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Abstract. Majumder, Reif and Sahu presented in [7] a model of re-
versible, error-permitting tile self-assembly, and showed that restricted
classes of tile assembly systems achieved equilibrium in (expected) poly-
nomial time. One open question they asked was how the model would
change if it permitted multiple nucleation, i.e., independent groups of
tiles growing before attaching to the original seed assembly. This pa-
per provides a partial answer, by proving that no tile assembly model
can use multiple nucleation to achieve speedup from polynomial time
to constant time without sacrificing computational power: if a tile as-
sembly system T uses multiple nucleation to tile a surface in constant
time (independent of the size of the surface), then T is unable to solve
computational problems that have low complexity in the (single-seeded)
Winfree-Rothemund Tile Assembly Model. The proof technique defines
a new model of distributed computing that simulates tile assembly, so a
tile assembly model can be described as a distributed computing model.
Keywords: self-assembly, multiple nucleation, locally checkable labeling.

1 Introduction

1.1 Overview

Nature is replete with examples of the self-assembly of individual parts into a
more complex whole, such as the development from zygote to fetus, or, more
simply, the replication of DNA itself. In his Ph.D. thesis in 1998, Winfree pro-
posed a formal mathematical model to reason algorithmically about processes of
self-assembly [15]. Winfree connected the experimental work of Seeman [12] (who
had built “DNA tiles,” molecules with unmatched DNA base pairs protruding in
four directions, so they could be approximated by squares with different “glues”
on each side) to a notion of tiling the integer plane developed by Wang in the
1960s [14]. Rothemund, in his own Ph.D. thesis, extended Winfree’s original Tile
Assembly Model [10].

Informally speaking, Winfree effectivized Wang tiling, by requiring a tiling of
the plane to start with an individual seed tile or a connected, finite seed assembly.
Tiles would then accrete one at a time to the seed assembly, growing a seed
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supertile. A tile assembly system is a finite set of differently defined tile types. Tile
types are characterized by the names of the “glues” they carry on each of their
four sides, and the binding strength each glue can exert. We assume that when
the tiles interact “in solution,” there are infinitely many tiles of each tile type.
Tile assembly proceeds in discrete stages. At each stage s, from all possibilities
of tile attachment at all possible locations (as determined by the glues of the
tile types and the binding requirements of the system overall), one tile will bind.
If more than one tile type can bind at stage s, a tile type and location will be
chosen uniformly at random. Winfree proved that his Tile Assembly Model is
Turing universal, so it is a robust model of computation.

The standard Winfree-Rothemund tile assembly model is error-free and irre-
versible—tiles always bind correctly, and, once a tile binds, it can never unbind.
Adleman et al. were the first to define a notion of time complexity for tile as-
sembly, using a one-dimensional error-permitting, reversible model, where tiles
would assemble in a line with some error probability, then be scrambled, and fall
back to the line [1]. Adleman et al. proved bounds on how long it would take
such models to achieve equilibrium. Majumder, Reif and Sahu have recently pre-
sented a two-dimensional stochastic model for self-assembly [7], and have shown
that some tiling problems in their model correspond to rapidly mixing Markov
chains—Markov chains that reach stationary distribution in time polynomial in
the state space. The tile assembly model in [7], like the standard model, allows
only for a single seed assembly, and one of the open problems in [7] was how the
model might change if it allowed multiple nucleation, i.e., if multiple supertiles
could build independently before attaching to a growing seed supertile.

The main result of this paper provides a time complexity lower bound for
tile assembly models that permit multiple nucleation: there is no way to use
multiple nucleation to achieve a speedup to tiling a surface in constant time
(time independent of the size of the surface) without sacrificing computational
power. This result holds for tile assembly models that are reversible, irreversible,
error-permitting or error-free. In fact, a speedup to constant time is impossible,
even if we relax the model to allow that, at each step s, there is a positive
probability for every available location that a tile will bind there (instead of
requiring that exactly one tile bind per stage).

