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ABSTRACT factor of n(loglog Logn). 

In this paper we compare the power of the two 
most commonly used concurrent-write models of paral- 
lel computation, the COMMON PRAM and the PRI- 
ORITY PRAM. These models d%er in the way they re- 
solve write conflicts. If several processors want to write 
into the same shared memory cell at the same time, 
in the COMMON model they have to write the same 
value. In the PRIORITY model, they may attempt to 
write different values; the processor with smallest index 
succeeds. 

We develop new proof techniques to obtain these 
results. The technique used for the second lower bound 
is strong enough to establish the first tight time bounds 
for the PRIORITY model, which is the strongest paral- 
lel computation model. We show that finding the max- 
imum of n numbers requires 8(log log u) steps, general- 
iziig a result of Valiant for parallel computation trees. 

Introduction 

We consider PRAM’s with n processors, each hav- 
ing arbitrary computational power. We provide the 
Brst separation results between these two models in two 
extreme cases: when the size m of the shared memory 
is small (m 5 nc, c < I), and when it is infinite. 

In the cue of small memory, the PRIORITY 
model can be faster than the COMMON model by a 
factor of 9(logn), and this lower bound holds even if 
the COMMON model is probabilistic. In the case of 
infinite memorv, the gap between the models can be a 

The parallel random access machine (PRAM) is 
an important and widely used model of parallel com- 
putation. It consists of a set of n processors Pt,. . . Pm, 
each of which is a random access machine. The pro- 
cessors communicate via a shared memory, whose size 
is called the commrnicution widfA [VW]. The PRAM 
is synchronous. It computes a function t : C* -) C, if 
initially each processor contains one input value, and at 
the end of the computation the function vslne is stored 
in the first shared memory cell. 
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One cycle of computation consists of three phases. 
In the compute phase, each processor may perform an 
arbitrary amount of computation. In the write phase, 
each processor may write into an arbitrary shared 
memory cell. In the read phase, each processor rnw 
read an arbitrary shared memory cell. 

In the write phw it may happen that many 
processors try to access the same cell, that is, a write 
conflict occurs. When one restricts the model in a way 
that such simultaneous writes are forbidden, one gets 
the Exclusive-Write model [FW]. This model is very 
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weak. In [CD], Cook and Dwork proved an fl(log n) 
lower bound tar computing the n-way OR function in 
this model. This function can be computed in depth 1 
by an unbounded fan-in circuit and also in constant 
time by all other PRAM models considered in this 
paper, even when they only have one shared memory 
cell. 

If simultaneous writes are not forbidden, the fol- 
lowing two write conflict resolutions are most com- 
monly used in literature. 

l COMMON: If several processors want to write 
into the same memory cell at the same time, they 
have to write a common value [Ku). 

l PRIORITY: If several processors want to write 
into the same memory cell at the same time, the 
one with smallest index wins (Go). 

Both models are widely used for designing par- 
allel algorithms (For example, (SV], [Gal, and [KR] 
use COMMON; [VT] uses PRIORITY.). There are 
also some lower bounds known for concurrent-write 
PRAM’s (mentioned below), but the proof techniques 
are not sensitive enough to separate these two models. 

Simultaneous access to the same cell on the COM- 
MON model cau be easily implemented by depth 1 OR 
circuits. This is so easy because the main part of the 
conflict resolution is done by the program. The pro- 
gram has to make sure that different processors never 
try to simultaneously write different values in the same 
cell. In the PRIORITY model, however, write con- 
flicts are resolved entirely by the machine. The extra 
hardware required to implement PRIORITY conflict- 
resolution leads one to consider simulating this model 
by the COMMON model. 

It is known that one step of the PRIORITY model 
can be simulated ln constant time by the COMMON 
model, if we square the number of processors and 
sufllciently enlarge the shared memory [Ku]. However, 
in order to understand the dserence in the power in 
the two conflict resolution schemes, we restrict both 
models to have the same number n of processors and 
the same communication width. 

Let COMMON(m) and PRIORITY(m) denote the 
respective models with m shared memory cells. The 
main results of this paper are two lower bounds on 
the common model, one on COMMON(l) and one on 
COMbION( Th ese lower bounds are sensitive to 
the COMMON conflict resolution scheme, so that we 
can use them to separate COMMON from PRIORITY. 

Let f : (O,l]” + S be a surjective function. 

Then a COMMON(l) requires at least iog,( IS]) steps 
to compute I. Even if the machine is probabilistic, 
the same lower bound holds for the expected number 
of steps. This result implies that it requires at least 
log, n steps to compute the smallest index of an input 
variable with value 1. Thus we get a log, n separation 
between COMMON(l) and PRIORITY(l), because 
this function can easily be computed by PRIORITY (1) 
in one step. The result can be generalked to obtain 
an Q(logn) separation between COMMON(m) and 
PRIORITY(m), if m 5 d, c < 1. 

The second result is on the time required by 
COMMON(oo) to solve the element distinctness prob- 
lem, that is, to decide whether all n integer inputs are 
distinct. We prove a lower bound of n(logloglogn) 
steps. This implies an Q(logloglogn) separation be- 
tween COMMON(co) and PRIOR.ITY(oo), because el- 
ement distinctness can be solved in constant time on 
PRIORITY@). 

