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APPLICATIONS OF RAMSEY THEORY

Fred S. ROBERTS*
Department of Mathematics, Rutgers University, New Brunswick, NJ 08903, USA
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This paper attempts to show that Ramsey theory really does have useful applications, by
presenting four applications from the literature. The applications are from the fields of communi-

LdlIUIIb information retrieval in computer M.ICHLC and uCLI)IUllHldl\lllg

1. Introduction

Ramsey theory is very interesting. But what good is it?

In recent years, there has been a great deal of interest in Ramsey theorv. Two
major books on the subject have appeared, the books by Graham [10] and by
Graham, et al. [11]. There was also a special issue on Ramsey theory in the Journal
of Graph Theory (Vol 7, No. 1, Spring 1983). However, little has been written
about the appucatnons of the subject. In this paper, we attempt to show that Ramsey
theory really does have useful applications. We present four examples from the
literature to make this point. The first two applications involve communications, the
third is to a problem of information retrieval in computer science, and the fourth
is to a problem in decisionmaking.

We shall adopt the graph-theoretic and Ramsey-theoretic notation and termin-
ology of Roberts [17]. In particular, R(p|, p3, ..., D;; ) is the smallest integer N
with the property that whenever S is a set of N elements and we divide the r-element
subsets of S into ¢ sets, X, X5, ..., X,, then for some /, there is a p;-element subset
of S all of whose r-element subsets are in X;. R(p,q) is R(p,q;2). Finally if
Gy, Gy, ..., G, are graphs, R(G,, G,, ..., G,) is the smallest N with the property that
every coloring of the edges of the complete graph Ky in the ¢ colors 1,2,...,¢ gives
rise, for some /, to a subgraph that is isomorphic to G; and is colored all in color

i, that is, to a monochromatic G;.

*This expository paper is a slightly modified version of a section of: Fred S. Roberts. Applied
Combinatorics, a 1984 Prentice-Hall publication. Reprinted by permission of Prentice-Hall, Inc.,
Englewood Cliffs, NJ.
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2. Confusion graphs for noisy channels

In communication theory, a noisy channel gives rise to a confusion graph, a graph
whose vertices are elements of a transmission alphabet T and which has an edge
between two letters of T if and only if, when sent over the channel, they can be
received as the same letter. Given a noisy channel, we would like to make errors
impossible by choosing a set of signals that can be unambiguously received, that is,
so that no qlgnal in the set is confusable with another cmnql in the set, This corre-

20 11 a3 a A0S COorr

sponds to choosing an independent set in the confusion graph G. In the confusion
graph G of Fig. | the largest independent set consists of two vertices. Thus, we may
choose two such letters, say @ and ¢, and use these as an unambiguous code alphabet
for sending messages. In general, the largest unamblguous code alphabet has «(G)
tcetin G

elements, where a(G) is the size of the lar
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duce the notion of normal product G-H of two graphs and H. This is defined
as follows. The vertices are the pairs in the Cartesian product V(G) x V(H). There
is an edge between (a, b) and (¢, d) if and only if one of the following holds:

(i) {a,c} €E(G) and {b,d} e E(H),

(i) a=c and {b,d} € E(H),

(iii) b=d and {a,c} € E(G).
(The term normal product is used by Berge {3]; another term in use for this is strong
product.) Fig. 2 shows a normal product.

le, x) (o, v} (o, 2}

/

8.y}

(8, %) By (6.2)
« 3 b X z
G H
fa; v {a \ fa, )
VI, \R e A AR PR 1)
G.H

Fig. 2. The normal product of two graphs.



