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ABSTRACT
A novel technique for obtaining lower
bounds for the time versus space comp1exity
of certain functions in a general input
oblivious sequential model of computation
is developed. This is demonstrated by
studying the intrinsic complexity of the
following set equality problem SE(n,m):
Given a sequence x1 ,x2 ,· .• ,xn ' Yl'·· .'Yn
of 2n numbers of m bits each, decide
whether the sets (xl' ••• ,xnJ and
(Yl' ••• 'YnJ coincide. We show that for
any lOglOgn~m~~lOgn and any

1 <s <log n, any input oblivious sequen­
tfal-camputation that solves SE(n,m)
using 2m/s space, takes n(n· s) time.
This result is sharp for all admissible
values of n,m,s and is the first known
nontrivial time space tradeoff lower bound
(for space = w(log n) of a set recogni­
tion problem on such a general model of
computation. Our method also supplies
lower bounds on the length of arbitrary
(not necessarily input oblivious) branch­
ing programs for several natural symmetric
functions, improving results of Chandra,
Furst and Lipton, of Pudlak and of Ajtai
et. al. For example we show that for the
majority - function any branching program
of width wen) has length
O(n • log n / wen) · log w(n», in particular
for bounded width we get length n(n log n)
(independently of our work Babai et. a1.
(BPRS] have simultaneously proved this
last result). Our lower bounds for branch­
ing programs imply lower bounds on the
number of steps that are needed to pebble
arbitrary computation graphs for the same
computational problems.

To establish our lower bounds we intro­
duce the new concept of a meander that
captures superconcentrator-type properties
of sequences. We prove lower bounds on
the length of meanders via a new Ramsey
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theoretic lemma that is of interest in its
own right. This lemma has other applica­
tions, including a tight lower bound on
the size of weak superconcentrators of
depth 2 that strengthens the known lower
bound of Pippenger [Pi]. A surprisingnew
feature of these applications of Ramsey
theory in lower bound arguments is the
fact that no numbers are required to be
unusually large and that several of the
resulting superlinear lower bounds are in
fact optimal.
1. INTRODUCTION
A branching program that computes aBoolean
function f of n Boolean variables
xl, .•• ,xn is a model of computation that
generalizes decision trees. The program
is a directed acyclic graph, with a special
vertex, that has no ingoing edges, denoted
by S, and some other special vertices
(sinks), that have no outgoing edges. All
non-sink vertices are labeled by an input
variable and all sinks are labeled 0 or 1.
Every non-sink vertex has fan-out two, and
the two edges leaving it are labeled 0 or
1. Each assignment of values bi to the
input variables defines a unique computa­
tion path from'S to one of the sinks.
which starts at S, and leaves every non­
sink vertex labeled Xi through the edge
labeled mi. The program computes f if
f(bl •... ,bn ) is the label of the end­
vertex of this path, for each possible
b l , • • • , bn •

It is customary to assume, (and for most
purposes this can be done without loss of
generality), that each vertex has a level,
Where the level of S is 1, and edges go
from each level only to the next one. The
width of the program is the maximum number
of vertices on a level, and its logarithm
corresponds to the space of the computa­
tion. The length is the number of levels,
and it corresponds to the time of the com­
putation. The.!1!.!!. is the total number
of vertices in the program.

Branching programs describe a general
sequential model of computation, when we
identify the vertices 'in each level with
all the possible internal states of the
computational device. It is desirable to
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find functions (in p) that cannot be com­
puted simultaneously in linear time and
logarithmic space in such a general model,
(i.e., that do not have linear length and
polynomial width branching programs).. One
of the main problems raised by Borodin and
Cook, [BC]. who proved a time-space trade­
off tor sorting in this model. is to ob­
tain such a result for a one output bit
function in P. Here we obtain such a re­
sult for input oblivious branching pro­
grams.

A program is input oblivious if all non­
sink vertices in each level have the same
label. Notice that every program can be
made input oblivious by increasing its
length by a factor of its width. In par­
ticular every branching program of bounded
width can be assumed to be input oblivious
(unless constant factors are important).

