
One, Two, Three . . . Infinity:

Lower Bounds for Parallel Computation

Faith E. Fkb
University of Washington

Ekiedbelm Meyer auf der Heidc

IBM Research, San Jose

Prabbakar Ragde

University of California at Berkeley

A vi Wigderson

IBM Research, San Jose

ABSTRACT factor of n(loglog Logn).

In this paper we compare the power of the two
most commonly used concurrent-write models of paral-
lel computation, the COMMON PRAM and the PRI-
ORITY PRAM. These models d%er in the way they re-
solve write conflicts. If several processors want to write
into the same shared memory cell at the same time,
in the COMMON model they have to write the same
value. In the PRIORITY model, they may attempt to
write different values; the processor with smallest index
succeeds.

We develop new proof techniques to obtain these
results. The technique used for the second lower bound
is strong enough to establish the first tight time bounds
for the PRIORITY model, which is the strongest paral-
lel computation model. We show that finding the max-
imum of n numbers requires 8(log log u) steps, general-
iziig a result of Valiant for parallel computation trees.

Introduction

We consider PRAM’s with n processors, each hav-
ing arbitrary computational power. We provide the
Brst separation results between these two models in two
extreme cases: when the size m of the shared memory
is small (m 5 nc, c < I), and when it is infinite.

In the cue of small memory, the PRIORITY
model can be faster than the COMMON model by a
factor of 9(logn), and this lower bound holds even if
the COMMON model is probabilistic. In the case of
infinite memorv, the gap between the models can be a

The parallel random access machine (PRAM) is
an important and widely used model of parallel com-
putation. It consists of a set of n processors Pt,. . . Pm,
each of which is a random access machine. The pro-
cessors communicate via a shared memory, whose size
is called the commrnicution widfA [VW]. The PRAM
is synchronous. It computes a function t : C* -) C, if
initially each processor contains one input value, and at
the end of the computation the function vslne is stored
in the first shared memory cell.

Support for this reseucb wu provided by am IBM Faculty

Developmeat Award, NSF Grant MCS8402676, DARPA Con.

tract No. NOOOS942-C-0236, ao NSERC postgraduate schol-

arship, and the University of Wamhhgton Graduate School Rc

soarch Fhod.

pcrrnission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. TO COPY
otherwise, or to republish, requires a fee and/or specific permission.

0 1985 ACM O-89791-151-2/85/005/0048 $00.75

One cycle of computation consists of three phases.
In the compute phase, each processor may perform an
arbitrary amount of computation. In the write phase,
each processor may write into an arbitrary shared
memory cell. In the read phase, each processor rnw
read an arbitrary shared memory cell.

In the write phw it may happen that many
processors try to access the same cell, that is, a write
conflict occurs. When one restricts the model in a way
that such simultaneous writes are forbidden, one gets
the Exclusive-Write model [FW]. This model is very

48

weak. In [CD], Cook and Dwork proved an fl(log n)
lower bound tar computing the n-way OR function in
this model. This function can be computed in depth 1
by an unbounded fan-in circuit and also in constant
time by all other PRAM models considered in this
paper, even when they only have one shared memory
cell.

If simultaneous writes are not forbidden, the fol-
lowing two write conflict resolutions are most com-
monly used in literature.

l COMMON: If several processors want to write
into the same memory cell at the same time, they
have to write a common value [Ku).

l PRIORITY: If several processors want to write
into the same memory cell at the same time, the
one with smallest index wins (Go).

Both models are widely used for designing par-
allel algorithms (For example, (SV], [Gal, and [KR]
use COMMON; [VT] uses PRIORITY.). There are
also some lower bounds known for concurrent-write
PRAM’s (mentioned below), but the proof techniques
are not sensitive enough to separate these two models.

Simultaneous access to the same cell on the COM-
MON model cau be easily implemented by depth 1 OR
circuits. This is so easy because the main part of the
conflict resolution is done by the program. The pro-
gram has to make sure that different processors never
try to simultaneously write different values in the same
cell. In the PRIORITY model, however, write con-
flicts are resolved entirely by the machine. The extra
hardware required to implement PRIORITY conflict-
resolution leads one to consider simulating this model
by the COMMON model.

It is known that one step of the PRIORITY model
can be simulated ln constant time by the COMMON
model, if we square the number of processors and
sufllciently enlarge the shared memory [Ku]. However,
in order to understand the dserence in the power in
the two conflict resolution schemes, we restrict both
models to have the same number n of processors and
the same communication width.

Let COMMON(m) and PRIORITY(m) denote the
respective models with m shared memory cells. The
main results of this paper are two lower bounds on
the common model, one on COMMON(l) and one on
COMbION(Th ese lower bounds are sensitive to
the COMMON conflict resolution scheme, so that we
can use them to separate COMMON from PRIORITY.

Let f : (O,l]” + S be a surjective function.

Then a COMMON(l) requires at least iog,(IS]) steps
to compute I. Even if the machine is probabilistic,
the same lower bound holds for the expected number
of steps. This result implies that it requires at least
log, n steps to compute the smallest index of an input
variable with value 1. Thus we get a log, n separation
between COMMON(l) and PRIORITY(l), because
this function can easily be computed by PRIORITY (1)
in one step. The result can be generalked to obtain
an Q(logn) separation between COMMON(m) and
PRIORITY(m), if m 5 d, c < 1.

The second result is on the time required by
COMMON(oo) to solve the element distinctness prob-
lem, that is, to decide whether all n integer inputs are
distinct. We prove a lower bound of n(logloglogn)
steps. This implies an Q(logloglogn) separation be-
tween COMMON(co) and PRIOR.ITY(oo), because el-
ement distinctness can be solved in constant time on
PRIORITY@).