Applications of Ramsey theory 253

We can find a larger unambiguous code alphabet by allowing combinations of
letters from the transmission alphabet to form the code alphabet. For example sup-

naca that wa cider all

oo nace I-\la n—r«lararl naire af slament
pose thal we Consiacr air possiosd Ol

ordered pairs of elements
alphabet T, or strings of two elements from 7. Then under the confusion graph of
Fig. 1, we can find four such ordered pairs, aa, ac, ca, and cc, none of which can
be confused with any of the others. In general, two strings of letters from the trans-
mission alphabet can be confused if and only if they can be received as the same

t In thi nd t h
St'lﬂg. in tnis sense, "Lrlﬁg da anQ ac cannoi ©

received as the same letter. We can draw a new confusion graph whose vertices are
strings of length two from 7. This graph has the following property: Strings xy and
uv can be confused if and only if one of the following holds:

(i) x and u can be confused and y and v can be confused,

cannot ha
LaAilnve ve

\u; x=u and Y and v can be LUIllUbUU
(iii) y=v and x and « can be confused.
In terms of the original confusion graph G, the new confusion graph is the normal

product G- G.
If G is the confusnon graph of Fig. 1, we have already observed that one indepen-
dent set or una biguous code alphabet in G -G can be found by using the strings

ng
aa, ac, ca, and cc. However, there is a larger independent set that consists of the
strings aa, bc, ce, db, and ed. What is the largest independent set in G-G? The
following theorem can be used to help answer this question.

. . /vy rn\ yorr

Theorem 1 (Hedrlin [13}). If G and H are any graphs, then

a(G-H)=R(a(G)+ L, a(H)+1)-1.

Proof. Let N=R(a(G)+1, a(H)+1). Suppose that «(G-H)=N. We reach a con-
tradiction. Let / be an independent set of G- with N vertices. Suppose that (a, b)
and (¢, d) are two distinct vertices in /. Since 7 is independent,

either (a) a#c and {o,c} ¢ E(G),
or (b) b#d and {b,d} ¢ E(H).

Consider a complete graph with vertex set the N vertices of 1. Color an edge (a, b)
to (¢, d) of this graph blue if (a) holds and red otherwise. This is a coloring of the
edges of the complete graph K, in two colors, blue and red. By choice of .V, either
there is a biue ciique C with a(G)+1 vertices or a red clique D with a(H)+1 ver-
tices. In the former case, note that (2, ) e C and (¢, d) € C implies that (a) holds,
and hence {ag:ae V(G) and (a, b) € C for some b} is an independent set of G with
a(G)+1 vertices. This is a contradiction. In the latter case, {b:be V(H) and
(a, b) e D for some a} is an independent set of A with «(H )+ 1 vertices, again a con-

PO - rrs L]

tradiction. We conclude that a(G-H)sN-1. ]

As a corollary of this result, note that if G=Z2Z; is the confusion graph of Fig. |
then
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a(G-G)y=R(3,3)-1=35,

Hence, we have found a largest independent set here.

Going beyond strings of length 2, we can seek strings of length & from the trans-
mission alphabet, and seek independent sets in the graph G¥=G-G----- G, where

there are £ terms in the product. We obtain larger and larger unambiguous code

alphabets this way, but at a cost in efficiency: We use longer strings. This observa-
tion led Shannon l?)] to compensate hv rnncndermo the number ll\/n{(“/\\ as a

measure of the capacity of the channel to build an unambiguous code alphabet of
strings of length &, and to consider the number ¢(G)=sup, ]A}a(G"’). The number
c(G) is called the capacity of the graph or the zero-error capacity of the channel.
Computation of the capacity of a graph is a difficult problem. Indeed, even the

r‘anamrv of the or:\nh G = 7. which we dis JJ_NSP(‘I above was not known nrecisely
€ v 10 precisely

Lapas. LS Lo ] « YWy Ut Al

until Lovdsz [15] showed that it equals y . Meanwhile, as of this writing, ¢(Z,)
remains unknown, For some bounds on ¢(G), see Lovasz [15], Haemers [12],
Schrijver [21], and Rosenfeld [18].

3. Design of packet switched networks

Stephanie Boyles and Geoff Exoo (personal communication) have found an appli-
cation of Ramsey theory in the design of a packet sw1tched network the Bell System

cionaling netwark W
Sigiiaiiiig NUiwoin,

&

Consider a graph in which vertices represent communications equipment joined
by communications links or edges. The graph is assumed to be complete, that is,
every pair of vertices is joined by a link. In some applications, vertices are paired

up, and we would like to guarantee that in case of outages of some links, there will

