One, Two, Three ... Infinity:

Lower Bounds for Parallel Computation

Faith E. Fich
University of Washington

Friedhelm Meyer auf der Heidc
IBM Research, San Jose

Prabbakar Ragde
University of California at Berkeley

Avi Wigderson
IBM Research, San Jose

ABSTRACT

In this paper we compare the power of the two
most commonly used concurrent-write models of paral-
lel computation, the COMMON PRAM and the PRI-
ORJTY PRAM. These models differ in the way they re-
solve write conflicts. If several processors want to write
into the same shared memory cell at the same time,
in the COMMON model they have to write the same
value. In the PRIORITY mocdel, they may attempt to
write different values; the processor with smallest index
succeeds.

We consider PRAM’s with n processors, each hav-
ing arbitrary computational power. We provide the
first separation results between these two models in two
extreme cases: when the size m of the shared memory
is small (m < n¢, ¢ < 1), and when it is infinite.

In the case of small memory, the PRIORITY
model can be faster than the COMMON model by a
factor of O(logn), and this lower bound holds even if
the COMMON model is probabilistic. In the case of

infinite memory, the gap between the models can be a

Support for this research was provided by an IBM Faculty
Development Award, NSF Grant MCS-8402676, DARPA Con-
tract No. N00039-82-C.0235, an NSERC postgraduate schol-
arship, and the University of Washington Graduate School Re-
search Fund.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

© 1985 ACM 0-89791-151-2/85/005/0048 $00.75

48

factor of N1(logloglogn).

We develop new proof techniques to obtain these
results. The technique used for the second lower bound
is strong enough to establish the first tight time bounds
for the PRIORITY model, which is the strongest paral-
lel computation model. We show that finding the max-
imum of n numbers requires ©(log log n) steps, general-
izing a result of Valiant for parallel computation trees.

Introduction

The parallel random access machine (PRAM) is
an important and widely used model of parallel com-
putation. It consists of a set of n processors P,,...P,,
each of which is a random access machine. The pro-
cessors communicate via a shared memory, whose size
is called the commenication width [VW|. The PRAM
is synchronous. It computes a function f: I* — L, if
initially each processor contains one input value, and at
the end of the computation the function value is stored
in the first shared memory cell.

One cycle of computation consists of three phases.
In the compute phase, each processor may perform an
arbitrary amount of computation. In the write phase,
each processor may write into an arbitrary shared
memory cell. In the read phase, each processor may
read an arbitrary shared memory cell.

In the write phase it may happen that many
processors try to access the same cell, that is, a write
conflict occurs. When one restricts the model in a way
that such simultaneous writes are forbidden, one gets
the Exclusive-Write model [FW]. This model is very

weak. In [CD], Cook and Dwork proved an {}(logn)
lower bound for computing the n-way OR function in
this model. This function can be computed in depth 1
by an unbounded fan-in circuit and also in constant
time by all other PRAM models considered in this
paper, even when they only have one shared memory
cell.

If simultaneous writes are not forbidden, the fol-
lowing two write conflict resolutions are most com-
moaly used in literature.

e COMMON: If several processors want to write
into the same memory cell at the same time, they
have to write a common value [Ku].

¢ PRIORITY: If several processors want to write
into the same memory cell at the same time, the
one with smallest index wins [Go].

Both models are widely used for designing par-
allel algorithms (For example, [SV], [Ga], and [KR]
use COMMON; [VT| uses PRIORITY.). There are
also some lower bounds known for concurrent-write
PRAM's (mentioned below), but the proof techniques
are not sensitive enough to separate these two models.

Simultaneous access to the same cell on the COM-
MON model can be easily implemented by depth 1 OR
circuits. This is so easy because the main part of the
conflict resolution is done by the program. The pro-
gram has to make sure that different processors never
try to simultaneously write different values in the same
cell. In the PRIORITY model, however, write con-
flicts are resolved entirely by the machine. The extra
hardware required to implement PRIORITY conflict-
resolution leads one to consider simulating this model

by the COMMON model.

It is known that one step of the PRIORITY model
can be simulated in constant time by the COMMON
model, if we square the number of processors and
sufficiently enlarge the shared memory [Ku]. However,
in order to understand the difference in the power in
the two conflict resolution schemes, we restrict both
models to have the same number n of processors and
the same communication width.

Let COMMON(m) and PRIORITY(m) denote the
respective models with m shared memory cells. The
main results of this paper are two lower bounds on
the common model, one on COMMON(1) and one on
COMMON(o0). These lower bounds are sensitive to
the COMMON conflict resolution scheme, so that we
can use them to separate COMMON from PRIORITY.

Let f : [0,1]* — S be a surjective function.

49

Then a COMMON(1) requires at least log, (|S|) steps
to compute f. Even if the machine is probabilistic,
the same lower bound bolds for the expected number
of steps. This result implies that it requires at least
logy n steps to compute the smallest index of an input
variable with value 1. Thus we get a log; n separation
between COMMON(1) and PRIORITY(1), because
this function can easily be computed by PRIORITY(1)
in one step. The result can be generalized to obtain
an {)(logn) separation between COMMON(m) and
PRIORITY(m), if m < n¢, e < 1.

The second result is on the time required by
COMMON(o0) to solve the element distinctness prob-
lem, that is, to decide whether all n integer inputs are
distinct. We prove a lower bound of fl(logloglogn)
steps. This implies an f{logloglogn) separation be-
tween COMMON(co) and PRIORITY(c0), because el-
ement distinctness can be solved in constant time on
PRIORITY(o0).