Actually, our results extend to separating the 
COMMON model from weaker models than PRIOR- 
ITY. More specifically, we refer to the ARBITRARY 
[SV] and ETHERNET [Gr) models. Both separation 
results extend to these models. In fact, we can demon- 
strate functions that can be computed in time a fae- 
tor of O(logn) faster on a deterministic ETHERNET 
model than on a probabilistic COMMON model. This 
is important, since ETHERNET becomes more power- 
ful with randomization allowed. 

The proof of the first lower bound is based on a 
new technique to handle the problem that - in con- 
trast to the ExcIusive-Write model - the “information 
fan-in” on the COMMON model may be arbitrarily 
large. Therefore the well-known information theory ar 
guments used in [CD] do not apply in this case. 

The difficulty in proving the second lower bound is 
that, due to the inlinite shared memory, processors may 
use indirect addressing in very subtle ways. We handle 
differently the information that a processor acquires by 
direct and indirect addressing. In the second case, we 
use in a crucial way the fact that in the COMMON 
model, it is useless for a processor to read a cell it has 
just written into. Note that in the PRIORITY model, 
sud behaviour is extremely usefn). 

Surprisingly, a simplified version of this proof tech- 
nique yields a lower bound for PRIORITY(oo). Pre- 
viously known lower bounds for PRIORITY impose 
restrictions either on the shared memory size ([VW)) 
or on the arithmetic power of the processors ([MR], 
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[FSS]). We show an fl(loglogn) lower bound for Bnd- 
ing the maximum of n numbers on PRIORITY. This 
generalizes the result of Valiant [V] for parallel compar- 
ison trees. By an upper bound of Shiloacb and Vishkin 
ISV], our result provides the 5)st tight1 time bound on 
the PRIORITY model. 

use in a more general setting. We note that a COM- 
MON(1) can simulate one step of a COMMON(m) in 
at most m si;eps, which leads to the following cotollaty. 

Corollary 1. A COhfMON(m) tbst publicly com- 
putes a subjective iunction ! : {O,l}” * R requires 

A Lower Bound for Small Memory at lead !ZEG! stem . 
m - 

Consider a COMMON(l) with tu processors, PI 
through P,,. The processors communicate through one 
cell M of shared memory, which cau hold arbitrm 
ily large values. We say such a machine computes a 
surjective function / : {O,l}” + R for some range 
set R if at the beginning of the computation, Pi has 
the ith argument (denoted by Zi) in its local mem- 
ory and, at the end of the computation, the value of 

I( Zl,ZS... z,) appears in M. A particular vector of ar- 
guments (21,22,. . . z,) is called an input. The variable 
26 is called Pi’s private bit. 

By specifying a particular function, we can sepa- 
rate the PRIORITY and COMMON models, with the 
separation varying as a function of the size of shared 
memory. 

Corollary 2. Simulating one step ofs PRIORITY(m) 
requires n(log n - logm) steps on a COMMON(m). In 
particular, wben m = O(d),c < 1, fl(logn) steps are 
mquired. 

Other ways to de5ne the computation of a function 
appear in the literature. For example, in [VW] the 
arguments are located in read-only shared memory, one 
argument per cell. Our definition can be thought of 
as public comprtation, since the answer must appear 
in shared memory. It is sometimes useful to de5ne 
ptiuote computation, in which each processor is required 
compute a private answer bit ai. For the step-by 
step simulation of a PRIORITY (1) by a COMMON(l) 
appearing in IFRW], for example, Zi would be 1 if Pi 
wished to write, and oi = 1 if and only if i is the 
processor of least index with Zi = 1. A good lower 
bound for public computation can lead to a good lower 
bound for private computation if (01, al,. . .a,) can be 
made public in a small number of steps. This is the case 
with the simulation example, as the unique processor 
with ai = 1 can take one more step and write i into M. 

Proof of Corollary 2: Divide the input positions 
into m groups of size [n/m j or [n/mj + 1, and consider 
the function / whose value is an m-tuple (ai,ua.. .a”) 
SU& that ai = min{jlj is in I?* group and zj = 1). 
This function can be computed in one step on a 
PR.IORITY( m); in fact, it can be viewed ([FRW]) 
as a special c89e of simulating a write step of a 
PRIORITY(m). The function j has at least (E)” pas- 
sible values. Applying corollary 1 gives a lower bound 
of Q(logn - logm) for a COMMON(m). l 

This implies that logarithmic time is required for 
COMMON to simulate one step of PRIORITY when 
the size of the shared memory is O(d). 

The folkwing theorem is the main result of this 
section, giving a lower bound on the number of steps 
required to publicly compute any function. The lower 
bound depends only on the number of function values 
that are possible. 

Theorem 1. In the COMMoIv(1) model, any alp 
ritbm t&at publicly computes a surjectim tuoction t : 
{O,l)” -, R requires at least logs 1RI steps on dome 
iupu t. 