A slightly more powerful model of compu­
tation than a branching program is the R­
way model, introduced by Borodin and Cook
in (BC]. Here we compute a function f
of n variables x1, ••• ,xn ' each being a
number between ° and R - 1. Each non­
sink vertex is now labeled by one of the
xi's, and has R outgoing edges labeled
by. 0, l, •.• ,R - 1. The program branches in
this vertex according to the value of xi.
Obviously any function of the considered
type can be computed by an R-way input
oblivious branching program of length n
and width Rn .

One can easily show that almost all
Boolean functions cannot be computed by a
branching program of subexponential size.
It is much more difficult to find functions
in P (or even in NP) that require non­
linear size. Nechiporuk [Ne] (see also
[Sa]) proved an n(n2 / 10g2n ) lower bound
for the size of any branching program that
computes a certain P-function of n vari­
ables. A barely nonlinear lower bound for
the size of the branching programs of the
majority function was proved using Ramsey
theory by PudlAk (Pu]. All the other non­
trivial known lower bounds deal with pro­
grams that are restricted in some sense.
The most popular restriction is the case
of bounded width branching programs. The
main result of [BDFP] and [Ya] is a super­
polynomial lower bound for width-2 branch­
ing programs that compute majority.
Chandra, Furst and Lipton proved a non­
linear lower bound for the length of any
bounded width branching program that com­
putes the symmetric function of n Boolean
variables xl •.•. ,xn whose value is 1 iff
~ Xi --=: n/2. Their lower bound is very close
to linear, being n(nW(n», where W(n) is
the inverse of van der Waerden numbers.
Pudlak [Pu] established an
n(nloglogn/logloglogn) lower bound for
same symmetric functions and Ajtai et. al.
[ABHKPRST] obtained an o(nlogn/loglogn)
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lower bound for same other, not so natural,
symmetric functions (it is easy to see that
their arguments also apply to natural sym­
metric functions). Very recently, this
lower bound has been improved in [BPRS] to
n(n log n) • Our methods (developed indepen­
dently of both [ABHKPRST] and [BPRS] enable
us to establish a lower bound of
n(n · log n / w • log w) on the length of
arbitrary (not necessarily input oblivious)
branching programs of width w for many
natural symmetric functions, including all
threshold functions Tk , for n6 ~ k ~ n - n6•
and including the function t Xi =n/2 con­
sidered in [CFL] «(BPRS] gives an addition­
al lower bound on the size, but only a
matching and for same values of w slightly
weaker lower bound on the length of branch­
ing programs of unbounded Width). In par­
t~cular for branching programs of bounded
width we get a lower bound of o(n log n)
for the previously mentioned symmetric
functions. We note that Barrington's re­
cent surprising result [Ba] asserts that
the class of functions computable on branch­
ing programs of width 5 and polynomial
length coincides with the class of func­
tions that have log-depth polynomial size
Boolean circuits (i.e., nonuniform NCl ).
It seems difficult to obtain any nontrivial
lower bounds for any function in this class
(that contains, of course, all symmetric
functions).

All the previously known results supply
no nontrivial lower bound for the length of
programs whose width is. say. n2 . Since the
logarithm of the width of the program cor­
responds to the space of the computation
this corresponds to space O(log n) and
linear time, which is, of course, not so
impressive. As mentioned in [BC] it is de­
sirable to have explicit P-functions whose
branching programs have nonlinear length.
even when the width is greater than
nOel). Here we obtain nonlinear lower
bounds for the length of input oblivious1R-way branching programs for several NC­
functions of n bits. even when the Width
is much greater than nO(l).