Actually, our results extend to separating the
COMMON model from weaker models than PRIOR-
ITY. More specifically, we refer to the ARBITRARY
[SV] and ETHERNET [Gr) models. Both separation
results extend to these models. In fact, we can demon-
strate functions that can be computed in time a fae-
tor of O(logn) faster on a deterministic ETHERNET
model than on a probabilistic COMMON model. This
is important, since ETHERNET becomes more power-
ful with randomization allowed.

The proof of the first lower bound is based on a
new technique to handle the problem that - in con-
trast to the ExcIusive-Write model - the “information
fan-in” on the COMMON model may be arbitrarily
large. Therefore the well-known information theory ar
guments used in [CD] do not apply in this case.

The difficulty in proving the second lower bound is
that, due to the inlinite shared memory, processors may
use indirect addressing in very subtle ways. We handle
differently the information that a processor acquires by
direct and indirect addressing. In the second case, we
use in a crucial way the fact that in the COMMON
model, it is useless for a processor to read a cell it has
just written into. Note that in the PRIORITY model,
sud behaviour is extremely usefn).

Surprisingly, a simplified version of this proof tech-
nique yields a lower bound for PRIORITY(oo). Pre-
viously known lower bounds for PRIORITY impose
restrictions either on the shared memory size ([VW))
or on the arithmetic power of the processors ([MR],

49

[FSS]). We show an fl(loglogn) lower bound for Bnd-
ing the maximum of n numbers on PRIORITY. This
generalizes the result of Valiant [V] for parallel compar-
ison trees. By an upper bound of Shiloacb and Vishkin
ISV], our result provides the 5)st tight1 time bound on
the PRIORITY model.

use in a more general setting. We note that a COM-
MON(1) can simulate one step of a COMMON(m) in
at most m si;eps, which leads to the following cotollaty.

Corollary 1. A COhfMON(m) tbst publicly com-
putes a subjective iunction ! : {O,l}” * R requires

A Lower Bound for Small Memory at lead !ZEG! stem .
m -

Consider a COMMON(l) with tu processors, PI
through P,,. The processors communicate through one
cell M of shared memory, which cau hold arbitrm
ily large values. We say such a machine computes a
surjective function / : {O,l}” + R for some range
set R if at the beginning of the computation, Pi has
the ith argument (denoted by Zi) in its local mem-
ory and, at the end of the computation, the value of

I(Zl,ZS... z,) appears in M. A particular vector of ar-
guments (21,22,. . . z,) is called an input. The variable
26 is called Pi’s private bit.

By specifying a particular function, we can sepa-
rate the PRIORITY and COMMON models, with the
separation varying as a function of the size of shared
memory.

Corollary 2. Simulating one step ofs PRIORITY(m)
requires n(log n - logm) steps on a COMMON(m). In
particular, wben m = O(d),c < 1, fl(logn) steps are
mquired.

Other ways to de5ne the computation of a function
appear in the literature. For example, in [VW] the
arguments are located in read-only shared memory, one
argument per cell. Our definition can be thought of
as public comprtation, since the answer must appear
in shared memory. It is sometimes useful to de5ne
ptiuote computation, in which each processor is required
compute a private answer bit ai. For the step-by
step simulation of a PRIORITY (1) by a COMMON(l)
appearing in IFRW], for example, Zi would be 1 if Pi
wished to write, and oi = 1 if and only if i is the
processor of least index with Zi = 1. A good lower
bound for public computation can lead to a good lower
bound for private computation if (01, al,. . .a,) can be
made public in a small number of steps. This is the case
with the simulation example, as the unique processor
with ai = 1 can take one more step and write i into M.

Proof of Corollary 2: Divide the input positions
into m groups of size [n/m j or [n/mj + 1, and consider
the function / whose value is an m-tuple (ai,ua.. .a”)
SU& that ai = min{jlj is in I?* group and zj = 1).
This function can be computed in one step on a
PR.IORITY(m); in fact, it can be viewed ([FRW])
as a special c89e of simulating a write step of a
PRIORITY(m). The function j has at least (E)” pas-
sible values. Applying corollary 1 gives a lower bound
of Q(logn - logm) for a COMMON(m). l

This implies that logarithmic time is required for
COMMON to simulate one step of PRIORITY when
the size of the shared memory is O(d).

The folkwing theorem is the main result of this
section, giving a lower bound on the number of steps
required to publicly compute any function. The lower
bound depends only on the number of function values
that are possible.

Theorem 1. In the COMMoIv(1) model, any alp
ritbm t&at publicly computes a surjectim tuoction t :
{O,l)” -, R requires at least logs 1RI steps on dome
iupu t.

We introduce some terminology to be used in
the proof of Theorem 1. Given a particular input,
the history of a comprtation through rtep t is the
sequence of values {&,H~, . . . ,Ht }, where Hi is the
contents of the shared memory cell after step i. Ho
is the initial content of M, which we can resume is
0. The tree oJ porribtc comprtationr has nodes that
intuitively correspond to the different states that the
PRAM can be in during the course of the computation.
Formally, we associate with a node v at depth i a
history {H~,R1~...~Hi}, and the set f,, of all inputs
that generate this history through step i. An input is
said to reach node u if it is a member of I,. The children
of u correspond to all possible extensions to the history
at w; each child ls labelled with a di8erent extension
{Ho,&,..., Hi,Hi+l}. The bst entry in the history
associated with a leaf of the tree will be the function
value for all inputs that reach that leaf.