We introduce some terminology to be used in 
the proof of Theorem 1. Given a particular input, 
the history of a comprtation through rtep t is the 
sequence of values {&,H~, . . . ,Ht }, where Hi is the 
contents of the shared memory cell after step i. Ho 
is the initial content of M, which we can resume is 
0. The tree oJ porribtc comprtationr has nodes that 
intuitively correspond to the different states that the 
PRAM can be in during the course of the computation. 
Formally, we associate with a node v at depth i a 
history {H~,R1~...~Hi}, and the set f,, of all inputs 
that generate this history through step i. An input is 
said to reach node u if it is a member of I,. The children 
of u correspond to all possible extensions to the history 
at w; each child ls labelled with a di8erent extension 
{Ho,&,..., Hi,Hi+l}. The bst entry in the history 
associated with a leaf of the tree will be the function 
value for all inputs that reach that leaf. 

Although the theorem as stated applies to the case With ench node v in the computation tree;we 
of a single shared memory cell, it is powerful enough to can associate a formula II in conjunctive normal form, 
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whose variables are the private input bits zi. This 
formula will have the property that the set of inputs 
X,, associated with this node is exactly the set of inputs 
that satisfy the formula I,,. The construction of these 
formulas will proceed by induction on the depth of a 
node. 

For the root r of the computation tree, we define 
Ir to be the empty formula. Now suppose we have a 
node IU with associated history {Ho, RI,. . . Rt-,} and 
associated formula &,. Suppose, furthermore, that w 
has a child u and that the history at TV is the history 
at tu extended by the value Ht. This means that for 
some inputs in Iv, the content of M after the 6“ step is 
the value Ht. The a&ion of any processor at step 1 for 
an input in IW is completely determined by the history 
through step C - 1 (the history associated with tu, which 
is the same for all inputs in I,,,) and by the processor’s 
private bit. Thus, it is possible to determine which 
private bit values would cause processors to write Ht. 
At least one of this possibilities must occur; thus inputs 
with history {He, HI,. . . Ht,1, Hf) must satisfy Ju and 
also a clause consisting of the OR of these possible bit 
values. For example, if Pr writes Hd when zr = 1, and 
Pa does so when 2s = 0, then the added clause would 
be (zr v G). In two cases it is not necessary to add a 
clause: when one processor Pi writes regardless of what 
his private bit is, and when no processor writes, i.e., 
Ht = Ht,1. Since there is only one memory cell, each 
processor reads its content during every read phase. 
Therefore, we can msume, without loss of generality, 
that processors write into the memory cell M only to 
change its value. 

All possible bit values that would have resulted 
in something other than Ht being written will result 
in additional clauses. For example, if Ps would have 
written HI dilferent from Ht if zs = 1, we add the 
clause (G), since it is known that zs = 0. We can also 
rubstitute these known values into other clauses. In our 
example, a clause containing the literal 2s would have 
that literal removed; a clause containing the literal zg 
would be entirely removed. 

We call a clause nonftioid if it contains more than 
one literal. Note that at most one nontrivial clause is 
added to Iv to create the formula at the child of w. 
The following lemma provides an important bound on 
the accumulation of nontrivial clauses. 

Lemma 1. It a node w wit& q children has a Formula 
fv with c nontn’vid clausu, the formula at each child 
of w ha.9 at most c + 3 - q nontrivial clauses. 

Proof: If q < 2 this follows from the construction, 
as at most one nontrivial clause is added. Thus we 
may assume q > 2. There are .q possible extensions of 
the computation history at this node. One of them 
could correspond to the case where no one writes 
(Hi = Ht,I), but there are at least q - 1 different 
values that could be written at the next step. No 
processor may write more than one of these values, for 
otherwise that processor would always write, and those 
two values would be the only possibilities. For each 
value written, we can arbitrarily select one processor 
that writes it; assume without loss of generality that 
for i = 1 2 , ,...q-1,vslueViiswrittenbyPiatthis 
step if literal li is true. (Note that li is either ri or x.) 

The formula Iv implies that at most one of the 
literals lr,ls...l,,r is true. Otherwise, there would 
exist an input in I, for which two diierent processors 
would attempt to simultaneously write diflerent values, 
a violation of the COMhfON model. 

Now consider the formula IV at the child v of 
(u that corresponds to V’,, being written. This is 
created by first adjoining one nontrivial clause to /, and 
also some trivial clauses M a result of the knowledge 
that {I,, 12 , . . . ,1,-a} are all false. This hnowledge also 
results in some substitutions. Let @ = (,9,, &, . . . a,) 
be an input in 1, which makes I,,,1 true. @ satisges I,,,, 
since I,, is a subset of IWr and makes {l,,l,,. ..,1,,,} 
false. 

For J’ = l...q - 2 let @J’ be the input obtained 
from @ by complementing @j (i.e., BJ’ makes both lj and 
1,-l true). The input Bj cannot satisfy Iv, because it 
makes two literals in {11,1~,...,1,,~} true. Let Cj be 
some clause in I,,, that @j does not satisfy. Since there 
exists an input in I,,, which makes lj true, and another 
that makes lj false, Cj must be nontrivial. The only 
difference between @ and @J’ is in the value of the i’” 
bit. Thus Cj must contain the literal 6. and 1; = rj 
otherwise. Furthermore, 6 is the oniy literal in Cj that 
j9 makes true. 