Actually, our results extend to separating the
COMMON model from weaker models than PRIOR-
ITY. More specifically, we refer to the ARBITRARY
[SV] and ETHERNET |Gr] models. Both separation
results extend to these models. In fact, we can demon-
strate functions that can be computed in time a fac-
tor of {I(logn) faster on a deterministic ETHERNET
mode] than on a probabilistic COMMON model. This
is important, sirnce ETHERNET becomes more power-
ful with randomization allowed.

The proof of the first lower bound is based on a
new technique to handle the problem that — in con-
trast to the Exclusive-Write model — the “information
fan-in” on the COMMON model may be arbitrarily
large. Therefore the well-known information theory ar-
guments used in [CD] do not apply in this case.

The difficulty in proving the second lower bound is
that, due to the infinite shared memory, processors may
use indirect addressing in very subtle ways. We handle
differently the information that a processor acquires by
direct and indirect addressing. In the second case, we
use in a crucial way the fact that in the COMMON
model, it is useless for a processor to read a cell it has
just written into. Note that in the PRIORITY model,
such behaviour is extremely useful.

Surprisingly, a simplified version of this proof tech-
nique yields a lower bound for PRIORITY(cc). Pre-
viously known lower bounds for PRIORITY impose
restrictions either on the shared memory size ([VW])
or on the arithmetic power of the processors (|[MR]},

[FSS]). We show an Q(loglog n) lower bound for find-
ing the maximum of n numbers on PRIORITY. This
generalizes the result of Valiant [V] for parallel compar-
ison trees. By an upper bound of Shiloach and Vishkin
[SV], our result provides the fitst tight time bound on
the PRIORITY model.

- A Lower Bound for Small Memory

Consider a COMMON(1) with n processors, P,
through P,. The processors communicate through one
cell M of shared memory, which can hold arbitrar-
ily large values. We say such a machine computes a
surjective function f : {0,1}* — R for some range
set R if at the beginning of the computation, FP; has
the i** argument (demoted by z;) in its local mem-
ory and, at the end of the computation, the value of
J{z1,23...2,) appears in M. A particular vector of ar-
guments (z;, z3,...2,) is called an snpul. The variable
z; is called P;’s private bit.

Other ways to define the computation of a function
appear in the literature. For example, in [VW] the

- arguments are located in read-only shared memory, one
argument per cell. Our definition can be thought of
as public computation, since the answer must appear
in shared memory. It is sometimes useful to define
private computation, in which each processor is required
compute a private answer bit a;. For the step-by
step simulation of a PRIORITY(1) by a COMMON(1)
appearing in [FRW], for example, z; would be 1 if P;
wished to write, and a; = 1 if and only if ¢ is the
processor of least index with z; = 1. A good lower
bound for public computation can lead to a good lower
bound for private computation if (a,,a3,...ax) can be
made public in a small number of steps. This is the case
with the simulation example, as the unique processor
with a; = 1 can take one more step and write i into M.

The follc;wing theorem is the main result of this
section, giving a lower bound on the number of steps

. required to publicly compute any function. The lower
bound depends only on the number of function values
that are possible.

Theorem 1. In the COMMON(1) model, any algo-
rithm that publicly computes a surjective function f :
{0,1}* — R requires at least logy |R| steps on some
input.

Although the theorem as stated applies to the case
of a single shared memory cell, it is powerful enough to

50

use in a more general setting. We note that a COM-
MON(1) can simulate one step of 8 COMMON(m) in
at most m steps, which leads to the following corollary.

Corollary 1. A COMMON(m) that publicly com-
putes a surjective function f : {0,1}* — R requires

at least l_c.)_g_:nl_RJ steps.

By specifying a particular function, we can sepa-
rate the PRIORITY and COMMON models, with the
separation varying as a function of the size of shared
memory.

Corollary 2. Simulating one step of a PRIORITY(m)
requires {1(log n -~ log m) steps on 8 COMMON(m). In
particular, when m = O(n®),e < 1, I(logn) steps are
required.

Proof of Corollary 2: Divide the input positions
into m groups of size [n/m] or |[n/m] +1, and consider
the function f whose value is an m-tuple (8,,43...8m)
such that a; = min{j|; is in i** group and z; = 1}.
This function can be computed in one step on a
PRIORITY(m); in fact, it can be viewed ([FRW])
as a special case of simulating a write step of a
PRIORITY(m). The function / has at least (2)™ pos-
sible values. Applying corollary 1 gives a lower bound
of N(logn — log m) for s COMMON(m). =

This implies that logarithmic time is required for
COMMON to simulate one step of PRIORITY when
the size of the shared memory is O(n¢).

We introduce some terminology to be used in
the proof of Theorem 1. Given a particular input,
the history of & compuiation throsgh step t is the
sequence of values {Ho, H,,...,H,}, where H; is the
contents of the shared memory cell after step 5. H,
is the initial content of M, which we can assume is
0. The tree of possible computations has nodes that
intuitively correspond to the different states that the
PRAM can be in during the course of the computation.
Formally, we associate with a node v at depth i a
history {Ho,Hy,...,H;}, and the set I, of all inputs
that generate this history through step i. An input is
said to reach node v if it is a member of I,. The children
of v correspond to all possible extensions to the history
at v; each child is labelled with a different extension
{Ho,Hy,...,Hi,His,}. The last entry in the history
associated with a leaf of the tree will be the function
value for all inputs that reach that leaf.