Although the theorem as stated applies to the case With ench node v in the computation tree;we
of a single shared memory cell, it is powerful enough to can associate a formula II in conjunctive normal form,

50

whose variables are the private input bits zi. This
formula will have the property that the set of inputs
X,, associated with this node is exactly the set of inputs
that satisfy the formula I,,. The construction of these
formulas will proceed by induction on the depth of a
node.

For the root r of the computation tree, we define
Ir to be the empty formula. Now suppose we have a
node IU with associated history {Ho, RI,. . . Rt-,} and
associated formula &,. Suppose, furthermore, that w
has a child u and that the history at TV is the history
at tu extended by the value Ht. This means that for
some inputs in Iv, the content of M after the 6“ step is
the value Ht. The a&ion of any processor at step 1 for
an input in IW is completely determined by the history
through step C - 1 (the history associated with tu, which
is the same for all inputs in I,,,) and by the processor’s
private bit. Thus, it is possible to determine which
private bit values would cause processors to write Ht.
At least one of this possibilities must occur; thus inputs
with history {He, HI,. . . Ht,1, Hf) must satisfy Ju and
also a clause consisting of the OR of these possible bit
values. For example, if Pr writes Hd when zr = 1, and
Pa does so when 2s = 0, then the added clause would
be (zr v G). In two cases it is not necessary to add a
clause: when one processor Pi writes regardless of what
his private bit is, and when no processor writes, i.e.,
Ht = Ht,1. Since there is only one memory cell, each
processor reads its content during every read phase.
Therefore, we can msume, without loss of generality,
that processors write into the memory cell M only to
change its value.

All possible bit values that would have resulted
in something other than Ht being written will result
in additional clauses. For example, if Ps would have
written HI dilferent from Ht if zs = 1, we add the
clause (G), since it is known that zs = 0. We can also
rubstitute these known values into other clauses. In our
example, a clause containing the literal 2s would have
that literal removed; a clause containing the literal zg
would be entirely removed.

We call a clause nonftioid if it contains more than
one literal. Note that at most one nontrivial clause is
added to Iv to create the formula at the child of w.
The following lemma provides an important bound on
the accumulation of nontrivial clauses.

Lemma 1. It a node w wit& q children has a Formula
fv with c nontn’vid clausu, the formula at each child
of w ha.9 at most c + 3 - q nontrivial clauses.

Proof: If q < 2 this follows from the construction,
as at most one nontrivial clause is added. Thus we
may assume q > 2. There are .q possible extensions of
the computation history at this node. One of them
could correspond to the case where no one writes
(Hi = Ht,I), but there are at least q - 1 different
values that could be written at the next step. No
processor may write more than one of these values, for
otherwise that processor would always write, and those
two values would be the only possibilities. For each
value written, we can arbitrarily select one processor
that writes it; assume without loss of generality that
for i = 1 2 , ,...q-1,vslueViiswrittenbyPiatthis
step if literal li is true. (Note that li is either ri or x.)

The formula Iv implies that at most one of the
literals lr,ls...l,,r is true. Otherwise, there would
exist an input in I, for which two diierent processors
would attempt to simultaneously write diflerent values,
a violation of the COMhfON model.

Now consider the formula IV at the child v of
(u that corresponds to V’,, being written. This is
created by first adjoining one nontrivial clause to /, and
also some trivial clauses M a result of the knowledge
that {I,, 12 , . . . ,1,-a} are all false. This hnowledge also
results in some substitutions. Let @ = (,9,, &, . . . a,)
be an input in 1, which makes I,,,1 true. @ satisges I,,,,
since I,, is a subset of IWr and makes {l,,l,,. ..,1,,,}
false.

For J’ = l...q - 2 let @J’ be the input obtained
from @ by complementing @j (i.e., BJ’ makes both lj and
1,-l true). The input Bj cannot satisfy Iv, because it
makes two literals in {11,1~,...,1,,~} true. Let Cj be
some clause in I,,, that @j does not satisfy. Since there
exists an input in I,,, which makes lj true, and another
that makes lj false, Cj must be nontrivial. The only
difference between @ and @J’ is in the value of the i’”
bit. Thus Cj must contain the literal 6. and 1; = rj
otherwise. Furthermore, 6 is the oniy literal in Cj that
j9 makes true.

We can now see that for 1 s i < j s q - 2, the
clauses Ci and Cj are distinct. This follows from the
fact that pi satisfies Cj (it contains the literal G, and
pi makes lj false) but not Ci. Consider the creation of
1.. The substitutions that follow from the knowledge
that {II, 12 , . . .1,-a} are false will remove the nontrivial
clauses Ci. Thus 1” can have at moat c - (q - 2) + 1
nontrivial clauses, as required. A similar argument
works for the other children of u; in fact, the child that
corresponds to the ease of no one writing will have at

51

most c + 2 - 4 nontrivial clauses. l

The importance of lemma 1 is that, although we
cannot bound the degree of a node in the computa-
tion tree, high degree requires accumulating and then
destroying nontrivial clauses, and only one nontrivial
clause is accumulated per level. We make this idea
more precise in the following fashion. Let L(r,h) be
the maximum number of leaves in a subtree of height
h whose root formula has o clauses.

Lemma 2. t(8, h) 5 (3 + a/h)“, III particular,
L(0, h) I 3”.

