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Abstract. In this paper we present a single-round, single-server sym-
metrically private information retrieval scheme, in which privacy of user
follows from intractability of the quadratic residuacity problem and the
privacy of the database follows from the XOR assumption for quadratic
residues introduced in this paper. The communication complexity of the
proposed scheme for retrieving one bit can be made O(nε), for any ε > 0,
where n is the number of bits in the database. We extend the protocol
to a block retrieval scheme which is specially efficient when the number
of records in the database is equal to the size of each record.
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A Introduction

In the age of Internet accessing remote database is common and information
is the most sought after and costliest commodity. In such a situation it is very
important not only to protect information but also to protect the identity of the
information that a user is interested in. Consider the case, when an investor wants
to know value of a certain stock, but is reluctant to reveal the identity of that
stock, because it may expose his future intentions with regard to that stock. The
scheme or protocol which facilitates a user to access database and receive desired
information without exposing the identity of information was first introduced by
Chor et al. [2] in 1995 under the name of Private Information Retrieval. It was
also independently studied by Cooper and Birmen [4] in context of implementing
an anonymous messaging service for mobile user.
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A Private Information Retrieval (PIR) scheme allows a user to retrieve bits
from a database (DB) while ensuring that the database does not learn which bits
were retrieved. The database is modeled as an array of bits x held by a server, and
the user wants to retrieve the bit xi for some i, without disclosing any information
about i to the server. We denote number of bits (records) in database by n. The
communication complexity (i.e., the number of bits exchanged between user and
DB), of such a protocol is denoted by C(n). Also the exchange of information
between the user and the DB may be interactive or non-interactive. In the first
case the protocol is single-round while in the second case it is multi-round.

A trivial PIR scheme consists of sending the entire database to the user, re-
sulting in C(n) = n. Clearly, such a scheme provides information theoretic pri-
vacy. Any PIR scheme with C(n) < n is called non trivial. Chor et al. [2] proved
that under the requirement of information theoretic security, and involvement
of single database in the protocol, trivial PIR is the only possible solution. A
way to overcome this impossibility result is to consider k > 1 servers, each hold-
ing a copy of the database x. Chor et al. [2] presented a k > 1 server scheme
with communication complexity O(n

1
k ). This was improved by Ambainis [1] to a

k > 2 server PIR scheme and having a communication complexity of O(n
1

(2k−1) ).
Another way of getting non-trivial PIR schemes is to lower the privacy re-

quirement from information theoretic privacy to computational privacy. Chor
and Gilboa [3] presented multi-server computationally private information re-
trieval schemes in which the privacy of user is guaranteed against the compu-
tationally bounded servers. Kushilevitz and Ostrovsky [7] showed that under
the notion of computational privacy one can achieve nontrivial PIR protocol
even with a single server. In particular, [7] show that assuming the hardness of
quadratic residuacity problem, one can get single database PIR protocol with
communication complexity O(nε) for any ε > 0.

While protecting the privacy of user, it is equally important that user the
should not be allowed to learn more than the amount of information that he/she
pays for. This is refered to as database privacy and the corresponding protocol is
called a Symmetrically Private Information Retrieval (SPIR) protocol. However,
the database is assumed to be honest and carries out its part of the protocol
correctly. Gertner et. al. [6] presented general transformations of PIR schemes
in multi server setting satisfying certain properties into SPIR schemes, with log-
arithmic overhead in communication complexity. Kushilevitz and Ostrovsky [7]
noted that in a setting of single server, their PIR protocol can be converted
into a SPIR protocol employing zero knowledge techniques to verify the validity
of query. The problem is that the use of zero knowledge techniques imply that
the resulting protocol is no longer a single round protocol. Thus the question of
getting single-server, single-round nontrivial SPIR protocol was left open.