With each node v in the computation tree, we
can associate a formula f, in conjunctive normal form,

whose variables are the private input bits z;. This
formula will have the property that the set of inputs
I, associated with this node is exactly the set of inputs
that satisfy the formula f,. The construction of these
formulas will proceed by induction on the depth of a
node.

For the root r of the computation tree, we define
J+ to be the empty formula. Now suppose we have a
node w with associated history {H,, H,,... H,—,} and
associated formula f,,. Suppose, furthermore, that w
has a child v and that the history at v is the history
at w extended by the value H;. This means that for
some inputs in I,,, the content of M after the d*» step is
the value H;. The action of any processor at step ¢ for
an input in I, is completely determined by the history
through step ¢ —1 (the history associated with w, which
is the same for all inputs in I,)) and by the processor’s
private bit. Thus, it is possible to determine which
private bit values would cause processors to write H,.
At least one of this possibilities must occur; thus inputs
with history {Ho, Hy, ... He—y, H,} must satisfy f,, and
also a clause consisting of the OR of these possible bit
values. For example, if P, writes H; when z; = 1, and
Py does so when z3 = O, then the added clause would
be (z, v Zz). In two cases it is not necessary to add a
clause: when one processor P; writes regardless of what
his private bit is, and when no processor writes, i.e.,
Hy = H;_,. Since there is only one memory cell, each
processor reads its content during every read phase.
Therefore, we can assume, without loss of generality,
that processors write into the memory cell M only to
change its value.

All possible bit values that would have resulted
in something other than H, being written will result
in additional clauses. For example, if Ps would have
written H; different from H; if z3 = 1, we add the
clause (Z3), since it is known that z3 = 0. We can also
substitute these known values into other clauses. In our
example, a clause containing the literal z3 would have
that literal removed; a clause containing the literal 5
would be entirely removed.

We call a clause nonirivial if it contains more than
one literal. Note that at most one nontrivial clause is
added to f,, to create the formula at the child of w.
The following lemma provides an important bound on
the accumulation of nontrivial clauses.

Lemma 1. If a node w with g children has a formula
Juw with c nontrivial clauses, the formula at each child
of w has at most ¢ + 3 ~ ¢ nontrivial clauses.

51

Proof: If ¢ € 2 this follows from the construction,
as at most one noatrivial clause is added. Thus we
may assume ¢ > 2. There are ¢ possible extensions of
the computation history at this nede. One of them
could correspond to the case where no one writes
(Hy = Hy_y), but there are at least ¢ — 1 different
values that could be written at the next step. No
processor may write more than one of these values, for
otherwise that processor would always write, and those
two values would be the only possibilities. For each
value written, we can arbitrarily select one processor
that writes it; assume without loss of generality that -
for i = 1,2,...¢ — 1, value V; is written by P; at this
step if literal I; is true. (Note that [; is either z; or Z;.)

The formula f, implies that at most one of the
literals Iy,l3...0,_ is true. Otherwise, there would
exist an input in [, for which two different processors
would attempt to simultaneously write different values,
a violation of the COMMON model.

Now coasider the formula f, at the child v of
w that corresponds to V,_, being written. This is
created by first adjoining one nontrivial clause to f, and
also some trivial clauses as 3 result of the knowledge
that {I;,l3,...,0,_3} are all false. This knowledge also
results in some substitutions. Let 8 = (8y,03,...0,)
be an input in I, which makes l,_, true. § satisles /,,,
since I, is a subset of I, and makes {I,,l;,...,1,-2}
false.

For j = 1...¢ — 2 let A’ be the input obtained
from 8 by complementing J; (i.e., 7 makes both I, and
lg—1 true). The input §7 cannot satisfy f,,, because it
makes two literals in {l,,{3,...,l4-3} true. Let C; be
some clause in f,, that 37 does not satisfy. Since there
exists an input in J,, which makes [; true, and another
that makes I; false, C; must be nontrivial. The only
difference between g and f7 is in the value of the jt*
bit. Thus C; must contain the literal ;. and I} = z;
otherwise. Furthermore, I is the only literal in C; that
B makes true.

We can now see that for 1 < i < § < ¢ — 2, the
clauses C; and C; are distinct. This follows from the
fact that §° satisfies C; (it contains the literal I}, and
f° makes [; false) but not C;. Consider the creation of
Jv. The substitutions that follow from the knowledge
that {I,,05,...1,_3} are false will remove the nontrivial
clauses C;. Thus f, can have at most ¢~ (¢~ 2) +1
noutrivial clauses, as required. A similar argument
works for the other children of v; in fact, the child that -
corresponds to the case of no one writing will have at

most ¢ + 2 — ¢ nontrivial clauses. ®

The importance of lemma 1 is that, although we
cannot bound the degree of a node in the computa-
tion tree, high degree requires accumulating and then
destroying nontrivial clauses, and only one nontrivial
clause is accumulated per level. We make this idea
more precise in the following fashion. Let L(s,h) be
the maximum number of leaves in a subtree of height
h whose root formula has s clauses.

