), and a server/storage provider will be denotedshy

Definition 3.1 A Public Key Storage with Keyword Searchbnsists of the following probabilistic polyno-
mial time algorithms and protocols:

e KeyGen(k): Outputs public and private keys,,,;iic and Ap,ivate-

e Sendy s(M, K, Apuiic) This is a two-party protocol that allowg” to send the messagdl to a
serverS, encrypted under some public kdy,;;., and also associates! with each keyword in the
setK. The valued\/, K are private inputs that only the message-sending partyolds.

7

e Retrievey s(w, Aprivate): This is a two party protocol between a usgiand a servesS that retrieves
all messages associated with the keywortbr the user). The inputsw, A,,;v.te are private inputs
held only by). This protocol also removes the retrieved messages from the server and properly
maintains the keyword references.

We now describe correctness and privacy for such a system.

Definition 3.2 Let Y be a user,X be a message sender and @tbe a server/storage provider. Let
Apuiic, Aprivate +— KeyGen(k). Fix a finite sequence of messages and keyword sets:

{(M;, Ki) }i2y

Suppose that, for all € [m], the protocolSendx s(M;, K;, Apuniic) IS €xecuted byt andS. Denote by
R,, the set of messages tldtreceives after the executionBetrievey s(w, Aprivate). Then, a Public Key
Storage with Keyword Search is said todmrect on the sequengé)M;, K;)} 7, if

Pr [Rw —(M; | we Ki}| >1— neg(k)

for everyw, where the probability is taken over all internal randomness used in the prot&awid and
Retrieve. A Public Key Storage with Keyword Search is said tacbeectif it is correct on all such finite
sequences.

Definition 3.3 A Public Key Storage with Keyword Search is said tg/be\, 6)-correctif whenever (M;, K;)}* 4
is a sequence such that

e m<n
e |K;| < 0, foreveryi € [m], and

e foreveryw € | K;, at most\ messages are associated with

1€[m)]

then, it is correct of{ (M, K;) }", in the sense of Definition 3.2.
For privacy, there are several parties involved, and hence there will be several definitional components.

Definition 3.4 We defineSender-Privacyn terms of the following game between an adversdrand a
challengerC. A will play the role of the storage provider ariwill play the role of a message sender. The
game consists of the following steps:

1. KeyGen(k) is executed by who sends the output,,,;;. to A.

2. A asks queries of the forin\/, K') whereM is a message string anll is a set of keywords, an@
answers by executing the proto@end(M, K, Apypiic) With A.

3. A now chooses two pair&\y, Ko), (M7, K1) and sends this t@, where both the messages and
keyword sets are of equal size, the latter being measured by set cardinality.

4. C picks a bitb € {0, 1} at random and executes the proto&s#nd (M, Ky, Apupiic) With A.

5. A may ask more queries of the fod/, K') andC responds by executir§end (M, K, Apypiic) With
A.

6. A outputs a bit/’ € {0,1}.

We define the adversary’s advantage as

1
Adv4(k) = |Pr[b=b] — 3l
We say that a Public-Key Storage with Keyword Sear€@Ré-Sender-Privati, for all A € PPT, we have

that Adv 4 (k) is a negligible functiors.

Definition 3.5 We defineReceiver-Privacyn terms of the following game between an adversdrgnd a
challengerC. A will again play the role of the storage provider, agdwill play the role of a message
receiver. The game consists of the following steps:

1. KeyGen(k) is executed b¢ who sends the output,,;;;. to A.

2. A asks queries of the forrv, wherew is a keyword, and” answers by executing the protocol
Retrievec 4(w, Aprivate) With A.

A now chooses two keywords), w;, and sends both t6.

3.

4. C picks a bitb € {0, 1} at random and executes the proto€trievec 4(wsy, Aprivate) With A.

5. A may ask more keyword queriesandC responds by executirigetrievec a(w, Aprivate) With A.
6.

A outputs a bity € {0,1}.
We define the adversary’s advantage as

1
Adv4(k) = |Pr[b =b] — 3l
We say that a Public Key Storage with Keyword SeardRé\-Receiver-Privatd, for all A € PPT, we

have thatAdv 4 (k) is a negligible function.