We provide the first solution to this problem by modifying the basic PIR
scheme of [7] to ensure that privacy of the database is maintained. Our scheme
introduces two new steps (preprocessing and postprocessing) in the database
computation but does not increase the number of rounds. There is a commu-
nication overhead in the communication from the user to the database, but in
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the recursive scheme this is offset by the postprocessing step which effectively
decreases the number of bits sent by the database to the user. In fact, for just
PIR scheme the preprocessing step is not required and hence the total commu-
nication complexity is K times less than that of [7]. The preprocessing step of
database computation empower the DB to restrict the user to get information
from one column of the matrix formed from the database, while the postpro-
cessing computation prevents the user to get more than one bit from the column
selected in preprocessing step. Thus the user is constrained to get exactly a sin-
gle bit of information from the database for each invocation of protocol. The
proof of user privacy is based on the intractibility of the quadratic residuacity
problem and the proof of database privacy requires a new assumption which we
call the XOR assumption. In the XOR assumption we assume that if x, y ∈ Z+1

N

and w = x ⊕ y, then from w it is not possible to get any information about
the quadratic character of x and y even if the user is computationally powerful
enough to determine quadratic residuacity in Z+1

N .
We extend the basic scheme into an efficient (in terms of communication

complexity) protocol for SPIR by allowing the database to perform a depth first
search on matrices of progressively smaller sizes. As a result we are able to prove
the following (see [7] for a similar result on PIR protocol).
Theorem: For every ε, there exists a single-server, single-round computational
SPIR scheme with communication complexity O(nε), where user privacy is based
on QRA and database privacy is based on the XOR assumption.

We extend the bit retrieval scheme into a block retrieval scheme which is
specially efficient when the number of records is equal to the size of a record.
Remark: Although we will present our schemes based on the Quadratic Resid-
uacity Assumption, it can be based on more general assumptions. Following the
approach of Mann [8], we can replace Quadratic Residuacity Predicates with any
Homomorphic Trapdoor Predicates.

B Preliminaries

Informally stating, a PIR scheme is a collection of three algorithms, the users
query generation algorithm AQ , database answer computation algorithm AD
and users reconstruction algorithm AR , such that it satisfies the following re-
quirements:
Correctness: In every invocation of the scheme the user retrieves the desired
bit provided the user’s query is correct.
User Privacy: In every invocation of the scheme the server does not gain any
information about the index of the bit that the user retrieves.

PIR schemes can be classified into two groups on the basis of privacy they
provide to the user.
Information Theoretic Privacy : Given the query to server or database, he
cannot gain any information about the index the user is interested in, regardless
of his computational power.
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Computational Privacy : Here the server is assumed to be computationally
bounded, say a polynomial size circuit. Thus for computational privacy, the
probability distribution of the queries the user sends to database when he is
interested in ith bit, and the probability distribution of the queries when he is
interested in i′th bit, should be computationally indistinguishable to the server.

A symmetrically private information retrieval (SPIR) scheme is a PIR scheme
satisfying an additional requirement, the privacy of database. Privacy can
again be considered to be information theoretic or computational. Informally,
computational data privacy requires, for each execution, there exists an index i,
such that the probability distributions on the user’s view are computationally
indistinguishable for any two databases x, y such that xi = yi. That is a compu-
tationally bounded user does not receive information about more than a single
bit of the database, no matter how he forms his query of given length.

For the formal definitions of PIR protocols refer to Chor et. al. [2], Kushilevitz
and Ostrovsky [7] and Mann [8]. For the formal definitions of SPIR protocols
see Gertner et. al. [6], Crescenzo et. al. [5], Mishra [9]. Also Mishra [9] contains
a bibliography on this and related security problems.