We can now see that for 1 s i < j s q - 2, the 
clauses Ci and Cj are distinct. This follows from the 
fact that pi satisfies Cj (it contains the literal G, and 
pi makes lj false) but not Ci. Consider the creation of 
1.. The substitutions that follow from the knowledge 
that {II, 12 , . . .1,-a} are false will remove the nontrivial 
clauses Ci. Thus 1” can have at moat c - (q - 2) + 1 
nontrivial clauses, as required. A similar argument 
works for the other children of u; in fact, the child that 
corresponds to the ease of no one writing will have at 
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most c + 2 - 4 nontrivial clauses. l 

The importance of lemma 1 is that, although we 
cannot bound the degree of a node in the computa- 
tion tree, high degree requires accumulating and then 
destroying nontrivial clauses, and only one nontrivial 
clause is accumulated per level. We make this idea 
more precise in the following fashion. Let L(r,h) be 
the maximum number of leaves in a subtree of height 
h whose root formula has o clauses. 

Lemma 2. t(8, h) 5 (3 + a/h)“, III particular, 
L(0, h) I 3”. 

Proof: By lemma 1, we have 

L(u,l) ,< r+3 

4, h) 5 l<y<y+sCo - W + 3 - gv h - 1)) 
-I 

This can be shown by induction to satisfy the statement 
of the lemma. l 

Theorem 1 then follows from the fact that each leaf 
of the computation tree cau be labelled with at most 
one function value. All function values must appear, 
so the tree has at least ISI leaves. By Lemma 2, a 
computation tree of height h has at most 3h leaves. 

We cau extend this result, and obtain a theorem 
similar to Theorem 1 for probabilistic algorithms. In 
the probabilistic COMMON model, each processor is 
allowed to make random choices to determine its be- 
haviour at each step. We insist that no sequence of 
choices results in two processors attempting to write 
different values into the same cell at the same time. 
Theorem 2 gives a bound on the expected number of 
steps to compute a function in terms of the size of its 
range. 

Theorem 2. ID tbe probabilistic CO.MMONff) model, 
any algotitbm that publicly computes a subjective fimc- 
tion 1 : (0, I}” + R has an expected running time of 
at least [log, IRlJ steps on some input. 

As in Corollary 2, we obtain a logarithmic sepa- 
ration between the probabilistic COMMON(m) model 
and the deterministic PRIORITY(m) model, for m = 
O(nC) where c < 1. This separation can also be shown 
between probabilistic COMMON and models weaker 
than PRIORITY, such as the ARBITRARY model de- 
fined in [FRW]. For these cases, randomization does not 
help the COMMON model to simulate more powerful 
models. 

Theorem 2 is proved using the following two lem- 
mss. 

Lemma 8. Tbe sum of tbe root-leaf distances to any 
aet S of baves in a tree of possible computations is at 
lead IS([logs ISlJ. 

Prooft Let us define a tree &&ton to be a tree 
whose nodes can be labelled with nonnegative integers, 
such that the root is labelled with zero, and any node 
labelled with 8 that has g children has each chid 
labelled no higher than l + 3 - Q. Lemma 2 is actually 
a statement about tree skeletons; any computation tree 
leads in a uatural way to a tree skeleton, where the label 
of a node is just the number of nontrivial clauses in its 
formula. Let S be our set of chosen leaves, and Q be 
the sum of the root-leaf distances. We can prune away 
everything but the root-leaf paths to leaves in S. This 
still leaves a tree skeleton, for after deleting a node, the 
labelling at its brothers is still valid. The pruning also 
leaves Q unchanged. 

We can then transform the tree skeleton in a 
way that will never increase the sum of the root-leaf 
distances to leaves in S. Suppose we can find two leaves 
v1 and q, where vi is at depth fi and ta - 11 2 2. We 
add two children vi, ds to ~1, label them with the same 
number as vi, and delete w; We remove ~1, us from S 
and add v;,, d,. 

Continuing iu this f&&ion, we can obtain a tree 
skeleton and a set S’ of leaves, where 1st = 191, and 
all leaves in S’ are at depth t or I - 1. Furthermore, 
the sum of root-leaf distances to leaves in S’ is less 
than or equal to Q. But Lemma 2 says that t is at 
least rhs Isll, and the result follows. l 

Lemma 4. Let Tl be the expected running time for a 
given probabilistic slgoritbm solvi~~g problem P, max- 
imbed over d possible inputs. Let Ta be tbe average 
running time for a given input distribution, minimized 
over d possible deterministic afgotitbms to solve I? 
Then Tl 1 Tz. 

Lemma 4 was stated by Yao ([Y]) in a stronger 
form; the weak form here can be proved in a few 
lines. We can consider a probabilistic algorithm IM a 
probabilistic distribution of deterministic algorithms. 
Let A be our set of deterministic algorithms, and 
I our set of inputs. Let r[Ai,Ijl be the running 
time of algorithm Ai on input Ii- Suppose oar given ,. 
probabilistic algorithm chooses to run deterministic 
algorithm Ai with probability pi+ and that our given 
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input distribution gives probability gj to Ii. 

=T3 a 

We wish to bound T, from below. By Lemma 4 it 
sufftees to bound Ts from below. To do this, we must 
specify an input distribution that results in a large 
average running time for any algorithm to compute /. 
This input distribution must depend on 1, but not on a 
particular program. For each possible value off, choose 
one input that results in that value. This selects a set of 
If?] inputs; our chosen distribution will give probability 
l//RI to each of these. 