Proof: By lemma 1, we have

L(u,l) ,< r+3

4, h) 5 l<y<y+sCo - W + 3 - gv h - 1))
-I

This can be shown by induction to satisfy the statement
of the lemma. l

Theorem 1 then follows from the fact that each leaf
of the computation tree cau be labelled with at most
one function value. All function values must appear,
so the tree has at least ISI leaves. By Lemma 2, a
computation tree of height h has at most 3h leaves.

We cau extend this result, and obtain a theorem
similar to Theorem 1 for probabilistic algorithms. In
the probabilistic COMMON model, each processor is
allowed to make random choices to determine its be-
haviour at each step. We insist that no sequence of
choices results in two processors attempting to write
different values into the same cell at the same time.
Theorem 2 gives a bound on the expected number of
steps to compute a function in terms of the size of its
range.

Theorem 2. ID tbe probabilistic CO.MMONff) model,
any algotitbm that publicly computes a subjective fimc-
tion 1 : (0, I}” + R has an expected running time of
at least [log, IRlJ steps on some input.

As in Corollary 2, we obtain a logarithmic sepa-
ration between the probabilistic COMMON(m) model
and the deterministic PRIORITY(m) model, for m =
O(nC) where c < 1. This separation can also be shown
between probabilistic COMMON and models weaker
than PRIORITY, such as the ARBITRARY model de-
fined in [FRW]. For these cases, randomization does not
help the COMMON model to simulate more powerful
models.

Theorem 2 is proved using the following two lem-
mss.

Lemma 8. Tbe sum of tbe root-leaf distances to any
aet S of baves in a tree of possible computations is at
lead IS([logs ISlJ.

Prooft Let us define a tree &&ton to be a tree
whose nodes can be labelled with nonnegative integers,
such that the root is labelled with zero, and any node
labelled with 8 that has g children has each chid
labelled no higher than l + 3 - Q. Lemma 2 is actually
a statement about tree skeletons; any computation tree
leads in a uatural way to a tree skeleton, where the label
of a node is just the number of nontrivial clauses in its
formula. Let S be our set of chosen leaves, and Q be
the sum of the root-leaf distances. We can prune away
everything but the root-leaf paths to leaves in S. This
still leaves a tree skeleton, for after deleting a node, the
labelling at its brothers is still valid. The pruning also
leaves Q unchanged.

We can then transform the tree skeleton in a
way that will never increase the sum of the root-leaf
distances to leaves in S. Suppose we can find two leaves
v1 and q, where vi is at depth fi and ta - 11 2 2. We
add two children vi, ds to ~1, label them with the same
number as vi, and delete w; We remove ~1, us from S
and add v;,, d,.

Continuing iu this f&&ion, we can obtain a tree
skeleton and a set S’ of leaves, where 1st = 191, and
all leaves in S’ are at depth t or I - 1. Furthermore,
the sum of root-leaf distances to leaves in S’ is less
than or equal to Q. But Lemma 2 says that t is at
least rhs Isll, and the result follows. l

Lemma 4. Let Tl be the expected running time for a
given probabilistic slgoritbm solvi~~g problem P, max-
imbed over d possible inputs. Let Ta be tbe average
running time for a given input distribution, minimized
over d possible deterministic afgotitbms to solve I?
Then Tl 1 Tz.

Lemma 4 was stated by Yao ([Y]) in a stronger
form; the weak form here can be proved in a few
lines. We can consider a probabilistic algorithm IM a
probabilistic distribution of deterministic algorithms.
Let A be our set of deterministic algorithms, and
I our set of inputs. Let r[Ai,Ijl be the running
time of algorithm Ai on input Ii- Suppose oar given ,.
probabilistic algorithm chooses to run deterministic
algorithm Ai with probability pi+ and that our given

52

input distribution gives probability gj to Ii.

=T3 a

We wish to bound T, from below. By Lemma 4 it
sufftees to bound Ts from below. To do this, we must
specify an input distribution that results in a large
average running time for any algorithm to compute /.
This input distribution must depend on 1, but not on a
particular program. For each possible value off, choose
one input that results in that value. This selects a set of
If?] inputs; our chosen distribution will give probability
l//RI to each of these.

To bound Ts from below for this distribution,
consider the tree of possible cwputations associated
with some deterministic algorithm. Our set of inputs
reaches some set of IRI leaves. Then the expected
running time on the given input distribution is the

. average depth of these leaves, which by Lemma 3 is
at least [log, IRlJ steps. This proves Theorem 2.

Upper Bounde for hflnite Memory

Let N = {1,2,. . .} be the set of positive integers.
The Element Distinctness Problem on n variables is the
problem of computing the function ED, : N” + (0, l},
where ED,(zl,. . . , z,,) k 0 if and only if zi = ;zk for
some i # k.

We first show how to compute ED,, in constant
time on a PRIORITY(oo). In fact, this algorithm also
works on weaker models, such as the ARBITRARY and
ETIIERNET models mentioned in the introduction.
We assume that the output appears in a special shared
memory cell called anrtuer.

ALGORITHM 1
1) Processor fl writes 1 into anrwcr.

2) For all i, processor Pi writes i into memory cell Zi.

3) For all i, processor Pi teds memory cell ti.

4) For all i, if processor Pi did not read i, then it
writes 0 into answer.

This algorithm uses three steps to compute ED,,.

To determine that ED,,(zl,..., z,,) = 1, an dgo-
rithm must veri& that all the inqualities zi # LC~ are
true. We now consider two algorithms for computing
ED,, on, a COMMON(a) which collect this informa-
tion iu dilferent ways. In the uext section, we show that
these are essentially the only wqys this information can
be collected. Both algorithms require O(logn) steps;
to simplify their presentation, we assume n is a power
of 2.