Our method of proof appears novel: given a tile assembly model and a tile as-
sembly system T in that model, we construct a distributed network of processors
that can simulate the behavior of T as it assembles on a surface. Our result then
follows from the theorem by Naor and Stockmeyer that locally checkable labeling
(LCL) problems have no local solution in constant time [8]. This is true for both
deterministic and randomized algorithms, so no constant-time tile assembly sys-
tem exists that solves an LCL problem with a positive probability of success. We
consider one LCL problem in specific, the weak c-coloring problem, and demon-
strate a tile set of only seven tile types that solves the weak c-coloring problem
in the Winfree-Rothemund Tile Assembly Model, even though weak c-coloring
is impossible to achieve in constant time by multiple nucleation, regardless of
the rate of convergence to equilibrium.



1.2 Background

In the standard Tile Assembly Model, one tile is added per stage, so the primary
complexity measure is not one of time, but of how much information a tile set
needs in order to solve a particular problem. Several researchers [1] [3] [4] [11] [13]
have investigated the tile complexity (the minimum number of distinct tile types
required for assembly) of finite shapes, and sets of “scale-equivalent” shapes
(essentially a Z × Z analogue of the Euclidean notion of similar figures). For
example, it is now known that the number of tile types required to assemble a
square of size n × n (for n any natural number) is Ω(log n/ log log n) [11]. Or,
if T is the set of all discrete equilateral triangles, the asymptotically optimal
relationship between triangle size and number of tiles required to assemble that
triangle, is closely related to the Kolmogorov Complexity of a program that
outputs the triangle as a list of coordinates [13].

Despite these advances in understanding of the complexity of assembling
finite, bounded shapes, the self-assembly of infinite structures is not as well
understood. In particular, there are few lower bounds or impossibility results on
what infinite structures can be self-assembled in the Tile Assembly Model. The
first such impossibility result appeared in [6], when Lathrop, Lutz and Summers
showed that no finite tile set can assemble the discrete Sierpinski Triangle by
placing a tile only on the coordinates of the shape itself. (By contrast, Winfree
had shown that just seven tile types are required to tile the first quadrant of the
integer plane with tiles of one color on the coordinates of the discrete Sierpinski
Triangle, and tiles of another color on the coordinates of the complement [15].)
Recently, Patitz and Summers have extended this initial impossibility result to
other discrete fractals [9], and Lathrop et al. [5] have demonstrated sets in Z×Z
that are Turing decidable but cannot be self-assembled in Winfree’s sense.

To date, there has been no work comparing the strengths of different tile
assembly models with respect to infinite (nor to finite but arbitrarily large)
structures. Since self-assembly is an asynchronous process in which each point
has only local knowledge, it is natural to consider whether the techniques of
distributed computing might be useful for comparing models and proving im-
possibility results in nanoscale self-assembly. This paper is an initial attempt in
that direction.

Aggarwal et al. in [3] proposed a generalization of the standard Tile Assem-
bly Model, which they called the q-Tile Assembly Model. This model permitted
multiple nucleation: tiles did not need to bind immediately to the seed supertile.
Instead, they could form independent supertiles of size up to some constant q
before then attaching to the seed supertile. While the main question considered
in [3] was tile complexity, we can also ask whether multiple nucleation would al-
low an improvement in time complexity. Intuitively, Does starting from multiple
points allow us to build things strictly faster than starting from a single point?

As mentioned above, Majumder, Reif and Sahu recently presented a stochas-
tic, error-permitting tile assembly model, and calculated the rate of convergence
to equilibrium for several tile assembly systems [7]. The model in [7] permitted
only a single seed assembly, and addition of one tile to the seed supertile at each



stage. Majumder, Reif and Sahu left as an open question how the model might
be extended to permit the presence and binding of multiple supertiles.

Therefore, we can rephrase the “intuitive” question above as follows: Can we
tile a surface of size n×n in a constant number of stages, by randomly selecting
nucleation points on the surface, building supertiles of size q or smaller from
those points in ≤ q stages, and then allowing ≤ r additional stages for tiles
to fall off and be replaced if the edges of the supertiles contain tiles that bind
incorrectly? (The assembly achieves equilibrium in constant time because q and
r do not depend on n.)