4 Main Construction

We present a construction of a public-key storage with keyword search thatXsf)-correct, where the
maximum number of messages to store,gnd the total number of distinct keywords that may be in use

at a given time is alsa (however, the keyword universe consists of arbitrary strings of bounded length,
say proportional to the security parameter). Correctness will be proved under a computational assumption
in a “semi-honest” model, and privacy will be proved based only on a computational assumption. In our
context, the term “semi-honest party” will refer to a party that correctly executes the protocol, but may
collect information during the protocol’s execution. We will assume the existence of a semantically secure
public-key encryption scheme with homomorphic properties that allow the computation of polynomials of
total degree two on ciphertexts, e.g., the cryptosystem of [3]. The key generation, encryption and decryption
algorithms of the system will be denoted ky £, andD respectively. We define the required algorithms

and sub-protocols below. First, let us describe our assumptions about the parties involyedind S.

Recall thatY will always denote a message sender. Note that, in general, there could be many different
senders but, for the purposes of describing the protocol, we need only to name one. Béndssumed

to hold a message, keyword(s) and the public key. Rec@ivéplds the private key.S has a storage

buffer for n encrypted messages, and it also hés a)-Bloom filter with storage, as defined in Definition

2.1, implemented with fixed length buffers and encrypted under the public key distributgd biere,

m = [ent], wherec > 1is a constant. The functions and buffers will be denoted/y;_, and{B;},,

as usual. The buffer§B;} will be initialized to O in every location.S maintains in its storage space

encryptions of the buffers, and not the buffers themselves. We denote these encrYﬁt}c}ﬁsr The
functionsh; are implemented by pseudo-random functions, which can be publishEd by

3PPT” stands foProbabilistic Polynomial TimesNe use the notatiod € PPT to denote thatd is a probabilistic polynomial-
time algorithm.

e KeyGen(k): Run/C(k), the key generation algorithm of the underlying cryptosystem to create public
and private keys, call them,,,;;;;. and A,,.;.qtc respectively. Private and public parameters for a PIR
protocol will also be generated by this algorithm.

e Sendy s(M, K, Apuiic): Sendert” holds a messagel, keywordsK and A, and wishes to send
the message ' via the serveS. The protocol consists of the following steps:

1. X modifiesM to haveK appended to it, and then senfig\/), an encryption of the modified
MtoS.

2. S receivesE (M), and stores it at an available address its message bufferS then sendg
back tox.

3. Foreveryj € U, cx Hw, sSendeit’ writesry copies of the addregsto]?J using the probabilistic
methods from [19]. However, the information of which buffers were written needs to be hidden
from S. So, to accomplish the buffer writing in an oblivious waly,repeatedly executes the
protocol Modify s(z,) for appropriate(z, o), in order to update the Bloom filter buffers.

To write a single address may take several executions dfithdify protocol depending on the
size of the plaintext set in the underlying cryptosystem. Also| Jf . Hw| < t|K]|, execute
additionalModify(r, 0) protocols (for any random) so that the total number of times that the
Modify protocol is invoked is uniform among all keyword sets of equal size.

e Retrievey s(w, Aprivate): Y Wishes to retrieve all messages associated with the keywcaidd erase
them from the server. The protocol consists of the following steps:

1. Y repeatedly executes an efficient PIR protocol (e.g., [17, 7]) Witb retrieve the encrypted
buﬁers{é}}jeHw which are the Bloom filter contents correspondingutolf |H,,| < ¢, then)
executes additional PIR protocols for random locations and discards the results so that the same
number of protocols are invoked regardless of the keywarBecall thaf) possesses the seeds
used for the pseudo-random functidis and hence can computé,, without interacting with
S.