The idea of ALGORITHM 2 is that the processors
can communicate the values of their input variables to
a single processor which then does all of the necessary
comparisons locally. The pattern of communication
among processors is a binary tree.

ALGORITHM 2

Recursively, processon 9, P,, accumulate the
values of the variables 21, z,, .

1) If n > 1 then, in parallel,

1.1)

1.2)

Processors Pr, . . . , P,,ls accumulate the values
of the variables zr, 2,/s.

Processors P(,/s)+r , . . . , P, accumulate the
values ‘of the variables z(,,/~)+~, . . . , z,, .

2) Processor P,,/s computes an encoding of z(,,/~)+~,
. . . , z, and writes it into memory cell 1.

3) Processor Pi reads memory cell 1. It has now
accumulated the values of (zr,. . . , z~}.

4) Processor Pr computes ED, (tr , z,,) and writes
it into anrwer.

The computational power of the processoR allows
each processor to compute encodings and decodings
in one step. Once it has accumulated all inputs, a
processor can compute the output in one step. Thus
ALGORITHM 2 uses O(logn) steps. In fact, this
algorithm shows that every function j : N” + N
can be computed in O(logn) steps. A straightforward
analysis shows that, at the I”’ execution of step 3,
n2”) uew inequalities are verifted. Notice that this
number increases as the computation progresses.

The next algorithm does not use any of the com-
putational power of the processors, but it uses the
concurrent write ability of COMMON(o0) in a funda-
mental way. Essentially, we divide the variables into
two groups, check that the pups have no eIement in
common, and recursively check element distinctness for
these two groups in parallel.

ALGORITHM 3

1) Processor Pr writes 1 into onmer. If n > 1,
continue.

53

2)

3)

4
5)

For 1 I i < n/2, processor Pi writes 1 into cell ti.
For (n/2) + 1 5 i s n, processor Pi ~4s dl ti
aud, if its value is I, writes 0 into anther.
For 1 < i s n, pro~e~eor Pi resd~ IWWVG~.
If anrwer # 0 then, in parallel,
5.1) Processors 9, P,+ compute ED,/, (21,

* l *, h/2)

5.2) Processors P(r/2)+1, l *-v pm compute
E&/2(qvt/2)+19 l . -9 G).

This algorithm also uses O(logn) steps. But, in
this case, the number of new iuqualitiu verified in one
step decreases M the computation proceeds; at the t’”

execution of step 3,
n’

2’+’ inequalities are veri8ed.

In the lower bound proof presented in the next
section, we distinguish between information received
via direct storage access (bs iu ALGORITHM 2) and
via indirect storage access (as in ALGORIT’HM 3).

A Lower Bound for COMMON(oo)

In this section we prove the following reuult.

Theorem 3. Computing ED, on a COA~MOIV~~D)
require8 fl(log log log n) steps.

Together with ALGORITHM .l this implies an
fl(log log log(n)) separation between the COMMON
and PRIORITY models with infinite memory.

In order to prove this theorem, we Bnt introduce
a variant of the COhiMON(oo) which we call the k-
read COMMON(oo). This model differs from the
COMMON(co) in two respects. Firstly, no processor
may write into a cell in which some processor has
already written. This restriction is essential for our
lower bound proof. In compensation, in the read phase
of each step of a k-read COMMON(oo), each processor
is allowed to read up to k memory cells ln parallel,
instead of just one. This will guarantee that, for large
enough 5, an k-read COMMON(co) is not weaker than
a COMMON(co).

Lemma 6. T steps of a COMMON~CCI) can be simu-
&ted by a T-read COMMON(oo) io T steps.

Proofi Let C be a COMMON(oo) executing T
steps. We modify C to obtaiu a T-read COMMON(oo)
C* as follows. We subdivide the infinite shared memory
of C into T infinite parts. If a processor of C writes
to cell u at step 1, then, at step t, the corresponding

processor of C* writes to the wth cell of the It” part of
memory. This ensures that no processor writu into a
previously accersed cell When a processor of C reads
cell r, the corresponding processor of C* reads the tth (
cell of each part of the @hared memory. Because each
processor of C* reads (among other thin@) the value
read by the corresponding processor of M, we have
shown that C* simulates M. l

Theorem S now follows directly Tom the next
lemma, by tap ing k to be log log n.

Lemma 6. An l-lmd comfoN~oo) requires
n(logloglogn - loglogk) Steps to compute ED,.

Proof! This proof is an adversary argument. As
the computation proceeds, the adversary fixes the value
of certaiu variables and maintains a set of allowed
inputs such that, after each step, each processor only
knows one live variable (i.e. a variable whose value has
not been ilxed). The precise meaning of the statement
“processor Pi only knows Zj, after step I” is that the
configuration of Pi after step t is the same for all
allowable inputs with the same value of zj,.

Let [n] = (I,..., n}. Consider the situation ar-
ranged by the adversary after step I of some agorithm.
We use V’ s [n] to denote the set of indices of live vari=
ables, and IVtj’ to denote the set of all unordered pairs
of elements from Vt. The set E: C_ pt]’ describes those
pairs of live variables which the advenary has declared
to be distiuct. The simple graph G; = (Vt, Et) with
vertex set Vt and edge set Et is called the distinctness
graph. Live variables are restricted, by the adversary,
to take values from an inlnite subset St E N. The
lndexed set Ft = {fili E In] - Vi}, describes the ad-
versv’s assignment of values to the dxed variables.
These values are distinct elements of IV - St.