The main result of this paper is that the answer is: Not without losing sig-
nificant computational power.

Section 2 of this paper describes the “standard” Winfree-Rothemund Tile
Assembly Model, and then considers generalizations of the standard model that
permit multiple nucleation. Section 3 reviews the distributed computing results
of Naor and Stockmeyer needed to prove the impossibility result. In Section 4 we
present our main result. Section 5 concludes the paper and suggests directions
for future research.

2 Description of Tile Assembly Models

2.1 The Winfree-Rothemund Tile Assembly Model

Winfree’s objective in defining the Tile Assembly Model was to provide a useful
mathematical abstraction of DNA tiles combining in solution in a random, non-
deterministic, asynchronous manner [15]. Rothemund [10], and Rothemund and
Winfree [11], extended the original definition of the model. For a comprehensive
introduction to tile assembly, we refer the reader to [10]. In our presentation
here, we follow [6], which gives equal status to finite and infinite tile assemblies.
Throughout this paper, we will consider only two-dimensional tile assemblies.

Intuitively, a tile of type t is a unit square that can be placed with its center
on a point in the integer lattice. A tile has a unique orientation; it can be
translated, but not rotated. We identify the side of a tile with the direction (or
unit vector) one must travel from the center to cross that side. The literature
often refers to west, north, east and south sides, starting at the leftmost side
and proceeding clockwise. Each side −→u ∈ U2 (where U2 is the set of unit vectors
in two coordinates) of a tile is covered with a “glue” that has color colt(−→u ) and
strength strt(−→u ). Figure 1 shows how a tile is represented graphically.

If tiles of types t and t′ are placed adjacent to each other (i.e., with their
centers at −→m and −→m + −→u , where −→m ∈ Z2 and −→u ∈ U2) then they will bind
with strength strt(−→u ) · Jt(−→u ) = t′(−−→u )K, where JφK is the Boolean value of the
statement φ. Note that this definition of binding implies that if the glues of the
adjacent sides do not have the same color or strength, then their binding strength
is 0. Later, we will permit pairs of glues to have negative binding strength, to
model error occurrence and correction.
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The west side has 
binding strength 0, 
represented by a 
dashed line.

The north side has glue type 
“Y0” and binding strength 2, 
represented by a double line.

The east side has glue 
type “0” and binding 

strength 1, represented 
by a single line.

The south side has 
glue type “Y1” and 
binding strength 2.

This tile is 
named “Y1”.

Fig. 1. An example tile with explanation.

One parameter in a tile assembly model is the minimum binding strength
required for tiles to bind “stably.” This parameter is usually termed temperature
and denoted by τ , where τ ∈ N.

As we consider only two-dimensional tile assemblies, we limit ourselves to
working in Z2 = Z× Z. U2 is the set of all unit vectors in Z2.

A binding function on an (undirected) graph G = (V,E) is a function β :
E −→ N. If β is a binding function on a graph G = (V,E) and C = (C0, C1) is
a cut of G, then the binding strength of β on C is

βC = {β(e) | e ∈ E, {e} ∩ C0 6= ∅, and {e} ∩ C1 6= ∅} .

The binding strength of β on G is then β(G) = min{βC | C is a cut of G}. Intu-
itively, the binding function captures the strength with which any two neighbors
are bound together, and the binding strength of the graph is the minimum
strength of bonds that would have to be severed in order to separate the graph
into two pieces.

A binding graph is an ordered triple G = (V,E, β) where (V,E) is a graph
and β is a binding function on (V,E). If τ ∈ N, a binding graph G = (V,E, β)
is τ -stable if β(V,E) ≥ τ .

Recall that a grid graph is a graph G = (V,E) where V ⊆ Z × Z and every
edge {−→m,−→n } ∈ E has the property that −→m −−→n ∈ U2.

Definition 1. A tile type over a (finite) alphabet Σ is a function t : U2 −→
Σ∗ × N. We write t = (colt, strt), where colt : U2 −→ Σ∗, and strt : U2 −→ N
are defined by t(−→u ) = (colt(−→u ), strt(−→u )) for all −→u ∈ U2.



