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Abstract

First-order logic is known to have a severely limited expressive power on finite structures. As
a result, several different extensions have been investigated, including fragments of second-
order logic, fixpoint logic, and the infinitary logic #% , in which every formula has only a finite
number of variables. In this paper, we study generalized quantifiers in the realm of finite
structures and combine them with the infinitary logic %, to obtain the logics £ (@), where
Q =1{Q; iel} is a family of generalized quantifiers on finite structures. Using the logics
£L¢ (Q), we can express polynomial-time properties that are not definable in £, such as
“there is an even number of x” and “there exists at least n/2 x” (n is the size of the universe),
without going to second-order logic.

We show that equivalence of finite structures relative to ¥ (@) can be characterized in
terms of certain pebble games that are a variant of the Ehrenfeucht—Fraissé games. We combine
this game-theoretic characterization with sophisticated combinatorial tools from Ramsey
theory, such as van der Waerden’s Theorem and Folkman’s Theorem, in order to investigate
the scope and limits of generalized quantifiers in finite model theory. We obtain sharp lower
bounds for expressibility in the logics &2 (@) and discover an intrinsic difference between
adding finitely many simple unary generalized quantifiers to % , and adding infinitely many.
In particular, we show that if @ is a finite sequence of simple unary generalized quantifiers, then
the equicardinality, or Hértig, quantifier is not definable in £% (Q). We also show that the
query “does the equivalence relation E have an even number of equivalence classes” is not
definable in the extension £ (I, Q) of £, by the Hértig quantifier I and any finite sequence
Q of simple unary generalized quantifiers.

1. Introduction and summary of results

For many decades traditional mathematical logic focused on the study of first-order
logic on the class of all structures (both finite and infinite) or on fixed infinite
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structures of mathematical significance. During the late 1950s and the early 1960s
researchers initiated an investigation of logics that extend first-order logic. The
motivation for this line of research came mainly from the fact that first-order logic has
rather limited expressive power on important infinite mathematical structures.

The work of Mostowski [44] on cardinality quantifiers, such as there are infinitely
many elements, was the starting point of the research on extensions of first-order logic.
Soon after this, Tarski [45] initiated the study of infinitary languages, i.¢., extensions of
first-order logic in which infinitely long expressions are allowed in the syntax. In his
pioneering papers [39,40], Lindstrom introduced generalized quantifiers and ob-
tained abstract characterizations of first-order logic. The above investigations laid the
foundation for the systematic study during the 1970s and the 1980s of extended logics
and for the development of abstract model theory as the area of research whose aim is
to classify these extended logics and to discover the relations between them (cf. [8]).

The 1970s and the 1980s were also a period of increasing interaction between logic
and computer science. While exploring the connections between logic and computer
science, researchers realized that the finite structures, and not the infinite structures of
classical logic, are the ones that are relevant to computer science (cf. [21,22]). Out of
these considerations, finite model theory emerged as an active area of research that has
been developing steadily over the past 20 years.

Several individual extensions of first-order logic were investigated in the context of
finite structures from the perspectives of expressive power and relations to complexity
classes. Fagin [15] characterized the class NP of nondeterministic polynomial-time
problems as the set of properties expressible by existential second-order sentences on
finite structures. X | sentences, or existential second-order sentences, are expressions of
the form

3S;...38,0(S1, ..., Su, Ry ..., Ry,

where Sy, ..., S,. Ry, ..., R,, are relational variables and ¢(Sy,..., S, Ry,..., Ry) is
a first-order sentence. Fagin’s [15] result shows that even the simplest fragment of
second-order logic is too powerful on finite structures. It also raises the question: what
has to be added to first-order logic in order to capture exactly all polynomial-time
properties on finite structures?

Aho and Ullman [4] pointed out that first-order logic on finite structures has rather
limited expressive power (cf. also [16]). Intuitively, these limitations arise from the fact
that first-order logic on finite structures lacks a recursion mechanism. To remedy this
situation, Chandra and Harel [11] introduced fixpoint logic on finite structures,
which can be described succinctly as first-order logic augmented with least fixpoints of
positive first-order formulas. Fixpoint logic had been studied earlier by logicians on
infinite structures under the name inductive definability and turned out to be a power-
ful tool for analyzing second-order quantification on infinite structures (cf. [43, 3]).

The expressive power and the structural properties of fixpoint logic were investi-
gated by several researchers, including [2,48,28,23]. From a computational stand-
point, every property expressible in fixpoint logic on finite structures is computable in
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PTIME. On the positive side, fixpoint logic not only can express connectivity,
acyclicity, and 2-colorability, but it can also capture certain properties that are
complete for polynomial time, such as the path systems query [12]. On the other hand,
fixpoint logic is unable to express many properties that directly or indirectly involve
counting, such as “there is an even number of elements” or “there is an Eulerian cycle”
(cf. [11]).

This deficiency of fixpoint logic can be overcome if the inputs are restricted to be
ordered finite structures, i.e., if it is assumed that the underlying vocabulary contains
a binary symbol < which is always interpreted as a total ordering of the universe of
the input structure. Indeed, Immerman [28] and Vardi [48] showed that on ordered
finite structures a property is expressible in fixpoint logic if and only if it is computable
in polynomial time.

Although the above result identifies the expressive power of fixpoint logic on an
important class of finite structures, it does not answer the question of what has to be
added to first-order logic in order to capture polynomial time on finite structures.
Equivalently, this question can be phrased as: what has to be added to first-order logic
to capture exactly all order-independent polynomial-time properties of ordered finite
structures? (a property of ordered structures is order-independent if it does not depend
on the actual total ordering on the universe of the structure). These questions have
attracted considerable attention in both complexity theory (cf. [28,22,30]) and
database theory ([2]), because, although an order is always present when representing
or encoding finite structures by strings, in practice all algorithmic problems about
finite structures have to do with order-independent properties. In spite of considerable
efforts, however, so far there has not been found an extension of first-order logic that
captures exactly all polynomial-time properties on finite structures. This state of
affairs has motivated Gurevich [22] to make the bold conjecture that no such logic
exists.

To enhance the power of fixpoint logic, Immerman [28] augmented it with counting
quantifiers (i x), for each positive integer i. The interpretation of the quantifier (3ix) is
that “there are at least i elements x such that...”. Fixpoint logic with counting
quantifiers becomes more powerful than fixpoint logic on two-sorted finite structures
in which one of the sorts is for the universe of the original structures, while the other is
used to do arithmetic on the counting quantifiers. In particular, properties such as
“there is an even number of elements” are easily expressible in that setup. Immerman
[28] conjectured that fixpoint logic with counting quantifiers can express all poly-
nomial-time properties. This conjecture, however, was refuted later on by Cai et al.
[9].

The limited expressive power of first-order logic can also be increased by permitting
infinitary rules in the syntax. Note that the well-known infinitary logic %,,,,,, which
allows for countable disjunctions and conjunctions, is too potent on finite structures
to be of interest, since every class of finite structures is definable in this logic. A better
alternative is provided by the family %%, k > 1, of infinitary logics that allow infinite
disjunctions and conjunctions, but have only a total of k distinct variables. These
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logics were originally introduced by Barwise [7] with infinite structures in mind, but
turned out to be of interest and use in finite model theory. Indeed, they underlie much
of the work in [27,29,9,30] and have also been studied in their own right ([35,36]).

On finite structures the union £%,, = | )=, %, of the infinitary logics £%,, is
a proper extension of fixpoint logic, but it suffers from the same limitations as fixpoint
logic when it comes to “counting”. Many of these limitations are easily overcome if the
counting quantifiers (3ix), i > 1, are added to .#%,,,. For example, the property “there
is an even number of elements” is expressible by the formula:

V (32ix)(x = x) A—1(32i + 1x)(x = x)).

izt
Similarly, the property “there is an Eulerian cycle” is expressible in #2,(C) by the
sentence

(Vx) [ \/ (32nY)E(x,y) A—1(32n + 1y)E(x,y):|.
nzl

The above sentence asserts that every node in a graph G = (V, E) is of even degree,
which is a condition equivalent to the existence of an Eulerian cycle in G. Notice that
the agreement that (3i x) is a new quantifier entails that only one variable, namely x, is
used in the above formula (in contrast, the first-order translation of each (3Jix)
requires i variables). This is quite important when we are very conscious of the total
number of variables used in a formula. We let £* (C) denote the logic obtained by
augmenting .#* , with all counting quantifiers and we write #%,,(C) for the union
& Z%5o(C). As it turns out, even the logic £ ,(C) cannot express all polynomial-
time properties of graphs. Indeed, this is again a consequence of the main result in Cai
et al. [9].

There is an alternative approach to enhancing the expressive power of £, an
approach which is motivated by the work of Mostowski [44] and Lindstrom [39,40]
on generalized quantifiers on infinite structures and by the subsequent developments
in the study of extended logics [8]. Rather than adding all infinitely many counting
quantifiers at once, we may add individual tailor-made generalized quantifiers that are
meaningful on finite structures. For example, we need not add all counting quantifiers
to express “there is an even number of elements”, all we need is the quantifier

QevenX(x) < |{x: @(x)}| is even.

Similarly, we need but one new quantifier to express “at least half of the elements
satisfy ...”, or “the number of elements satisfying ... divides the size of the universe”.
These quantifiers are said to be of type (1) or simple unary generalized quantifiers,
because they apply to only one formula (simple) and they bind only one variable
(unary). Generalized quantifiers on finite structures were studied explicitly for the first
time by Hajek [24]. Our goal in this paper is to undertake a systematic study of
generalized quantifiers in finite model theory. To this effect, we introduce the family of
infinitary logics % ,(Q), k > 1, where Q@ = {Q;: i€} is a collection (finite or infinite)
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of simple unary generalized quantifiers on finite structures. These logics are
obtained by augmenting in a natural way the infinitary logics £% ., with the quanti-
fiers Q;, iel.

We study both the model-theoretic properties and the expressive power of the
infinitary logics Z% (@), k > 1, on finite structures. Our first result is that the logics
L A0), k = 1, are sufficiently well-behaved to admit a game-theoretic characteriza-
tion of equivalence in £% ,(Q), i.e., we can tell whether or not two finite structures
satisfy the same sentences of #% ,(Q) by using appropriate pebble games. These
games generalize both the k-pebble games for %%, in [7,27] and the counting
k-pebble game for #% ,(C) in [9,30]. As the first application of the pebble games for
£* .(Q), we obtain a structural characterization of the counting quantifiers by
showing that the counting quantifiers are essentially the only simple unary general-
ized quantifiers on finite structures that are monotone and possess a certain useful
closure property, called relativization.

In terms of expressive power, it is easy to see that the infinitary logic £5,(C) with
the counting quantifiers can subsume every logic £%,(Q) = [}, £%.(Q), where
Q = {Q.: iel} is an arbitrary collection of simple unary generalized quantifiers on
finite structures. However, if a formula ¢ of #2,(C) defines a property that is not
expressible in the infinitary logic £, (such as “there is an even number of elements”),
then an infinite number of distinct counting quantifiers must occur in ¢. Thus, it is
natural to ask: is there a finite sequence Q@ = (Q,, ..., Q,) of simple unary quantifiers
such that £¢,,(Q) has the same expressive power as £%,(C)? This question is an
instance of a more general problem, namely, given two collections @ and @* of
generalized quantifiers on finite structures, how do the infinitary logics 5. (@) and
L2 ,(0%) compare to each other in terms of expressive power? We use the pebble
games for the logics £~ ,(Q), k = 1, to answer such questions.

Our main technical result is that there are natural polynomial-time properties on
finite structures that are expressible by sentences of #2,(C), but are not expressible
by any sentence of £% ,(Q), where Q is a finite sequence of arbitrary simple unary
generalized quantifiers and k is a positive integer. In particular, we establish that on
the class of finite graphs no sentence of .#% ,(Q) can express the query “do two given
vertices have the same degree?”. We also show that on the class of finite equivalence
relations no sentence of £ (@) can express the query “is there an even number of
equivalence classes?”. The proofs require the construction of structures such that, on
the one hand, they satisfy the same sentences of #% ,(Q), but, on the other, they
disagree on these queries. The required structures are constructed by means of
a method we call the (k, @)-coloring method combined with sophisticated tools from
Ramsey Theory, such as van der Waerden’s Theorem and Folkman’s Theorem. Up to
now constructions for lower-bound results in finite model theory have been either
direct constructions, as in [16,14,9], or probabilistic constructions, as in [5]. Our
approach of utilizing combinatorial principles in building structures is entirely differ-
ent from the previously used techniques and opens the possibility of obtaining novel
lower-bound results for expressibility in finite model theory.
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All the individual extensions of first-order logic discussed above have been studied
on finite structures in their own right, but no general theory of extended logics in finite
model theory has been developed so far. It is natural to ask whether or not the
framework of abstract model theory developed by logicians can provide such a gen-
eral theory. As it turns out, finite model theory does not fall under the scope of the
current framework of abstract model theory. This is so, because, although the concept
of an extension of first-order logic in abstract model theory permits great flexibility in
the syntax and the semantics, the framework is rather rigid when it comes to the part
of the structures considered. More specifically, it is the case that always both finite and
infinite structures are considered. In fact, the infinite structures play an indispensable
role in many theorems of abstract model theory. This is manifested with Lindstrom’s
[40] theorem, which does not yield a characterization of first-order logic on finite
structures, because the compactness theorem of first-order logic fails when only finite
structures are considered.

In this paper we expand the framework of abstract model theory in a way that
allows for a treatment of finite model theory. A multitude of lines of research emerges
in this expanded framework, each with its own technical problems. Are there any
interesting results in abstract model theory that carry over to finite structures? What
can be said about the expressive power and the model-theoretic properties of first-
order logic augmented with generalized quantifiers on finite structures? Is there
a Lindstrom-type characterization of first-order logic or of fixpoint logic on finite
structures? The latter question is of particular interest, because such a characteriza-
tion of fixpoint logic may provide a deeper explanation for its eminence and robust-
ness on finite structures.

A few results of abstract model theory still hold for abstract logics on an arbitrary
class 4 of structures. This is, for example, the case with the well-known result that if
the Craig Interpolation Theorem holds for an abstract logic L, then the Beth Definabil-
ity Theorem also holds for L. In general, however, the results of abstract model theory
do not necessarily carry over to abstract logics on an arbitrary class £~ of structures.
This is particularly true when we consider the class # of all finite structures. It is
evident that Lindstrdm’s characterizations of first-order logic on the class .% of all
structures do not hold on #. For an example of a different flavor, consider the
following: it is known that if Robinson Consistency Theorem holds for an abstract logic
L on %, then the Craig Interpolation Theorem holds for L ([42,1.4]). This implica-
tion, however, does not hold on the class # of finite structures, since Robinson’s
theorem is trivially true for first-order logic on &, while the Craig Interpolation
Theorem fails.