The set I(&, Et, St, Ft) of allowed inputs consists
of all n-tuples (51,. . . , b”) satisfying the following prop
erties:

the

1) bi =: /i for all i E [n] - V,,
2) bi E St for all i E Vt, aad
3) bi # bj for all i, j E Vr with {i, j} E Et.
For two disjoiut sets A and B, let K(A, B) denote
complete bipartite graph on A and B. Let C =

(V, E) be a simple graph. A family C = {(At, &)jL =
1 ,...,t} with At n & = 4 is a bipartite cover of
G if every edge {i, j} E E belong to some graph
K(At,Bt). The size e(C) of C is Cb,(lA~l + I&l).
The bipartite complexity of G is deaned to be a(G) =
min(r(C)lC is a bipartite cover of G). For the come

54

p&e graph oa q vertices, K,, the biputite complexity
is known.

Theorun 4. ([HI@]) P(K,) 1 q kq.

We shall measure the “complexity” of a set of
allowable lnpu ts la terms of the number of live variables
and the bipartite complexity of the distinctness graph.

Now we are ready to formulate the maia lemma

Main Lemnu. Assume that, before step f, the set
of allowed Jnpats L Z(Vl -,,Et-,,St-l,Ft,r) aad tbst
ea& processor Pi onJy knows one varJabJe with in-
dex h Q-1, namely zj,. Then, tbe adversary can
defhe a new set of affowed inputs Z(Vt,El,St,Ft) C
Z(Vt-l,Et,l,St,r,Ft,l) SUCJI that, asker step 1, tbe
followingproperties are satisfied. (RecaJJ tbat each pm
cessor CM read k ceJJs in a step.)

the

K C h-1 ad [K[1 [k-I 1’
‘VI?-I[+ 2nk’

Each processor Pi km& e&b one varJabJe with
index in Vt .
St E St-1 and St Js h5nite.

Et 2 Et-1 n[K[’ and P(G) S W’t-,)+n(t+,),
where Gt = (&, Et).
Ft-, E Ft E N - St.

We now complete the proof of lemma 6. Before
computation stsrts (i.e. after step 0), Vu = [n],

Eo = +, So = N, aad ji = i satisty the conditions of the
main lemma. Suppose that the compufation terminates
after T steps. Then GT = Klvtl, the complete graph
oa VT; otherwise, there would be fwo allowed inputs
with dlffereot images under ED, between which the
algorithm could not distinguish. Thus, by Theorem 4,
@(CT) = [VT []odlvT[)*

Now, from condition 4, we get that fi(G~) =
BWIVrI) I nT(k + T).

Since IVtl 5 n, it follows from condition 1 that
IW’ IW

W’ z [Q[+2nk z 3n)’ By induction, this implies

Iv,lS’
lvT’ 1 (3nkpl aad lvT’ 1 &r *

Combining these inequalities, we get

Thus T = n(log log log n - log log &). l

To prove the main lemma, we first state three
results - two “Ramsey like” aad one graph-theoretical.
Tbey will be extensively used in the proof.

Lemma 7. Let / : w - D be any function defined
on M intlnite doraah W. Then there exists an Jnflnite
rub& W’ C W such tbat I[w~ is either constant or
f-1. In particuiar, ifD Js dnite, tben /[w, is constant.

Lemma8. Let/,g: W + D be two functions defined
on aa infinite domain W. Then there exists an infinite
subset W’ C W sncir tbat I[wt and g[w# me either
iden tied or bave dgoiat ranFs.

Lemma 0 . Let R(U,L) be a dnite graph, and Jet
a(R) denote tbe size of a maximum independent set in

I VI’ R. Tben a(R) 1 -- .
PI + 214

Lemma 7 can be found ia [GRS, p. 112 1, Lemma
8 follows directly from Lemma 7, and Lemma 9 can be
found ia [B p. 282 [.

Proof of the main lemma : Consider the sequence
of writes performed by some processor Pi up to aad
including step C. In step p 5 I, it decides whether or not
to write according to some predicate dr. If it writes, it
writes a value II: to a cell t$. Now consider the k reads
Pi executes ia step t. It E8dS fkom cells ri.1,. . ., ri,&.
Since Pi 0~1~ L~OWS Zjir it fdlo~~ that c,4, w:,
aad ri,h are functions of only this one variable. Thus
4 : St-1 -+ (0, 1) and 4,4, ri,h : St-1 - N. Note
that the reads are executed in parallel. Therefore no
processor can use the information obtained in one read
to determine the other read functions it uses ia this
step.

Our adversary simplifies this structure by restrict-
ing the set of allowed inputs.

Claim 1. Without loss oi gcaerdity, st every step
p s C, es& processor either writes ford dlowed inputs
or does not write for any dowed input.

Prooh Apply Lemma 7 successively to df for
i = 1,. . . , n aad p = 1,. . ., I to obtain aa iafi-
aite subset S’ c St-l. The claim follows when the
adversary restricts the set of dlowed iapots to be
V’t-dLr, S’cFt-1). 8

We de6ae aa address function ss any read function
ri,h or any write function W: which is actudly used.

Claim 2. Witbout loss of generality, every address
hroctioa is either coastaat ot 1-l.

Prooh Apply Lemma 7 successively to all address
functions. The result is aa inilaite subset S” E S’ on
which every address fuactioa b either constant or 1-l.
The dvenary restricts the set of allowed inputs to be
WLdL1, S”, FM).

55

Claim 8. Without JOSS of g~~erdity, ii Pi ad P,
access the same cell then they use the same address
fuoctioo.