To bound Ts from below for this distribution, 
consider the tree of possible cwputations associated 
with some deterministic algorithm. Our set of inputs 
reaches some set of IRI leaves. Then the expected 
running time on the given input distribution is the 

. average depth of these leaves, which by Lemma 3 is 
at least [log, IRlJ steps. This proves Theorem 2. 

Upper Bounde for hflnite Memory 

Let N = {1,2,. . .} be the set of positive integers. 
The Element Distinctness Problem on n variables is the 
problem of computing the function ED, : N” + (0, l}, 
where ED,(zl,. . . , z,,) k 0 if and only if zi = ;zk for 
some i # k. 

We first show how to compute ED,, in constant 
time on a PRIORITY(oo). In fact, this algorithm also 
works on weaker models, such as the ARBITRARY and 
ETIIERNET models mentioned in the introduction. 
We assume that the output appears in a special shared 
memory cell called anrtuer. 

ALGORITHM 1 
1) Processor fl writes 1 into anrwcr. 

2) For all i, processor Pi writes i into memory cell Zi. 

3) For all i, processor Pi teds memory cell ti. 

4) For all i, if processor Pi did not read i, then it 
writes 0 into answer. 

This algorithm uses three steps to compute ED,,. 

To determine that ED,,(zl,..., z,,) = 1, an dgo- 
rithm must veri& that all the inqualities zi # LC~ are 
true. We now consider two algorithms for computing 
ED,, on, a COMMON(a) which collect this informa- 
tion iu dilferent ways. In the uext section, we show that 
these are essentially the only wqys this information can 
be collected. Both algorithms require O(logn) steps; 
to simplify their presentation, we assume n is a power 
of 2. 

The idea of ALGORITHM 2 is that the processors 
can communicate the values of their input variables to 
a single processor which then does all of the necessary 
comparisons locally. The pattern of communication 
among processors is a binary tree. 

ALGORITHM 2 

Recursively, processon 9, . . . . P,, accumulate the 
values of the variables 21, . . . . z,, . 

1) If n > 1 then, in parallel, 

1.1) 

1.2) 

Processors Pr, . . . , P,,ls accumulate the values 
of the variables zr, . . . . 2,/s. 

Processors P(,/s)+r , . . . , P, accumulate the 
values ‘of the variables z(,,/~)+~, . . . , z,, . 

2) Processor P,,/s computes an encoding of z(,,/~)+~, 
. . . , z, and writes it into memory cell 1. 

3) Processor Pi reads memory cell 1. It has now 
accumulated the values of (zr,. . . , z~}. 

4) Processor Pr computes ED, (tr , . . . . z,,) and writes 
it into anrwer. 

The computational power of the processoR allows 
each processor to compute encodings and decodings 
in one step. Once it has accumulated all inputs, a 
processor can compute the output in one step. Thus 
ALGORITHM 2 uses O(logn) steps. In fact, this 
algorithm shows that every function j : N” + N 
can be computed in O(logn) steps. A straightforward 
analysis shows that, at the I”’ execution of step 3, 
n2”) uew inequalities are verifted. Notice that this 
number increases as the computation progresses. 

The next algorithm does not use any of the com- 
putational power of the processors, but it uses the 
concurrent write ability of COMMON(o0) in a funda- 
mental way. Essentially, we divide the variables into 
two groups, check that the pups have no eIement in 
common, and recursively check element distinctness for 
these two groups in parallel. 

ALGORITHM 3 

1) Processor Pr writes 1 into onmer. If n > 1, 
continue. 
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2) 

3) 

4 
5) 

For 1 I i < n/2, processor Pi writes 1 into cell ti. 
For (n/2) + 1 5 i s n, processor Pi ~4s dl ti 
aud, if its value is I, writes 0 into anther. 
For 1 < i s n, pro~e~eor Pi resd~ IWWVG~. 
If anrwer # 0 then, in parallel, 
5.1) Processors 9, . . . . P,+ compute ED,/, (21, 

* l *, h/2) 

5.2) Processors P(r/2)+1, l *-v pm compute 
E&/2(qvt/2)+19 l . -9 G). 

This algorithm also uses O(logn) steps. But, in 
this case, the number of new iuqualitiu verified in one 
step decreases M the computation proceeds; at the t’” 

execution of step 3, 
n’ 

2’+’ inequalities are veri8ed. 

In the lower bound proof presented in the next 
section, we distinguish between information received 
via direct storage access (bs iu ALGORITHM 2) and 
via indirect storage access (as in ALGORIT’HM 3). 

A Lower Bound for COMMON(oo) 

In this section we prove the following reuult. 

Theorem 3. Computing ED, on a COA~MOIV~~D) 
require8 fl( log log log n) steps. 

Together with ALGORITHM .l this implies an 
fl( log log log(n)) separation between the COMMON 
and PRIORITY models with infinite memory. 

In order to prove this theorem, we Bnt introduce 
a variant of the COhiMON(oo) which we call the k- 
read COMMON(oo). This model differs from the 
COMMON(co) in two respects. Firstly, no processor 
may write into a cell in which some processor has 
already written. This restriction is essential for our 
lower bound proof. In compensation, in the read phase 
of each step of a k-read COMMON(oo), each processor 
is allowed to read up to k memory cells ln parallel, 
instead of just one. This will guarantee that, for large 
enough 5, an k-read COMMON(co) is not weaker than 
a COMMON(co). 