Our bounds hold for several functions.
Here we specify two examples. The first
is the set equality function SE(n.m). Its
inp~t is a sequence of 2n numbers.
Xl' ...• xn • yl.···'yn' each having m bits.
where log log n ~m~~ log n, i. e ., each in
the range (0,1, ... ,2m-I). The function
is 1 if and only if for each i, 1 <i <n
there is some j., 1 ~ j ~ n such that - ­
Xi = Yj and vice versa, i.e., iff the two

sets X = (xl' • · · , xnJ and Y = (yl' • • · •Yn J
coincide (Without counting multiplicities).
In Section 4 we prove that if the width of
an input obli~iou~ R-way branching program

computing SE(n,m) is at most 22
m
/log n,
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then its length is n(n log n) • This re­
sult is optimal. Note that the total
number of input bits here for, say,
m= 10 log log n is O(n log log n) •

The second example is the sequence
equality function Q(n). Its input is a
sequence of 2n numbers x1 , ... ,xn '
Y1' ••• 'Yn' each being 0, 1 or 2. The
value of the function is 1 if and only
if the sequence obtained from x1 , ... ,xn
by omitting all occurrences of 2 coin­
cides with the one obtained in the same
manner fram Yl'Y2' .•. 'Yn. In Section 4
we show thst for any 1 ~ s ~*' log n, if the
width of an input oblivious 3-way branch­
ing program computing Q(n) is at most

2n/2
s

then its length is o(n.s). Thus
the length is super1inear whenever the
width is 2o{n). This is, in a sense,
best possible since obviously any Boolean
function of n bits can be computed by an
input oblivious branching program of length
n and width 2n .

All lower bounds on the length of input
oblivious branching programs imply lower
bounds on the number of steps that are
needed to pebble arbitra~ computation
graphs for the same prob~m. We will dis­
cuss this conneetion in more detail at the
end of Section 4.

Our lower bounds for branchin~ programs
follow from a combination of a cut and
paste" argument (= crossing sequence argu­
ment) with a new Ramsey theoretic lemma,
interesting in its own right, which is
proved in Section 2. Our use of Ramsey
theory differs in two aspects from pre­
vious applications of Ramsey theory in
lower bound arguments. According to
"common knowledge" every application of
Ramsey theory in lower bound ar~uments re­
quires that certain parameters (typica11r
the size of the considered input numbers)
have to be "very large". Therefore the de­
derived lower bounds tend to be not appli­
cable to ranges of the input parameters
that are of practical interest. Further­
more the derived super1inear lower bounds
are typically "barely super1inear" and far
away from the best known upper bounds. A
surprising feature of the applications of
the Ramsey-theoretic Lemma 2.1 in the lower
bound arguments of Theorems 3.1, 4.1, 4.2
and 4.3 is the fact that the numbers are
not required to be "very large" and that
the derived lower bounds are optimal or
close to optimal (typically in the n log n­
range) •

Our Ramsey-theoretic lemma has other in­
teresting applications. In Section 3 we
define sequences that are useful in lower
bound arguments, called meanders, and use
our lemma to show that each such sequence
must be "long". As an application we prove

an optimal lower bound for the size of
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log x - superconcentrators (s. c .) of depth
2. Fora function g(x), a g(x)-s.c.
of depth 2 is a directed acyclic graph G
with n inputs and n outputs that has
the following properties:
'(1) Each path from an input to an output

has length 2.
(2) For all sets S of k inputs and

T of k outputs, there are at least
19(klJ vertex disjoint paths in G
from S to T.

Pippenger (Pi] showed that every x­
s.c. ot depth 2 has at least n(n1ogn)
edges. Our lower bound tor the length ot
meanders enables us to strengthen this and
s'how that every log.x - s. c. of depth 2
has at least n(n log n) edges. This re­
sult is optimal.
2 • A RAMSEY THEORETIC LEMMA.