2. Y decrypts the results of the PIR queries to obfai} }jcx,,, using the keyA,,;,q:.. Receiver
Y then computeg, = ﬂjeHw B, alist of addresses correspondingdtpand then executes PIR
protocols again witlS to retrieve the encrypted messages at each addrdssRecall that we
have bounded the maximum number of messages associated with a keyword. We refer to this
value as\. Receiver) will, as usual, execute additional random PIR protocols so that it appears
as if every word has messages associated to it. After decrypting the messaged| obtain
any other keywords associated to the message(s) (recall that the keywords were appended to the
message during th@end protocol). Denote this set of keywords.

3. Y first retrieves the additional buﬁen{sl?}}, forall j € U, e Huw» Using PIR queries with
S. Note that the number of additional buffers is bounded by the congtar®nce again)
executes additional PIR protocols withso that the number of PIR queries in this step of the
protocol is uniform for everyw. Next, Y modifies these buffers, removing any occurrences
of any address ir.. This is accomplished via repeated executioMafdify, s(, o) for ap-
propriater and«. Additional Modify protocols are invoked to correspond to the maxinfitm
buffers.

Theorem 4.1 The Public-Key Storage with Keyword Search from the preceding constructien is6)-
correct according to Definition 3.2, under the assumption that the functipage pseudo-random.

Proof sketch: This is a consequence of Claim 2.2, Claim 2.3, and Observation 2.4. The preceding
claims were all proved under the assumption that the funcfipmgere uniformly random. In our protocol,

they were replaced with pseudo-random functions, but since we are dealing with non-adaptive adversaries,
the keywords are chosen before the seeds are generated. Hence they are independent, and if any of the

10

preceding claims failed to be true with pseudo-random functions in place a&f; ttoair protocol could be

used to distinguish thi; from the uniform distribution without knowledge of the random seed, violating the
assumption of pseudo-randomness. As we mentioned before, we can easily handle adaptive adversaries, by
implementingh; using PRF’s, where the seeds are kept by the service provider, and users executing secure
two-party computation protocols to gef(w) for anyw using [15] or, in the case of concurrent users, using

[8] and having the common random string required by [8] being part of the publicley.

We also note that in a model with potentially malicious parties, we can apply additional machinery to
force “semi-honest” behavior, including commitments and zero-knowledge universal arguments [2].

Theorem 4.2 Assuming CPA-security of the underlying cryptosystem (and therefore the security of our
Modify protocol as well), the Public Key Storage with Keyword Search from the above construction is
sender private, according to Definition 3.4.

Proof sketch: Suppose that there exists an adversdrg PPT that can succeed in breaking the se-
curity game, from Definition 3.4, with some non-negligible advantage. So, under those conditioan,
distinguish the distribution ddend (M, K() from the distribution ofSend(M;, K1), where the word “dis-
tribution” refers to the distribution of the transcript of the interaction between the parties. A transcript of
Send(M, K) essentially consists of ju§t /1) and a transcript of severilodify protocols that update loca-
tions of buffers based oR". Label the sequence dfodify protocols used to update the buffer locations for
K; by {Modify(x; ;, i j)}7_;. Note that by our design, || = |K1|, then it will take the same number

of Modify protocols to update the buffers, so the variabtioes not depend arin this case. Now consider

the following sequence of distributions:

g(Mo) MOd?fy(SC()’o, 04070) v MOd?fy(.T07,/, Oéoy)
E(Mp) Modify(zg0,a00) --- Modify(z1,,a1,)
E(Mp) Modify(x19,a10) --- Modify(z1,,01,)
S(Ml) MOdify(:ULo,OéLo) s MOdify(l‘L,/,Oq,y)

The first line of distributions in the sequence is the transcript distributioséord (M, Ky) and the
last line of distributions is the transcript distribution 8end(M, K7). We assumed that there exists an
adversaryA that can distinguish these two distributions. Hence, not all of the adjacent intermediate distri-
butions can be computationally indistinguishable since computational indistinguishability is transitive. So,
there exists an adversad/ € PPT that can distinguish between two adjacent rows in the sequengg. If
distinguishes within the first+1 rows, then it has distinguishédodify(x ;, g ;) from Modify(x1 j, a1 ;)
for somej € [v] which violates our assumption of the securityMbdify. And if A’ distinguishes the last
two rows, the it has distinguishe&t{ M/,) from £(M;) which violates our assumption on the security of the
underlying cryptosystem. Either way, a contradiction. So we conclude that na4esfists in the first
place, and hence the system is secure according to DefinitioriiB.4.