In view of the above, it is natural to ask: is there a theory of abstract logics on classes
A of structures other than the class & of all structures? In particular, is there a theory of
abstract logics on the class # of all finite structures? Are there any model-theoretic
properties that characterize first-order logic or one of its extensions on % ?

We feel that these are natural questions that merit further investigation. Our aim in
this paper is to give some evidence that it is indeed both possible and sensible to
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develop a theory of abstract logics on finite structures. Actually, we believe that
interesting results in this vein can be discovered by taking advantage of the finiteness
of the structures and by viewing the absence of infinite structures as a feature, instead
of an impediment. To illustrate this point, we present a Lindstrom-type characteriza-
tion of the infinitary logics £~ and Z% (@), k = 1, on the class # of finite
structures.

In order to make this paper as accessible as possible by newcomers to the area of
generalized quantifiers and abstract model theory, we have included detailed defini-
tions of the basic concepts and background material from this area.

2. Generalized quantifiers
2.1. Background and definitions

Historically, the research on extensions of first-order logic on infinite structures has
its origins in the work of Mostowski [44] on cardinality quantifiers, such as “there is
an infinite number of elements”. Later on, Lindstrom [39] introduced generalized
quantifiers and initiated the development of abstract model theory. Since that time,
researchers in mathematical logic have investigated in depth the model theory of
first-order logic augmented with specific generalized quantifiers, such as the quantifier
“there exist uncountably many” (cf. [32]), and have analyzed the expressive power of
first-order logic with various generalized quantifiers on infinite structures (cf. [8]). In
contrast, generalized quantifiers on finite structures have gotten much less attention,
in spite of an early pioneering paper by Hajek [24]. This situation, however, is
changing rapidly. Indeed, recently the study of generalized quantifiers in the context of
finite models has found applications in linguistics ([47,31,50,51]) and computer
science ([9, 30,25]).

One of our main goals in this paper is to initiate a systematic investigation of
generalized quantifiers on finite structures. To this effect, we are interested in both the
expressive power and the model-theoretic properties of logics with generalized quanti-
fiers on finite structures.

In this section we introduce formally generalized quantifiers and combine them
with the infinitary logic £, with a finite number of variables.

We use " to denote an arbitrary class of structures. If o is a vocabulary, we use
A [o] to denote the class of structures over ¢ that are in reducts of structures in %"
Some special cases will be used frequently: & denotes the class of all structures;
Z denotes the class of all finite structures. Let < be a fixed binary predicate. We use
F to denote the class of finite structures, one of whose relations i1s < and in which
< is interpreted as a total ordering of the universe. Structures over the empty
vocabulary @ are denoted by (A4), where A is the universe of the structure. Thus # [(]
consists of structures of the form (4).
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Definition 2.1. A simple unary generalized quantifier is a class Q of structures over the
vocabulary consisting of a unary relation symbol P such that Q is closed under
isomorphisms, ie., if 4 = (A4, P) is a structure in Q and B = (B, P?)is a structure that is
isomorphic to 4, then B is also in Q. Let #" be a class structures. A simple unary
generalized quantifier on A" is a simple unary generalized quantifier Q such that

0[0] = #[0].

Notice that the requirement on a simple unary generalized quantifier to be closed
under isomorphisms is equivalent to a cardinality condition, namely, a simple unary
generalized quantifier Q is a class of structures of the form 4 = (4, X) with X < 4 and
such that if A =(4,.X) isin Q, B=(B, Y) is a structure with Y € B, | X|=|Y|,
and |4 — X|=|B— Y|, then B is also in Q. Moreover, on the class # of all
finite structures this condition amounts to requiring that if 4 =(A4,X) is in Q
and B =(B,Y) is a structure with Y = B, |4| = |B| and |X| =Y, then B is also
in Q.

As mentioned above, simple unary generalized quantifiers on the class & of all
structures were introduced by Mostowski [44]. In this framework, the existential
quantifier on . is the class of all structures 4 = (A4, X ) with X a nonempty subset of 4,
while the universal quantifier consists of all structures of the form A = (A, A). Other
canonical examples of simple unary generalized quantifiers on & are provided by
cardinality quantifiers, such as the quantifier “there are at least N, elements”. More
formally, this quantifier is the class Q, of all structures 4 = (4, X) with X = 4 and
| X| = N,. If o 1s a class of structures, then the Chang quantifier over 4" is the class of
all structures 4 = (A4, X) such that (4)e .# [@#] and X is a subset of 4 with | X| = |A]|.
In all the preceding examples the quantifiers share an important monotonicity prop-
erty, which now we turn into a definition.

Definition 2.2. Let Q be a simple unary generalized quantifier. We say that Q is
a monotone quantifier if for every structure 4 = (4, X) in Q and every subset Y of
A such that X < Y, we have that the structure (4, Y ) is also in Q.

The quantifier “there are exactly N, elements” provides a standard example of
a simple unary generalized quantifiers on . that is not monotone. This quantifier is
the class Q -, of all structures A = (4, X) with X = 4 and | X| = X,. One advantage of
monotone quantifiers over nonmonotone ones is that when they are added to a logic
like £¢ ,, then formulas, that are positive in a relation symbol S are also monotone in
S, that is to say, if S has only positive occurrences in a formula, then the formula is
preserved when new tuples are added in S.

There are plenty of natural examples of simple unary generalized quantifiers on any
class of structures. Main emphasis in this paper is, however, on generalized quantifiers
on the class .# of all finite structures.
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2.2. Simple unary generalized quantifiers on finite structures

We next consider simple unary generalized quantifiers on the class # of all finite
structures. Notice that on finite structures all cardinality quantifiers Q, reduce to the
trivial empty quantifier, while the Chang quantifier on & coincides with the universal
quantifier. On finite structures the analog of the cardinality quantifiers are the
counting quantifiers (3ix), i > 1, consisting of all structures 4 = (A4, X), where A is
a finite set and X is a subset of 4 with at least i elements. The counting quantifiers are,
of course, expressible using the existential quantifier and first-order logic, but, as
explained earlier, they become quite interesting when we consider them in the context
of logics with a fixed number of variables.

Numerous natural examples of simple unary generalized quantifiers on # arise
from properties that are not first-order definable on finite structures, such as “there is
an even number of elements”, “there are at least log(n) many elements” (where n is the
cardinality of the structure), or “the number of elements satisfying...divides the
cardinality of the structure” (the divisibility quantifier). In particular, the quantifier
“there is an even number of elements” can be viewed as the class

Qeven = {(A,X): A is a finite set, | X| = A4, and | X is even}.
Notice that the counting quantifiers and the quantifier
OQpair = {(4,X): A is a finite set, | X| < A4, and | X| > |A4]/2}.

are monotone, while the quantifier Q.,.,, and the divisibility quantifier are not.

A useful insight to the structure of simple unary generalized quantifiers on % can be
obtained by associating with each such quantifier a function that gives the cardinali-
ties of sets occurring in the quantifier.

Definition 2.3. Let Q be a simple unary generalized quantifier on the class % of all
finite structures. The defining function fy of the quantifier Q is the function with domain
the set of all positive integers n and values

fo(n) = {m: 0 < m < n and there is a structure (4, X)eQ such that | X| = m}.
The requirement that simple unary generalized quantifiers be closed under isomor-
phisms implies that the defining function of such a quantifier characterizes the

quantifier, in the sense that for two simple unary generalized quantifiers Q, and Q, we
have that

Q1 =0Q, ifand only if f5 = fo,.

Notice that if Q is a monotone simple unary generalized quantifier on &, then for each
n 2= 1 the value fy(n) of the defining function is the interval

[ro(n),n] = {m: m is a nonnegative integer and ry(n) < m < n},
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where rp(n) = min {m: me f,(n)}. In this case, Q is the quantifier “there are at least ry(n)
elements”, i.e., it i1s the class

Q= {(A4,X) Ais a finite set, X < A4, and | X| > ry(|4])}.

We conclude that the mapping n — ry(n) is a function from the positive integers to the
nonnegative integers that describes completely the monotone quantifier Q. Conversely,
every function r(n) from the positive integers to the nonnegative integers gives rise to
a monotone quantifier, namely the quantifier “there are at least r(n) elements”. It
follows that there is a one-to-one and onto correspondence between monotone simple
unary generalized quantifiers Q on % and arbitrary functions r(n) from the positive
integers to the nonnegative integers.

It turns out that, by reflecting on the properties of the function r5(n), we can obtain
a simple classification of all monotone quantifiers ¢ on %.

Definition 2.4. Let Q be a monotone simple unary generalized quantifier on the class
Z of all finite structures and for each n > 1 let ry(n) = min {m: me fy(n)}, where f,(n)
is the defining function of Q. If {m: me fy(n)} = 0, then we let ro(n) = n + 1.

e Wesay that Q is an eventually counting quantifier if there is a positive integer N and
a nonnegative integer r such that one of the following two statements holds:

1. ro(n) = r, for all positive integers n = N.
2. ro(n) = n — r, for all positive integers n > N.

e Wesay that Q is an eventually bounded quantifier if there is a positive integer N, and
two finite sets S; = {ry,...,n} and S, = {sy,..., s} of nonnegative integers such
that the following hold:

1. §; U S, is nonempty and if one of the sets S, and S, is empty, then either the other
set has at least two elements or f(n) = n + 1 for infinitely many n.

2. For every n= N there is a j such that either 1 <j <! and rg(n) =r;, or
l<j<mandrgn)=n—s;,or f(n)=n+ 1L

3. The function ry(n) takes each one of the valuesr;, 1 <j <l andn—s;,1 <j<s,
infinitely often.

e We say that Q is an unbounded quantifier if there is an infinite increasing sequence
n < n,<--<n<n,;<---of positive integers such that

ro(ny) < rg(ny) < - <rp(m) <rplniyy) < -+
and
ny —rplny) < ny —rena) < - < m—ro(n) < njpy —ro(nivy) < -

The counting quantifiers (3ix), i = 1, and their dual quantifiers “there are at least
n — i elements”, i > 1, are the main examples of eventually counting quantifiers. The

LEINTS

quantifiers “there are at least log(n) elements”, “there are at least \/ﬁ elements”, and
“there are at least n/2 elements” are all examples of unbounded quantifiers. Finally,
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the following are examples of eventually bounded quantifiers:

® Q=1{(A,X):(]A| is even and | X| > 3) or (| 4| is odd and | X| > 5)};
® Q=1{(A,X) (JA| is even and |X| = 3) or (|A]| is odd and |X| = |A| — 5)};
e Q={(4,X)|A|=imod3 and |X|>|A4|—ii=0,12}.

The next result yields a classification of all monotone simple unary generalized
quantifiers on finite structures. The proof follows easily from the definitions.

Proposition 2.5. Let Q be a monotone simple unary generalized quantifier on the class
F of all finite structures. Then exactly one of the following three statements holds:

1. Q is an eventually counting quantifier;

2. Q is an eventually bounded quantifier;

3. @ is an unbounded quantifier.

The above classification will be used later on in order to establish a structural
characterization of the eventually counting quantifiers. Moreover, we will show that
quantifiers definable in ¢, from eventually bounded quantifiers are themselves
eventually bounded or counting.

We can think of generalized quantifiers on & as queries. Thus a quantifier @ on
& corresponds to the query “is a given finite structure in @7”. If we think of
quantifiers on & as queries, it is clear what it means for a quantifier to be PTIME
computable. In any standard coding of finite structures the length of the code of
a structure is polynomial in the size of the structure. A simple unary generalized
quantifier Q@ can be defined to be PTIME if there is an algorithm which decides
whether a given structure A4 is in Q or not, and stops in time which is polynomial in the
code of A.

2.3. Infinitary logics with generalized quantifiers

We now define the syntax and the semantics of the logics that are obtained by
combining simple unary generalized quantifiers with the infinitary logics #%.,, k > 1.

Definition 2.6. Let Q = {Q;: ieI} be a family of simple unary generalized quantifiers,

and let k be a positive integer. The infinitary logic £k .(Q) with k variables and the

generalized quantifiers Q has the following syntax (for any vocabulary o):

e The variables of £¥ ,(Q) are vy, ..., vy

o £k . (0Q) contains all first-order formulas over ¢ with variables among v;, ..., vy;

e if ¢ is a formula of #¥ ,(Q), then so is — ¢;

o if ¥ is a set of formulas of % ,(Q), then \/¥ and /\¥ are also formulas of Z% ,(Q);

e if ¢ is a formula of £%(Q), then each of the expressions 3v;0, Vv;p, Q;v;¢ is also
a formula of £% (Q) for every j such that 1 < j < k and for every iel.
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Notice that although there are only k distinct variables, a sentence of £~ ,(0) may
have infinitely many occurrences of a variable. The concepts of a free and bound
variable in a formula of #* ,(Q) are defined in the same way as in first-order logic
with the additional stipulation that the variable v; is bound in the formula Q;v;¢.
A sentence of .#* (Q) is a formula of #% (@) with no free variables.

The semantics of #*.(0Q) is defined by induction on the construction of the
formulas. More specifically, \/¥ is interpreted as a disjunction over all formulas in
¥ and /\Y is interpreted as a conjunction. Finally, if A is a structure having A as its
universe and ¢(v;, y) is a formula of 2% ,(Q) with free variables among the variables v;
and the variables in the sequence y, and 4 is a sequence of elements from the universe
of A4, then

Avdi: injw(l}jay)
if and only if the structure
(A, {a: A,a,dE o(v;,y})

is in the quantifier Q;.

We write % ,,(Q) to denote the union | J;~ £* ,(Q) of the infinitary logics with
a finite number of variables and the generalized quantifiers Q. If Q is a finite sequence
(01, ..., Q,) of simple unary generalized quantifiers, then we write FE 01, ..., 00,
k>1,and £2.,(Q1,..., Q,) in place of % ,(Q) and £2,(Q), respectively.

If the definition of the syntax of £* (@), k > 1, is modified by requiring that the
disjunctions and conjunctions are always applied to finite set of formulas, then we
obtain the logic %, (Q), which is the fragment of first-order logic with k variables and
the generalized quantifiers Q. The union of these logics gives us %, (Q), first-order
logic augmented with the generalized quantifiers Q.

It should be pointed out that the expressive power of #%,(Q) transcends properly
the expressive power of both Z,,,(Q) and #2,,. This is, for example, the case when
Q is the family C of all counting quantifiers (3i x),i > 1. Moreover, the property “there
is an even number of articulation points” is easily expressible in .Z3 ,(Q.,.n) On finite
graphs, although one can prove that it is not expressible neither in %%, nor in
P Qeven). A similar fact holds for the property “there is a connected component that
has at least half the nodes” and the quantifier “for at least half the nodes”.