Definition 2. If T is a set of tile types, a T -configuration is a partial function
α : Z2 99K T .

Definition 3. The binding graph of a T -configuration α : Z2 99K T is the
binding graph Gα = (V,E, β), where (V,E) is the grid graph given by

V = dom(α),
E =

{
{−→m,−→n } ∈ [V ]2 | −→m −−→n ∈ U2, colα(−→m)(

−→n −−→m) = colα(−→n )(
−→m −−→n ), and

strα(−→m)(
−→n −−→m) > 0

}
,

and the binding function β : E −→ Z+ is given by β({−→m,−→n }) = strα(−→m)(
−→n −−→m)

for all {−→m,−→n } ∈ E.

Definition 4. For T a set of tile types, a T -configuration α is stable if its
binding graph Gα is τ -stable. A τ -T -assembly is a T -configuration that is τ -
stable. We write Aτ

T for the set of all τ -T -assemblies.

Definition 5. Let α and α′ be T -configurations.

1. α is a subconfiguration of α′, and we write α v α′, if dom(α) ⊆ dom(α′)
and, for all −→m ∈ dom(α), α(−→m) = α′(−→m).

2. α′ is a single-tile extension of α if α v α′ and dom(α′) r dom(α) is a
singleton set. In this case, we write α′ = α + (−→m 7→ t), where {−→m} =
dom(α′) r dom(α) and t = α′(−→m).

3. The notation α
1−→

τ,T
α′ means that α, α′ ∈ Aτ

T and α′ is a single-tile extension

of α.

Definition 6. Let α ∈ Aτ
T .

1. For each t ∈ T , the τ -t-frontier of α is the set

∂τ
T α =

{−→m ∈ Z2 rdom(α)
∣∣∣ ∑
−→u∈U2

strt(−→u ) · Jα(−→m +−→u )(−−→u ) = t(−→u )K ≥ τ
}

.

2. The τ -frontier of α is the set

∂τα =
⋃
t∈T

∂τ
t α .

Definition 7. A τ -T -assembly sequence is a sequence −→α = (αi | 0 ≤ i < k) in
Aτ

T , where k ∈ Z+ ∪ {∞} and, for each i with 1 ≤ i + 1 < k, αi
1−→

τ,T
αi+1.

Definition 8. The result of a τ -T -assembly sequence −→α = (αi | 0 ≤ i < k)
is the unique T -configuration α = res(−→α ) satisfying: dom(α) = ∪0≤i<kdom(αi)
and αi v α for each 0 ≤ i < k.

Definition 9. Let α, α′ ∈ Aτ
T . A τ -T -assembly sequence from α to α′ is a τ -T -

assembly sequence −→α = (αi | 0 ≤ i < k) such that α0 = α and res(−→α ) = α′. We
write α −→

τ,T
α′ to indicate that there exists a τ -T -assembly from α to α′.



Definition 10. An assembly α ∈ Aτ
T is terminal if ∂τα = ∅.

Intuitively, a configuration is a set of tiles that have been placed in the plane,
and the configuration is stable if the binding strength at every possible cut is at
least as high as the temperature of the system. Informally, an assembly sequence
is a sequence of single-tile additions to the frontier of the assembly constructed
at the previous stage. Assembly sequences can be finite or infinite in length. We
are now ready to present a definition of a tile assembly system.

Definition 11. Write Aτ
T for the set of configurations, stable at temperature τ ,

of tiles whose tile types are in T . A tile assembly system is an ordered triple
T = (T, σ, τ) where T is a finite set of tile types, σ ∈ Aτ

T is the seed assembly,
and τ ∈ N is the temperature. We require dom(σ) to be finite.

Definition 12. Let T = (T, σ, τ) be a tile assembly system.

1. Then the set of assemblies produced by T is

A[T ] =
{
α ∈ Aτ

T

∣∣σ −→
τ,T

α
}

,

where “σ −→
τ,T

α” means that tile configuration α can be obtained from seed

assembly σ by a legal addition of tiles (as formalized in Appendix A).
2. The set of terminal assemblies produced by T is

A�[T ] = {α ∈ A[T ] | α is terminal} ,

where “terminal” describes a configuration to which no tiles can be legally
added.