Lemma 6. T steps of a COMMON~CCI) can be simu- 
&ted by a T-read COMMON(oo) io T steps. 

Proofi Let C be a COMMON(oo) executing T 
steps. We modify C to obtaiu a T-read COMMON(oo) 
C* as follows. We subdivide the infinite shared memory 
of C into T infinite parts. If a processor of C writes 
to cell u at step 1, then, at step t, the corresponding 

processor of C* writes to the wth cell of the It” part of 
memory. This ensures that no processor writu into a 
previously accersed cell When a processor of C reads 
cell r, the corresponding processor of C* reads the tth ( 
cell of each part of the @hared memory. Because each 
processor of C* reads (among other thin@) the value 
read by the corresponding processor of M, we have 
shown that C* simulates M. l 

Theorem S now follows directly Tom the next 
lemma, by tap ing k to be log log n. 

Lemma 6. An l-lmd comfoN~oo) requires 
n(logloglogn - loglogk) Steps to compute ED,. 

Proof! This proof is an adversary argument. As 
the computation proceeds, the adversary fixes the value 
of certaiu variables and maintains a set of allowed 
inputs such that, after each step, each processor only 
knows one live variable (i.e. a variable whose value has 
not been ilxed). The precise meaning of the statement 
“processor Pi only knows Zj, after step I” is that the 
configuration of Pi after step t is the same for all 
allowable inputs with the same value of zj,. 

Let [n] = (I,..., n}. Consider the situation ar- 
ranged by the adversary after step I of some agorithm. 
We use V’ s [n] to denote the set of indices of live vari= 
ables, and IVtj’ to denote the set of all unordered pairs 
of elements from Vt. The set E: C_ pt]’ describes those 
pairs of live variables which the advenary has declared 
to be distiuct. The simple graph G; = (Vt, Et) with 
vertex set Vt and edge set Et is called the distinctness 
graph. Live variables are restricted, by the adversary, 
to take values from an inlnite subset St E N. The 
lndexed set Ft = {fili E In] - Vi}, describes the ad- 
versv’s assignment of values to the dxed variables. 
These values are distinct elements of IV - St. 

The set I(&, Et, St, Ft) of allowed inputs consists 
of all n-tuples (51,. . . , b”) satisfying the following prop 
erties: 

the 

1) bi =: /i for all i E [n] - V,, 
2) bi E St for all i E Vt, aad 
3) bi # bj for all i, j E Vr with {i, j} E Et. 
For two disjoiut sets A and B, let K(A, B) denote 
complete bipartite graph on A and B. Let C = 

(V, E) be a simple graph. A family C = {(At, &)jL = 
1 ,...,t} with At n & = 4 is a bipartite cover of 
G if every edge {i, j} E E belong to some graph 
K(At,Bt). The size e(C) of C is Cb,(lA~l + I&l). 
The bipartite complexity of G is deaned to be a(G) = 
min(r(C)lC is a bipartite cover of G). For the come 
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p&e graph oa q vertices, K,, the biputite complexity 
is known. 

Theorun 4. ([HI@]) P(K,) 1 q kq. 

We shall measure the “complexity” of a set of 
allowable lnpu ts la terms of the number of live variables 
and the bipartite complexity of the distinctness graph. 

Now we are ready to formulate the maia lemma 

Main Lemnu. Assume that, before step f, the set 
of allowed Jnpats L Z(Vl -,,Et-,,St-l,Ft,r) aad tbst 
ea& processor Pi onJy knows one varJabJe with in- 
dex h Q-1, namely zj,. Then, tbe adversary can 
defhe a new set of affowed inputs Z(Vt,El,St,Ft) C 
Z(Vt-l,Et,l,St,r,Ft,l) SUCJI that, asker step 1, tbe 
followingproperties are satisfied. (RecaJJ tbat each pm 
cessor CM read k ceJJs in a step.) 

the 

K C h-1 ad [K[ 1 [k-I 1’ 
‘VI?-I[ + 2nk’ 

Each processor Pi km& e&b one varJabJe with 
index in Vt . 
St E St-1 and St Js h5nite. 

Et 2 Et-1 n[K[’ and P(G) S W’t-,)+n(t+,), 
where Gt = (&, Et). 
Ft-, E Ft E N - St. 

We now complete the proof of lemma 6. Before 
computation stsrts (i.e. after step 0), Vu = [n], 

Eo = +, So = N, aad ji = i satisty the conditions of the 
main lemma. Suppose that the compufation terminates 
after T steps. Then GT = Klvtl, the complete graph 
oa VT; otherwise, there would be fwo allowed inputs 
with dlffereot images under ED, between which the 
algorithm could not distinguish. Thus, by Theorem 4, 
@(CT) = [VT [ ]odlvT[)* 

Now, from condition 4, we get that fi(G~) = 
BWIVrI) I nT(k + T). 

Since IVtl 5 n, it follows from condition 1 that 
IW’ IW 

W’ z [Q[ +2nk z 3n)’ By induction, this implies 

Iv,lS’ 
lvT’ 1 (3nkpl aad lvT’ 1 &r * 

Combining these inequalities, we get 

Thus T = n( log log log n - log log &). l 

To prove the main lemma, we first state three 
results - two “Ramsey like” aad one graph-theoretical. 
Tbey will be extensively used in the proof. 