The model-theoretic properties of the logic Z,,.,(@) on the class of all structures
have been investigated in depth for various quantifiers @ arising in mathematical
practice (cf. [8]). As mentioned earlier, on finite structures the family of the counting
quantifiers C = {(3ix): i > 1} and the resulting infinitary logics ZE L(C), k=1 have
been studied systematically by Cai et al. [9] and by Immerman and Lander [30]. So
far, the infinitary logics £% (), k > 1, have not been explored neither on infinite nor
on finite structures for other unary generalized quantifiers.

It is simple, but important, fact that on finite structures the infinitary logic £ ,(C)
can subsume every logic £2,(Q), where Q is an arbitrary family of (simple) unary
generalized quantifiers. A more general result will be proved in Section 2.5.
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Proposition 2.7. Let Q = {Q;: iel} be a family of simple unary generalized quantifiers
on a class A~ of finite structures and let k be a positive integer. If Y(y) is a formula of the
infinitary logic L% .(Q), then there is a formula y*(y) of the infinitary logic L% ,(C) with
counting quantifiers and k variables such that y*(p) is equivalent to Y (y) on all structures
in 4.

Proof. The proof is by induction on the construction of #*% (@) formulas. The only
interesting case is when (y) is of the form Q;x¢{x,y) for some quantifier Q; in the
family Q. By induction hypothesis, assume that ¢(x,y) is equivalent to a formula
o*(x,y) of £~ ,(C). Let S be the set of all integers that are cardinalities of structures in
A and let f;, be the defining function of the quantifier Q;. Then y(y) is equivalent on
A" to the formula

\ <(3!nx)(x = x)/\|: \ (H!mx)(p*(x,y):D

neS me fo,(n)

of #% ,(C), where 3'nx(...) is an abbreviation for (3nx)(..)0A1(3n + 1x)(...). O

The main result of Cai et al. [9] asserts that there are polynomial-time properties of
graphs that are not expressible by any formula of the infinitary logic £2 (@) on finite
graphs. Combined with Proposition 2.7 yields immediately the following result.

Corollary 2.8. Let Q = {Q;:iel} be a family of simple unary generalized quantifiers on
the class A" of all finite graphs. Then there are polynomial-time properties that are not
expressible by any formula of the infinitary logic 5 (@) on A .

Corollary 2.8 reveals that there is no hope of capturing all of PTIME by combining
simple unary generalized quantifiers with the infinitary logic ¥5,. At the same time, it
raises a number of interesting questions concerning the properties of the infinitary
logics Z%.,(Q) for families @ of simple unary generalized quantifiers.

Notice that if a formula ¢ of £$,(C) defines a property that is not expressible in the
infinitary logic %, then an infinite number of different counting quantifiers will
occur in ¢. This raises the question: is there a finite family @ of simple unary
generalized quantifiers such that £% (@) has the same expressive power as £, (C)?

More generally, given two families @ and @* of simple unary generalized quantifiers
on finite structures, we may ask, how do the infinitary logics £ ,(Q) and ¥5 ,(0*)
compare to each other in terms of expressive power? In the next section we will

develop tools for studying and answering these questions.

2.4. Fixpoint logic with monotone quantifiers

The monotonicity condition is an important restriction to the concept of a general-
ized quantifier. One immediate consequence of this condition is that we can use the
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concept of a positive occurrence of a predicate symbol to get a profusion of definable
monotone operators and we can define fixpoint logic with monotone quantifiers.
More specifically, if @ = {Q;:ie I} is a collection of monotone simple unary generaliz-
ed quantifiers, we can define fixpoint logic with the quantifiers Q as the extension
FP(Q) of first-order logic obtained by augmenting the syntax of %,,.,(Q) with least
fixpoints of positive formulas. Below we shall give a more detailed definition.

So far, fixpoint logic with monotone quantifiers has been studied mainly on infinite
structures (cf. [3]). We investigate the expressive power and the closure properties of
FP(Q) on finite structures. It turns out, for example, that every formula of FP(Q) is
equivalent to a formula of Z3,(Q). Moreover, it is easy to see that if the defining
function f,, of every quantifier Q; in Q is computable in polynomial time, then every
FP(Q) query is in polynomial time. As far as closure properties are concerned, we
point out that FP(Q) queries are closed under complements on finite structures.

Definition 2.9. The dual of a simple unary quantifier Q is the simple unary quantifier

0=1{(4X): X< Aand (4,4~ X)¢0).

Note that é is definable in £ },,(Q) and if Q is monotone, then so is é IfQ=1{Q:
iel} is a collection of monotone simple unary generalized quantifiers, then every
formula in %,,(Q) can be expressed in an equivalent form which has only atomic
formulas, their negations, connectives A, v and quantifiers 3,V,Q;, é,-, where iel.

Definition 2.10. Suppose Q = {Q;: iel} is a collection of monotone simple unary
generalized quantifiers and ¢ € &,,,(@). Suppose ¢ is written so that it contains only
atomic formulas, their negations, connectives A, v and quantifiers 3, V,Q;, éi, where
iel. We say that the occurrence of a predicate symbol in ¢ is positive if it is
immediately preceded by an even number of negation symbols.

The following lemma is easy to prove.

Lemma 2.11. Suppose S is an n-ary relation symbol not in the vocabulary ¢ and
(X1, ..., X,,8) is a formula of £,,,(Q) over the vocabulary ¢ U {S} in which S has only
positive occurrences. Let

0
@ (xlﬁ"'axn) ="1Xp = Xy,

i+1(

@ xls-'-sxn): (p(~x1»'--3xnss(tls"'?tn)/(Pi(tla~“atn))’
@ (X1, ., X)) =\ {0 (xy, ..., %) 1 =0,1,2, ...}
Suppose A is a finite o-structure and

S={(ay,....a,) A, ay,...,a,F @™ (X1, ..., X,)}.
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Then S is the smallest fixed point of (x,, ..., x,, S) on A i.e. the smallest n-ary relation
S on A such that

(Vay,...,Va,)(S(a,,....,a,) < A,ay,...,a,F@p(xq,..., X, S)).

Here o(xy,..., x,, S(ty, ..., t,)/@'(ty, ..., t,)) refers to the formula which is obtained
from ¢(xi,..., x,, S(t;, ..., t,)) by replacing S(t,,...,t,) everywhere by ¢'(ty, ..., t,)
for all sequences ¢, ..., t, of terms.

Definition 2.12. Suppose @ = {Q;: iel} is a collection of monotone simple unary
generalized quantifiers. We let FP(Q) be the smallest collection of formulas that
contains Z,,(Q), least fixpoints ¢® of formulas in %,,,(Q), and is closed under
finitary disjunctions and conjunctions, existential and universal quantification, and Q;
and é,- quantification for iel.

Immerman [28] considered fixpoint logic with the counting quantifiers C on certain
two-sorted finite structures, where one of the sorts is used to do arithmetic on the
counting quantifiers. In the context discussed here, FP(C) has the same expressive
power as fixpoint logic FP, while FP(Q,.y) is strictly more expressive than FP. By
imitating the usual proof that fixpoint logic on finite structures is contained in £,
([7]) and the proof that fixpoint queries are PTIME, one can show the following
proposition.

Proposition 2.13. Suppose Q = {Q;: i€l} is a collection of monotone simple unary
PTIME generalized quantifiers. Then on finite structures:

1. Every formula of FP(Q) is expressible in £% ,(Q).

2. Every sentence in FP(Q) defines a PTIME query.

Leivant [38] defines the concept of a monotone language. By this he means
a language L in which the concept of “positive occurrence” is defined and which
satisfies the conditions:

1. L is closed under first-order operations.
2. For every formula ¢ and relation symbol R positive in ¢, the formula

Vz(P(z) = Q(2)) = (@ [P/R] - ¢[Q/R])

is valid.
It is clear that if @ = {Q;: i€} is a collection of monotone simple unary generalized
quantifiers, then FP(Q) and £% ,(Q) are monotone languages in the sense of Leivant.
The following result foliows from [38, Lemmas 3, 4 and Theorem IV].

Proposition 2.14. Suppose Q ={Q;: iel} is a collection of monotone simple unary
generalized quantifiers. Then FP(Q) is closed under negation, i.e. the negation of
a formula of FP(Q) is always expressible in FP(Q).
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2.5. Lindstrom quantifiers

The concept of a simple unary generalized quantifier was extended to quantifiers of
arbitrary arity on the class .# of all structures by Lindstrom [39].

Definition 2.15. Let n be a positive integer. An n-ary generalized quantifier is a class
Q of structures over the vocabulary consisting of an n-ary relation symbol P such that
Q is closed under isomorphisms, i.e., if A = (A, P*) is a structure in Q and B = (B, P%)is
a structure that is isomorphic to A, then B is also in Q. Let " be a class of structures
and n a positive integer. An n-ary generalized quantifier on A" is an n-ary generalized
quantifier Q such that Q[0] < ' [0].

Every class of equivalence relations that is closed under isomorphisms gives rise to
a binary generalized quantifiers on . In particular, such a quantifier is provided by
the class of all structures 4 = (A4, E) with the property that E is an equivalence relation
on A4 having infinitely many equivalence classes. For an example of a different nature,
consider the well-ordering quantifier Q* on the class . of all structures: it consists of
all structures 4 = (4, <*) such that the binary relation <* is a well-ordering of A.
This quantifier is not expressible in first-order logic. Observe, however, that the
restriction of the well-ordering quantifier Q* to the class % of all finite structures is
first-order definable, since on finite structures well-orderings coincide with total-
orderings.

In general, every collection of finite graphs that is closed under isomorphisms gives
rise to a binary generalized quantifier on the class # of all finite structures. For
example, the connectivity quantifier consists of all finite connected graphs G = (V, E).

With only notational modifications in Definition 2.6, we can define the syntax and
semantics of the logics £%,(Q), k = 1, for families @ = {Q;: iel} of generalized
quantifiers in which the arity of each quantifier Q; is at most k.

Notice that n-ary generalized quantifiers always apply to a single formula. Lind-
strom [39] introduced more complex quantifiers that can apply to a pair of formulas
or even to a finite sequence of formulas.

Definition 2.16. Let (n,, ..., n;) be a sequence of positive integers. A Lindstrom quanti-
Sier of type (ny,...,m) is a class Q of structures over the vocabulary consisting of
relation symbols Py, ..., P; such that P, is n-ary for 1 <i <! and Q is closed under
isomorphisms. Let .#" be a class of structures and let (n,,...,n) be a sequence of
positive integers. A Lindstrom quantifier of type (ny,...,n;) on A is a Lindstrom
quantifier Q of type (ny, ..., n;) such that Q[0] < A [0].

Notice that n-ary generalized quantifiers are Lindstrom quantifiers of type (n). In
the literature, n-ary generalized quantifiers are also known as simple Lindstrom
quantifiers. One of the best-known examples of nonsimple quantifiers is the equicar-
dinality or Hdrtig quantifier I. This is the Lindstrém quantifier of type (1,1) that
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consists of all structures 4 = (4, X, Y )suchthat X € A, Y < A4,and |X| = |Y|. There
has been an extensive study of the model-theoretic properties of the Hartig quantifier
I on the class . of all structures (cf. [26]). Moreover, Chandra and Harel [11] showed
that on finite structures the Hértig quantifier is not expressible in fixpoint logic. The
similarity quantifier S,, n =2, is the higher arity analog of the Hértig quantifier: it is of
type (1, n) and consists of all structures 4 = (4, R, S) such that R € A", S < A", and the
structure (4, R) is isomorphic to the structure (4, S). Another well-studied Lindstréom
quantifier of type (1,1) is the quantifier MORE that consists of all structures
A=(A4,X,Y) such that X € 4, Y = A4, and |X] > |Y|. This is also known as the
Rescher quantifier.

We can now define the syntax and the semantics of the infinitary logics Z%,(Q),
k = 1, for families @ = {Q;: ie I} of arbitrary Lindstrém quantifiers, provided that the
type (ny, ..., n)) of every quantifier Q; in Q satisfies the inequality max{n,, ..., n;} <k.

At the level of syntax, we add the following construct: Let Q; be a quantifier in @ of
type (ny,...,n), let x;, 1 <j </, be n;-tuples of variables of £%,(Q), let y be
a sequence of variables of £% (@), and let ¢;(x;, y), 1 < j <, be formulas of Z% ,(Q)
with free variables among the variables in the tuple x; and the tuple y. We assume that
the tuples x; and y are all disjoint. Then the expression

Qilx1s . X M@ (X, p)s .5 0ix, p))

is also a formula of #% ,(Q). A structure 4 with universe A and a tuple d of elements
from the universe of A satisfy the above sentence if and only if the structure

(As {al: A, a, d': (pl(xlsy)}a ey {al: A’ a, d ': (Pt(xn.V)})

is in the quantifier Q;.
In particular, for the Hirtig quantifier I we have that

A’dk:l(xlaXZ)((p(xlay)a l//(xz,.V))
if and only if
HacA: A, a, dF o(x,,p)}| = |{beA: A, b, dFY(x2,»)}].

Note that the Hirtig quantifier is readily definable from MORE. It was proved in [50]
that MORE is not definable in .%,,(I). The exact relationship between these two
quantifiers will be investigated in Section 5.

Definition 2.17. A Lindstrom quantifier Q of type (ny, ..., n)) on F is numerical if (A,
R;,....R,)eQ and |R,| =|R}],...,|R,| =|R,,| imply (4, R},..., R,)€Q.

Intuitively, a quantifier on # is numerical if it only refers to cardinalities of
relations. Simple unary quantifiers on &, the Hirtig quantifier I and MORE are good
examples of numerical generalized quantifiers. We can easily think of other natural
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ones, like:
Q = {(A,R): R = 4" |R| > |A|"/2},
Q = {(4,R): R = 4", |R| even},
0={ARS):R Sc A" |R|=|S|}.

Proposition 2.18. Let Q = {Q;: i€ I} be a family of numerical Lindstrom quantifiers on
a class A" of finite structures and let k be a positive integer. If y(y) is a formula of the
infinitary logic £% ,(Q), then there is a formula y*(y) of the infinitary logic L% ,(C) with
counting quantifiers and k variables such that y*(y) is equivalent to () on structures in
A

Proof. We use [n] to denote the set {1,..., n} and [n,m] to denote the set {n,n +
1,...,m}. Let Q; be a numerical generalized quantifier of type (ny, ..., n;). We prove
that the sentence Q;(x, ..., x)(P,(xy), ..., B(x;)) is definable in #% ,(C). The rest of the
proof goes as in the proof of Proposition 2.7.