Put N = (1,2' ••. tnJ and let
X = (xl~x2, ••. ,Xr) be a sequence of ele-
ments of N. For an ordered pair (a,b)
of distinct elements of N, we define
vx(a,b) to be the binary vector obtained
from X by replacing each a by 0 and
each b by 1, and by omitting all
Xi e N- (a, bJ. We call vx(a, b) the order
~ vector of (a,b) in x.
LEMMA 2.1. Let X = (xl, ••• ,xr ) be a
sequence in which each a e N appears pre­
cisely k times (r = n • k) t and suppose
N = N1 UN2 is a partition of N into two
disjoint sets. Then there are two subsets
S~N1' T~N2' lsi L IN11/22k-1 and
IT I~ IN21 /22k- 1 , such that all the order
type vectors (vx(s,t): s e S, t e TJ are
identical.
REMARK 2.2. The assertion ot Lemma 2.lis
a Ramsey-theoretic result. It is possible
to use same known Ramsey-type results to
obtain weaker versions of it. Indeed by
considering the complete graph on the ele­
ments of N in which the edge (a,b) for
a <b is colored by vx(a, b). one can
prove sorne weak version of Lemms 2.1 by
applyin~ the standard Ramsey theorem for
graphs (see, e.g., (Bo]). A somewhat
better result cap be proved using the known
results about the problem of Zarankiewicz
(see (Bo]). Using these, we can obtain
the assertion of Lemma 2.1 for S T of
size n(logn/2k) (if IN1 1 = IN21). Both
results are considerably weaker than the
one proved above.
REMARK~. Lemma 2.1 is not far from
being the best possible. For every k
and n, we can construct a sequence X, in
which each a e N appears precisely k
times, with no two disjoint sets S, T ot
size bigger than rn/2 k/21 that satisty
the assertion of the lemma. Indeed, put
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A = k/2. For each 1 < i < I, let
N10 (Ni1 ) be the spouence Of all elements
of N whose i-th least significant bit is
o (1, respectively), ordered in an increas­
ing order. Let X be the concatenation
of the following 2, permutations of N:
(NiONi1 ) tor i = 1, • · • , I, and (N11N10)
for i=l, ••.• '. We claim that if SeN
and there is even a single tEN - S such
that all vectors (vx(s,t): s E S) are
identical, then IS I~ rn/2'l = rn/2 k/2 l.
Indeed, otherwise, there are sO' sl E S

which differ in the i-th coordinate for
some 1 < i <, and one can easily check
that v;1 s;: t) ~ vx ( s1 ' t) •
PROOF OF LEMMA 2.1: For 1 <p < k, 1 < q < it,
and an ordered pair (a, b) ofdistinct­
elements of N, let v(ap,bq ) be the sub-
sequence of vx(a,b) consisting of the
initial p-zeroB and initial q l's in
v (a,b). '!hus v(a ,bq ) is the order typex p
vector of (a,b) in the sequence obtained
from X by omitting every occurrence of
a besides the first p, and· every occurr-
ence of b besides the tirst q. 2

We claim that there are two sets S eN1 ,

T2 cN2 , with Is2ILINll/2, IT21LIN21/2
such that all vectors (v(sl,tl ): s£S2,
t E T2 J are identical and are either all
01 or 10. Indeed, either half of the
elements of N1 precede half of those of
N2 , or vice versa.

Suppose now, that p,q are some numbers
satisfying l~p, q~k and that we have
already defined two subsets Sp+q c: Nl and

~+qcN2 satisfying IsP+ql L IN11/2P+q-l,
1~+qIL IN21/2P+q-l, such that all vectors
(v( sp' t q ) : s £ Sp+q, t £ ~+qJ are identical
and their last two coordinates are dis­
tinct. Assume, without loss of generality,
that each such v(sp,tq ) ends with a 1.
If P = k, we are done, since for each
s £ Sp+q, t £ ~+q, vx(s,t) is just v(sp,tq )

followed by k - q 1 ' s . If P < k we
claim that there are Sp+q+1 c Sp+q and
~+q+1 c ~+q, satisfying IsP+Q+1 1 ~

IsP+QI/2 and ITP+q+1 I ~ 1~+ql/2 such
( ) p+q+1

that all vectors (v sp+1' t q : s E S ,
t E ~+q+IJ are identical, and their last
two coordinates are distinct. Indeed, put
I = {i : Xi is the (p+1) occurrence of
some s £ Sp+qJ and J= (j : x j is the q
occurrence of sane t E~+qJ • Clearly

II I = ISp+q I and IJ I = IrrP+
q

I. Let I be
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the rIII/2-'-smallest number in I and
let j be the (r IJI/2-1 + 1)-sma11est
number in J • If I < j, then we define
SP+Q+l = (s e Sp+q : the (p+1) occurrence of
s in X is not after Xi)' and
~+Q+l= (t E TP+q : the q occurrence of' t
in X is not before XjJ. Clearly, in
this case, for every s e SP+q+1 and