If we view tile assembly as the programming of matter, the following analogy
is useful: the seed assembly is the input to the computation; the tile types are
the legal (nondeterministic) steps the computation can take; the temperature is
the primary inference rule of the system; and the terminal assemblies are the
possible outputs.

We are, of course, interested in being able to prove that a certain tile assem-
bly system always achieves a certain output. In [13], Soloveichik and Winfree
presented a strong technique for this: local determinism.

Informally, an assembly sequence −→α is locally deterministic if (1) each tile
added in −→α binds with the minimum strength required for binding; (2) if there
is a tile of type t0 at location −→m in the result of α, and t0 and the immediate
“OUT-neighbors” of t0 are deleted from the result of α, then no other tile type
in T can legally bind at −→m; the result of α is terminal.

Definition 13 (Soloveichik and Winfree [13]). A τ -T -assembly sequence
−→α = (αi | 0 ≤ i ≤ k) with result α is locally deterministic if it has the following
three properties.



1. For all −→m ∈ dom(α)− dom(α0),∑
−→u∈IN

−→α (−→m)

strαiα(−→m)
(−→m,−→u ) = τ .

2. For all −→m ∈ dom(α)− dom(α0) and all t ∈ T − {α(−→m)}, −→m /∈ ∂τ
t (−→α \−→m).

3. ∂τα = ∅.

Definition 14 (Soloveichik and Winfree [13]). A tile assembly system T is
locally deterministic if there exists a locally deterministic τ -T -assembly sequence
α = (αi | 0 ≤ i < k) with α0 = σ.

Local determinism is important because of the following result.

Theorem 1 (Soloveichik and Winfree [13]). If T is locally deterministic,
then T has a unique terminal assembly.

2.2 Generalizations of the Winfree-Rothemund Tile Assembly
Model

We will consider three generalizations of the standard tile assembly model: (1)
multiple nucleation; (2) assembly in which glues bind incorrectly according to
some error probability; and (3) negative glue strengths, allowing incorrectly
bound tiles to be released from the assembly so it is possible for a correctly-
binding tile to attach in that space. We move from an irreversible tiling model,
in which tiles are placed in an error-free manner and can never be removed, to a
reversible tiling model, in which a terminal assembly is defined by equilibrium,
not by the disappearance of a frontier to which tiles can be legally added.

Aggarwal et al. in [3] formulated and studied a model that permitted multiple
nucleation, which they called the q-tile or multiple tile model. Essentially, they
allowed supertiles to form, independent of the seed, up to size bounded by a
constant q. Then the independent supertile would have to bind to the growing
seeed supertile. Legal supertiles were defined recursively: each tile type was a
legal supertile, and any two supertiles whose combined size was ≤ q could form
a legal supertile if the binding strength at their adjacent frontiers was at least
the temperature of the system.

Models of reversible tiling have been considered in [15] and [1], and more re-
cently in [7], which contains a summary of previous work in the area. Majumder,
Reif and Sahu in [7] introduced the concept of bond pair equilibrium, as follows.

Definition 15 (Majumder, Reif and Sahu [7]). Suppose α is a finite config-
uration that contains m different tile types t1, . . . , tm, with γi the relative fraction
of tiles of type ti (so

∑
γi = 1).

1. Define aij to be the fraction of ti tiles bonded to the east to a tj tile.
2. Define bik to be the fraction of ti tiles bonded to the north to a tk tile.
3. Define pij to be the fraction of ti tiles bonded to the west to a tj tile.
4. Define qik to be the fraction of ti tiles bonded to the south to a tk tile.



5. Aij = γiaij. Bik = γibik.

Definition 16 (Majumder, Reif and Sahu [7]). A configuration α in an
error-permitting, reversible tile assembly system has achieved bond pair equilib-
rium when, for every tile type ti in α, the (expected value of the) number of pairs
(Aij , Bkj) is invariant over time steps.