Let S, be the set of tuples s=(s;,...,s,) of positive integers such that
Sy + -+ + s, = n. We denote the length g of s by Ih(s). Let

Ti = {(Svf): s = (sl)’ Sl G[Osn]a f: {(170)}}9
Ty =1(s,f): s€S,, f:[lh(s)] = T is one to one}.
Suppose t = (s, f)e T ¥~ ™ where 0 < m < n;. Let

j,0 __
(p{l _Pj(x15~-~sxnj)s
th(s)
i o
or' = /\ E”Sixmﬂ(P{.fm(x1,~--axm+1)-

i=1
Suppose t = (s, f)e T . A structure ([n], R;), R; < [n]", satisfies ¢’ if and only if
|R;| = c(t), where the number c(¢) is defined as follows:

1h(s)

=1 =Y s-clf()

Now, a structure ([n], Ry, ..., Ry is in @; if and only if it satisfies the sentence:

V{3lnx(x=x)A@r" A npht eT%fori=1,...,1 and

([n], c(tr), ..., c(t))€ Qi}. O

If we combine the main result of Cai et al. [9] and Proposition 2.18, we get the
following corollary.

Corollary 2.19. Let Q = {Q;: i€ I} be a family of numerical Lindstrom quantifiers on the
class A of all finite graphs. Then there are polynomial-time properties that are not
expressible by any formula of the infinitary logic £%,(Q) on X .
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Let us call a Lindstrom quantifier of type (1,1, ..., 1) unary. Not all unary quanti-
fiers are numerical, for example the class of structures (4, X, Y ), where X, Y < A and
| X nY | is even. However, Proposition 2.18 and Corollary 2.19 hold for all unary
Lindstrom quantifiers.

Proposition 2.20. Ler Q ={Q;: i€l} be a family of unary Lindstrom quantifiers on
a class A of finite structures and let k be a positive integer. If Y(y) is a formula of the
infinitary logic % ,(Q), then there is a formula y*(y) of the infinitary logic L% ,(C) with
counting quantifiers and k variables such that ¥*(y) is equivalent to Y(y) on structures in
A" Moreover, if A" is the class of finite graphs, then there are polynomial-time properties
that are not expressible by any formula of the infinitary logic £,(Q) on X .

Proof. The proof is almost identical with that of Proposition 2.18 and is therefore
omitted. [

Thus there is no hope of capturing all of PTIME by combining even infinitely many
numerical or unary Lindstrém quantifiers with the infinitary logic #%,,. Hella [25]
proved the stronger result that for any positive integer m there is a polynomial-time
property of finite structures which is not expressible in any %3 ,(Q), where @ is
a possibly infinite sequence of Lindstrém quantifiers Q; of type (n}, ..., n{)and n{ < m
foralli=1,...,1L

3. Pebble games for logics with generalized quantifiers

In algebra the fundamental criterion for distinguishing two structures is whether or
not they are isomorphic. From the standpoint of a logic %, two structures are
indistinguishable in ¢ if they satisfy exactly the same sentences of . This is the key
concept for analyzing the expressive power of a logic ¢ and for comparing it to other
logics. In this section we study equivalence in the logics £% (@), k > 1, and character-
ize 1t in terms of certain infinitary pebble games. For simplicity, we first give the
definitions and prove the results for families @ = {Q;: i€} of simple unary general-
ized quantifiers.

Definition 3.1. Let Q@ = {Q;: iel} a sequence of simple unary generalized quantifiers,

A and B two structures, and k a positive integer.

e Assume that ay,...,a, and by, ..., b, are finite sequences of distinct elements from
the universes of 4 and B, respectively, where 1 < m < k. We write

(A7 ZSERTRE am) EN‘/”;,Q(Q) (Ba b], “ees bm)
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to denote that for every formula @(u, ..., u,) of #% ,(Q) with free variables among
uy,..., U, we have that

A, ay,...,a,F@uy,...,u,) ifand only if B, by,.... b, Fo(uy,..., uy).

e We say that 4 is £* (Q)-equivalent to B, and we write A =4 @B, if 4 and
B satisfy the same sentences of #¥ ,(Q).
e We write 4 =4+ B to denote that 4 and B satisfy the same sentences of % ,.

Barwise [ 7] and Immerman [27] showed that the equivalence relation =4 can be
characterized in terms of the following k-pebble game between two Players I and II on
two structures 4 and B. The two players take turns and place pebbles on elements of
A and B, with Player I choosing first one of the two structures and placing a pebble on
an element of it and with Player II responding by placing a pebble on an element of
the other structure. Let a; (b;) be the element of the structure 4 (resp. B) pebbled in the
ith move. After k pebbles have been placed on each structure, if the mapping a; — b,
1 <i <k, isnot a partial isomorphism between 4 and B (i.e., an isomorphism between
the substructures of 4 and B generated by the a,’s and the b;’s respectively), then
Player I wins. Otherwise, Player I removes one pair of corresponding pebbles and the
game resumes until again k pebbles have been placed on each structure. We say that
Player 11 wins the k-pebble game on A and B if he can continue playing “forever”.

Barwise [ 7] and Immerman [27] showed that 4 = &« B if and only if Player II wins
the k-pebble game on A4 and B. This theorem has become the main technical tool for
showing that certain properties are not expressible in the infinitary logic #% ., on finite
structures (cf. [27, 34,9, 30]).

The question that now arises is: can k-pebble games be modified in such a way that
the resulting games capture equivalence in the infinitary logics £~ ,(Q), k > 1?

A sufficient, but not necessary, condition for equivalence relative to first-order logic
with Lindstréom quantifiers was given in [49]. A game that captures %,,,,(@)-equiva-
lence for monotone simple unary @ was introduced in [37]. A back and forth
characterization of .¢,,,(Q)-equivalence for arbitrary Q was given in [10]. A pebble
game that captures £% ,(C)-equivalence was introduced in [9,30]. We shall intro-
duce next a new pebble game that is capable of capturing £% ,(Q)-equivalence for
arbitrary quantifiers. An inspection of the proof of the theorem of Barwise [7] and
Immerman [27] shows that the pebbling of elements of 4 and B corresponds to
finding witnesses for the existential and the universal quantifier. This observation
suggests that the first step towards finding games that characterize #* ,(Q)-equiva-
lence is to allow additional types of moves that correspond to the presence of
generalized quantifiers in the logic. The idea is to allow the two players to choose
first structures in one of the quantifiers Q;, i € I, and then to place pebbles on elements
of these structures. We formalize this idea by introducing a new pebble game which
will then be refined further to yield the desired game that captures equivalence in
Z5 Q).
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Definition 3.2. Let Q = {Q;: i€} be a family of simple unary generalized quantifiers
on 4, A and B two structures, and k a positive integer. The (k, Q)-pebble game
between Players 1 and II on the structures 4 and B has the following rules: in each
move Player I can play as in the k-pebble game (and Player II must resopond with
a move in that game) or Player I can choose one of the structures 4 and B, say A4,
a quantifier Q; from the family Q, and a subset X of the universe A of 4 such that the
structure (A4, X) is in the quantifier Q;. Player II must respond by choosing a subset
Y of the universe of the other structure (in this case Y must be a subset of the universe
B of B) such that the structure (B, Y ) is in the quantifier Q;. Then Player I places
a pebble on an element b, of B and Player IT must respond by placing a pebble on an
element a, of 4 such thata, € X < b, e Y. After this, Player I chooses again one of the
two structures and the game continues this way until & pebbles have been placed on
each structure. Let g; and b;, 1 <i <k, be the elements of 4 and B, respectively,
pebbled by the two players in the ith move. If the mapping a; — b;, 1 < i <k, fails to
be a partial isomorphism between 4 and B, then Player I wins. Otherwise, Player I
removes one pair of corresponding pebbles and the game resumes until k pebbles have
been placed on each structure. If the game lasts for infinitely many moves without
Player I winning, then Player II is declared the winner.

At first sight, the (k, @)-pebble game appears to be the “correct” extension of the
k-pebble game and a good candidate for capturing equivalence in the infinitary logics
X L(0), k = 1. 1t turns out, however, that the (k, @)-game is too strong, in the sense
that it provides a sufficient condition for %% ,(0)-equivalence, but not a necessary
one. Indeed, later on we will prove that if Player II wins the (k, @)-pebble game on two
structures 4 and B, then the two structures satisfy the same sentences of #% ,(Q). We
will also show that the converse may fail for particular simple unary generalized
quantifiers. We next introduce a refinement of the (k, @)-pebble game in which Player 1
has less freedom in choosing his moves and, as a result, Player II has a better chance to
win.

Definition 3.3. Let @ = {Q;: ieI} a family of simple unary generalized quantifiers,
A and B two structures, and k a positive integer. The definable (k, Q)-pebble game
between Players I and II on the structures 4 and B has the same rules as the
(k, Q)-pebble game with the following exception in the moves of Player I: the sets
chosen by Player I must be definable in Z% (@) with the elements of the structures
that have pebbles on them as parameters. More specifically, assume it is Player’s
I turn to make a move and that the corresponding pairs of pebbled elements are
(ay, by), ..., (a,, by). If Player I chooses one of the two structures, say A, a quantifier Q;
in the family @, and a set X < A such that the structure (4, X) is in Q;, then there must
exist a formula @(uy, ..., u,, u) of £* (@) with free variables are among uy, ..., U, u
such that

X={acA:A,a,,..,anak@y,..., U, u)}.
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The rules for Player 11 are the same as in the (k, @)-pebble game. In particular, Player
Il is not required to play sets that are definable in £%,(Q) with parameters the
currently pebbled elements.

We now can state and prove one of the main results of this section.

Theorem 3.4. Assume that Q = {Q: iel} is a sequence of simple unary generalized
quantifiers, A and B are two structures, and k is a positive integer. Then the following
statements are equivalent:

) A =1 0B

(ii) Player 11 has a winning strategy for the definable (k, Q)-pebble game on A and B.
If the models A and B are finite, we have a third equivalent condition:
(iii) A =7+ g, B

Proof. Let us assume first 4 =« _9) B. We have to describe the winning strategy of
Player II. The strategy is as follows: Suppose pebbles have been put up to now on
elements a,, ..., a, of A and elements b,, ..., b, of B, where r < k. During the game
Player 1I will maintain the condition:

(A3als"'aar) EL",“)[Q](Bsbl’“‘sbr)' (1)

The strategy of Player II for those moves of Player I that are actually moves in the
ordinary k-pebble game is the same as in the ordinary k-pebble game. For details on
that we refer to [35, Theorem 2.16]. Let us then assume Player I moves a subset X of,
say A, so that (4, X )€ Q; for some i e I. We additionally assume that X is definable by
a formula ¢(x,z1...., z,) of £%,(Q) with ay, ..., a, as parameters, i.e.

X ={aeA: A,a.ay,...,a.Fp(x,zy,...,2)}
The strategy of Player II is to play the set
Y = {beB: B,b,by,....b,F(x.zq,...,2,)}.

By applying the equivalence (1) to the formula Q;x¢(x,z;,...,z,) we see that
(B, Y )e Q;. Therefore this is a legal move for Player II. Next Player I puts his pebble
on an element b of B.

Case 1. beY. The strategy of Player II is to put his pebble on an element a of X so
that

(A,a,al, cees a,) EL“I(D'Q) (B, b, bl’ PN br)

We claim that this is possible. Indeed, suppose it is not. Then for every ae X there is
a formula @,(x,z;,...,2,) of &% (Q) so that 4,a,ay,...,a,F @,(x,zy,...,2,) but
B.b,by,....b ¥ @x,zy,...,2,). So

A,al,...,a,l=Vx<(p(x,zl,...,z,)—» \/ (pa(x,zl,...,z,)).

aeX
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By (1) again B,b,b,,..., b,F \/acx @a(x, 21, ..., z,) which contradicts the choice of the
formulas ¢,(x, z, ..., z,). This is the only point, where we need extra care in case we
have assumed (iii) only. But if A is finite, then so is X, and the above big disjunction is
actually finite.

Case 2. b¢Y: Replace in Case 1 the formula ¢(x,zy,...,z,) everywhere by its
negation, and X by its complement.

This ends the description of the winning strategy of Player II

We shall now assume that Player I has a winning strategy t and prove 4 =« o) B.

We use induction on the structure of ¢(z,,...,z,) to prove that A,a,,...,a,F
@(z1,...,z,) if and only B,b,,..., b, F¢@(z4, ..., z,), whenever the sequences ay, ..., 4,
and by, ..., b, (without repetitions) represent a pebble position on a round of the game

and Player II has been playing the strategy . There are different cases to consider. We
refer to the proof of [35, Theorem 2.16] for details concerning all but one case,
namely, the case that ¢(zy,...,z,) is of the form Q;x¥(x,z,,...,z,), where x is
a variable different from z,,..., z,. Let us assume 4,ay, ..., a,F ¢(z,,..., 2} . Let

X ={aeAd: A,a,ay,...,a,EY(x,zy,..., 2,)}.

Then (4, X)e Q;. We let Player I play the set X as his next move. The strategy t directs
Player II to play some subset Y of B so that (B, Y )e Q;. We claim that

Y ={beB:B,bb,,....b,FY(x,zy,...,2,)}

Indeed, suppose it is not so.

Case 1. There is some beY — {beB: B.b,b,,....b,Ey(x,z,,...,2.)}: We let
Player I put his pebble on this b. The strategy t directs Player II to put his pebble on
some a € A. Since 1 is a winning strategy and because of our induction hypothesis,
necessarily ae X — {a€ A: 4,a,a;,...,a,FY(x,zy, ..., z,)}, which contradicts the def-
inition of X.

Case 2. Thereissome be{beB: B,b,b,, ..., b, FY(x,z(,...,2,)} — Y: The strategy
© directs Player II to put his pebble on some aeA. Necessarily aef{acA:
A,a,ay,...,a,FE¥(x,zy,...,2)} — X, which contradicts again the definition of X.

We have proved the claim and B, b, ..., b, F ¢(z4, ..., z,) follows. [J

Notice that although Player II need not play definable sets in the definable
(k, O)-pebble game, the above proof shows that he may do so, if he wants to. As
a consequence of Theorem 3.4 we obtain the following game-theoretic characteriza-
tion of definability in the logics £* ,(Q), k > 1, for classes of finite structures.

Proposition 3.5. Ler Q = {Q;: i€ I} be a family of simple unary generalized quantifiers
on the class & of all finite structures, let X be a class of finite structures over o, and let
k be a positive integer. Then the following statements are equivalent:

1. The class A" is L%, ,(Q)-definable, i.e., there is a sentence @ of L* ,(Q) such that
for any finite structure A over ¢ we have that

AeX = AFo.
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2. If A and B are finite structures over ¢ such that A€ A" and Player 11 has a winning
strategy in the definable (k, Q)-pebble game on A and B, then Be 4.