' The author thanks Drs. Boyle and Exoo for bringing this application to his attention and for permis-
sion to present it here.
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always remain at least one link joining every paired set of vertices. For instance,
con51der the graph shown in Fig. 3. The vertices labeled x, and x, are paired, the

t 2
heled v and v, are naired and the vertices labeled . an
o€ a S 1A%l r

ed y, and y, are paired, and the vertice d z, and z, are paired.

a:C pa

™)

Outages occur at intermediate facilities such as microwave towers, trunk groups,
etc. An outage at such a facility will affect all links sharing this facility. Let us color
the intermediate facilities and hence the corresponding links. Fig. 3 shows such a
colormg Note that in case the red intermediate facility goes out, there will be no

we‘ nks between the pair of verti es and x» and the pair of vert

-
1HNKS oetween the pail Ui viiu CeS X 1 atl A3y aiia wad puu viov CES I and

es 7; and
zz. This corresponds to the fact that the four edges {x;,z;} form a monochromatic
(red) Z,. In general, designing a network involves a decision as to the number of
intermediate facilities and which links will use which intermediate facilities. We
would like to design the network so that if any intermediate facility is destroyed,

there will remain at least one link for each paired set of vertices. If the vertex pairing
may change after the network is constructed, we want to avoid all monochromatic
Z,’s

It turns out that R(Z,, Z,)=6. (See Faudree and Schelp [8] or Rosta [19,20].)

Thus, if there are just two m[ermednate facilities, there is a network with 5 vertices
tha re

gty intarmadiara faails thn

d LY Illlbl 1ucu1cu.c la\.illLlLb DU lllat incer
chromatic Z,. Chung and Graham [6] show that R(Z,, Z,,Z,)= 8. Thus, there is a
network with three different intermediate facilities and 7 vertices and no monochro-
matic Z;.
As we have said, designing a network involves a decision as to the number of

whinh lha acet Ar

wnicn nas an assignment o fiK is no mono-

ftaria ac and whinh Db aoill tioa pan .
interr t nte

mediate facilities and which links will use which intermediate facilities. Inter-
mediate facilities are expensive, and it is desirable to minimize the number of them.
Thus, one is led to ask the following. If we have a network of n vertices, what is
the least number of colors or intermediate facilities so that there is some network
of n vertices and some coloring of edges (assignment of links to intermediate facili-
uca; with no monochromatic L4 in other 'W'Ol‘ua, what is the least 7 so that i
are rZy’s, R(Z4,Z4,...,Z,)>n? If n=6, as in our example of Fig. 3, then since
R(Z,,Z,)=6, and R(Z,,Z,,Z,)=8, we have r=3. We need three intermediate
facilities. Boyles and Exoo point out that for their purposes, it is enough to estimate
the number r using a result of Erdos (see Graham, et al. [11]) that a graph of »
vertices always contains Z, if it has at least $7°/>+ +n edges. If the (3) edges of an
n-vertex graph are divided into r color classes, the average class will have (5)/r
edges, and so, by the pigeonhole principle, some class will have at least (3)/r edges.

We want to be sure that no class has 7*/2+ Ln edges, so we must pick r so that

(") [r<in+in.
\2/)/

32,
+

PR
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4. Information retrieval

Yao [25,26] uses Ramsey theory in the study of information retrieval.’ Suppose
a table or a file has n different entries, chosen from a key space M ={1,2,...,m},

whose elements are called keys. We wish to find a way to store all subsets S of n
elements from M in a table so that it is easy to answer queries of the form: [s x in
S? A rule for telling us how to store the n- element subsets S of M is called a table

structure or an {(n. n) table
siruciyre oran (i, ny | &

table structure: We just list al elemems of § in increasing order. For instance, if
m=3 and n=2, a sorted table structure is shown in Fig. 4. The second table struc-
ture in Fig. 4 is called cyc/ic Note that if we have the sorted table structure of Fig. 4,
if we want to know if xisin S, we need to ask two questions. However, in the cyclic
structure, we need to ask only one question, since by the cyclic nature of the table
structure, the first entry in the row corresponding to S determines the second entry.
A variant of the sorted table structure is the permuted sorted table structure. Here,
we fix a permutation o of {1,2,...,n}, and list elements of S in order according to

this permutation. For instance, the third table structure of Fig.4 is a permuted

enrtad Whia c1aty
sorica taoic structure changes the first

amarmiitatian whish in nter
ne permuiation wnicn inie

oo H

v u
and second elements. Again, to determine if xis in S, two questions are needed with
this table structure.