Informally, bond pair equilibrium is achieved when, if the configuration is consid-
ered as a whole, the quantity of each distinct bond interaction does not change
over time. If we assume the system has a property of bond independence—the
bond on one side of a tile does not affect the binding on the other three sides—
then bond pair equilibrium is a sufficient condition for thermodynamic equilib-
rium.

Theorem 2 (Majumder, Reif and Sahu [7]). Bond pair equilibrium and
bond independence implies strong (thermodynamic) equilibrium.

This theorem provides justification for us to replace the notion of terminal as-
sembly with the notion of assembly that has achieved bond pair equilibrium, if
we relax the Winfree-Rothemund Tile Assembly Model to include the possiblity
of error in binding, and the reversibility of tile assembly.

Majumder, Reif and Sahu studied the rate of convergence of several tile
assembly systems in a model that only permitted addition of one tile at a given
time step. They defined the notion of a Markov Chain that corresponds to an
assembly system, and demonstrated several tile assembly systems whose Markov
chains were rapidly mixing, i.e., they reached stationary distribution in time
polynomial in the state space.

In what follows, we will see that a speedup to constant time is impossible
without losing computational power, even if we add multiple nucleation to a
model of reversible tile assembly. First, though, we review the distributed com-
puting impossibility results that imply this.

3 Distributed Computing Results of Naor and
Stockmeyer

In a well known distributed computing paper, Naor and Stockmeyer investigated
whether “locally checkable labeling” problems could be solved over a network of
processors in an entirely local manner, where a local solution means a solution
arrived at “within time (or distance) independent of the size of the network” [8].
One locally checkable labeling problem Naor and Stockmeyer considered was the
weak c-coloring problem.

Definition 17 (Naor and Stockmeyer [8]). For c ∈ N, a weak c-coloring of
a graph is an assignment of numbers from {1, . . . , c} (the possible “colors”) to
the vertices of the graph such that for every non-isolated vertex v there is at least
one neighbor w such that v and w receive different colors. Given a graph G, the
weak c-coloring problem for G is to weak c-color the nodes of G.



In the context of tiling, to solve the weak c-coloring problem for an n × n
surface means tiling the surface so each tile has at least one neighbor (to the
north, south, east or west) of a different color. In the next section, we will present
a simple solution to the weak c-coloring problem in the Winfree-Rothemund
Tile Assembly Model. By contrast, Naor and Stockmeyer showed that no local,
constant-time algorithm can solve the weak c-coloring problem for grid graphs.

Theorem 3 (Naor and Stockmeyer [8]). For any c and t, there is no local
algorithm with time bound t that solves the weak c-coloring problem for the class
of finite square grid graphs over the integer lattice.

This theorem is a consequence of Theorem 6.3 in [8]. The original result is a
stronger statement.

A second theorem from the same paper says that randomization does not
help. As before, the original result is stronger than the formulation I provide
here.

Theorem 4 (Naor and Stockmeyer [8]). Fix a class G of graphs closed under
disjoint union. If there is a randomized local algorithm P with time bound t that
solves the weak c-coloring problem for G with error probability ε for some ε < 1,
then there is a deterministic local algorithm A with time bound t that solves the
weak c-coloring problem for G.

4 Proof of Main Result

In order to apply the theorems of Naor and Stockmeyer to the realm of tile
assembly, we build a distributed network of processors that simulates assembly
of tile assembly system T in tile assembly model M. We accomplish this by
defining a class of tile assembly models that generalize the standard model and
permit multiple nucleation; and we show that for any tileset defined in that class
of models, there is a system of distributed processors that simulates the assembly
behavior of that tileset.

Theorem 5. For any (reversible or irreversible) tile assembly model M that
permits multiple nucleation, and any tile set T in M, there is a model of dis-
tributed computing N that simulates the assembly of T on a surface of size n2,
using n2 processors laid out in a grid graph, and constant-size message complex-
ity.

Proof. Fix a tile assembly model M with the following properties:

1. The binding function β of M assigns a real number to each pair of glue
types. This assignment can be positive, zero or negative.