Lemma 7. Let / : w - D be any function defined 
on M intlnite doraah W. Then there exists an Jnflnite 
rub& W’ C W such tbat I[w~ is either constant or 
f-1. In particuiar, ifD Js dnite, tben /[w, is constant. 

Lemma8. Let/,g: W + D be two functions defined 
on aa infinite domain W. Then there exists an infinite 
subset W’ C W sncir tbat I[wt and g[w# me either 
iden tied or bave dgoiat ranFs. 

Lemma 0 . Let R(U,L) be a dnite graph, and Jet 
a(R) denote tbe size of a maximum independent set in 

I VI’ R. Tben a(R) 1 -- . 
PI + 214 

Lemma 7 can be found ia [ GRS, p. 112 1, Lemma 
8 follows directly from Lemma 7, and Lemma 9 can be 
found ia [ B p. 282 [. 

Proof of the main lemma : Consider the sequence 
of writes performed by some processor Pi up to aad 
including step C. In step p 5 I, it decides whether or not 
to write according to some predicate dr. If it writes, it 
writes a value II: to a cell t$. Now consider the k reads 
Pi executes ia step t. It E8dS fkom cells ri.1,. . ., ri,&. 
Since Pi 0~1~ L~OWS Zjir it fdlo~~ that c,4, w:, 
aad ri,h are functions of only this one variable. Thus 
4 : St-1 -+ (0, 1) and 4,4, ri,h : St-1 - N. Note 
that the reads are executed in parallel. Therefore no 
processor can use the information obtained in one read 
to determine the other read functions it uses ia this 
step. 

Our adversary simplifies this structure by restrict- 
ing the set of allowed inputs. 

Claim 1. Without loss oi gcaerdity, st every step 
p s C, es& processor either writes ford dlowed inputs 
or does not write for any dowed input. 

Prooh Apply Lemma 7 successively to df for 
i = 1,. . . , n aad p = 1,. . ., I to obtain aa iafi- 
aite subset S’ c St-l. The claim follows when the 
adversary restricts the set of dlowed iapots to be 
V’t-dLr, S’cFt-1). 8 

We de6ae aa address function ss any read function 
ri,h or any write function W: which is actudly used. 

Claim 2. Witbout loss of generality, every address 
hroctioa is either coastaat ot 1-l. 

Prooh Apply Lemma 7 successively to all address 
functions. The result is aa inilaite subset S” E S’ on 
which every address fuactioa b either constant or 1-l. 
The dvenary restricts the set of allowed inputs to be 
WLdL1, S”, FM). 
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Claim 8. Without JOSS of g~~erdity, ii Pi ad P, 
access the same cell then they use the same address 
fuoctioo. 

Pro& Apply Lemma 8 successively to every 
pair of address fnnctions. The result is an iulnitt 
subset S “’ E S” such that every pair of address 
functions (which we now consider to be functions on 
9”) are either identical or have disjoint ranges. The 
adversary therefore restricts the set of allowed inputs 
to be I(V~-I,EI,I,S”‘,F~,~). l 

The next observation depends on the the fact that 
we are using an k-read COMMON(ou) and is the only 
part of the proof which does so. 

Claim 4. W’jthou t loss of generdity, if Pi snd Ps know 
tke s8me viwi8ble (it!. ji = jb), then suip # re,h for aJJ 

p = l,..., Iandh = l,..., k. h particular, d’ # ri,h*) 

Proofi We may assume that every processor hss 
copies of the programs of all other processors. Then P, 
CBD compute tuf(zji), the address Pi writes to in step 
p, and ur(tj;), the value Pi writes at that step. By the 
definition of an k-read COMMON(cm), all processors 
writing into this ceil at time p must write the sbme 
value and, thereafter, that value is never changed. Thus 
CCU tt(‘(zji) will still contain the value 4(8j,) when Pq 
reads it. Since P, c8n compute this value, it does not 
have to read ceil Vp(Zji). (Note that this argument is 
completely tallacious for the PRIORITY (oo), as shown 
in ALGORITHM 1.) l 

Equipped with these two claims, our adversary is 
ready to continue. First, the 1-l address functions 
are handled by determining a graph of low bipartite 
complexity and adding its edges to the distinctness 
graph. Following this, the adversary deals with the 
constant address functions by fixing some of the live 
variables. 
l-l addrerr functlonr: 

Suppose that gi, . . . , g, are the P-1 address func- 
tions. For each go, define 

At = {q E Vt-1(~~ = Zjc aud U: = oe for some 
i E In] and p E [t]} 

Bt = {q E Vt,l(~, = zji 8nd ri,h = gc for some 
i E [n] and h E [k]}. 

Intuitively, q E At if some processor that knows tq 
use8 gt 8s a write function. Similarly, q l Bc if some 
processor that knows 2, uses gc as its read function. 

As a corollary to claim 4, we get the following 
result. 

Claim 5. ,Ac n Bt = 4, 

Since every processor can contribute at most I 
times to the A’s and at most k times to the B’s, 
& IAtl IF IBtI s (m + f)n. Let C’ = (Vr-,,E’) 
be the graph with E’ = Ub, K(At, Be) and let G” = 
(Vj-1, E”) be the graph with En = Et,, u E’. Then 
@(G’) s (k at t)n. This implies the following result. 