Fig. 4. Three table structures for storing 2 keys from a three-clement key space M = {1,2,3}.

Sorted table structure Cyclic table structure Permuted sorted table structure
corresponding corresponding corresponding

set S table set S table set § table

{1,2} [1]2] {12} N {1,2} HEB

23 [203] 3 23] ey [3]2]

{1,3} (]3] {1,3} 1 {1,3} [371]

The computational complexity of information retrieval depends on the table struc-
ture and the search strategy, that is, the kKinds of questions asked. It is measured
by the number of queries needed to determine if x € S in the worst case. For instance,
for a sorted table structure, the'number of queries required is [log.(n+1)] if a
binary search tree is used. Let the complexity f(n, m) be defined to be the minimum

complexity over all conceivable (m, n) table structures and search strategies.

Theorem 2 (Yao). For every n, there exists a number N(n) so that

-2 AUID

w1 for
i}

| fora

H > AN
i ]

2See Chandra, et al. [5] for a different use of Ramsey theory in information exchange.



Applications of Rumsey theory 257

It follows from Theorem 2 that for m sufficiently large, using a sorted table struc-
ture is the most efficient method as far as information retrieval is concerned. There
are two crucial ideas in proving this resuit:

Lemma 1. If m=2n-1 and n=2, then for a permuted sorted table structure,
[log,(n+1)] probes are needed to determine if xeS in the worst case by any
search strategy.

Lemma 2. Given n, there is a number N(n) with the following property. If m=N(n)
and we are given an (m,n) table structure, then there is a set K of 2n—1 keys so
thatr the tables corresponding to the n-element subsers of K form a permuted sorted
table structure.

Theorem 2

and search
ind searct

llows from these lemmas. For given an (/m,n) table structure
ay and a number m>/\.'ln\ find the set X of Lemma 2. Then

fo
rate mber s¢t X ol Lemma Z. {hen
f

by Lemma 1, [log,(n+1)] probes are needed in the worst case, just restricting
the problem to subsets of K. Thus, the complexity is at least [log,(n+1)], so
Sf(n,m)=[log,(n+1)]. But we know that binarv search on a sorted table structure
has complexity [log.(n+1)]. Thus, f(n,m [_lo'J (n+ 1)—|

Wa chall it tha nrnnF afl amma 1
we Siian Oomitl (n¢ proot o1 Lémma 1

tr

dar
v L

E§

present the proof of Lemma 2.

Proof of Lemma 2. Let us note that a set S={/;, j»,..., /.t of n keys is stored in
the table structure in some order. If j, < /o< -+ <j,, and j; is stored in the u;th box
of the table, then the set S corresponds to the permutation iy, us, ..., u, of the
integers 1,2,...,n. For instance, in the cyclic table structure of Fig. 4, if S={l, 3},
then j, =1, j»=3, u; =2, and u,=1. In a permuted sorted table structure, each set
of n keys corresponds to the same permutation u,,u,,...,u,. Given an (m,n)
table structure, let o(u,, us, ..., u,) consist of all sets § of n keys whose correspon-
ding permutation is u,,us,...,u,. For instance, in the cyciic tabie structure of
Fig. 4, ¢(1,2) consists of the sets {1,2} and {2,3} and (2, 1) consists of the set
{1,3}.

Let p;=2n-1, all i, let t=n!, and let r=n. Let N(n) be the Ramsey number
R(py, ps, ..., p;; r). Suppose that m = N(n) and that we divide the r-element subsets
(the n-element subsets) of the key space M into t = n! parts, with each consisting of
the set a(uy, us, ... u,,) of all n-element subsets S of M which are stored in the per-
mutation uy, U, ..., 4,. By the definition of R(p,, p.,..., p,; r), there is for some /,
a p;-element subset (2n—l element subset) K of M all of whose n-element subsets
belong to a given o(u;, uy, ..., u,). This proves Lemma 2. ]

To illustrate this proof, consider the table structure of Fig. 5. Here, m=6 and
n=2. The set a(l,2) is given by the elements labeled * and the set a(2,1) is given

iy gl

by the remaining elements. Note that there is a 3-element subset K={1,2,5} all of
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Fig. 5. A (6,2) table structure with elements of the set ¢(1,2) represented by =.