C The Basic Scheme

In this section we introduce a basic SPIR scheme for bit retrieval. We add two
new and important steps - the preprocessing and the postprocessing steps - to
the database computation in the protocol of [7]. The preprocessing step restricts
user access to a particular column and the postprocessing step allows the user
to get only a single bit from the column. This scheme in itself is not efficient,
but it makes the main ideas clear which will be used in the efficient bit retrieval
scheme based on a recursive database computation. In the following, by a QNR
we will mean a quadratic non residue whose Jacobi symbol is 1. Also by Z+1

N we
denote the set of all elements in Z∗

N whose Jacobi symbol is 1.
For clarity, we use DB to denote server or database program which handles

the database. We view the n-bit database string x to be an (s× t) matrix of bits
denoted by D. The user is interested in retrieving the ith bit xi of the database
x, which is the (a, b)th entry in matrix D, where, (a, b) = getIndex(i, t). The
algorithm getIndex(, ) is defined as follows.
getIndex(i, t) {

if t | i, then t1 = i
t and t2 = t

else t1 = � i
t�+ 1 and t2 = i mod t.

return (t1, t2).
}
Query Generation (by user) :
1. User generates two K

2 bit prime numbers p and q, such that
p ≡ q ≡ 3 (mod 4). Here K is the security parameter.
2. User chooses t numbers at random y1,. . . ,yt ∈ Z∗

N , such that yb is a QNR
and yj (j �= b) is a QR.
3. User chooses s numbers at random γ1,. . . ,γs ∈ Z∗

N , such that γa is a QNR
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and γj (j �= a) is a QR.
4. User sends N, y1, . . . , yt and γ1, . . . , γs to DB. The factorization of N is kept
secret.
Database Computation :
1. Preprocessing (Column Control): For each bit D(r, τ) of matrix D, a K
bit number ψ(r, τ) is randomly chosen as follows. If D(r, τ) = 0 then ψ(r, τ) is
a QR and if D(r, τ) = 1, then ψ(r, τ) is a QNR. Denote by ψ(r, τ, κ) the κth

bit of ψ(r, τ). DB now forms K matrices of size s × t, Dκ :κ = 1, 2, . . . ,K as
follows: Dκ(r, τ) = ψ(r, τ, κ) Thus for the original matrix D, DB has formed
K matrices Dκ of same size. The database can always generate random QR’s
without knowing the factorization of N . The primes p, q are chosen to be p, q ≡
3 mod 4. This allows the DB to also randomly generate QNR’s in Z+1

N .
2. For each of the K matrices Dκ, DB computes for every row r of Dκ, a number
z(r, κ) as follows: z(r, κ) = νr

(∏t
l=1(yl)Dκ(r,l)

)
where νr is a randomly chosen

QR by DB. Thus, DB computes s×K, numbers z(r, κ) where each z(r, κ) is a
K-bit number. For, 1 ≤ c ≤ K, denote by z(r, κ, c) the cth bit of z(r, κ).
3. Post Processing (Row Control):DB formsK matrices∆κ, 1 ≤ κ ≤ K, such
that ∆κ(r, c) = z(c, κ, r). Now, for each of the K matrices ∆κ (1 ≤ κ ≤ K), the
databaseDB, computes for every row r (1 ≤ r ≤ K) a number ζ(r, κ) as follows :
ζ(r, κ) = νr

(∏s
l=1(γl)∆κ(r,l)

)
where νr is a randomly chosenQR byDB. Thus for

each of the K matrices ∆κ, DB computes K numbers ζ(1, κ),ζ(2, κ),. . . ,ζ(s, κ),
where each of these numbers in itself a K-bit number. DB sends these K2