Proof. Let us suppose condition 2 holds. For any o-structure A, let ¢, be the
conjunction of all £ ,(0)-sentences true in A. Let i be the disjunction of all sentences
@4, where A€ 4. If Ae A, then trivially 4 F . On the other hand, if BE, e.g. BF ¢y,
where 4 € ¢, then Player II wins the definable (k, @)-pebble game on A and B. Hence
by condition 2, Be ¥". [

The preceding results lead to the following method for establishing nonexpressibil-
ity results in the infinitary logic L% ,(Q): In order to prove that a property # of
structures is not expressible by any formula of L€ ,(Q), it suffices to show that for any
k =1 there are structures A, and B, such that Ak P, B ¥ P, and Player II has
a winning strategy for the definable (k, Q)-pebble game on A, and B,.

Observe that this method is guaranteed to be complete by Proposition 3.5, i.e,, if the
property 2 is not expressible in L% ,(Q), then such structures 4, and B, must exist for
every k = 1.

It is obvious that if Player II has a winning strategy for the (k, @)-pebble game on
two structures 4 and B, then he also has a winning strategy for the definable
(k, Q)-pebble game on these two structures. Consequently, the above method can be
modified to require that Player II has a winning strategy for the (k, @)-pebble game on
the structures 4, and B,, for each k > 1. This modified method, however, is not always
complete, because there are quantifiers for which the two pebble games are not
equivalent (see below).

Although it is easier for Player II to win the definable (k, Q)-pebble game than the
(k, @)-pebble game, in practice it may be hard to describe a winning strategy, because
this requires an analysis of #% ,(Q)-definability on the structures on which the game is
played. Nevertheless, quite often it is possible to describe a winning strategy for Player
II in the following invariant (k, @)-game, which is a modification of the other two
pebble games and has intermediate strength.

Definition 3.6. Let Q = {Q;: ie ]} be a family of simple unary generalized quantifiers,
A and B two structures, and k a positive integer.

1. Assume that a, ..., a,, are elements of 4 and X is a subset of A. If A(X) = X for
any automorphism h of the structure A such that h(a;) = ay, ..., h(a,) = a,, then we
say that X is invariant under automorphisms of A that fix ay, ..., a,.

2. The invariant (k, Q)-pebble game between Players I and I1 on the structures A and
B has the same rules as the (K, Q)-pebble game with the following exception in the
moves of Player I: the sets chosen by Player I must be invariant under automorphisms
of the structures that fix the currently pebbled elements of the structures. More
specifically, assume it is Player’s I turn to make a move and that the corresponding
pairs of pebbled elements are (a,,b,), ..., (ay, b,). If Player I chooses one of the two
structures, say 4, a quantifier Q; in the family Q, and a set X < A such that the
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structure (4, X ) is in Q;, then X must be invariant under automorphisms of 4 that fix
14, ..., dy. A similar condition must hold if Player I chooses a set Y = B. The rules for
Player I are the same as in the (k, Q)-pebble game. In particular, Player II is not
required to play sets that are invariant under such automorphisms.

It is obvious that a winning strategy for Player II in the (k, Q)-pebble game is also
a winning strategy for him in the invariant (k, Q)-pebble game. The next theorem
describes relations between the three pebble games introduced here. Let Q—,, be the
simple unary quantifier consisting of all structures (4, X) such that 4 is a finite set and
X is a subset of 4 of cardinality| |4|/2 |, where if x is a nonnegative real number, then
| x ] is the greatest integer less than or equal to x.

Theorem 3.7. Let Q = {Q;: iel} be a family of simple unary generalized quantifiers,

A and B two structures, and k a positive integer.

o If Player I1 has a winning strategy for the invariant (k, Q)-pebble game on A and B, then
he also has a winning strategy for the definable (k, Q)-pebble on these two structures.

® For every positive integer k > 1 there are finite graphs G, and H, such that Player I1
has a winning strategy for the invariant (k,Q -, ,,)-pebble game on G, and H,, but
Player I has a winning strategy for the (k, Q- 1,,)-pebble game on G, and H,.

® For every positive integer k > 2 there are finite graphs G, and H, such that Player 11
has a winning strategy for the definable (k,Q - ,;)-pebble game on G, and H,, but
Player I has a winning strategy for the invariant (k,Q  ,,)-pebble game (and, hence
for the (k,Q—,,)-pebble game) on G, and H,.

Proof. Sets which are .#* (Q)-definable with parameters are obviously invariant
under automorphisms that fix these parameters. This observation yields the first part
of the proposition.

For a proof of the second part, Let G, consist of cliques C; of size 2k for | <i < 2k,
and H, of cliques D; of size 2k for 1 <i< 2k — 2.

At first we prove that Player I has a winning strategy for the (k,Q - ; ;;)-pebble game
on G, and H,. During the first k — 1 rounds of the game Player I puts his pebbles into
the cliques C;, i < k. Now comes the Q- ,,-move: Player I plays a subset X of Gy
which contains 2k — 1 elements from each C; for k < i < 2k. So the cardinality of X is
(2k — 1)k = |G|/2 and therefore this is a legal move. Suppose Player II plays a set
Y < H, of |H,|/2 = (2k — 3)k elements. Unless Player Il has lost the game already,
there are but k — 2 unpebbled cliques in H, left. They contain altogether (2k — 4)k
elements. Hence Y has to meet a pebbled clique D, in an element . Now Player I plays
his last pebble on the element h, and wins.

We shall then prove that Player II has a winning strategy for the definable
(k,Q _1,,)-pebble game on G, and H,. It is obvious that Player II wins if he can count
on Player I never making a Q_,,,-move. Hence it suffices to show that Player I
cannot play a Q-,,,-move, i.e. the quantifier Q- ,, contains no subsets of G, or H;
definable in £% ,(Q-,,,) with k — 1 parameters. For this end, suppose X is a subset of
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G, or H, definable in £% ,(Q_,,,) from the parameters ay, ..., a,, where r < k. Let
A={a,;,...,a} and X' = X — A. We use the fact that X is closed under automor-
phisms of the structure that fix the elements a,, ..., a,. There are two useful conse-
quences of this fact. First, if X' meets a clique K, then X contains all elements of
K — A. Second, if X’ meets a clique K with Kn4 = @, then X contains all cliques
K with Kn A = (. These observations help us estimate the size of X.

Case 1: X is a subset of G,. If X meets only cliques that meet A4, then
|X| <(k— 12k <|Gi|/2. If X meets a clique that does not meet A, then
1X| = 2k? > |Gy|/2.

Case 2: X is a subset of H,. If X' meets at least k — 1 cliques, then

X[ 21X = (k — 1)2k — (k — 1) > 2k* — 3k = |H,|/2.
If X’ meets at most k — 2 cliques, then
IX|<IX'|+k—1<(k—2)2k +k—1<2k?—3k=]|H]/2.

In either case X cannot have exactly one half of the elements of the universe.

The proof of the third part will be a modification of the proof of the second part. The
graph G, consists of cliques C; of size 2k for 1 < i < k and of cliques D; of size k for
1 <i < 2k. The graph H, consists of cliques E; of size 2k for 1 < i < k. Player I wins
the invariant (k, Q - ;;,)-pebble game on G, and H, as follows. He plays his first k — 1
pebbles in different cliques C; and then plays the set X =), <;<,C:i of size
2k? =|G,|/2. Note that X is invariant under automorphisms that fix the pebbled
elements. Unless Player II has lost already, he has played his k — 1 pebbles on
different cliques E;. Now he plays a subset Y of H, of size k?> = |H,|/2. The set Y has to
contain the elements pebbled by Player II up to now or else he loses immediately.
Since k — 1 sets E; contribute altogether (k — 1)2k elements, Y has to miss an element
y from at least one clique E; which has a pebble in it. Now Player I plays y and
wins.

Next we prove that Player I has a winning strategy in the definable (k,Q-,,,)-
pebble game on G, and H,. The point is, of course, that the set X played above by
Player I is not definable. Let 4 be either G, or H,. Let ay, ..., a, be elements of 4 with
n < k. Let [a;] denote the clique that g; is in. Let Z denote the union of the cliques of
A which have no pebbles. For any Y cdlet Y*=Y — {a,, ..., a,}.

Claim. Suppose X is definable in %, from the parameters a,, ..., a,. Then X is a union
of sets of the form {a;}, [a;]* and Z*.

Proof. An immediate consequence of the fact that X is definable in #%,, from the
parameters ay, ..., d,, is that if
A,ay,...,a,x) =4 (4,ay,...,4a,Y)

and x € X, then also ye X. Thus if X meets [a;]*, then [¢;]* = X, and if X meets Z*,
then Z* < X. The claim is proved. [
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It follows easily from the claim that | X| # |4|/2. Thus, if ¢(ay, ..., a, x)€ L.,
then

AEQ_ pxp(ay,...,a0,,X)>IXT1X =X,

So Player I will not be able to play a definable subset of 4 of cardinality |4|/2. On the
other hand, it is obvious that Player II wins the ordinary k-pebble game on G,
and H,. O

In the sequel we will make heavy use of the invariant (k, @)-pebble game in
establishing that certain properties # are not expressible by any formula of £, (Q)
on finite structures. For this, it will be enough to show that for any k > 1 there are
structures 4, and B, such that 4, F 2, B, ¥ #, and Player II has a winning strategy for
the invariant (k, Q)-pebble game on 4, and B,.

The quantifier Q-,,, used to separate the different versions of (k, Q)-games, is
nonmonotone. This is not an accident, because it turns out that if the quantifiers in
Q are monotone, then all the games: (k, Q)-pebble game, definable (k, Q)-pebble game,
and invariant (k, Q)-pebble game, are equivalent. As a matter of fact, for monotone
quantifiers all three games are equivalent to a somewhat simpler game that we
describe next.

Definition 3.8. Let Q = {Q;: iel} a family of simple unary generalized quantifiers,
A and B two structures, and k a positive integer. The monotone (k, Q)-pebble game
between Players I and II on the structures 4 and B has the following rules: in each
move Player I can play as in the k-pebble game (and Player II must respond with
a move in that game) or Player I can choose one of the structures 4 and B, say A,
a quantifier Q; from the family @, and a subset X of the universe A of 4 such that the
structure (A4, X) is in the quantifier Q;. Player II must respond by choosing a subset
Y of the universe of the other structure (in this case Y must be a subset of the universe
B of B) such that the structure (B, Y) is in the quantifier Q;. Then Player I places
a pebble on an element b, € Y and Player II must respond by placing a pebble on an
element a; € X. After this, Player I chooses again one of the two structures and the
game continues this way until k pebbles have been placed on each structure. Let a; and
bi, 1 < i<k, be the elements of 4 and B, respectively, pebbled by the two players in
the ith move. If the mapping a; — b;, 1 < i <k, fails to be a partial isomorphism
between 4 and B, then Player1 wins. Otherwise, Player I removes one pair of
corresponding pebbles and the game resumes until k pebbles have been placed on
each structure. If the game lasts for infinitely many moves without Player I winning,
then Player II is declared the winner.

Notice that the only difference between the (k, @)-pebble game and the monotone
(k, @)-pebble game is that Player I is restricted to choose elements in the sets played by
Player I1, while in the (k, Q)-pebble game he is also allowed to choose elements in the
complements of these sets. In general, the monotone (k, @)-pebble game is strictly
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weaker than the (k, @)-pebble game, but the two games are equivalent to each other if
the quantifiers happen to be monotone.

Theorem 3.9. Let Q = {Q;: ie I} afamily of monotone simple unary generalized quanti-
fiers, A and B two structures, and k a positive integer. Then the following statements are
equivalent:
(1) A =41 0 B.
(i) Player I has a winning strategy for the (k, Q)-pebble game on A and B.
(111) Player 11 has a winning strategy for the monotone (k, Q)-pebble game on A and B.
(iv) Player I1I has a winning strategy for the definable (k, Q)-pebble game on A and B.
(v) Player I1 has a winning strategy for the invariant (k, Q)-pebble game on A and B.

Furthermore, if the models A and B are finite, we can add another equivalent condition:

Proof. This theorem is proved by establishing (i} = (ii) and (iii) = (i). The result then
follows from this fact, the preceding Theorem 3.4, and Proposition 3.7.

To prove (i) = (ii), we suppose 4 =« o) B. We have to describe the winning
strategy of Player II in the (k, Q)-pebble game on 4 and B. The strategy is as follows:
Suppose pebbles have been put up to now on elements ay, ..., a, of 4 and elements
by,.... b, of B, where r < k. Part of the strategy is that

(A>a17~~-sar) EL",‘D(Q)(Bsbla-'-,br)' (2)

Therefore, we need not describe the strategy for those moves of Player I that are
actually moves in the ordinary k-pebble game. Let us then assume Player I moves
a subset X of, say A, so that (4,X)eQ; for some iel. For any acA let
©0a(x, 2y, ..., 2,)€ L%, ,(Q) be the conjunction of all formulas ¢(x,zy, ..., z,) € L% (@)
for which 4,a,a,,...,a, F ¢(x,zq, ..., z,). Notice that at first sight there is a problem in
taking this conjunction, because the collection of formulas of £% ,(Q) is a proper
class. However, by focusing on sets of nonequivalent formulas we can restrict our-
selves to a conjunction over a set of formulas. If we assume (vi) rather than (1), we can
observe at this point that there are only finitely many formulas of Z%,,(Q) which are
pairwise nonequivalent on 4. Let X’ be the set of elements a of A for which there is an
element a*e X so that A,a,a,,...,a,F @s(x,z4, ..., z,). Clearly, X = X'. Therefore
(A,X")eQ;. Note that ae X" if and only if 4, a,a;, ..., a, F \/eex @c(x, 21, ..., 2,). The
strategy of Player II is to play the set

Y = {bEB: B.b,by,....bE\/ (pc(x,zl,...,z,)}.
ceX

By our assumption (2), (B, Y )e Q;. Therefore this is a legal move for Player II. Next
Player I puts his pebble on an element b of B. The strategy of Player II is to put his



Ph.G. Kolaitis, J.A. Vaandnen [ Annals of Pure and Applied Logic 74 (1995) 23-75 51

pebble on an element a of A so that ae X if and only if be Y and
(Asaaala'“,ar) EL'v‘”,[Q) (Bab,bla'-'abr)- (3)

If it happens to be the case that beY, then we can pick aeX so that
B,b,b,,....b.E@,(x,z;,...,2z,), and this choice satisfies the condition (3).