Pro& Apply Lemma 8 successively to every
pair of address fnnctions. The result is an iulnitt
subset S “’ E S” such that every pair of address
functions (which we now consider to be functions on
9”) are either identical or have disjoint ranges. The
adversary therefore restricts the set of allowed inputs
to be I(V~-I,EI,I,S”‘,F~,~). l

The next observation depends on the the fact that
we are using an k-read COMMON(ou) and is the only
part of the proof which does so.

Claim 4. W’jthou t loss of generdity, if Pi snd Ps know
tke s8me viwi8ble (it!. ji = jb), then suip # re,h for aJJ

p = l,..., Iandh = l,..., k. h particular, d’ # ri,h*)

Proofi We may assume that every processor hss
copies of the programs of all other processors. Then P,
CBD compute tuf(zji), the address Pi writes to in step
p, and ur(tj;), the value Pi writes at that step. By the
definition of an k-read COMMON(cm), all processors
writing into this ceil at time p must write the sbme
value and, thereafter, that value is never changed. Thus
CCU tt(‘(zji) will still contain the value 4(8j,) when Pq
reads it. Since P, c8n compute this value, it does not
have to read ceil Vp(Zji). (Note that this argument is
completely tallacious for the PRIORITY (oo), as shown
in ALGORITHM 1.) l

Equipped with these two claims, our adversary is
ready to continue. First, the 1-l address functions
are handled by determining a graph of low bipartite
complexity and adding its edges to the distinctness
graph. Following this, the adversary deals with the
constant address functions by fixing some of the live
variables.
l-l addrerr functlonr:

Suppose that gi, . . . , g, are the P-1 address func-
tions. For each go, define

At = {q E Vt-1(~~ = Zjc aud U: = oe for some
i E In] and p E [t]}

Bt = {q E Vt,l(~, = zji 8nd ri,h = gc for some
i E [n] and h E [k]}.

Intuitively, q E At if some processor that knows tq
use8 gt 8s a write function. Similarly, q l Bc if some
processor that knows 2, uses gc as its read function.

As a corollary to claim 4, we get the following
result.

Claim 5. ,Ac n Bt = 4,

Since every processor can contribute at most I
times to the A’s and at most k times to the B’s,
& IAtl IF IBtI s (m + f)n. Let C’ = (Vr-,,E’)
be the graph with E’ = Ub, K(At, Be) and let G” =
(Vj-1, E”) be the graph with En = Et,, u E’. Then
@(G’) s (k at t)n. This implies the following result.

CMm 6. @(G”) I a(G) + (k + 4)n.

Cldm7. I;“orinputsinI(Vt,l,E”,Sn’,F~-l), wemw
dkmme, witiout loss of g&r&y, that no processor
uses a 1-l read function in step t.

Pmoh By claims 3 and 4, every processor that
uses a 1-l read function reads the initial contents of the
cell, namely ‘0’. Thus the read imparts no information
about any iuput known to be in f(Vt,1, E”, S”‘, Ft,,).
Conrtant l ddreu fimctlonr:

Ram this point on, we resume that the set of
allowed inputs is I(Vt-,, E”, S”‘, Ft,1).

Claim 8. Lf w is 8 constant address function, then the
contents of cell w depends on st most one Variable fmm
K-1.

Proofs To prave this claim we do not need any
of the properties of the k-read COMMON(m). In
fact, we can pssume that, for cells which are accessed :
by constant address functions, the PRIORITY write
conflict resolution scheme is used. Furthermore we
can allow these cells to be accessed during more than
one step. Consider the last step p 5 C in which cell
w was accessed for writing. Let Pi be the processor
with lowest index writing into cell UJ in step p. By
our construction, Pi always writes to cell w at step p.
Therefore the contents of cell tu cau only depend on tic.
l

Thus we can lusume that ail constant address
functions used up to and including step f are dserent.

Consider the graph R(Vt,I,t), where {i, k} E L
if some processor knowing ni uses a constant read
function w in step t, snd the contents of w depends
on zq (i.e. after step 1 this processor “knows” both
zi and zr). Note that IL\ 5 nk, the total number of
reads in step 1. Apply Lemma 9 to thin graph to obtain
an independent set of vertices Vt E Vt-1. such that

I%-, IS
IW 2 (Vc-ll+-

The adversary restricts the set of

sllowable inputs to be I(Vt , E”, S”‘, Ft-1) and we get
the following result.

56

CIaIm 9. After step t, every processor knows at most
one variable in Vt .

We now complete the proof of the main lemma.
Those processors which do not know any variable in Vt
cau be assigned an arbitrary one. The adversary fixes
the variables zi with i E V:-, - V: and assigns them
distinct values Ii E S”‘. These values are added to
Ft-1 to obtain FC and are removed from S”’ to obtain
St. FinaIiy let Gt = (Vt,Et) be the subgraph of G”
induced by Vt. Then /J(Gt) 5 @(G”J l

A Lower Round for PRIORITY(oo)

In this section we apply a simplilled version of the
proof method from the last section to obtain a lower
bound for PRIORITY (00).

Theorem 6. A PJUORITY(o0) requires D(loglogn)
steps to compute tbe maximum of n numbers.

Proof: In contrast to solving the element distinct-
ness problem, computing the maximum of n numbers
does not become easier if these numbers are known to
be distinct. Therefore, we will assume that they are dis-
tinct, because this will considerably simplify the treat-
ment of l-1 address functions. Essentially, in the con-
text of the previous lower bound proof, such functions
are always useless.