numbers (a total of K3 bits) to user.
Bit Reconstruction : User retrieves the desired bit as follows:
1. Observe that ζ(r, κ) is a QR iff ∆κ(r, a) is 0 (see Lemma 1). Thus determin-
ing the quadratic character of the K2 numbers, ζ(r, κ), gives the user the bits
∆κ(1, a), ∆κ(2, a), . . . , ∆κ(K, a).
2. From the construction of matrix ∆κ, we see that, z(a, κ, r) = ∆κ(r, a),
and further z(a, κ) = z(a, κ, 1), . . . , z(a, κ,K) for all 1 ≤ κ ≤ K . Thus for all
1 ≤ κ ≤ K, user gets z(a, κ).
3. The quantity z(a, κ) is a QR iff Dκ(a, b) is 0 (see Lemma 1). Thus by de-
termining the quadratic characters of K numbers z(a, κ) (1 ≤ κ ≤ K), user
gets the bits D1(a, b), . . . , DK(a, b). ¿From the construction of matrices Dκ, it
is clear that Dκ(a, b) = ψ(a, b, κ), and further ψ(a, b) = (a, b, 1), . . . , ψ(a, b,K).
Using Lemma 1, ψ(a, b) is a QR iff D(a, b) is 0. Thus user gets the bit D(a, b).
Remark: The security parameter K must satisfy K ≥ max{K0, poly(logn)}
where n is the number of bits in database, K0 is the smallest number such that
encryption scheme under consideration ( encryption by QR’s and QNR’s here)
is secure. The poly(logn) factor comes because, DB is assumed to be resourceful
enough to do a computation of O(n).
Correctness of the protocol follows from the following Lemma which is not
difficult to prove.

Lemma 1. Let x = [x1, x2, . . . , xt] be a bit array of length t and let χ1, . . . , χt

be chosen such that χ1, . . . , χi−1, χi+1, . . . , χt are QR’s and χi is a QNR. Let
y =

∏t
l=1(χl)xl . Then y is a QR iff xi = 0.
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Privacy of User : Suppose there exists a family of polynomial time circuits
Cn that can distinguish between two query distributions Qi and Qi′ (for two
indices i and i′ of the database) with probability larger than 1

n� for some integer 
.
Then following [7], we can construct another family of polynomial time circuit C ′

n

from Cn, which will, on input N and y ∈ Z+1
N compute the quadratic residuacity

predicate with probability at least 1
2 + 1

8·n� .
Privacy of database for Honest but Curious User is easy to prove and so
here we consider the case of a Dishonest User A dishonest user can deviate from
the protocol to possibly gain any extra information in the following ways:
1. N is a product of more than two primes. It is not clear that the user can
gain extra information by using such N. Hence we will assume that N is indeed
a product of two primes.
2. Assuming that N is a product of two primes, the numbers that the user
sends to DB must be in Z+1

N . This is necessary since the DB can perform this
computation and reject a query not confirming to this specification. Hence the
only way a dishonest user can cheat is to send more than one QNR’s in each
query set. We now argue that this provides the user with no information at all,
i.e., even if one query set has two QNR’s then the user does not get even one
bit of the database.

Note that even if the user chooses the QR’s and QNR’s with some ”special”
properties, this will not help since in the computations of z(r, κ) and ζ(r, κ), the
multiplication by a randomly chosen νr will destroy these properties. Similar to
Lemma 1, we have

Lemma 2. Let x1, . . . , xt be in QR
⋃
QNR and b1, . . . , bt be a bit string and a

number z is computed as: z =
∏t

l=1(xl)bl . Suppose xi1 , . . . , xis are QNR’s and
rest are QR’s, then z is a QR iff bi1 ⊕ . . .⊕ bis = 0.

The problem is establishing database security is that we cannot base it on QRA,
since the user is capable of determining quadratic residuacity in Z+1

N . Indeed
the user is required to determine quadratic residues for the protocol to work.
However, we will see later that if the user sends more than one QNR’s in his query
set then he receives an element z in ZN , which is the XOR of some randomly
chosen elements x1, . . . , xt in Z+1

N . We would like to argue that from z the user
gets no information about the individual quadratic characters of any of the xi’s
even though he knows the factorization of N . We make this requirement more
formal in the following manner.
XOR Assumption : Let z = x1 ⊕ . . . ⊕ xt, where x1, . . . , xt ∈ Z+1

N . Let
X = {x1, . . . , xt} and A be an arbitrary subset of X . Then we assume that for
N sufficiently large Prob(A ⊆ QR,X −A ⊆ QNR | z) ∈ [ 1

2t − δ(K), 1
2t + δ(K)],

where K is the number of bits required to represent N and δ(K) goes to zero as
K increases.