Let us then consider the case that b¢ Y. Suppose no a¢ X can be found with (3).
Then for every a¢ X' there is a formula y,(x,z,, ..., z,) of L% ,(Q) so that

A.a,ay,...,a,E.(x,z,,...,2,) and B,b,bl,...,b,ié(,ba(x,zl,...,z,).
So

A,aq,...,a, FVYx ( V odx,ze, .20V Yulx, 2y, oo, z,)).
cex agXx’
Writing this formula in #%,,(Q) in case we only assumed (vi) is possible, since then X’
and X are finite. By (2) again, B,b, by, ..., b,k \/uyx Vu(x, 21, ..., z,) which contradicts
the choice of the formulas ,(x,z,, ..., z,).

This ends the description of the winning strategy of Player II.

To prove (iii) = (i), we shall assume that Player II has a winning strategy t in the
monotone (k, @)-pebble game on 4 and B and prove 4 =, o, B. We use induction on
the structure of ¢(zy,..., z,) to prove that 4,ay,...,a, F¢(z,..., z,) if and only if
B,by,....,b,F@(zy,..., z,), whenever the sequences ay, ..., q, and by, ..., b, represent
a pebble position (without repetitions) on a round of the game and Player II has been
playing the strategy 1. The only relevant case here is that ¢(z,, ..., z,) is of the form
Qixy(x,zy,...,2,), where x is a variable different from z,,...,z,.. Let us assume
A,ay,...,a, Fp(zq,...,2,). Let

X ={acA: Aa,ay,....a,Fp(x,2,,...,2,)}.

Then (4, X)e Q;. Welet Player I play the set X as his next move. The strategy t directs
Player II to play some subset Y of B so that (B, Y )e Q;. We claim that

Y < {beB:Bbby,....bEY(x,z,...,2,)}.

Suppose not. Then there is some be Y with B, b, by, ..., b, F1y(x,z4, ..., z,). We let
Player I put his pebble on this b. The strategy 7 directs Player II to put his pebble on
some ae€ A. Since T is a winning strategy, we have by the induction hypothesis,
A,a,ay,...,a, Fy(x,zy,..., z,), which contradicts the definition of X. We have proved
the claim and B, by, ..., b,k ¢(z;, ..., z,) follows. []

Elementary equivalence relative to .#% ,(Q), where @ is a sequence of arbitrary
Lindstrom quantifiers, can be defined by following the above general guidelines.

Definition 3.10. Let Q = {Q;: i} a family of Lindstréom quantifiers, 4 and B two
structures, and k a positive integer. Let Q; be of type (n{, ..., n{). The (k, Q)-pebble
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game between Players I and II on the structures A and B has the following rules: in
each move Player I can play as in the k-pebble game (and Player IT must respond with
a move in that game) or Player I can choose one of the structures 4 and B, say A,
a quantifier Q; from the family @, and sets X; < A™,..., X; = A™ such that the
structure (4, Xy, ..., X, ) is in the quantifier Q;. Player Il must respond by choosing
sets Y, € B™,..., ¥, < B™ such that the structure (B, Y, ..., Y;) is in the quantifier
Q;. Then Player I places pebbles on n;-tuples b;, where i = 1, ..., [;, of B and Player 11
must respond by placing pebbles on n;-tuples @;, where i = 1,...,[;, of B such that
a;eX; < beY,fori=1,...,1I. After this, Player I chooses again one of the two
structures and the game continues this way until k pebbles have been placed on each
structure. Let a; and b;, | < i < k, be the elements of 4 and B, respectively, pebbled by
the two players in the ith move. If the mapping a; — b;, 1 < i < k, fails to be a partial
isomorphism between A and B, then Player I wins. Otherwise, Player I removes one
pair of corresponding pebbles and the game resumes until k pebbles have been placed
on each structure. If the game lasts for infinitely many moves without Player I
winning, then Player II is declared the winner. []

It should be clear how invariant and definable (k, Q)-pebble game is now defined for
Lindstrom quantifiers Q. The proofs of Theorems 3.4 and 3.5 work for Lindstréom
quantifiers with only notational chances. We call a Lindstrom quantifier Q of type
(ny, ..., n) monotone, if (4,X,,..., X;)eQ and

XicXicA",...,X;c X, c A"

imply (4, X}, ..., X{)€ Q. Then Theorem 3.9 holds for monotone Lindstrém quanti-
fiers and its proof needs only notational changes.

4. Structural properties of simple unary generalized quantifiers

In this section we apply the (k, @)-pebble games to the study of structural properties
of simple unary generalized quantifiers. All structures considered are assumed to be
finite. In the first part we study monotone simple unary generalized quantifiers. We
show that the unbounded ones are not expressible by the bounded ones and vice
versa. We also define what it means for a quantifier to relativize, and characterize
counting quantifiers as the only monotone simple unary quantifiers which relativize.
In the second part we show that a result of Corredor [13] on a subfamily of all simple
unary quantifiers can be generalized to the context of infinitary logic with a fixed
number of variables.

4.1. Monotone and counting quantifiers

In Proposition 2.5 we observed that every simple unary monotone quantifier falls
into one of the three categories: eventually counting, eventually bounded, and
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unbounded. We shall now prove that the first two categories are closed under logical
definability and the only one that contains relativizing quantifiers is the first category.

Proposition 4.1. Suppose Q and Q' are monotone simple unary generalized quantifiers
and both nonexpressible in £,,.,.

1. If Q is eventually bounded and Q' is expressible in L2 ,(Q), then Q' is also
eventually bounded.

2. If Q is unbounded, ro(n) is a monotone function, and Q' is expressible in £2,(Q),
then Q' is also unbounded.

Proof. Suppose Q is eventually bounded, that is, there is a positive integer N, and two
finite sets §; = {ry,...,n} and S, = {54, ..., s5,,} of nonnegative integers such that the
following hold:

e §; and S, are nonempty (the case that one of them is empty is easier).

e Forevery n > N thereis a j such thateither 1 < j <landrp(n)=r,orl1 <j<m
and rp(n) = n — s;.

o The function ry(n) takes each one of the valuesr;, 1 < j <l andn—s;, 1 <j<m,
infinitely often.

Towards a contradiction, suppose Q' is an unbounded monotone simple unary
quantifier definable in #% ,(Q). This implies that there is a positive integer n so that

max{rzi=1,....I} + k<rp(n) and max{szi=1,...,m}+k<n—ryn).

Let o be the vocabulary consisting of a unary predicate P. We construct two
structures A and B over ¢ so that the following hold:

(i) Player Il wins the invariant (k, Q)-pebble game on 4 and B.
(1) AeQ and B¢Q'.

The universe of both 4 and B is [n]. In addition, P* = [ry:(n)] and P% =
[rg-(n) — 1]. Condition (ii) is satisfied by construction. To prove condition (i), suppose
r < k pebbles have been used and Player I plays an invariant subset X of 4 or B with
| X| = rp(n). Let X' be the part of X which has no pebbles. By considering separately
the cases that X’ meets P and its complement, X' meets only P, X’ meets only the
complement of P, and X' = §, one shows easily that Player II can choose Y = B with
| Y| = ro(n) so that whatever y e Y Player I pebbles, Player Il can find x € X preserving
the partial isomorphism property. This ends the proof of 1.

The proof of 2 is similar. [

Proposition 4.2. Suppose Q is a monotone simple unary quantifier and Q is expressible in
ZLaw- Then Q is eventually counting.

Proof. The proof is similar to the proof of Proposition4.1. [J
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Corollary 4.3. Suppose Q is a monotone simple unary quantifier. Then the following
conditions are equivalent:
(1) Q is expressible in £,,,.
(1) Q is expressible in £ ,,.
(iti) Q is eventually counting.

Intuitively speaking a quantifier has the relativization property, if whatever it says
of the universe, it can also say of the restriction of the universe into a unary predicate.
For example, suppose we have the quantifier Q = {(4, X): X < 4, | X| > |A|/2}. With
this quantifier we can say things like “At least half of the vertices are colored red and
have degree 3”. If this quantifier was relativizing, we could also say things like “At
least half of red vertices have degree 3”.

Suppose ¢ is a vocabulary with no constant symbols and no function symbols.
Suppose A is structure over ¢ and Pe g is a unary predicate. The relativization A” of
A to P is the substructure of 4 the universe of which is the interpretation of P in 4.

Definition 4.4. Let Q be a (finite or infinite) sequence of generalized quantifiers. We
say that %% .,(Q) has the relativization property if for any vocabulary ¢ with no
constant symbols and no function symbols, any unary predicate Peg and any
pe L (0) over o there is ¢ e £* ,(0) so that for 4 over ¢

AF P = APk o.
Relativization property for £ % ,(Q) is defined similarly.
Example 4.5. The logic .#* ,(C) has the relativization property. This can be proved

by induction on the complexity of formulas. The crucial step in the induction is the
definition

Qixe(x))" = ix(P(x) A ¢(x)).

Example 4.6. The logic #*(Q...n) has the relativization property. The crucial step in
the induction is

(QevenX(P(x))P = Qevenx(P(x)/\ (P(X))

Proposition 4.7. Suppose Q is a monotone simple unary quantifier. Then ¥*,,(Q) has
the relativization property if and only if Q is eventually counting.

Proof. First of all, if Q is eventually counting, it is easy to see that %% ,(Q) has the
relativization property. Let us then assume £% ,(Q) has the relativization property. If
Q is not eventually counting, it is either unbounded or eventually bounded. Suppose
first Q is unbounded. Let ¢ be a vocabulary with two predicate symbols P, and P,.
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Choose m so that min(rg(m), m — ro(m)) > k. Let n be a positive integer so that
min(rg(n), n — rg(n)) > m + k. Let A be a structure over ¢ with [n] as universe and
with P{ = {1,...,k}, P4 = {1,..., m}. Respectively, let B be a structure over ¢ with
{1,...,n} as universe and with P§ = {1,...,ro(m)}, P5 = {1,...,m}. Now

AF(QxP(x)"? and  BF(QxP;(x))"?,

so it remains to show that Player I wins the invariant (k, Q)-pebble game on 4 and B.
For this end, suppose we are in the middle of the game, and pebbles have been placed
on elements a,,...,a, of 4 and b, ..., b, of B, where r < k. Suppose Player I plays
now a subset X of, say 4, with |X| > ry(n). Let us assume, for simplicity, that
Xniay,...,a} = {ay,..., . Since the predicate P, has less than ry(n) — k elements,
X contains an element c outside P, U {ay, ..., a,}. The strategy of Player Il is to let his
set Y consist of elements outside P, plus the elements {b,, ..., b}. Since there are at
least k + rg(n) elements outside P,, Player II can make sure that | Y| > ro(n). Next
Player I puts a pebble on an element y of Y. If ye {b,, ..., b}, Player Il puts his pebble
on the corresponding element of {aj, ..., a,}. If, on the other hand, y is outside P,,
Player II puts his pebble on c. The case that X is a subset of B is entirely similar. This
ends the description of the winning strategy of Player II.

Suppose then Q is eventually bounded. Let N, S, = {ry, ..., 1}, S; = {s1,..., Su} be
as in the definition of eventual boundedness (Definition 2.4).

Case 1: Both S, and S, are nonempty. Choose m; > 2k + s; so that ry(m,) =
my — sy, and m, > 2k + ry so that ry(m,) = r,. Let n > m; + m, + k + s, be such that
ro(n) = n — s5;. Let A be a structure over o with [n] as universe and with P{ = [k],
P37 =[m,]. Respectively, let B be a structure over ¢ with [n] as universe and with
PY =[k +r], P§ =[m,]. Now

AFQxP () and  BE(QxP,(x)"?,

so0 it remains to show that Player 1I wins the invariant (k, Q)-pebble game on 4 and B.
For this end, suppose we are in the middle of the game, and pebbles have been placed
on elements a,,...,a, of A and by, ..., b, of B, where r < k. Suppose Player I plays
now a subset X of, say 4, with | X | > ryo(n) = n — s;. Let us assume, for simplicity, that
Xnf{ay,...,a} = {ay,..., a}. Since the predicate P; has less than ro(n) — k elements,
X contains an element c outside P, U {ay, ..., a,}. The strategy of Player I1 is to let his
set Y consist of elements outside P, plus the elements {b,, ..., b}. Since there are at
least ry + k elements outside P, Player Il can make sure that | Y| > ry(n). Next
Player I puts a pebble on an element yof Y. If ye {b,, ..., b}, Player II puts his pebble
on the corresponding element of {a,, ..., a,}. If, on the other hand, y is outside P,,
Player II puts his pebble on ¢. The case that X is a subset of B is entirely similar. This
ends the description of the winning strategy of Player II.

Case 2: S; # 0 and S, = 0. By assumption, S, has at least two elements r; and
ry >r. Choosemy >k +r; +r, + 1 sothatrg(m,) =ri,andm, >k +r, + 1, + 1s0
that ro(m;) =r,. Let n>m; +m, +k+1 be such that ry(n)=r,. Let 4 be
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a structure over ¢ with [n] as universe and with P{ = [r,], P4 = [m,]. Respectively,
let B be a structure over ¢ with [n] as universe and with P% = [r, — 1], P§ = [m,].
Now

AF(QxP (x)T? and BF¥(QxP(x)*?,

so it remains to show that Player II wins the invariant (k, Q)-pebble game on 4 and B.
For this end, suppose we are in the middle of the game, and pebbles have been placed
on elements ay,...,a, of 4 and by, ..., b, of B, where r < k. Suppose Player I plays
now a subset X of, say 4, with |X| > ry(n) = r,. Let us assume, for simplicity, that
Xniay,...,a} ={a,...,a;}. Let X' = X — {ay,..., a,;}. If X meets P3 — P{, Player
IT lets his set Y consist of {b,,....,b;} plus r, —s elements from
P3 —(Pfn{by,...,b,}). This is possible, since this set has at least m, —r; +
1 —k>r, elements. If X' meets [n] — P4, PlayerII lets his set Y consist of
{by,..., by} plus r; — s elements from [n] — (P~ {b,, ..., b,}). This is possible, since
this set has at least n — m, — k > m; + 1 > r; elements. If X' is contained in P4 and
X' # 9, then | X| =r, + ¢, where t is the number of elements from {a,, ..., a;} which
are outside P{. In this case Player Il lets Y consist of r; — s elements from P% plus the
elements {b;,..., b,}. Finally, if X’ =@, Y is chosen to be {b,,..., b,}.

Next Player I put a pebble on an element y of Y. By going through the above
different possibilities for the choice of Y, one can be convinced that a successful choice
of xe X for Player II has been guaranteed in each case. This ends the description of
the winning strategy of Player II.