CMm 6. @(G”) I a(G) + (k + 4)n. 

Cldm7. I;“orinputsinI(Vt,l,E”,Sn’,F~-l), wemw 
dkmme, witiout loss of g&r&y, that no processor 
uses a 1-l read function in step t. 

Pmoh By claims 3 and 4, every processor that 
uses a 1-l read function reads the initial contents of the 
cell, namely ‘0’. Thus the read imparts no information 
about any iuput known to be in f(Vt,1, E”, S”‘, Ft,,). 
Conrtant l ddreu fimctlonr: 

Ram this point on, we resume that the set of 
allowed inputs is I(Vt-,, E”, S”‘, Ft,1). 

Claim 8. Lf w is 8 constant address function, then the 
contents of cell w depends on st most one Variable fmm 
K-1. 

Proofs To prave this claim we do not need any 
of the properties of the k-read COMMON(m). In 
fact, we can pssume that, for cells which are accessed : 
by constant address functions, the PRIORITY write 
conflict resolution scheme is used. Furthermore we 
can allow these cells to be accessed during more than 
one step. Consider the last step p 5 C in which cell 
w was accessed for writing. Let Pi be the processor 
with lowest index writing into cell UJ in step p. By 
our construction, Pi always writes to cell w at step p. 
Therefore the contents of cell tu cau only depend on tic. 
l 

Thus we can lusume that ail constant address 
functions used up to and including step f are dserent. 

Consider the graph R(Vt,I,t), where {i, k} E L 
if some processor knowing ni uses a constant read 
function w in step t, snd the contents of w depends 
on zq (i.e. after step 1 this processor “knows” both 
zi and zr). Note that IL\ 5 nk, the total number of 
reads in step 1. Apply Lemma 9 to thin graph to obtain 
an independent set of vertices Vt E Vt-1. such that 

I%-, IS 
IW 2 (Vc-ll+- 

The adversary restricts the set of 

sllowable inputs to be I(Vt , E”, S”‘, Ft-1) and we get 
the following result. 

56 



CIaIm 9. After step t, every processor knows at most 
one variable in Vt . 

We now complete the proof of the main lemma. 
Those processors which do not know any variable in Vt 
cau be assigned an arbitrary one. The adversary fixes 
the variables zi with i E V:-, - V: and assigns them 
distinct values Ii E S”‘. These values are added to 
Ft-1 to obtain FC and are removed from S”’ to obtain 
St. FinaIiy let Gt = (Vt,Et) be the subgraph of G” 
induced by Vt. Then /J(Gt) 5 @(G”J l 

A Lower Round for PRIORITY(oo) 

In this section we apply a simplilled version of the 
proof method from the last section to obtain a lower 
bound for PRIORITY (00). 

Theorem 6. A PJUORITY(o0) requires D(loglogn) 
steps to compute tbe maximum of n numbers. 

Proof: In contrast to solving the element distinct- 
ness problem, computing the maximum of n numbers 
does not become easier if these numbers are known to 
be distinct. Therefore, we will assume that they are dis- 
tinct, because this will considerably simplify the treat- 
ment of l-1 address functions. Essentially, in the con- 
text of the previous lower bound proof, such functions 
are always useless. 

More formally, let M be a PRJOR.ITY(co) which 
flnds the maximum of n numbers. Let Vt , St, and Ft 
be defined BS in the previous section. However, the 
adversary’s set of allowed inputs is now defined to be 
J(Vt, St,Ft) = I(Vf, I&]‘, St, Ft). SpecticaUy, aiI input 
values are required to be distinct. 

Lemma 10. Assume tbet, befoR step t, tbe set of 
aJJowed inputs i9 J(Vt,,,St,,,F+1) and tbat each 
processor only knows one variable dtb index in Vt,1. 
Then the adversary can define a new set of allowed 
inputs I(Vt, St,Ft) such tbat after step t tbe following 
properties are satisfled. 

2) Each processor knows on& one variable with hda 
in v,. 

3) St E St-1 and St is iudnite, and 
4) Ft,, C Ft G N - St. 

If M requires T steps then IVrl = 1; othenvise 
no processor cau determine the output. From Lemma 

10 aud the fact that lVij = n, we can derive T = 
II(loglogn). This concludes the proof of Theorem 3. 
l 

Proof of lemma 10 : Consider the proof of the 
main lemma for k = 1. It is sufbient to show that for 
J(V’, St, Ft) the anaioguea of cIaim 7 (which tahes care 
of l-l address functions) and cIaim 9 (which takes care 
of constant address functions) hold. 

The proof of claim 9 does not use the properties 
of the k-read COMMON(co). Since J(Vt, St,&) C 
I(Vt, Et, St, Ft), the andogous result for the PRIOR- 
ITY (00) is true. 

However, claim, 5 is derived from claim 2 which, 
in turn, depends on the properties of the k-read COM- 
MON(oo). Fortunately, the analogue of claii 7 fol- 
lows directly from claim 3, since all input variables 
are assumed to have distinct v&es. Because the 
proof of claim 3 does not use the properties of the 
k-read COMMON(co), its analogue also holds for the 
PRIORITY(co). l 
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