_'C+q+l ( )t ,€ '1'" ,v sp+l' t Q is equal to the
vector obtained from v(sp,tq ) by replac­
ing its last coordinate (which is 1) by
01. If I ~ 3, we detine, similarly,
Sp+q+1 (s E Sp+q : the (p+1) occurrence of
s in X is not before xi J , and
TP+q+1 {t e ~+q : the q occurrence of
t in X is not after XjJ. In this case,
for every s E SP+q+1 and t e ~+q+l,
v(sp+1,tq ) is v(sp,t) followed by a
zero. In both cases, fsP+q+lIL Isp+ql/2,
ITP+Q+1I ~ 1~+ql/2 and all vectors
( v(s t) • S e SP+Q+1 t ~ ~+q+1J arep+l' q • ,~

identical and their last two coordinates
are distinct. This proves our claim and
completes the proof ot Lemma 2.1. []
"3 • MEANDERS AND WEAK SUPERCONCENTRATORS •

For a sequence M= Xlx2 •..~ of numbers
Xi E (1,2, •.• , nJ • N and for disjoint sets
S, T ~ N we say that an interval
xi xi +1 • · .xi +j is a link between Sand T

if Xi+l •.•. ,xi+j_I'SUT and x1 eS.

xi + j e T or Xi E T, xi +j e S. The length of
M (also written IMI) is m. In analogy
to the definition of a superconcentrator
we say that a sequence Mover n numbers
is a meander if for anr two disjoint sets
S,T c: (1, ••. ,nJ with IS I = IT I there are
in M at least Is I links between Sand
T. More generally, for any function
g:N .. R+, M is a g(x)-meander (over n
numbers) if for any disjoint sets
S,T ~ (1,2, ••• ,nJ with lSI = ITI there
are in M at least g(ls) links between
Sand T. We call M a g(x)-bipartite­
meander if this link property is restricted
to sets S, T with S c (1, ••. ,n/2J and
T c: (n/2 + 1, ••. , n J•
THEOREM~. If M is a g(x)-bipartite
meander over n numbers of length n· f,

then f L! g(n/28f+1 ). Hence, if M is
a g(x)-meander ot length n· f the same
inequality holds. In particular, every
log x-meander has length n(n log n) and for
every g(x) 1 00, the length of a g(x)­
meander is superlinear.
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n'2( n )(28) .2g(s} • (42e}g(s) <
s=l 2s s n3S -

1
00 2s '7 slog n

~ t (!.!l) . 228 • 28 log nC 42e) ~
s=l ~s 7 . n3s

(
68 · log n)
3s · log n

Indeed, the denominator here counts the
total number of binary sequences consist­
ing of 3s log nO' sand l' s and the
numerator counts the number of those se­
quences with j blocks of O's and j
blocks of l's. As the links between S
and T depend only on the occurrences of
elements from S UT in M the above ex­
pression for the probability of 2j links
can be given analogously. B:y a standard
estimate, for every i ~ g(s}/2

(3s l~gn) ~ (3gs(;>,;) 1 ~ (42e)g(S)/2 and

hence the probability that there are less
than g(s) links between Sand T can
be bounded by

2 • g(8) • (42e)g(s)

n3s

(Here we used the trivial estimate

(~: ~~~~) ~ n
3s

.) Thererore. the proba­

bility that there are two disjoint S,TcN
with lsI = ITI ~ n/2 and with less than
g(lsl) links between them is

length 3n rlognl. In fact, almost all
sequences containing 3rlog n' occurrences
of each i € fl, .•• ,nJ are tx logn (and
hence also 'x log x) -meanders.
PROOF: Define a function g(x) ='x logn
and let M be a random sequence in which
e,ach i e (1, 2, ••• ,nJ =N occurs 3 .rlog ri1
times. We show that the probability that
M is a g(x)-meander tends to 1 as n
tends to infinity:

Fix a number s, 1 < s < n/2 and fix
two arbitrary disjoint sets S,T ~ N with
lsi = ITI = s. An easy combinatorial ar­
gument shows that the probability that M
has exactly 2j + 1 links between Sand
T is precisely