Case 3: S; =0 and S, # 0. This case is similar to Case 2, only slightly easier.
Therefore we omit the details. [

Independently of us, Westerstahl [51] proved Proposition 4.7 for %,,,(Q). Flum
[17, Theorem 4.1] has a characterization of relativizing monotone simple unary
quantifiers on infinite structures.

4.2. Universe-independent quantifiers

In general, the truth of a sentence of the form Qx¢(x,a) in a model 4 depends on
the cardinality of the domain of 4. This is the case, for example, with Q,,; but not
with Q..en. Let us call a quantifier universe-independent (following [51]) if its defini-
tion is independent of the cardinality of the domain of the model, that is, m e fp(n) for
some n > mif and only if me fy(n) for all n > m. The universe-independent quantifiers
are a special case of relativizing quantifiers. Except in trivial cases, they are non-
monotone.

Corredor [13] investigates the following class of simple unary generalized quanti-
fiers: If S is a set of natural numbers, we define

Cs={(4,X): X< A,|X|eS}.
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These quantifiers are universe-independent and, indeed, every simple unary universe-
independent quantifier is of this form.

Corredor gives a characterization of universe-independent quantifiers definable in
ZoolCs,, .-, Cs,). We shall elaborate Corredor’s proof and get a characterization of
universe-independent quantifiers definable in £2,(Cs,, ..., Cs,) on finite structures.

If A is a set of natural numbers and n is a natural number, we let A@m =
{i + m|ie A}. Note that Csg,, is definable in .Z,,,(Cs). Let S ~ §" if SA S is finite.
Clearly, if S ~ §, then Cg is definable in %,,,(Cs). Lemma 4.8 and Proposition 4.9 are
essentially contained in [13]. We give a proof for completeness.

Lemma 4.8 (Corredor [13]). Suppose A and B are models of the empty vocabulary and
both have cardinality =k. Suppose for all m < k:

|[AleS@®m < |BleSOm.

Then Player I1 wins the invariant (k, Cs)-pebble game on A and B.

Proof. Let us assume, for simplicity, that all k pebbles have been played, but Player I1
has not lost yet. Suppose I picks a pebble and a subset X of one of the models, say A4,
so that | X|eS.

Case 1: X is a set of pebbled elements. Let Y be the set of corresponding pebbled
elements in B. Certainly | Y | € S. Suppose now I puts a pebble on an element y of B not
in Y. If y was not one of the already pebbled elements, I uses the fact that 4 has more
than k — 1 elements to find a matching element.

Case 2: X contains an unpebbled element. Now X is actually the complement of
a set of, say m, pebbles, where m < k. Thus |4|e § @ m, whence |B| e S @ m. So the size
of the complement Y of the corresponding set of pebbled elements in B is in S. Thus II
can play this set and stay in the game. [

Proposition 4.9 (Corredor [13]). Let S,S;, ..., S, be sets of integers. Then the quanti-
fier Cs is definable in ¥ ,(Cs,,...,Cs,) if and only if there are numbers
My, ..., My, Ny, ..., 1 and a Boolean combination S’ of the sets S, ® my, ..., S, @ m; so
that S ~ §'.

Proof. Suppose Cs is definable in ¥%,(Cs,, ..., Cs,). It follows that some identity-
sentence ¢ in L% ,(Cs,, ..., Cs,) is equivalent to Csx(x = x). Suppose also that § # S’ if
S’ is a Boolean combination of the sets S; @ m, where m < k. It follows that there are
numbers u > k and v > k such that ue S, v¢ S but

ueS;®m <« veS;®m

for all ie{l,...,n} and m <k. To get a contradiction, let 4 be a structure of
cardinality u for the empty vocabulary and B similarly a structure of cardinality v.
Now A F ¢, BE—1¢ and 1l wins the (k,Cs,, ..., Cs )-game on 4 and B. [
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Proposition 4.9 gives a relatively simple method for deciding whether an universe-
independent quantifier is definable from other universe-independent quantifiers using
L2 . Of course, universe-independent quantifiers constitute a very special category of
simple unary quantifiers. But it is interesting to note that in this category one obtains
a complete picture of mutual definability relations.

5. Finitely many versus infinitely many simple unary quantifiers

In this section we consider finite models only. We have already observed in
Proposition 2.7 that every unary quantifier can be defined in terms of the infinitely
many counting quantifiers and £2,,. This raises the question:

Is there a finite sequence @ of simple unary generalized quantifiers such that every
simple unary quantifier is definable in .#2,(Q)?

A negative answer to this question can be obtained with a diagonal argument. Indeed,
we show in Proposition 5.1 that for every finite sequence Q of simple unary quantifiers
there is a property expressible in .2 ,(C), but not in £2,(Q). After this easy answer
we pose a new question:

Is there a property of finite structures that is expressible in .#5,(C), but not
expressible in .#3,(Q) for any finite sequence Q of simple unary quantifiers?

The main results of this chapter show that this question can be answered affirmatively.
More specifically, in Theorems 5.3 and 5.8 we show that there are natural polynomial-
time properties that are expressible in £, (C), but are not expressible in £ ,,(Q) for
any finite sequence of simple unary generalized quantifiers. For this, we introduce first
the (k, Q)-coloring method, which, intuitively, classifies subsets of potential structures
according to what the quantifiers Q can say about them. The proofs of the main results
are then obtained by combining the invariant (k, Q)-pebble games, the (k, @)-coloring
method, and a Ramsey-theoretic model construction.

Suppose @ = (Q4, ..., Q) is a sequence of simple unary generalized quantifiers and
k is a positive integer. The number k and the sequence @ impose a natural coloring
Nk.p ON positive integers as follows: Let f; be the defining function of Q;. We put
Hk.o(a) = ni o(b) 1f and only if the following conditions hold:

(Cly Ifa<korb<k, thena=b.
(C2) se fila) < sefi(b), whenever 1 <i<mand 0 <s<k.
(C3) a —sefila) < b—sefi(b), whenever  <i<mand 0<s<k

This mapping colors the set of positive integers with at most 4%** Y™ 4 k colors.
Proposition 5.1. For any finite sequence Q = (Q1, ..., Q,,) of simple unary quantifiers on

F there is a simple unary quantifier Q which is not expressible in L2 (Q). In particular,
LRo(0) # L2 ,(C). Moreover, if each Q; is PTIME, then so is Q.
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Proof. It is easy to see, that if n, o(a) = i o(b) and a,b > k, then Player II wins the
definable (k, @)-pebble game on the structures ([a]) and ([b]) over the empty vocabu-
lary. In particular, for such a and b we have ([a]) =4 g ([b]). Letvo = 0. Fork > 1,
let u, be the least integer >v,_, such that there is a least v, > u, such that #; o(ui) =
Ne.o(vi). We define a simple unary quantifier Q be letting fo(vi) = {vi} for all k > 1,
and fy(n) = 0 otherwise. Now Q is not definable in £% ,(Q), since for each k = 1 we
have ([uc]) #1100 ([ve]), but ([1]) =4« (@) ([v]). Suppose then each quantifier in
Q is PTIME. We describe a polynomial-time algorithm for deciding whether a given
model of size n is in Q or not. It suffices to decide whether n = v, for some k < n. This
problem reduces to the problem of deciding whether two nonnegative integers <n
have the same #, p-color or not for any given k < n. This problem is solved for integers
=k by deciding the (k + 1)m questions “se fi(a)?” and the (k + 1)m questions
“a — se fi(a)?”, and comparing the 2(k + 1)m answers. [

Suppose again that Q@ = (Q,, ..., 0,,) is a sequence of simple unary generalized
quantifiers and k and n are positive integers. The numbers k and n and the sequence
Q impose a coloring y; o on the elements of {1, ..., n} as follows: Let f; be the defining
function of Q;. We put y, (@) = xx.o(b) if and only if the following conditions hold:

(D) fa<korb<kora>n—korb>n—k thena=>.
(D2) a + sefi(n) < b+ sefi(n), whenever | <i<mand —k<s<k.
(D3) n—a—sefin) < n—b—sefi(n), whenever 1 <i<mand —k<s<k

We call this coloring the (k, @)-coloring of {1, ..., n}. As a first primitive application of
the (k, @)-coloring method, we have the following proposition.

Proposition 5.2. Given a number k = 1 and a finite sequence Q = (Q4, ..., Qn) of simple
unary generalized quantifiers on F, there is a counting quantifier that is not expressible
in £%.(Q).

Proof. Notice first that the (k, @)-coloring partitions {l,...,n} into at most
4Ck=m 4 ok classes. Let n > 4%~ Um 4 2k By the pigeon-hole principle there are
two distinct elements a and b of {1,..., n} with the same color with a < b. We show
that the counting quantifier (3a x) is not expressible in #% ,(Q). For this end we define
two models 4 and B of the vocabulary consisting of one unary predicate symbol
P only. The universe of both models is [n]. Moreover, P* = [a] and P? = [b]. So the
sentence 3bxP(x) holds in A but not in B. It remains to show that Player II wins the
(k, Q)-pebble game. This easy argument is left to the reader. [

In the sequel, we shall use more sophisticated combinatorial techniques to get
elements that not only have the same color, but also satisfy some further properties
useful in the definable (k, @)-pebble game. Note that this method of constructing
similar, but nonisomorphic, structures relies heavily on the finiteness of the sequence
Q. For equivalence relative to infinitely many quantifiers completely different methods
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have to be used, like those used by [9, 25]. On the other hand, the models we construct
could not possibly be equivalent relative to all counting quantifiers.

The Hdrtig quantifier was defined earlier in Section 2.5. This quantifier is readily
expressible in ZL,(C), since the formula Ix,y(e(x),¥(y)) is equivalent to
\/n((EI!nx)q)(x)/\(3!nx)<p{x)), where (3!ix)0 is short for (Fix)0 A1 (i + 1x)6. We
may conclude that although I itself is nonsimple, it can be expressed, as any numerical
quantifier (Proposition 2.18) and any unary quantifier (Proposition 2.20), with an
infinite set of simple unary quantifiers. We next establish an optimal lower bound for
the expressibility of the Hirtig quantifier.

Theorem 5.3. Suppose Q is a finite sequence of simple unary generalized quantifiers on
F . Then the Hdrtig quantifier I is not expressible in 2 ,(Q).

Proof. Let 5 be the vocabulary consisting of three unary predicates P, P, and P;. We
construct two structures 4 and B over ¢ so that the following hold:

e Player 1l wins the invariant (k, @)-pebble game on A4 and B.

o A $L‘1_"0(1)B.

We shall use the following well-known theorem.

Van der Waerden’s Theorem. For all positive integers k and r there exists an integer
W (k,r) such that if the set of integers {1, ..., W (k,r)} is partitioned into r classes, then
at least one class contains a k-term arithmetic progression

aa+da+2d,..,a+kd

(For a proof, see e.g. [20].)

Let n = 2W (2,42~ Y™ 4 2k). We let the universe of both 4 and B be the set [n]. By
applying van der Waerden’s Theorem to the (k, @)-coloring yx ¢, we can choose
positive integers a and d so that the numbers a,a + d,a + 2d are all of the same color.
Let

P{=[a+d], P4="[a+d+1,2a+d)],
Pi=[2(a+d) +1,n], P%=[a],
Pi=[a+1,2(a+d)], PE=[2(a+d)--1,n]

Note that | P{| = | P4, but | P{| # | P4|. So we only have to prove that II wins the
definable (k, @)-pebble game on A4 and B. Let us suppose r pebbles (¥ < k) have been
played and it is I's turn to move. Player I chooses a subset X of one of the models, with
([n], X)e Q;. We use the fact that X is invariant under all automorphisms of the
model which fix the pebbled elements. Let the pebbled elements of 4 be a4, ..., a, and
let the corresponding elements of Bbe b, ..., b,. We assume as an induction hypothe-
sis that the mapping g;+> b; is a partial isomorphism from A4 to B. Let
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Ao =1ay,...,a,} and By = {b,, ..., b,}. Let us assume X is a subset of the domain of
A. The case that X is a subset of the domain of B is entirely similar. Let X' = X — A4,.

Case 1: X' does not meet any of the sets P{. In this case X < 4, and Player Il
chooses as his set Y the corresponding subset of B,. Since |[X| =Y |, we have
([n], Y )e @;. Next Player I can put a pebble on an element b;€ Y and then Player II
responds by putting a pebble on ¢; € X. On the other hand, Player II can choose to put
a pebble on b¢ B,. So b¢ Y. Say, be P?. Since | P}| = k, Player Il can put a pebble on
an element of |P{| — A,.

Case 2. X' meets exactly one of the sets P{.

Subcase 2.1: X’ meets P3. Using automorphisms, it can be seen that X =
(P§ — Ay)u A,, where {A;, A, } is a partition of A,. Let {B,, B,} be the corresponding
partition of By and Y = (P§ — B,)UB,. Since | X| = |Y |, we have ([n], Y)e€Q;. It is
clear how Player Il continues from here.

Subcase 2.2: X' meets P{. Then X = (P{ — A;)U A4,, where {4;, A, } is a partition of
Ap. Let {B,, B, } be the corresponding partition of By and Y = (P§ — B;)UB,. Now

[ X|=a+d—|A4]+|A,], [Y]=a—|B,| +|Bl.

Since [A;| = |B,|, |4;| = |B;| and x4 o(a) = yx gla + d), we have ([n], Y )eQ;.

Subcase 2.3: X' meets P3. Then X = (P53 — A;)uU A4,, where {A;, 4,} is a partition
of Ao. Let {By, B,} be the corresponding partition of B, and Y = (P4 — B;)UB,.
Now

| X|=a+d—|A,| +|A;|and |Y| =a + 2d — |B,| + |B>|.

Since xy gla + d) = xi gla + 2d), we have ([n], Y )eQ;.

Case 3: X' meets exactly two of the sets P7.

Subcase 3.1: X' meets P{ and P4. Then X = (([n] — P%) — A)uA,, where
{A1, A} is a partition of A,. Let {By, B,} be the corresponding partition of B, and
Y = (([n] — P%) — B,)UB,. Now

| X|=n—(a+d)—|A |+ 4] and |Y|=n—(a+2d)—|B,|+|Bal

Since yx g(a) = xx pla + d), we have ([n], Y )eQ,.

Subcase 3.2: X’ meets P4 and P4. Then X =(([n] — P%) — A,)uA,, where
{A, A2} is a partition of A,. Let {B;, B,} be the corresponding partition of B, and
Y =(([n] — P{) — B;)UB,. Now

|X|=n—a—|A;|+|A,] and |Y|=n—(a+2d)~— |By| +|Bal

Since yx gla) = xx, pla + 2d), we have ([n], Y )eQ;.