A formal proof of the XOR assumption looks difficult to obtain. Some exper-
iments were conducted to verify the XOR assumption for t = 2 and small values
of N . We briefly mention the important observations.
1. From simulation it is observed that δ(K) depends on N−2K−1

2K−1 . As this ratio
increases from 0 to an upper bound of η(K) > 0, the value of δ(K) falls rapidly.
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Further the upper bound η(K) decreases exponentially with increasing K.
2. The nearer the ratio p

q of two prime factors of N is to 1, the smaller is the
value δ(K).
3. XOR Assumption can be generalized to any probabilistic encryption scheme,
there are some supportive evidences which we are unable to present here for the
lack of space.

We consider three cases which can occur from the possible nature of query
sent by user:
First set contains more than one QNR : Let the first set in the query sent
by user contain p many QNR’s at positions b1, . . . , bp. Then Lemma 2 implies
that in the reconstruction phase a number z(a, κ), (1 ≤ κ ≤ K) obtained by
user is a QR iff Dκ(a, b1)⊕ . . .⊕Dκ(a, bp) = 0. Thus user is able to reconstruct
ψ(a, b1)⊕ . . .⊕ ψ(a, bp).
Second set contains more than one QNR : Let the second set of numbers in
the query sent by user contains q many QNR’s at positions a1, a2, . . . , aq. Again
using Lemma 2 in post processing computation, we see that a number ζ(r, κ)
received by user is a QR iff ∆κ(r, a1)⊕. . .⊕∆κ(r, aq) = 0, (1 ≤ r ≤ K), and (1 ≤
κ ≤ K). Thus user will be able to reconstruct z(a1, κ)⊕z(a2, κ)⊕ . . .⊕z(am, κ).
Both sets contain more than one QNR : Let first set contain more than one
QNR’s at positions b1, . . . , bp and the second set contain QNR’s at positions
a1, a2, . . . , aq. Then a number ξ(r, κ) received by user is a QR iff ∆κ(r, a1) ⊕
. . . ⊕∆κ(r, aq) = 0, (1 ≤ r ≤ K), and (1 ≤ κ ≤ K). Thus user will be able to
reconstruct z(a1, κ)⊕ z(a2, κ)⊕ . . .⊕ z(aq, κ) (1 ≤ κ ≤ K).
Thus in all the three cases user will be able to reconstruct only XOR’s of more
than one numbers, and the XOR assumption says that from the XOR of two or
more numbers from the set Z+1

N , it is not possible to know anything about the
quadratic characters of the constituent numbers. Hence if user sends more than
one QNR’s in any set of numbers in his query, he fails to get even one bit of the
database x.
Communication complexity : Total communication from user to database
DB in this scheme is (1 + t+ s) K-bit numbers (N, y1, . . . , yt, γ1, . . . , γs). while
database returns K2 K-bit numbers ζ(r, κ) (1 ≤ r ≤ K, 1 ≤ κ ≤ K) ob-
tained after the postprocessing to user. Thus the communication complexity
is (1 + t+ s+K2) ·K bit, which can be minimized by choosing t = s =

√
n, and

the communication complexity is: (2
√
n+1+K2)·K. Under similar assumptions

on the security parameter Kushilevitz and Ostrovsky [7] obtained the communi-
cation complexity (2·√n+1)·K for their basic PIR scheme. A closer look reveals
that, with an extra communication of K3 bit over the basic PIR scheme pre-
sented by Kushilevitz and Ostrovsky [7], we have successfully obtained a SPIR
scheme. Even with the weaker assumption on security parameter, i.e.; K = nε

for some constant ε > 0, we get a communication complexity O(n
1
2+ε), provided

ε < 1
4 . Thus we have proved the following theorem :

Theorem 1. For every 1
4 > ε > 0, there exists a single-server, single-round

SPIR protocol with communication complexity O(n
1
2+ε) where user privacy is

based on QRA and the database privacy is based on the XOR assumption.
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D Iterative Bit SPIR Scheme

In this section we develop an improved scheme using the ideas developed in our
basic scheme and we manage to bring down the communication complexity. We
essentially achieve this by allowing the DB to do a recursive computation (see
also [7]). We put stress on the fact that the scheme involves only a single round
of communication and security of database as well as user remain preserved.