Set § Corresponding table Set S Corresponding table
+{1,2} LL]2] +{2,5}
{1.3} [3]1] {2.6}
{1,4} BN *{3,4}
+{1,5} [L]5] +(3,5}
+{1,6} [ Te] +{3,6}
+{2,3} {4.5}
={2,4} [2]4] {4,6}
15.6}

whose 2-element subsets belong to (1,2).

We next note that if n=2, there is an alternative proof of Lemma 2 which gives
a better value of N(n). If n=2, then any table structure can be represented as a
digraph whose vertex set is M = 11 2,...,m}, and which has an arc from i io if the
set {i,j} is stored as - For example, the table structure of Fig. 6 yields the
digraph shown in that figure. This digraph is a tournament. For m=4, such a
tournament always has a transitive triple, a triple of vertices {j, j, k}, with arcs (i, j),

(_], k) (1 k) Thls means that all 2- element subsets of the 3-element set {i, j,k} will

CcO 141 lg io U 1€ same pern ldllUIl l,j, . 1nus 11 we
relabel the element of M so that i becomes 1, j becomes 2, and k& becomes 3, the
2-element subsets of {1,2,3} will appear in the first sorted table structure of Fig. 4.
Hence, if n=2, N(n) =4 will suffice to give us the conclusion of Lemma 2. In the
example of Fig. 6, one transitive triple is {4,1, 2} and all 2-element subsets of this
tripie are siored in the same permutation 4, 1,2. If we relabel the elements of A so
that 4 becomes 1, | becomes 2, and 2 becomes 3, we have a sorted table structure
in which the sets {1,2}, {2,3}, and {1, 3} are stored as in the sorted table of Fig. 4.
Note that the conclusion of the lemma does not hold here; that is, for this table
structure, there is no 3-element subset K and no permutation uy, 4, of {1,2} so that

Fig. 6. A (4,2) table structure and the associated digraph.

Set S Corresponding table Associated digraph
{1,2} [1]2] |

PR M=1" _

{1,3} i

{1,4) 411 4 2
9 1 311 |

149§ - | D \V
(2.4}

£3,4) iTa 3
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all 2-element subsets of K are stored in the order u,,u,. If m were at least
R(3,3;2)=6, we would be able to draw this conclusion.

A digraph D= (V, A) is asymmetric if (u,v)e A implies that (v,u)¢A. An
asymmetric digraph is transitive if (u,v)e A, (v, w)€ A imply that (u,w)e A. (An
arbitrary digraph is transitive if (,,u) € A, (u, w)eA and u#w imply (u, w)eA )y A
digraph which is both asymmetric and transitive is called a (stric
Patial orders arise in many contexts in decisionmakmg. For mstance, f V is a set
of alternatives being considered, and (#,v) € A means that u is preferred to v, we
get a partial order if preference satisfies the following conditions: If you prefer u
to v, you do not prefer v to u; if you prefer u to v and prefer v to w, then you prefer

inndoad mars imnartant

larly i€ (3 Y= A a TREE
1> julgil Muiv ulpuiaiil

¢ similarly if (i, v) € A means u
than v, u is judged more qualified than v, and so on. We shall use preference as
a concrete example.
Suppose that D= (V, A) is a digraph representing preference. If we are judging our
alternatives a on the basis of one characteristic, say monetary value f(a), we would

11t v Dartinal ardare arie
“ LU W, Iallldl Uruiio aily

() ed e flu)>f(v),

i.e., we would prefer u to v if and only if the value of u is greater than the value
of v. If we judge on the basis of several characteristics, say monetary value f,(a),
quality f>(a), beauty fi(a),..., fi(a), we might only express preference for u over v
if we are sure that u is better than v on every characteristic. Thus, we would have

(u,v)e A & [[1()>FLN&] L) > f(0)]