2. The definition of the binding function β and the definition of each tile type
ti induces a function

β̂ : T × ({glue colors of T, glue strengths of T} ∪ {∅})4 −→ [0, 1] ,



such that for any T -configuration α and any location −→m at stage s,

β̂
[
α(−→m), α(−→m + (1, 0)), α(−→m + (−1, 0)), α(−→m + (0, 1)), α(−→m + (0,−1))

]
is the probability that the tile at location −→m will remain in that location
at the end of stage s. (In words, β̂ is a function from a tile type and each
possible set of glues—including no glue—adjacent to that tile type, to a
probability that the tile will remain in that location at the end of the stage.)
Note that in a model of irreversible tiling, if there is a tile in location −→m that
is part of configuration α, then we can drop the part of β̂ that depends on
the tile’s neighbors, and β̂[α(−→m)] always takes the value 1.

3. M can allow multiple nucleation. In addition to the placement of the seed
assembly at the first stage of assembly, there is some probability π such
that (at the first stage of assembly only) a tile is placed on each location of
the surface in question with probability π, determined uniformly at random.
(Note that if π = 0, then M does not allow multiple nucleation.)

4. At each stage s of assembly, there is a probability πs,−→m for each location −→m
in the frontier of each supertile that a tile will be placed there. In particular,
it is possible to place more than one tile per stage. Tiles that are placed in
stage s do not interact with one another (with either positive or negative
binding strength) until stage s + 1.

For example, if we want M to be the standard Winfree-Rothemund Tile Assem-
bly Model, we set all values of β to 0 or a positive integer, all values of β̂ to 1,
π = 0, and the values of πs,−→m sufficiently small for all stages s and locations −→m
that, with high probability, at most one tile appears per stage. Then we count
time steps only when a tile is added to the existing configuration.

We simulate assembly sequences of T on an n × n surface by a network of
processors N whose network graph is an n × n grid graph. Each processor will
simulate the presence or absence of a tile in the same location on the n × n
tiling surface. Processors do not have unique ID’s, and do not know their own
coordinates. Each processor pi ∈ N is of the following form.

Processor pi

Four input message buffers: inbufi,n, inbufi,s, inbufi,e and inbufi,w.
Four output message buffers: outbufi,n, outbufi,s, outbufi,e and outbufi,w.
A color variable: COLORi, a variable that can take a value from {1, . . . , c},

where c is a global constant.
A local state: Each processor is in one of |T |+1 different local states q during

a given execution stage s. There is one stage qk to simulate each tile type
tk ∈ T , and an additional stage QUIET, to simulate the absence of a tile
from the surface location that pi is simulating.

A state transition function: This function takes the current processor state
and the messages received in the current round, and (deterministically or
probabilistically, depending on M) directs what state the processor will
adopt in the next round.



The messages processors send on the network are of form 〈glue type, glue
strength〉. The input message buffers of processor pi simulate the glue types of
the edges the tile at pi’s location is adjacent to. The output message buffers of
pi simulate the glues on the edges of the tile pi is simulating. The purpose of
COLORi is to simulate the color of the tile placed at the location simulated by
pi.

All processors in N are hardcoded with the same state transition function,
which is determined from the definition of β̂ in M, in the natural way: if, in
round r of the algorithm execution, pi is in state qk, a simulation of tk ∈ T , and
hears messages that simulate glue types g1, . . . , g4, then at the end of round r,
if β̂(tk, g1, g2, g3, g4) = γ, then with probability γ the transition function directs
pi to remain in state qk, and with probability 1− γ to enter state QUIET.

To simulate the process of tile assembly, we run the following distributed
algorithm on N .

Algorithm execution proceeds in synchronized rounds. Before execution be-
gins, all processors start in state QUIET. In round r = 0, (through the interven-
tion of an omniscient operator) each processor in the locations corresponding to
the seed assembly enters the stage to simulate the tile type at that location in
the seed assembly.

Also in round r = 0, each processor not simulating part of the seed assembly
“wakes up” (enters a state other than QUIET) with probability π. If a processor
wakes up, it enters state q 6= QUIET, chosen uniformly at random. For any
round r > 0, each processor runs either Algorithm 1 or Algorithm 2, depending
on whether it is in state QUIET.