As before, we view the n-bit database string x to be an (s× t) matrix of bits
denoted by D. The ith bit xi of the database x is (a1, b1)th entry in matrix D,
where (a1, b1) = getIndex(i, t).
Query Generation :
1. User generates two K

2 bit prime number p and q with p, q ≡ 3 mod 4. Calculate
N = pq.
2. User calculates t such that tL+1 = n, where L is the depth of recursion of
the database computation. The value of L is chosen such that communication
complexity is minimized (as we will see later).
3. User generates a sequence of the pair of indices (aj , bj) as follows.

for j ← 1 to L− 1 {(aj+1, bj+1) = getIndex(aj , t)}
The pair (aj , bj) correspond to the row and column index of the relevant bit in
the matrices in jth round of DB computation. Also define sj = n

tj and tj = t
for 1 ≤ j ≤ L. (sj , tj) are number of rows and columns in each matrix in the jth
round of DB computation.
4. User generates an L× t matrix y, where for 1 ≤ σ ≤ L, 1 ≤ β ≤ t:
y(σ, β) is a QNR if β = bσ, else it is a QR. Clearly each row of y contains exactly
one QNR.
5. User randomly chooses sL numbers γ1,. . . ,γsL ∈ Z∗

N , such that γaL is a QNR
and γj (j �= aL) is a QR.
6. User sends N , the matrix y and the numbers γ1, . . . , γsL to the DB. The
factorization of N is kept secret.
Database Computation :
Database DB performs a L + 2 round of computation in three phases. First
phase is the preprocessing round of basic scheme, while the third phase is the
post processing round. The middle step is an L round recursive computation.
1. Pre Processing (Column Control) : As in the basic scheme DB, forms
K matrices Dκ(α, β) from the original matrix D(α, β). Again the user requires
exactly one bit from each of the matrices Dκ’s.
2. Iterative Computation: The database DB performs a L round recursive
computation according to following algorithm:
For each Dκ (1 ≤ κ ≤ K) formed in the preprocessing round perform the call
DFSCompute(Dκ, s, t, y1, 1).
The algorithm DFSCompute is described below:
DFSCompute(M, s, t, yl, l){
/* • yl is the lth row of the matrix of numbers sent by user. Note yl[i] = y(l, i)

is a QR if i �= bl and yl[i] is a QNR if i = bl.
• M is an s× t matrix of bits and we want to retrieve the bit M [al, bl].
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• l denotes the level of the recursion. */
1. Set for 1 ≤ i ≤ s, z[i] = νi

(∏t
j=1(yl[j])M [i,j]

)
where νi for each i is a QR

chosen by DB uniformly at random.
/* Each z[i] is a K-bit string. For 1 ≤ j ≤ K, let z[i, j] denote the jth bit of z[i].

We require the string z[al] */
2. For 1 ≤ j ≤ K, form K matrices Mj , where each Mj is an s

t ×t matrix formed
from the column vector, z[∗, j] = z[1, j], . . . , z[s, j] by breaking z[∗, j] into t-bit
blocks and arranging the blocks in a row wise fashion.
/* The string z[al] is distributed over the K matrices Mj, i.e., the string z[al] is
equal to M1[al+1, bl+1], . . . ,MK [al+1, bl+1], where (al+1, bl+1) = getIndex(al, t).
*/
3. for(1 ≤ j ≤ K){

if(l < L− 1) DFSCompute(Mj,
s
t , t, yl+1, l + 1)

else PostCompute(Mj ,
s
t , t, yL, γ)