2 • (3 S log n - 1)2
,1

PROOF: Let N be the set of all numbers
that appear at most 4f times in M. Put
N1 = Nn (1, 2 , ••• ,n/2 J , N2 = Wn (n/2+1, • • · , n J •
Clearly INI I, IN2 1 ~ n/4. Let Y be the
subsequence of M consisting of all occur­
rences of numbers from N= Nl U N2 in M

and let X be a sequence obtained from Y
by adding to it in the end, if necessary,

,..., ".,

elements from N such that each x e N
appears precisely 4f times in X. By
Lemma 2.1 there are SeNl , TcN2 , lsi =
ITI = n/28f+l , such that all the order type
vectors (vM( S , t) : s e S, t e TJ are iden-
tical. One can easily check that the num­
ber of links between Sand T, is, at
most, 8f. This implies the result. []

A noteworthy feature of the preceding
lower bound proof is the fact that it uses
the link property only for sets S,T of
one fixed size (n/28f+1 ). Therefore we
can easily derive the following corollary,
which provides a handy criterion for lower
bound arguments in complexity theory.
COROLLARY g. Assume sen) is some arbi­
trary function and M is a sequence over
(l, ..• ,nJ. In order to prove that
IMI =o(n.s(n» it is sufficient to show
for some k <n/2s (n) that for any two
sets S =(1~ ..• ,n/2J and
T ~ (n/2+l, ••. ,nJ of size k there are
in M at least sen) links between S
and T.
PROOF: We first observe that if k~ k'
and M satisfies the link property of the
corollary for sets S, T of size k, then
it also satisfies this link propert¥ for
sets of size k'. Let IMI = n • fen} for
some suitable f(n). Assume ..
8f(n) + 1 ~ sen) (otherwise we are done).
Let g::IN" :R+ be any function with
g(n/28f (n)+1) = sen). Since
k~n/2s(n) ~ n/28f (n)+1 we know by our
observation above that M satisfies the
weaker link property which was actually
needed in the proof of Theorem 3.1. There-
fore we have fen) ~i g(n/28f (n)+1) =is (n),
which contradicts our assumption
8f(n)+1 ~ sen). []

Using probabilistic arguments, we next
prove the following result, which' shows
that Theorem 3.1 is sharp for every func­
tion g(x) that satisfies O(log x) <
g(x) ~ O(x log x). For each such g,-the
bound given by Theorem 3.1 tor the
length of the meander is 0 (n log n) it

THEOREM~. For every sufficiently large
n, there is an ., x log n-meander ~ of
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which tends to 0 as n tends to
infinity. 0

Recall the definition of a g(x)-s.c.
of depth 2 given in Section 1 ~ '!he follow­
ing lemma is due to Pippenger.
~~. If there is a g(x)-supercon~
centrator G of depth 2 with n inputs,
n outputs, and eedges, then there is a
g(x)-meander Mover n numbers of
length e.
PROOF: Let Bl: I .. Nand B : 0" N be
two fixed bijections from the2set of in­
puts I of G and the set of outputs 0
of G to N = (1.2 •••. ,nj. For any in­
terior vertex v (i.e., v t I U 0) of G,
let I be the set ot inputs adjacent to

v
v and let 0 be the set of outputs adja-v
cent to v. Let M be the concatenation
of the sequences B1(Iv)' B2(Ov) for all
v. One can easily check that if G is a
depth 2 e;(x)-s.c-. with e edges then M
is a g(x}-meander over n numbers of
Jength e. 0

Theorem 3.1 and the last lemma imply
that any depth-2 log x-s.c. with n in­
puts and n outputs has n(JIllog n) edges.
One can easily check that this is optimal
(simply take log n interior vertices, each
adjacent to all inputs and all outputs.

4. LOWER BOUNDS FOR BRANCHING PROGRAMS.
Recall the R-way branching programs de­
fined in Section 1. Our lower bounds
follow by proving that the labels of the
levels in any input oblivious R-waybranch­
ing program of small width for the con­
sidered functions satisfy certain meander­
type conditions. The bound follows then
from Corollary 3.2. Our first example is
the well known set equality function
SE(n,m) defined in Section 1.