Lemma 3. L(s,h) < (3 + o/h)h.
L(0,h) < 3k,

In particular,

Prooft By lemma 1, we have

L(s,1)<s+3
L(a, k) < 251:123:“{4 -L{s+3-¢,h~1)}

This can be shown by induction to satisfy the statement
of the lemma. ®

Theorem 1 then follows from the fact that each leaf
of the computation tree can be labelled with at most
one function value. All function values must appear,
so the tree has at least |S| leaves. By Lemma 2, a
computation tree of height A has at most 3* leaves.

We can extend this result, and obtain a theorem
similar to Theorem 1 for probabilistic algorithms. In
the probabilistic COMMON model, each processor is
allowed to make random choices to determine its be-
haviour at each step. We insist that no sequence of
choices results in two processors atiempting to write
different values into the same cell at the same time.
Theorem 2 gives a bound on the expected number of
steps to compute a function in terms of the size of its
range.

Theorem 2. In the probabilistic COMMON(1) model,
any algorithm that publicly computes a surjective func-
tion f : {0,1}* — R has an expected running time of
at least |log, |R|} steps on some input.

As in Corollary 2, we obtain a logarithmic sepa-
ration between the probabilistic COMMON(m) model
and the deterministic PRIORITY(m) model, for m =
O(n®) where ¢ < 1. This separation can also be shown
between probabilistic COMMON and models weaker
than PRIORITY, such as the ARBITRARY model de-
fined in [FRW). For these cases, randomization does not
help the COMMON model to simulate more powerful
models.

52

Theorem 2 is proved using the following two lem-
mas.

Lernma 3. The sum of the root-leaf distances to any
set S of leaves in a tree of possible computations is at
least |S]|logs |S|).

Proof: Let us define a tree skeleton to be a tree
whose nodes can be Jabelled with nonnegative integers,
such that the root is labelled with zero, and any node
labelled with s that has g children has each child
labelled no higher than s + 3 — g. Lemma 2 is actually
a statement about tree skeletons; any computation tree
leads in a natural way to a tree skeleton, where the label
of a node is just the number of nontrivial clauses in its
formula. Let S be our set of chosen leaves, and Q be
the sum of the root-leaf distances. We can prune away
everything but the root-leaf paths to leaves in S. This
still leaves a tree skeleton, for after deleting a node, the
labelling at its brothers is still valid. The pruning also
leaves Q unchanged.

We can then transform the tree skeleton in a
way that will never increase the sum of the root-leaf
distances to leaves in S. Suppose we can find two leaves
v} and vy, where v; is at depth ¢, and t; — ¢, > 2. We
add two children v, v; to vy, label them with the same
number as v;, and delete vz. We remove v;,v; from S
and add v}, v;.

Continuing in this fashion, we can obtain a tree
skeleton and a set S’ of leaves, where |S| = |S], and
all leaves in S’ are at depth ¢ or ¢t — 1. Furthermore,
the sum of root-leaf distances to leaves in S’ is less
than or equal to Q. But Lemma 2 says that ¢ is at
least [logs |S|], and the result follows. =

Lemma 4. Let Ty be the expected running time for a
given probabilistic algorithm solving problem P, max-
imired over all possible inputs. Let T; be the average
running time for a given input distribution, minimized
over all possible deterministic algorithms to solve P.
Then T, 2 T;.

Lemma 4 was stated by Yao ([Y]) in a stronger
form; the weak form here can be proved in a few
lines. We can consider a probabilistic algorithm as a
probabilistic distribution of deterministic algorithms.
Let A be our set of deterministic algorithms, and
I our set of inputs. Let r[A4;, I,] be the running
time of algorithm A; on input I;. Suppose our given
probabilistic algorithm chooses to run deterministic
algorithm A; with probability p;, and that our given

input distribution gives probability g, to I,.

T, = max{ E pirlAi, 1]}
I;€r A€A

>34) pirlai I

I;El A€A

=Y pi Y arlAa)

A;€A L€l

> min {quf[Ai,Ij]}
A;€4 1;€1

=T1 L]

We wish to bound T} from below. By Lemma 4 it
suffices to bound T; from below. To do this, we must
specify an input distribution that results in a large
average running time for any algorithm to compute f.
This input distribution must depend on f, but not on a
particular program. For each possible value of f, choose
one input that results in that value. This selects aset of
|R| inputs; our chosen distribution will give probability
1/|R| to each of these.

To bound T; from below for this distribution,
consider the tree of possible cquputations associated
with some deterministic algorithm. Our set of inputs
reaches some set of |R| leaves. Then the expected
running time on the given input distribution is the
average depth of these leaves, which by Lemma 3 is
at least |log; |R|] steps. This proves Theorem 2.

Upper Bounds for Infinite Memory

Let N = {1,2,...} be the set of positive integers.
The Element Distinctness Problem on n variables is the
problem of computing the function ED, : N* — {0,1},
where EDp(2y,...,2,) = 0 if and only if z; = z, for
some i # k.

We first show how to compute ED, in constant
time on a PRIORITY(o0). In fact, this algoritbm also
works on weaker models, such as the ARBITRARY and
ETHERNET models mentioned in the introduction.
We assume that the output appears in a special shared
memory cell called answer.

ALGORITHM 1
1) Processor P, writes 1 into answer.
2) For all i, processor P; writes i into memory cell z;.
3) For all i, processor P; reads memory cell z;.
4) For all i, if processor P; did not read 7, then it
writes 0 into answer.
This algorithm uses three steps to compute ED,,.