Theorem 4.3 Assuming CPA-security of the underlying cryptosystem (and therefore the security of our
Modify protocol as well), and assuming that our PIR protocol is semantically secure, the Public Key Storage
with Keyword Search from the above construction is receiver private, according to Definition 3.5.

Proof sketch: ~ Again, assume that there exists ¢ PPT that can gain a non-negligible advantage in
Definition 3.5. Then,A can distinguisiRetrieve(w) from Retrieve(w;) with non-negligible advantage.
The transcript of &etrieve protocol consists a sequence of PIR protocols from steps 1, 2, and 3, followed
by a number oModify protocols. For a keyword;, denote the sequence of PIR protocols that occur in

Retrieve(w;) by {PIR(zi,j)}Ezl, and denote the sequenceldddify protocols by{Modify(z; ;, aiyj)}?zl.

11

Note that by the design of thRetrieve protocol, there will be equal numbers of these PIR queries and
Modify protocols regardless of the keywotd and hence andn are independent of. Consider the
following sequence of distributions:

P|R(2’0’0) s P|R(2’07c) Mod?fy(a:o,o, Ct()’o) s Mod?fy(xom, Oz()m)
P|R(2’1’0) s P|R(Zo7c) MOdIfy(l'O,o, 04070) s MOdIfy(xom, aom)
PIR(z10) -+ PIR(z1¢) Modify(zo,0,00) - Modify(zo,, aoy)
P|R(Zl70) s PIR(ZLC) MOdlfy(:Bl,(), 04170) s MOdlfy(w()m, aom)
P|R(2170) s PIR(ZLC) MOdify(CL‘LQ, OéLo) s MOdify(:L‘Ln, 0117,7)

The first line is the transcript distribution &fetrieve(wy) and the last line is the transcript distribution of
Retrieve(w;). Since there existd € PPT that can distinguish the first distribution from the last, then there
must exist an adversary’ € PPT that can distinguish a pair of adjacent distributions in the above sequence,
due to the transitivity of computational indistinguishability. Therefore, for sgrag(] or ;' € [n] we have
that A’ can distinguish PIR ;) from PIR(z; ;) or Modify(xz j/, o ;) from Modify(z j/, aq j). In both
cases, a contradiction of our initial assumption. Therefore, it must be the case that ob sUeRT exists,

and hence our construction is secure according to Definition l.5.

Theorem 4.4 (Communication Complexity) We claim that the Public Key Storage with Keyword Search
from the preceding construction has sub-linear communication complexitytive size of the database.

Proof: This can be seen as follows: from Observation 2.4, we see {tiata)-Bloom filter with storage
that is designed to storedifferent keywords is of linear size in

1. n— The maximum number of elements that the filter is designed to store.
2. t — The number of functiongi() used, which serves as a correctness parameter.

3. a — The size of the buffer arrays, which serves as a correctness parameter. Neieskivatld be
chosen to exceed, the maximum number of values associated to any single element of the set.

4. | = logn — The storage size of an associated value.
5. ¢— Any constant greater than 1.

However, all the buffers in our construction have been encrypted, giving an extra factor of a security
parameter. Additionally, there is another correctness parameteming from our use of the methods of
[19], which writes a constant number copies of each document into the buffer.

So, the total size of the encrypted Bloom filter with storage is

On-t-a-log(n)-c-k-v)=0(nlogn)

as all other parameters are constants or correctness parameters.
Therefore the communication complexity of the protocol is

e O(y/nlogn) for sending a message.
e O(polylog(n)) for reading using anypolylog(n) PIR protocol, e.g. [5, 7, 18].
e O(y/nlogn) for deleting messages.