& [f5()>f3(0)] & -+ & [ fi (1) > f,(V)]. (%)

If A is defined using (%), then it is easy to show that (¥, 4) is a partial order.
The converse problem is of importance in preference theory. Suppose that we are
given a partial order D =(}, 4). Can we find functions f;, f;, ..., f;, each f; assigning
a real number to each @ in V, so that (*) holds? It is not hard to prove that for every
partial order (with V finite), we can find such functions for sufficiently large ¢. (The
proof uses Szpilrajn’s [23] extension theorem. See Baker et al. [2].) The smallest ¢
such that there are ¢ such functions is called the dimension of the partial order.’
This notion is originally due to Dushnik and Miller {7], and has been widely studied.

A0S MUV 10 Vliginndiiy Que WU Liudsuiun ang vi y Al H1lQaS Uvhir wilatay

See Baker et al. [2], Kelly and Trotter [14] and Trotter and Moore [24] for surveys,
and Roberts [16] for some applications.

3Strictly speaking, the dimension of the partial order is usually defined to be the smallest 7 such that
the partial order is the intersection of ¢ linear orders. However, our definition of dimension agrees with
the more common one except for dimensions 1 and 2: The so-called (strict) weak orders can have dimen-
sion 1 by our definition, but not by the more common definition (see Baker, et al. {1}).
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The dimension of many important partial orders has been computed. Here we
shall study the dimension of one very important class of partial orders, the interval

orders. To get an interval order, imagine that for each alternative a that you are con-

sidering, you do not know its exact value, but you estimate a range of possible
values, given by a closed interval J(a) =[a(a), B(2)]. Then you prefer a to b if and
only if you are sure that the value of a is greater than the value of b, that is, if and
only if a(a)> p(b). It is easy to show that the corresponding dwraph gives a partial

N Mo thic A h tha ~ac H
order, l.e., it is asymmetric and transitive. (In this digraph, the vertices are a family

of closed real intervals, and there is an arc from an interval [g, b] to an interval [¢, d]
if and only if @>d.) Any partial order that arises this way is called an interval order.
The notion of interval order is due to Fishburn [9].

In studying interval orders, which are somehow one-dimensional in nature, it
came as somewhat of a surprise that their dimension as partial orders could be
arbitrarily large. That is the content of the main theorem of this section. It implies
that if preferences arise in the very natural way that defines interval orders, we
might need very many dimensions or characteristics to explain preference in the

sense of equation (*).

Theorem 3 (Bogart, Rabinovitch, Trotter [4]). There are interval orders of arbitrarily
high dimension.

Proof. Suppose that /(0, n) is the interval order defined by taking all closed inter-
vals [@, b] with a, b integers beiween O and # inclusive, and by taking an arc
[a, b] to [c,d] if and only if @>d. We shall show that given r=2, there is a number
N(¢) so that if n=N(¢), 1(0,n) has dimension greater than ¢. In particular, let
N@®)=R(p, p3s ..., pi;r)—1 with py=p,=---=p,=4 and r=3. Now suppose that
n=N(t) and that I(0, n) has dimension less than or equal to ¢. Then there are func-
tions fi, /5, ..., f; 50 that (») holds. Now consider the set of all integers between O
and n and consider the 3-element subsets {u, v, w}. Suppose that u<v<w. Then
neither ({u, v, [v, w]) € A nor ([v, w], [1, v]) € A. 1t follows by (*) that there are / and

J so that
Sillu,wh) = fi(wv]) and  fi([u,v]) = fi([v, w)).

Place the triple {u, v, w} in the ith class, i=1,2,...,¢, if { is the smallest integer so
that f; ([u, v]) = f;({v, w]). Since n=N(t), we have n+1=R(4,4,...,4;3). Thus, we
know that for some /, there is a 4-element subset {x, y,z,¢} of {0, 1,...,n} all of
whose 3-element subsets are in the ith class. Thus, if x<y<z<r, we have

Sillte yD =Sz and  fi(lyzD = fillz, o).
Hence, fi([x, y]) = fi([z,¢]). But ([z,¢],[x, ¥]) € A, so we should have
Sillz, 1) > fillx, yD).

P whial feaaliac har T
i { 1
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