One can easily check that a RAM with 2m
registers can compute this function in time
O(n) (by writing each number Xi in the
register whose address is Xi)' whereas a
RAM with nOel) registers can solve it in
time O(n log n) (via sorting). n(n log n)
lower bounds for a RAM with nOel) regis­
ters and for algebraic computation trees
(for the casem »n) appear in [Ma] and
[Be], respectively. To the best of our
knowledge no lower bound exists for the
(realistic) case m < n. Here we obtain
lower bounds for m« n on R-way input
oblivious branching programs.
THEOREM 4.1. Suppose log log n ~m~~ log n.
1~ s ~ log nand R = 2m. Then any R-way in­
put oblivious branching program of width
22m/ s computing SE(n,m) has length
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n(n • s). This bound is sharp, i.e., for
all n,m,s in this range there is an R­
way input oblivious branching program of
width 2

2m
/ S and length O(n. s) comput­

ing SE(n,m).
PROOF: The upper bound is straightforward
(partition (O, ••• ,R-lj into s+l in­
tervals and ,check separately for each in­
terval which elements of it occur in the
input). To prove the lower bound we argue

IIW
as follows. Let m be the:length of an
input oblivious R-way branching program B

computing 'SE(n,m), of width w ~ 2
2m/ s .

Let M be a sequence of length ; over
(1,2, ••• ,2nJ whose i-th element is j if
the i-th level vertices of B are labeled
x j ' and is n+ j it they are labeled Yj .

We claim that for any S c (1,2 •••. ,nJ and
Tc:(n+l, •.• ,2nJ with lsi = ITI = 2m- I ,
there are n(s) links between Sand T
in M. This, together with Corollary 3.2
implies that ; = o(n · s) (for
s(n) ~ ~lOgn we have 2m-l~n/2s(n).

Fix sets 8,T as above. Consider in­
puts I A=<zl, ••. ,z2n>e:SE(n,m), where
zi = ° for all itS U T and
A=(zi:ie:SJ = (Zj:je:Tj, where A is a
set of cardinality at most lsi = 2m- l of
elements from (1, .•• ,2m-lj. Let L be
the set of links between 8 and T in M.
A standard "cut and paste" argument (=
"crossing sequence" argument) implies that
for any two inputs I A and

lA' = <zi,···,z2n> with A! A' there is
a link A in L, such that the computa­
tion path in B for I A differs from
that of lA' on that level of the branch­
ing program' B that corresponds to the
last element of the link. Otherwise B
would also accept an amalgamated input
"'''' ,..I = <zl, •.• ,z2n> i 8E(n,m) given by
,.. ,..
zi = zi for i ~ nand zi = zi for

m-1
2 (2

m
-l) 2m-2i > n. There are t i ~ 2

i=O
different choices for A and thus
wiLl> 22m-2 • Since w ~ 22m/s this im-

plies that ILl = n(s). 0
Our second example is the sequence

equality function Q(n) defined in Section
1.

THEOREM 4.2. Any (3-way) input gNdvious
branching program of width 2n/ 2 com­
puting Q(n) has length n(n. h(n» . In
particular, if the width 1s 2 o(n) then the
length 1s superlinear.
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sharp. Indeed, for, say w =e(log n) one
can compute f in length .
O(n log n / log log n) by computing E Xi
modulo each prime p satisfying
p ~ C • log n and by using the Chinese Re­
mainder Theorem. Similarly, the above
bound for this function can be shown to be
sharp for all log n < w<n.

Finally we would lfke~o point out that
our lower bounds on the length of input
oblivious branching programs imply lower
bounds on the number of steps that are
needed to pebble ani computation graph tor
the same problem. ssume G is a com~uta­

tion graph for a function f(xl, ••• ,xnJ
where all arguments and intermediate re­
sults that are computed at nodes of G are
from (O, ••• ,R-~j. Then any pebbling of
G with p pebbles in T steps defines an
input oblivious branching program tor f
of width RP and length T.
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