53

To determine that EDn(24,...,2,) = 1, an algo-
rithm must verify that all the inequalities z; # z, are
true. We now consider two algorithms for computing
ED, on a COMMON(c0) which collect this informa-
tion in different ways. In the next section, we show that
these are essentially the only ways this information can
be collected. Both algorithms require O(logn) steps;
to simplify their presentation, we assume n is a power
of 2.

The idea of ALGORITHM 2 is that the processors
can communicate the values of their input variables to
a single processor which then does all of the necessary
comparisons locally. The pattern of communication
among processors is a binary tree.

ALGORITHM 2

Recursively, processors Py, ..., Px accumulate the
values of the variables z,,...,z,.

1) If n > 1 then, in parallel,

1.1) Processors P,..., P, 3 accumulate the values
of the variables z,,..., 2, /;.

1.2) Processors P(n/3)41,.--1Pa 8ccumulate the
values of the variables z(a/2)41,. .., 2a.
2) Processor P, /a computes an encoding of z(, /3)41,
..., 2 and writes it into memory cell 1.

3) Processor P, reads memory cell 1. It has now
accumulated the values of {z;,...,2.}.

4) Processor P, computes ED,(z;,..., 2,) and writes
it into answer.

The computational power of the processors allows
each processor to compute encodings and decodings
in one step. Once it has accumulated all inputs, a
processor can compute the output in one step. Thus
ALGORITHM 2 uses Oflogn) steps. In fact, this
algorithm shows that every function f : N®* — N
can be computed in O(logn) steps. A straightforward
analysis shows that, at the t** execution of step 3,
n2'~3 new inequalities are verified. Notice that this
number increases as the computation progresses.

The next algorithm does not use any of the com-
putational power of the processors, but it uses the
concurrent write ability of COMMON(co) in a funda-
mental way. Essentially, we divide the variables into
two groups, check that the groups have no element in
common, and recursively check element distinctness for
these two groups in parallel. '

ALGORITHM 3

1) Processor P; writes 1 into answer. If n > 1,
continue,

2) For 1 < i < n/2, processor P; writes 1 into cell z;.
3) For (n/2) + 1 < i < n, processor P; reads cell z;
and, if its value is 1, writes 0 into answer.
4) For 1 < i < n, processor P; reads answer.
5) If answer # O then, in parallel,
5.1) Processors Py,...,Ppyy compute ED, (2,
N
5.2) Processors P(n/3)41s+s Pa
EDyj3(2(n/2)411- -1 2a)-
This algorithm also uses O(log n) steps. But, in
this case, the number of new inequalities verified in one

step decreases as the computation proceeds; at the *»
3
n

+1
In the lower bozund proof presented in the mext
section, we distinguish between information received
via direct storage access (as in ALGORITHM 2) and
via indirect storage access (as in ALGORITHM 3).

A Lower Bound for COMMON ()

In this section we prove the following result.

compute

execution of step 3, inequalities are verified.

Theorem 8. Computing ED, on a COMMON(c0)
requires 2(logloglogn) steps.

Together with ALGORITHM 1 this implies an
((logloglog(n)) separation between the COMMON
and PRIORITY models with infinite memory.

In order to prove this theorem, we first introduce
a variant of the COMMON(co) which we call the k-
read COMMON(oc0). This model differs from the
COMMON(c0) in two respects. Firstly, no processor
may write into a cell in which some processor has
already written. This restriction is essential for our
lower bound proof. In compensation, in the read phase
of each step of a k-read COMMON(0), each processor
is allowed to read up to k memory cells in parallel,
instead of just one. This will guarantee that, for large
enough k, an k-read COMMON(co) is not weaker than
a COMMON(co).

Lemma 5. T steps of s COMMON(cc) can be simu-
lated by a T-read COMMON(oc) in T steps.

Proof: Let C be 8 COMMON(o0) executing T
steps. We modify C to obtain a T-read COMMON(oo)
C* as follows. We subdivide the infinite shared memory
of C into T infinite parts. If a processor of C writes
to cell w at step ¢, then, at step ¢, the corresponding

54

processor of C* writes to the w'? cell of the #** part of
memory. This ensures that no processor writes into a
previously accessed cell. When & processor of C reads
cell r, the corresponding processor of C* reads the r'h
cell of each part of the shared memory. Because each
processor of C* reads (among other things) the value
read by the corresponding processor of M, we havc
shown that C* simulates M. @

Theorem 3 now follows directly from the next
lemma, by ta’ ing & to be loglogn.

Lemma 6. An k-read COMMON() requires
N(logloglog n — loglog k) steps to compute ED,.

Prooft This proof is an adversary argument. As
the computation proceeds, the adversary fixes the value
of certain variables and maintains a set of allowed
inputs such that, after each step, each processor only
knows one live variable (i.e. a variable whose value has
not been fixed). The precise meaning of the statement
“processor P; only knows z;, after step {” is that the
configuration of P; after step £ is the same for all
allowable inputs with the same value of z,,.

Let [n] = (1,...,n}. Consider the situation ar-
ranged by the adversary after step ¢ of some algorithm.
We use V; C [n] to denote the set of indices of live vari- -
ables, and [V;]? to denote the set of all unordered pairs
of elements from V;. The set E; C [V;]? describes those
pairs of live variables which the adversary has declared
to be distinct. The simple graph G¢ = (V;, E;) with
vertex set V; and edge set E; is called the distinctness
graph. Live variables are restricted, by the adversary,
to take values from an infinite subset S; C N, The
indexed set F; = {fi|i € [n) - Vi}, describes the ad-
versary’s assignment of values to the fixed variables.
These values are distinct elements of N - S,.