12

References

[1] M. Abdalla, M. Bellare, D. Catalano, E. Kiltz, T. Kohno, T. Lange, J. Malone-Lee, G. Neven, P. Palillier,
H. Shi. Searchable Encryption Revisited: Consistency Properties, Relation to Anonymous IBE, and
Extensions. IrProc. of CRYPTOpp. 205-222, 2005.

[2] B. Barak, O. Goldreich. Universal Arguments and their Applications. IEEE Conference on Computa-
tional Complexity 2002: 194-203

[3] D. Boneh, E. Goh, K. Nissim. Evaluating 2-DNF Formulas on Ciphertexts. TCC 2005: 325-341

[4] D. Boneh, G. Crescenzo, R. Ostrovsky, G. Persiano. Public Key Encryption with Keyword Search.
EUROCRYPT 2004: 506-522

[5] Y. C. Chang. Single Database Private Information Retrieval with Logarithmic Communication. ACISP
2004

[6] Y. C. Chang, M. Mitzenmacher. Privacy Preserving Keyword Searches on Remote Encrypted Data. In
Proc. of 3rd Applied Cryptography and Network Security Conference (AGI#S#42-455, 2005.

[7] C. Cachin, S. Micali, and M. Stadler. Computationally private information retrieval with polylogarith-
mic communication. In J. Stern, editéxdvances in Cryptology — EUROCRYPT,98lume 1592 of
Lecture Notes in Computer Scienpages 402—-414. Springer, 1999.

[8] R. Canetti, Y. Lindell, R. Ostrovsky, A. Sahai. Universally composable two-party and multi-party
secure computation. IRroc. of the thiry-fourth annual ACM symposium on Theory of computipg
494-503, 2002.

[9] B. Chor, N. Gilboa, M. Naor Private Information Retrieval by Keywords in Technical Report TR
CS0917, Department of Computer Science, Technion, 1998.

[10] B. Chor, O. Goldreich, E. Kushilevitz, and M. Sudan. Private information retrievaPrde. of the
36th Annu. IEEE Symp. on Foundations of Computer Scjgrages 41-51, 1995. Journal versidn:
of the ACM 45:965-981, 1998.

[11] G. Di Crescenzo, T. Malkin, and R. Ostrovsky. Single-database private information retrieval implies
oblivious transfer. IPAdvances in Cryptology - EUROCRYPT 202000.

[12] M. Freedman, Y. Ishai, B. Pinkas and O. Reingold. Keyword Search and Oblivious Pseudorandom
Functions. InProc. of 2nd Theory of Cryptography Conference (TCC,@B)05.

[13] O. Goldreich, R. Ostrovsky. Software Protection and Simulation on Oblivious RAMzs. the ACM
43(3), pp. 431-473, 1996.

[14] S. Goldwasser and S. Micali. Probabilistic encryption. In J. Comp. Sys. Sci, 28(1):270-299, 1984.
[15] J. Katz, R. Ostrovsky. Round-Optimal Secure Two-Party Computation. in CRYPTO 2004: 335-354

[16] K. Kurosawa, W. Ogata. Oblivious Keyword Search. Journal of Complexity, Volume 20 , Issue 2-3
April/June 2004 Special issue on coding and cryptography Pages: 356-371

[17] E. Kushilevitz and R. Ostrovsky. Replication is not needed: Single database, computationally-private
information retrieval. InProc. of the 38th Annu. IEEE Symp. on Foundations of Computer S¢ience
pages 364-373, 1997.

[18] H. Lipmaa. An Oblivious Transfer Protocol with Log-Squared Communication. IACR ePrint Cryptol-
ogy Archive 2004/063

13

[19] R. Ostrovsky and W. Skeith. Private Searching on Streaming DataAdWances in Cryptology —
CRYPTO 2005

[20] T. Sander, A. Young, M.Yung. Non-Interactive CryptoComputing For NC1 FOCS 1999: 554-567

[21] D. X. Song, D. Wagner, A. Perrig. Practical Techniques for Searches on Encrypted DRtac |of
IEEE Symposium on Security and Privapp. 44-55, 2000.

14