More formally, let M be a PRJOR.ITY(co) which
flnds the maximum of n numbers. Let Vt , St, and Ft
be defined BS in the previous section. However, the
adversary’s set of allowed inputs is now defined to be
J(Vt, St,Ft) = I(Vf, I&]‘, St, Ft). SpecticaUy, aiI input
values are required to be distinct.

Lemma 10. Assume tbet, befoR step t, tbe set of
aJJowed inputs i9 J(Vt,,,St,,,F+1) and tbat each
processor only knows one variable dtb index in Vt,1.
Then the adversary can define a new set of allowed
inputs I(Vt, St,Ft) such tbat after step t tbe following
properties are satisfled.

2) Each processor knows on& one variable with hda
in v,.

3) St E St-1 and St is iudnite, and
4) Ft,, C Ft G N - St.

If M requires T steps then IVrl = 1; othenvise
no processor cau determine the output. From Lemma

10 aud the fact that lVij = n, we can derive T =
II(loglogn). This concludes the proof of Theorem 3.
l

Proof of lemma 10 : Consider the proof of the
main lemma for k = 1. It is sufbient to show that for
J(V’, St, Ft) the anaioguea of cIaim 7 (which tahes care
of l-l address functions) and cIaim 9 (which takes care
of constant address functions) hold.

The proof of claim 9 does not use the properties
of the k-read COMMON(co). Since J(Vt, St,&) C
I(Vt, Et, St, Ft), the andogous result for the PRIOR-
ITY (00) is true.

However, claim, 5 is derived from claim 2 which,
in turn, depends on the properties of the k-read COM-
MON(oo). Fortunately, the analogue of claii 7 fol-
lows directly from claim 3, since all input variables
are assumed to have distinct v&es. Because the
proof of claim 3 does not use the properties of the
k-read COMMON(co), its analogue also holds for the
PRIORITY(co). l

References

PI

ICDI

(FRWI

WI

IGal

IGo1

Berge, C. Graphs and Hypergrapbs, North-
Holland, 1973.

Cook, S.A., and Dwork, C. Bounds on tbe
Time for Parallel RAMS to Compute Simple
finctions, Proc. 14”’ Annual ACM Sympe
sium on Theory of Computing, 1982, pp.231-
233.

Fich, F.E., Ragde, P.L., and Wigderson, A.
Relations Between Concurrent-Write Models
of Parallel Computation. Proc. Srd Annual
ACM Symposium on Principles of Distibuted
Computing, 1984, pp. 179189.

Fortune& and Wyllie, J. Parallelism b Ran-
dom Access Machines, Proc. 10’” Aunud
ACM Symposium on Theory of Computing,
1978, pp. 114418.

Gal& 2. OptJmaJParaJJeJAJgorJtbms for String
MatcJting, Proc. l@ Annual ACM Sympo-
sium on Theory of Computing, 1984, pp. 240-
248.

Goldschlsger, L. A Unibed Approach to Mod-
els of Synchronous ParaJJeJ Machines, Journal
of the ACM, vol. 29, no. 4, 1982, pp. 107%
1085.

57

PiI

ISVl

WI

IV1

WI

PI

Graham, R.L., Rothschild, B.L., and Spencer,
J.H. Ramsey Tbcory, Wiley ad Sona, 1960.

Greenberg, A. EfBcient Algorithm for Muit&
pie Access Channels, Ph.D Thesis, University
ot Washington, 1983.

Hansel, G. Nombre minimal de contacts de
fcrmature oessecaires pour r&&r une lone
tioo booleenne symetrique de n variables, C, R
Acad. Sci. Paris 258JQ64, pp. 6037-6040.

Kdnnau, R., Miller, G., and Rudolph, L. Sub-
linear ParaDeI Algotitbm for Clomputing the
Greatest Common Divisor of Two Integen,
Proc. 25’” Annual Symposium on Foundations
ot Computer Science, 1984, pp. 7-11.

Ku&, L. Par&l Computation and Con-
diets io Memory Acews, Intormation Process
ing Letters, vol. 14, no. 2, 1982, pp. 9346.

Meyer Auf der Heidc, F., and Reischuk, R. On
tbe Limits to Speed Up ParaIJel Macbioes by
Large Hardware and Unbounded Commuoic&
tion, Proc. 25’” Annual Symposium on Foun-
dations ot Computer Science, 1984, pp. 56-64.

Pippenger, N. An Information-Tbtoretic Me
tbod in CombinatoriaJ Theory, Journal ot Corn-
binatorial Theory, vol. 23, DO. 1, July 1977,
pp. 99104.

Shiloach, Y., and Vishkin, U. Finding The
Maximum, Mcrgiog and Sorting On Paraflel
Models of Computation, J.Alg, v.2, 1981, pp.
88-102.

Tarjan, R.E, Vishkin, U. Finding Bico~oected
Components and Computing Dee Ehctions in
fiogaritbmic Parallel Time, Proc. 25’” Annual
Symposium on Foundations ot Computer Sci-
ence, 1984, pp. 1220.

Valiant, L. Psrstielism in Computation Prob
lems, SIAM J. Comput., vol. 4, no. 3, 1975,
pp, 348-355.

Vishkin, U., and Wigderson, A. Dade-offs Be
tween Deptb and Width in ParalleI Compu tb
tion, to appear in SLAM J. Computing.

Yao, A. Probabilistic Computaths: Zbwards
a Untied Measure of Complexity, Proe. ldh
Annual Symposium on Foundations ot Com-
puter Science, 1977, ~~222227.

58