The set I(V;, E¢, Si, Ft) of allowed inputs consists
of all n-tuples (by, ..., b,) satistying the following prop-
erties:

1) b; = f; for all i € [n] ~ V4,

2) b; € S; for all i € V¢, and

3) b; # b; for all i, j € V; with {i,j} € E..

For two disjoint sets A and B, let K(A, B) denote
the complete bipartite graph on A and B. Let G =
(V,E) be a simple graph. A family C = {(A, B,)|¢ =
1,...,r} with A, N B, = ¢ is a bipartite cover of
G if every edge {i,j} € E belongs to some graph
K(A¢, By). The size 8(C) of C is T;_,(l4c] + |B¢|).
The bipartite complexity of G is defined to be A(G) =
min{s(C)|C is a bipartite cover of G}. For the com-

plete graph on ¢ vertices, K, the bipartite complexity
is known.

Theorem 4. ([H],[P]) A(X,) 2 qloggq.

We shall measure the “complexity” of a set of
allowable inputs in terms of the number of live variables
and the bipartite complexity of the distinctness graph.

Now we are ready to formulate the main lemma.

Main Lemma. Assume that, before step t, the set
of allowed inputs is I(Vy_,,Ey_y, Si—,, F;—,) and that
each processor P; only knows one variable with in-
dex in Vi_,, namely z;. Then, the adversary can
define a new set of allowed inputs I(Vy, By, Si, Fy) C
I(Vi=1,Et~1,St—1,Fe—y) such that, after step t, the
following properties are satisfied. (Recall that each pro-
cessor can read k cells in a step.)
)
1) Vi CVioy and |V| 2 |T’-¢l__V:|—+'2;l_l;
2) Each processor P; knows exactly one varisble with
index in V4.
3) S: € S;—; and S; is infinite.
4) E, 2 B n[Vi]? and 8(G:) € B(Gi—1) +n(t+k),
where Gy = (Vi, Ey).
5) iy CF, CN -5,

We now complete the proof of lemma 6. Before
the computation starts (i.e. after step 0), Vo, = [n],
Eo = ¢, So = N, and j; = 1 satisfy the conditions of the
main lemma. Suppose that the computation terminates
after T steps. Then Gr = K|vy|, the complete graph
on Vr; otherwise, there would be two allowed inputs
with different images under ED, between which the
algorithm could not distinguish. Thus, by Theorem 4,
A(GT) = [Vr|log(|VT|).
Now, from condition 4, we get that §(Gr) =
MKIVTI) <nT(k+T).
SincellVgl < n, Iit ll;)llows from condition 1 that
Vil Vi
Wil 2 Vel + 2nk 2 3ok
Vol? 3n
(31,_,‘9)!21'-1 and |Vr| 2 ——(Sk)’r .
Combining these inequalities, we get

By induction, this implies

Vr| 2

nT(k +T) > (3:;'?10;((3:')‘7,)

Thus T = Q(logloglogn — loglogk). =

To prove the main lemma, we first state three
results — two “Ramsey like” and one graph-theoretical.
They will be extensively used in the proof.

Lemma 7. Let f : W — D be any function defined
on an infinite domain W. Then there exists an infinite
subset W' C W such that f|w. is either constant or
1-1. In particular, if D is finite, then f|yw is constant.

Lemma8. Let f,g: W — D be two functions defined
on an infinite domain W. Then there exists an infinite
subset W' C W such that flw+ and g|w: are either
identical or have disjoint ranges.

Lemma 9 . Let H(U,L) be a finite graph, and let

a(H) denote the size Iol la’ maximum independent set in
U

H. Then a(H) > 1+ 2] °

Lemma 7 can be found in | GRS, p. 112}, Lemma
8 follows directly from Lemma 7, and Lemma 9 can be
found in [B p. 282).

Proof of the main lemma : Consider the sequence
of writes performed by some processor P; up to and
including step ¢. In step p < ¢, it decides whether or not
to write according to some predicate df. If it writes, it
writes a value v} to a cell w?. Now consider the k reads
P; executes in step t. It reads from cells r; ;,..., 7.
Since P; only knows z;,, it follows that d?,v!,w?,
and r,, are functions of only this one variable. Thus
d?: Sy — {0,1} and !, w?,r;p : Si—y — N. Note
that the reads are executed in parallel. Therefore no
processor can use the information obtained in one read
to determine the other read functions it uses in this
step.

Our adversary simplifies this structure by restrict-
ing the set of allowed inputs.

Clalm 1. Without loss of generality, at every step
p < t, each processor cither writes for all allowed inputs
or does not write for any allowed input.

Proof: Apply Lemma 7 successively to d for
i =1...,nand p = 1,...,¢ to obtain an infi-
nite subset S' C S;_;. The claim follows when the
adversary restricts the set of allowed inputs to be
I(Vl—th-h s"n—l)' s

We define an address function as any read function
ri,n or any write function w! which is actually used.

Claim 2. Without loss of generality, every address
fuaction is either constant or 1-1.

Prooft Apply Lemma 7 successively to all address
functions. The result is an infinite subset S” C S’ on
which every address function is either constant or 1-1.
The adversary restricts the set of allowed inputs to be
I{Vee1,Et—1,5", Fecy).