Algorithm 1 For pi in state QUIET at round r

if r = 0 then
wake up with probability π, and cease execution for this round.

end if
if r > 0 then

Read the four input buffers.
if no messages were received then

cease execution for the round
else

let q0 be the state change (probabilistically) indicated by the value of β̂ for
a location that has adjacent glue types that are simulated by the messages
received this round.
Send the messages indicated by state q0.
Set the value of COLORi according to q0.
Enter state q0 and cease execution for this round.

end if
end if

The interaction between tiles in M is completely defined by the glues of a
tile’s immediate neighbors, as specified in the function β̂, and the processors of



Algorithm 2 For pi in state q 6= QUIET (at any round)
Read the four input buffers.
if no messages were received then

Send the messages indicated by state q and cease execution for this round.
else

Let q0 be the state change directed by the function β̂ applied to the glue types
simulated by the messages received this round. {Note that q0 will either equal q
or QUIET, and q0 might be chosen probabilistically.}
Send the messages indicated by state q0.
Set the value of COLORi according to q0.
Enter state q0 and cease execution for this round.

end if

N simulate that behavior with Algorithm 2. Since the processors of N simulate
empty spaces with Algorithm 1, by a straightforward induction argument, N
can simulate all possible T -assembly sequences, and the theorem is proved.

Combining Theorem 5 and the impossibility results of Naor and Stockmeyer,
we obtain our main result, as follows.
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Fig. 2. The tileset T ∗ used in the proof of Lemma 2.

Theorem 6 (Main Result). Any (multiply nucleating) tileset that tiles a sur-
face in constant time is unable to solve the weak c-coloring problem, even though



the weak c-coloring problem has a low-complexity solution in the Winfree-Rothemund
Tile Assembly Model.

We break down the proof of this theorem into the following two lemmas.

Lemma 1. Let T and M be such that, for all n sufficiently large, the expected
time T takes to assemble on an n × n is some constant k, independent of n.
Then T does not weak c-color the surface.

Proof. Suppose M is an irreversible tiling model. If T can weak c-color surfaces
in constant time, then there is a deterministic algorithm for the distributed
network N that weak c-colors N locally, and in constant time. By Theorem 3
that is impossible.

So assume M is a reversible tiling model, and when T assembles, it weak
c-colors the tiling surface, and achieves bond pair equilibrium in constant time.
Then there is a local probabilistic algorithm for N that weak c-colors N in con-
stant time, with positive probability of success. By Theorem 4 that is impossible
as well. Therefore, no T exists that weak c-colors surfaces in constant time.

Lemma 2. There is a tileset in the Winfree-Rothemund model that weak c-
colors the first quadrant.

Proof. Figure 2 exhibits a tileset T ∗ that assembles into a weak c-coloring of
the first quadrant, starting from an individual seed tile placed at the origin.
One can verify by inspection that T ∗ is locally deterministic, so it will always
produce the same terminal assembly. All assembly sequences generated by T ∗
produce a checkerboard pattern in which a monochromatic “+” configuration
never appears. Hence, it solves the weak c-coloring problem for the entire first
quadrant, and also for all n× n squares, for any n.

The main result of the paper follows immediately from Lemmas 1 and 2.

5 Conclusion

In this paper, we showed that no tile assembly model can use multiple nucleation
to solve locally checkable labeling problems in constant time, even though the
Winfree-Rothemund Tile Assembly Model can solve a locally checkable labeling
problem using just seven tile types. This was the first application of a distributed
computing impossibility result to the field of nanoscale self-assembly.

There are still many open questions regarding multiple nucleation. Aggarwal
et al. asked in [3] whether multiple nucleation might reduce the tile complexity of
finite shapes. The answer is not known. Furthermore, we can ask for what class
of computational problems does there exist some function f such that we could
tile an n×n square in time O(1) < O(f) < O(n2), and “solve” the problem with
“acceptable” probability of error, in a tile assembly model that permits multiple
nucleation. Finally, we hope that this is just the start of a conversation between
researchers in distributed computing and biomolecular computation.
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