}
}
The routine PostCompute(·) is the postprocessing step and is described below:
3. Post Processing(Row Control):
PostCompute(M, s, t, y, γ){
/* • As in DFSCompute M is an s× t matrix of bits and we want to retrieve

the bit M [a, b], where the index a and b is hidden in the y and γ.
• y[j] (1 ≤ j ≤ t) is an array of t numbers (Lth row of the matrix y sent by
user). y[j] is a QNR if j = b else it is a QR.
• γ[j] (1 ≤ j ≤ s) is an array of s numbers (γ sent by user). γ[j] is a QNR
if j = a else it is a QR. */

1. Set for 1 ≤ i ≤ s, z[i] = νi

(∏t
j=1(y[j])

M [i,j]
)
, where νi for each i is a QR

chosen by DB uniformly at random.
/* Each z[i] is a K-bit string. For 1 ≤ j ≤ K, let z[i, j] denote the jth bit of z[i].

We require the string z[a] */
2. Set M ′[i, j] = z[j, i] for 1 ≤ j ≤ s, 1 ≤ i ≤ K.
/* M ′ is an K × s matrix of bits. */
3. Set for 1 ≤ i ≤ K, ζ[i] = νi

(∏s
j=1(γ[j])M ′[i,j]

)
where νi for each i is a QR

chosen by DB uniformly at random.
4. Output the strings ζ[1], . . . , ζ[K]. These are sent to the user.
}
Reconstruction Phase and Correctness :
We show that from the output of PostCompute(·), it is possible to reconstruct
the (a1, b1)th bit of matrix D i.e., ith bit of database x. This will establish
the correctness of protocol and also provide the method using which user can
reconstruct the ith bit of database x. (We assume that the user’s query is properly
formed.)
1. Suppose the call PostCompute(M, s, t, y, γ) outputs the strings ζ[1], . . . , ζ[K]
and the QNR’s of y and γ are the bth and ath position respectively. The value
of ζ[i] is a QR iff M ′[i, a] is 0, so it is possible to reconstruct the column vector
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M ′[∗, a] which is equal to the row vector z[a, ∗] = z[a]. Again z[a] is a QR iff
M [a, b] is 0. Thus it is possible to find M [a, b]. So it is possible to get the bits
at level L− 1. Now we use backward induction on the depth of recursion.
2. Suppose the call DFSCompute(M, s, t, yl, l) produces the set of matrices
M1, . . . ,MK . By induction hypothesis it is possible to get the bits Mi[al+1, bl+1].
We show it is possible to get M [al, bl] from these. From the construction of z[al]
we find that it is equal to M1[al+1, bl+1], . . . ,MK [al+1, bl+1] and so it is possible
to get z[al]. The quantity z[al] is a QR iff M [al, bl] is 0. Thus we get the bit
M [al, bl]. This proves the induction. Hence the user can get the (a1, b1)th bit
of all the K matrices Dκ passed in the routines DFSCompute(M, s, t, y1, 1).
Thus user gets the bits D1[a1, b1], . . . , DK [a1, b1], which on concatenation gives
the number ψ(a1, b1) by which DB had replaced the (a1, b1)th bit of matrix D.
Again ψ(a1, b1) is a QR iff D(a1, b1) is 0. Thus user is able to obtain the desired
bit.
Privacy of user and database can be shown similarly as in the case of basic
scheme. We omit the details due to lack of space.
Communication Complexity
Communication from user to DB is (1) a K-bit number N , (2) a L × t query
matrix y of K-bit numbers and (3) an array of K-bit numbers of length t. Thus
total communication from user to databaseDB in this scheme is (1+(L+1)·t)·K.
The DB returns numbers computed at the end of PostCompute(·) routine. We
analyze the tree structure formed from the computation process of DB. The
Root of the computation tree is the matrix D formed from original database x.
Now in preprocessing computation DB obtains K matrices Dκ’s (1 ≤ κ ≤ K)
from the matrix D. Each of these K matrices becomes the child of the root.
Thus root node, designated at level 0 has K children (all at level 1). The call
of routine DFSCompute(·) at lth level of recursion takes a matrix at l level as
input and produces K matrices as output. Thus each of the nodes at level l < L
has K children. Matrices at level L are input to PostCompute(·) which produces
K numbers of K-bit each, which are returned to user. Thus for each of the KL

matrices (leaf nodes of computation tree), user receives K2 bits. Therefore the
total communication from DB to user is KL+2 bits. Hence the communication
complexity C(n) = (1+(L+1)·t+K(L+1))·K bits, where t = n