Claim 8. Without loss of generalily, if P; and P,
access the same cell then they use the same address
function.

Proof; Apply Lemma 8 successively to every
pair of address functions. The result is an infinite
subset S C S” such that every pair of address
functions (which we now consider to be functions on
S") are either identical or have disjoint ranges. The
adversary therefore restricts the set of allowed inputs
to be I(Vt-l,Eg_hSm, Fg-l). []

The next observation depends on the the fact that
we are using an k-read COMMON(oc0) and is the only
part of the proof which does so.

Clalm 4. Without loss of generality, if P; and P; know
the same variable (i.e. j; = j,), then wf # rq) for all
p=1,....,tandh =1,...,k. Inparticular, w' # r; ».)

Proof: We may assume that every processor has
copies of the programs of all other processors. Then P,
~ can compute w!(z;,), the address P; writes to in step
p, and v¥(z,;), the value P; writes at that step. By the
definition of an k-read COMMON(oc), all processors
writing into this cell at time p must write the same
value and, thereafter, that value is never changed. Thus
cell wf(z;,) will still contain the value vP(z;,) when P,
reads it. Since P, can compute this value, it does not
bave to read cell w’(z;,). (Note that this argument is
completely fallacious for the PRIORITY(c0), as shown
in ALGORITHM1.) =

Equipped with these two claims, our adversary is
ready to continue. First, the 1-1 address functions
are handled by determining a graph of low bipartite
complexity and adding its edges to the distinctness
graph. Following this, the adversary deals with the
constant address functions by fixing some of the live
variables.
~ 1-1 address functions:

Suppose that g,,...,g, are the i-1 address func-
tions. For each g,, define

Ae = {g € Viilzg
i € [n] and p€ [t]}

B, = {q € V|2 =
i € [n] and h € [K]}.

Intuitively, g € A, if some processor that knows z,
uses g, as a write function. Similarly, ¢ € B, if some
processor that knows z, uses g, as its read function.

As a corollary to claim 4, we get the following
result.

= z;, and wf = g, for some

Z;5;

and r;) = g, for some

56

Claim 5. A,nB, = ¢.

Since every processor can contribute at most ¢
times to the A's and at most k times to the B's,
YizilAd +|Be] € (m+ t)n. Let G' = (Vi y, E)
be the graph with £’ = {J;_, K(A¢, Be) and let G” =
(Vi-1,E") be the graph with E” = E,_, UE'. Then
B(G') < (k + t)n. This implies the following result.

Clalm 6. A(G") < 8(G) + (k + t)n.

Claim 7. ForinputsinI(Vi_,, E",S™,F,~1), we may
assume, without loss of generality, that no processor
uses a 1-1 read function in step t.

Proof: By claims 3 and 4, every processor that
uses a 1-1 read function reads the initial contents of the
cell, namely ’0’. Thus the read imparts no information
about any input known to be in I(V,—,E", ", F,_,).
Constant address functions:

From this point on, we assume that the set of
allowed inputs is I(Vi_,, E", S", F,_,).

Clalm 8. If wis a constant address function, then the

contents of cell w depends on at most one variable from
Viar.

Prooft To prove this claim we do not need any
of the properties of the k-read COMMON(cc). In
fact, we can assume that, for cells which are accessed
by constant address functions, the PRIORITY write
conflict resolution scheme is used. Furthermore we
can allow these cells to be accessed during more than
one step. Consider the last step p < ¢ in which cell
w was accessed for writing. Let P; be the processor
with lowest index writing into cell w in step p. By
our construction, P; always writes to cell w at step p.
Therefore the contents of cell w can only depend on z;;.
-

Thus we can assume that all constant address
functions used up to and including step ¢ are different.

Consider the graph H(V,.,,L), where {i,k} € L
if some processor knowing »; uses a constant read
function w in step ¢, and the contents of w depends
on z, (i.e. after step ¢ this processor "knows™ both
z; and z,). Note that |L| € nk, the total number of
reads in step £. Apply Lemma 9 to this graph to obtain
an indepelndenlt’ set of vertices Vi C Vi._). such that

Vi1

Vil 2 e
allowable inputs to be I(V;, E”,S"" Fi_,) and we get
the following result.

The adversary restricts the set of

Clalm 0. After step t, every processor knows at most
one variable in V;.

We now complete the proof of the main lemma.
Those processors which do not know any variable in V;
can be assigned an arbitrary one. The adversary fixes
the variables z; with ¢ € V;.; — V; and assigns them
distinct values f; € S''. These values are added to
Fi—y to obtain F; and are removed from S’ to obtain
S:. Finally let G; = (Vi, E¢) be the subgraph of G"
induced by V;. Then B3(G¢) < 8(G"). =

A Lower Bound for PRIORITY ()

In this section we apply a simplified version of the
proof method from the last section to obtain a lower
bound for PRIORITY (o).

Theorem §. A PRIORITY(x) requires f}(loglogn)
steps to compute the maximum of o numbers.

Proof: In contrast to solving the element distinct-
ness problem, computing the maximum of n numbers
does not become easier if these numbers are known to
be distinct. Therefore, we will assume that they are dis-
tinct, because this will considerably simplify the treat-
ment of 1-1 address functions. Essentially, in the con-
text of the previous lower bound proof, such functions
are always useless.

More formally, let M be a PRIORITY(oco) which
finds the maximum of n numbers. Let V;, S;, and F;
be defined as in the previous section. However, the
adversary’s set of allowed inputs is now defined to be
J{Vi, S, Fe) = I(Vi, V32, 5t, Ft). Specifically, all input
values are required to be distinct.

Lemma 10. Assume that, before step ¢, the set of
allowed inputs is J(Vi_y, St—1,Fi-1) and that each
processor only knows one variable with index in V,_,.
. Then the adversary can define a new set of allowed

inputs J(V4, 81, F,) such that after step ¢ the following
properties are satisfled.

Ve-)?
Vici| +2n’
2) Each processor knows only one variable with index
in V,.
3) S¢ C S¢—1 and S; is infinite, and
4) FL,CFiCN-5,.
It M requires T steps then |Vr| = 1; otherwise
no processor can determine the output. From Lemma

1) Vi € Vey and Vi 2

10 and the fact that [Vo| = n, we can derive T =
fI(loglogn). This concludes the proof of Theorem 3.
[

Proof of lemma 10 : Consider the proof of the
main lemma for k = 1. It is sufficient to show that for
J(Vi, Si, Fy) the analogues of claim 7 (which takes care
of 1-1 address functions) and claim 9 (which takes care
of constant address functions) hold.

The proof of claim 9 does not use the properties
of the k-read COMMON(c0). Since J(V;, S, F;) C
I(Vy, Ey, S, Ft), the analogous result for the PRIOR-
ITY (o0) is true.

However, claim' 5 is derived from claim 2 which,
in turn, depends on the properties of the k-read COM-
MON(co). Fortunately, the analogue of claim 7 fol-
lows directly from claim 3, since all input variables
are assumed to have distinct values. Because the
proof of claim 3 does not use the properties of the
k-read COMMON(c0), its analogue also holds for the
PRIORITY(cc). =

References

B] Berge, C. Graphs and Hypergraphs, North-
Holland, 1973.

(CD] Cook, S.A., and Dwork, C. Bounds on the
Time for Parallel RAMs to Compute Simple
Functions, Proc. 14'* Apnual ACM Sympo-
sium on Theory of Computing, 1982, pp.231-
233.

[FRW] Fich, F.E., Ragde, P.L., and Wigderson, A.
Relations Between Concurrent-Write Models
of Paralle] Computation. Proc. 3'¢ Annual
ACM Symposium on Principles of Distibuted
Computing, 1984, pp. 179-189.

[FW] Fortune,S., and Wyllie, J. Parallelism in Ran-
dom Access Machines, Proc. 10'* Annual
ACM Symposium on Theory of Computing,
1978, pp. 114-118,

[Ga] Galil, Z. Optimal Parallel Algorithms for String
Matching, Proc. 16‘* Annual ACM Sympo-

sium on Theory of Computing, 1984, pp. 240-
248.

[Go] Goldschlager, L. A Unified Approach to Mod-
els of Synchronous Paralle] Machines, Journal
of the ACM, vol. 29, no. 4, 1982, pp. 1073-
1088.

57

[GRS)

[Gr]

[Ha)

[KMR|

[Ku]

[MR|

[Pi]

[sV]

[TV]

Vi

[Vw]

Y]

Graham, R.L., Rothschild, B.L., and Spencer,
J.H. Ramsey Theory, Wiley and Sons, 1980.

Greenberg, A. Efficient Algorithms for Multi-
ple Access Channels, Ph.D Thesis, University
of Washington, 1983.

Hansel, G. Nombre minimal de contacts de
fermature pessecaires pour realiser une fone-
tion booleenne symetrique de n variables, C. R
Acad. Sci. Paris 258,1964, pp. 6037-6040.

Kannan, R., Miller, G., and Rudolph, L. Sub-
linear Parallel Algorithm for Computing the
Greatest Common Divisor of Two Integers,
Proc. 25'* Annual Symposium on Foundations
of Computer Science, 1984, pp. 7-11.

Kucera, L. Parallel Computation and Con-
flicts i Memory Access, Information Process-
ing Letters, vol. 14, no. 2, 1982, pp. 93-96.

Meyer Auf der Heide, F., and Reischuk, R. On
the Limits to Speed Up Parallel Machines by
Large Hardware and Unbouaded Communica-
tion, Proc. 25'* Apnual Symposium on Foun-
dations of Computer Science, 1984, pp. 56-64.

Pippenger, N. An Information-Theoretic Me-
thod in Combinatorial Theory, Journal of Com-
binatorial Theory, vol. 23, no. 1, July 1977,
pp. 99-104.

Shiloach, Y., and Vishkin, U. Finding The
Maximum, Merging and Sorting On Parallel
Models of Computation, J.Alg, v.2, 1981, pp.
88-102.

Tarjan, R.E, Vishkin, U. Finding Biconnected
Components and Computing Tree Functions in
Logarithmic Parallel Time, Proc. 25'® Annual
Symposium on Foundations of Computer Sci-
ence, 1984, pp. 12-20.

Valiant, L. Parallelism in Computation Prob-
lems, SIAM J. Comput., vol. 4, no. 8, 1975,
pp. 348-355.

Vishkin, U., and Wigderson, A. Trade-offs Be-
tween Depth and Width in Parallel Computa-
tion, to appear in SIAM J. Computing.

Yao, A. Probabilistic Computations: Towards
a Unified Measure of Complexity, Proc. 18'4
Annual Symposium on Foundations of Com-
puter Science, 1977, pp.222-227.

58