1
L+1 . If we choose,

L =
√

log n
log K − 1, then C(n) = (1 + (

√
log n
log K + 1) · 2

√
log n·log K) ·K. Compare this

with the communication complexity O(22·√log n·log K) obtained by Kushilevitz
and Ostrovsky [7] for their PIR scheme. Thus we have a single-round SPIR
scheme with the communication complexity even smaller than the PIR scheme
of [7].

Even with the weaker assumption on security parameter, i.e., K = nε for
some constant ε > 0, we get a communication complexity O( 1√

ε
· n√

ε+ε) =

O(n
√

ε+ε). which is better than the communication complexity (n2·√ε) obtained
in [7] under the same assumption. If we take K = logε n, then we get the com-

munication complexity of O(
√

log n
ε·log log n · logε n · 2

√
ε·log n·log log n).

Hence we have proved the following theorem :
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Theorem 2. For every ε > 0, there exists a single-server single-round SPIR
protocol with communication complexity O(nε), where user privacy is based on
QRA and database privacy is based on the XOR assumption.

E Block Retrieval SPIR Scheme

In previous section we presented scheme for retrieving a bit from a database
modeled as a array of bits. But a more realistic view of a database is to assume
it partitioned into blocks rather than bits. We view database x as a array of
records, each of size m, having n records in total. User wants to retrieve ith
record. Number of records n and number of bits in a record m determine L,
as L = 
 log n

log m� − 1. The value of L determine the recursion depth of database
computation.

For the purpose of DB computation database x held by DB is viewed as a
stack of m matrices Dµ (1 ≤ µ ≤ m), where each matrix Dµ is an s× t matrix
of bits and user wants to retrieve the bits Dµ(a1, b1). Now to retrieve the ith
record from database x, user generates a query following the protocol in our bit
retrieval scheme, but taking the value of L defined as above. DB applies the
query sent by user on all the m matrices in the stack, and send back to user the
answer obtained for each of the matrices in the stack. As user can obtain ith bit
of each of the matrix, he will get the ith record. Correctness and privacy of user
and privacy of database follows from the underlying bit retrieval protocol.
The Communication Complexity in this scheme is C(m,n) = (1 + (L+ 1) ·
n

1
L+1 +m ·KL+1) ·K Therefore, we proved following theorem:

Theorem 3. There exist a block retrieval SPIR protocol with communication
complexity linear in number of bits in the record m and polynomial in security
parameter K, i.e., we have O(m ·KL+2), where m is the number of bits in the
record and L = 
 log n

log m� − 1, where user privacy is based on QRA and database
privacy is based on the XOR assumption.

Corollary 1. For n ≤ m, i.e., number of records not more than number of bits
in any record, we get L = 0, and communication complexity: C = (1 + n +
m · K) · K < m · (K + K)K i.e., C = O(mK2). For m < n ≤ m2), we get
L = 1 and communication complexity C = O(m ·K3). In general, n

1
L = m, and

(L+ 1) < K(L+ 1), thus communication complexity C = O(m ·KL+2).

F Conclusion

In this paper we have presented a single-server, single-round SPIR protocol.
The communication complexity of the protocol can be made O(nε) for any ε >
0. Further the scheme has been extended to efficient block retrieval protocols.
Some of the ideas used in the construction of SPIR protocol is based on the
PIR protocol in [7]. In Mishra [9], it is shown that there exists PIR and SPIR
schemes having communication complexity O(K logn) (where K is the security
parameter and n is the size of the database) provided there exists probabilistic
encryption schemes with certain desirable properties.
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