Subcase 3.3: X' meets P{ and P3. Then X = ((P{UP3) — A;)U A,, where {4, 4,}
is a partition of A,. Let {B,,B,} be the corresponding partition of B, and
Y =((PfuP%) — B,)UB,. Now | X| =Y, so we have ([n], Y )e€Q,.

Case 4. X' meets each P7. In this case X is the complement of a subset of 4, and
Player II chooses as his set Y the complement of the corresponding subset of B,. Since
|X|=1Y|, we have ([n], Y)eQ,.
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We have demonstrated how Player 11 continues to maintain g; +— b; as a partial
isomorphism in each of the four cases. [

The theorem remains true if Hirtig quantifier is replaced by the quantifier
{(A4,X,Y) X,Y < A,|A| = m|B|}, where m is an arbitrary but fixed positive integer.
For this and other similar extensions of the above theorem, see [46]. For another
application of van der Waerden’s Theorem in generalized quantifiers, see [31].

Corollary 5.4. The queries “do twou yiven vertices have the same degree?” and “does
a given graph have two connected components of the same size?” are expressible in
L2 (0, but not in £2,(Q), where Q is an arbitrary finite sequence of simple unary
generalized quantifiers.

Since no finite number of simple unary quantifiers can express the Hértig quantifier,
it is interesting to consider logics of the form £2 (I, @), where Q is a finite sequence of
simple unary quantifiers. For every such sequence @, the logic £2 (I, Q) constitutes
a proper extension of 2 ,(Q). In what follows, we delineate the expressive power of
the logics #2,(, Q).

In Section 2.5 we introduced the quantifier MORE and pointed out that it can
readily define the Hirtig quantifier. In turn, MORE is easily expressible in .5 ,(C)
(this also follows from Proposition 2.18). Our next result provides an optimal lower
bound for the expressibility of MORE and, at the same time, reveals that MORE is
stronger than the Hirtig quantifier. The proof uses the method developed in proving
Theorem 5.3.

Theorem 5.5. Suppose Q is a finite sequence of simple unary generalized quantifiers.
Then the quantifier MORE is not expressible in £3,(1, Q).

Proof. Let o be the vocabulary consisting of three unary predicates P;, P, and P;. We
construct two structures 4 and B over ¢ so that the following hold:

e Player II wins the invariant (k, I, @)-pebble game on 4 and B.
® A #.;,Morg) B.

Let n > 8(2k — 1)(4**~ V™ + 2k). By applying the pigeon-hole principle to the (k Q)-
coloring y, ¢, We can choose positive integers a and b of the same color so that
a<b<n/2 and |x — y| >k for all distinct x and y in the set {a,b,a + b,n —a,
n—bn—a—b}.LetP{=[al,P4=[a+1,a+b],Pi=[a+b+1,n] P{=[b]

B=[b+1,a+bland P5=[a+ b+ 1,n].

Since |P%| > | P4|, but | P{| < | P4| the sentence MOREX, y(P,(x), P,(y)) is true in
B but false in A. So we only have to prove that II wins the invariant (k, I, @)-pebble
game on 4 and B. The part of the proof which corresponds to the (k @)-pebble game is
an easier version of the proof of Theorem 5.3. So we present only the new case which
arises from the quantifier /. Let us suppose r pebbles (r < k) have been played and
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Player I moves next. He chooses subsets X; and X, of one of the models, with
|X:| = |X,|. We may assume X; N X, = 0 since among finite sets | X;| = | X,| if and
only if | X; — X,| =|X, — X{|. Again X, and X, are invariant under all automor-
phisms of the model which fix the pebbled elements. Let the pebbled elements of 4 be
a,...,a, and let the corresponding elements of B be by, ..., b,. We assume as an
induction hypothesis that the mapping a; + b; is a partial isomorphism from A to B.
Let Ao = {ay,....a,} and By = {by,..., b,}. Let us assume the sets X, and X, are
subsets of the domain of A. The case that X, and X, are subsets of the domain of B is
entirely similar. Let X| = X; — A,. We have for both X; and X, all the four cases
presented in the proof of Theorem 5.3. This would seem to generate 16 cases
altogether. However, because | X, | = | X, | and because of our choice of a and b, the
sets X, and X, fall into the same case. In each case Player II chooses sets Y and Y ,.
In fact Player II has in each case only one choice for both Y, and Y,. Next Player I
puts pebbles on elements cy,c,. We have to demonstrate how Player II puts his
pebbles on elements d;,d, so that the partial isomorphism-condition of pebbled
elements is preserved and additionally, d; is in X, or X,, according to whether c; is in
Y, or Y,. This, however, is entirely routine. []

Corollary 5.6. The queries “given two vertices a and b, is the degree of a smaller than the
degree of b?” and “given two vertices a and b, is the connected component of a smaller
than the connected component of b?” are expressible in £2 ,(C), but not in ¥3,(1, Q),
where Q is an arbitrary finite sequence of simple unary generalized quantifiers.

We shall now consider the query “E 1s an equivalence relation with an even number
of equivalence classes”. We shall first show that this query is expressible in the
extension of £%, by MORE and another unary generalized quantifier. Let EM, the
even multiple quantifier, be the quantifier of type (1, 1) that consists of all structures
(4,X,Y)such that X =€ 4, Y < A4, and | X| is an even multiple of [ Y|, i.e.

EM ={(A,X,Y Y |X| = m|Y| for some even number m}.

Proposition 5.7. The query “E is an equivalence relation with an even number of
equivalence classes” is expressible in £ ,(MORE, EM).

Proof. Let
©;(x) <« —13IyMOREu, v(uEx, vEy),
@n+1(x) <= VY(MOREuU, v(uEx,vEy) » Vx(x =y = (@1(X) vV - v ¢,(x))).

Now ¢,(x) expresses the property of x that the size of its equivalence class is nth in the
ascending order of all sizes of equivalence classes. Of course, there may be several
classes of the same size. Let

n(x) < EMu,v(ly, v(yEu, vEx), vEXx).
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This formula says that there are an even number of equivalence classes of the same size
as the equivalence class of x. Let

Nn = Vx(@u(x) = n(x)),
Na <> 71Vx(@,(x) > 7(x)).

Finally, let  be the disjunction of all sentences

IX@u(x) AT Ix@u () A A 7,
ji=1
where n runs through integers >0 and the sequence dg,...,d, runs through all
possible sequences with d;€{0,1} and d;=1 for an even number of i. Now
fe L%, (MORE, EM) and 6 expresses the property of E that there are an even
number of equivalence classes. [

This upper bound in terms of two quantifiers of type (1, 1) is quite tight. Indeed, we
show next that no finite sequence of simple unary quantifiers can capture this query,
even if the Hértig quantifier is also present.

Theorem 5.8. Suppose Q is a finite sequence of simple unary quantifiers. Then the query
“is E an equivalence relation with an even number of equivalence classes?” is not
expressible in #3 .1, Q).

Proof. The proof uses the (k Q)-coloring method. We shall make use of the following
known result from Ramsey theory (see [20]).

Theorem 5.9 (Folkman’s Theorem). For all natural numbers k and c there exists
a natural number F(k,c) so that if the set {1, ..., n} is c-colored, then there are distinct
Ci,--., Cx SO that all sums Y, . c;, where K = {1, ..., k}, have the same color.

Let ¢ be the vocabulary consisting of one binary predicate symbol E. We construct
two structures 4 and B on ¢ so that the following hold:

e In both models E is a equivalence relation on the domain of the model.
e E* has an even number of equivalence classes.

e E* has an odd number of equivalence classes.

e Player II wins the invariant (k, I, @)-pebble game on 4 and B.

We may assume k is odd. Let n = 2F (2k?4* 4@k~ 1m 4 2k) We let the universe of both
A and B be the set [n]. By applying Folkman’s Theorem to the (k Q)-coloring y, o, we
can choose positive integers ¢y, ..., ¢; so that the numbers ¥, ¢, K = {1,...,k + 1},
are all of the same , o-color. We may additionally require:
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(%) |2y — 2, =2 k and |n— X, — X;| > k for sums X, and Z, of two disjoint
nonvoid sets of the numbers ¢4, ..., ;.
Letco =n—c; — -+ — ;. Welet 4 have equivalence classes Ao, ..., 4;, where A, is of

size ¢;. We let B have equivalence classes By, B,, ..., By, where B, is of size ¢, + ¢, and
B; is of size c; for i # 2. Now A has an even number of equivalence classes and B an
odd number. So we only have to prove that II wins the definable (k, I, Q)-pebble game
on 4 and B. Let us suppose r pebbles (r < k) have been played and Player I is to move.
Let the pebbled elements of 4 be ay, ..., a, (without repetitions) and let the corres-
ponding elements of Bbe by, ..., b,. If Player I makes a move of the ordinary k-pebble
game, the strategy of Player II is easy to describe. So we assume Player I makes
a generalized quantifier move.

Suppose Player I chooses a subset X of one of the models, with ([n], X)e 0;. We
use the fact that X is invariant under all automorphisms of the model which fix the
pebbled elements. Let us assume X is a subset of the domain of 4. The case that X is
a subset of the domain of B is entirely similar. Let for 0 < i < k.

I;={j.a;jeA;} and J,={j bjeB;}.

We assume as an induction hypothesis that the mapping a; — b, is a partial isomor-
phism from A to B, I, = Jy and I, = J,.
Let

So={i<k XnA;={a; jel}} for some I, < I},
Si={i<k XnA;=A,— {a; jel;} for some I} = I,}.

Since X is closed under automorphisms which fix a4, ..., a,, we have that [0,k] is the
disjoint union of the sets S, and §;. Now we know X already:

X = {aj:je U I:}u U (A — {a;: jeI}}),

ieS, ieS,

and we can calculate the cardinality of | X|:

IXI=3 ci+s wheres=Y |Ij|—- Y |Ii.
ieS, ie$S, ieS,
Note that [s| < k. Since g; — b; is a partial isomorphism, there is a mapping
n:{0,...,k} - {0,2,...,k} so that for all i, I, =J,,;, and additionally, n0 = 0 and
nl = 2. Let

Y = {bj:je U J;u}U U (Bui — {bj: je T }),
ieS8, ie§,
where J; = I].
Case 1. 0eS8o: Let S5 = {1}un[S,], if 1€S,, and S, = n[S,] otherwise, and
S1={1}un[S8,],if 1€S,, and S = n[S,] otherwise. Now, |Y | = Yics, Ci + 5. Since
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Yies € and ¥, ¢ € have the same color, ([n], Y)eQ;. The set Y is the move of
Player I1.
Case 2. 0eSy: In this case

|X|=n— Z C¢i + 8.
ieS,
Now, |Y|=n—-%,c¢+s Since Y, ¢ and ¥, ¢; have the same color,
([n], Y)eQ;. The set Y is the move of Player II
Next Player I puts a pebble on some element b of [n]. Now Player II puts his pebble
on an element a of {n] in such a way that

a = a; if and only if b = b;.
aE*a; if and only if bE®b;.
a€ Ag if and only if be B,.
ae A; if and only if be B,.
ae X if and only if be Y.

RIS

This choice guarantees that Player II can maintain his strategy and play the game
without ever losing. It is clear that Player II can in fact find the required a.

Next we have to describe the strategy of Player II in the case that Player 1 makes
a Hairtig-quantifier move, that is, chooses two subsets X; and X, of, say, 4. The
assumption is that | X,| = | X,| and both X, and X, are definable from a,, ..., a,. By
what was said in the proof of Theorem 5.5, we may assume X, N X, = (. As above, we
can calculate the cardinalities of the sets X, and X,. For this, let

Sio={i <k X,nA; = {a; jely,} for some I; = I},
Si={i<k X,nA4;=A; — {a; jely,;} for some I; < I},
Si0 ={i<k X,nA; = {a; jely} for some I; = I;},
S;i={i<k X,nA; = A, — {a; jel’,;} for some I'y; < I,}.

Here S,4,S;; and S,4, S, are partitions of [0,n]. We have the representations:

X, = {a,-:je U I’“}u U (A — {a;: jeli}),

i€S;o ieS,,
X2 ={aj:j€ U I’z,}u U (A,-—{aj:jellz,-}),
i€S50 ieS,,
Let

5 = Z [T — z 1],

ieS ieS,;,

s2= 3, Hal— ) Ul

iS50 ieS,,
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One of the following cases occurs:

1. 0¢85, U8, |Xi| =Y s, ¢+ 51 and [Xp| =Y ¢ ¢ +5;. Since X;nX, = 0
and |X,|=|X,|, assumption (%) implies S,; = S,; = 0. Therefore, X, = {a;
Je UiES,OIIIJ'} and X, = {a;: jeUieSZOI’ZJ'}‘

2. 0e81;1 — Sa1, | Xyl =n—Y s, +51 and [Xs| =}
| X{] =|X,], this is impossible.

3.0€85 — Si1 | Xyl =Y, ¢ +51 and | Xl =n—}
| X1 | =|X,|, this is impossible.

4. 0€51:N Sy, | Xy|=n—3, . ci+syand | Xao|=n—3, ¢+ sz By (¥) we
have S;o = S50 = 0. This contradicts X; "X, = 0.

Only case 1 is possible. Thus there is no difficulty for Player II to choose his sets Y,
and Y, as the corresponding sets of pebbled elements and maintain his strategy.

¢ +s,. By (%) and

ieS,,

¢; +5,. By (x) and

i€S;,

Remark. With a little extra work one can show the following: If @ is a finite sequence
of simple unary quantifiers, then the query “is E an equivalence relation with an even
number of equivalence classes?” is not expressible in #% (I, EM, Q). It is also possible
to replace the query “is E an equivalence relation with an even number of equivalence
classes?” by the more general query “is E an equivalence relation the number of
equivalence classes of which is in A?”, where A is an arbitrary but fixed infinite and
coinfinite set of positive integers. For these and similar extensions of the above
theorem, see [46].

Corollary 5.10. The queries “is a given graph a union of an even number of maximal
cliques?” and “does a given graph have an even number of connected components?” are
expressible in £2 ,(C), but not in %2 (1, Q), where Q is an arbitrary finite sequence of
simple unary generalized quantifiers. The query “is the chromatic number of a given
graph on even number?” is not expressible in L2 (I, Q), where Q is an arbitrary finite
sequence of simple unary quantifiers.

Proof. Let 4 and B be the models constructed in the proof of Theorem 5.8. Let the
graph G consist of the complement of the equivalence relation B, and the graph
H similarly of the complement of B. Then the chromatic number of G is even but the
chromatic number of H is odd. [J

6. Abstract finite model theory

In his paper [40] Per Lindstrom presented a general definition of an abstract
extension of first-order logic. The study of such extensions was subsequently called
abstract model theory. The idea was to have the various known extensions of
first-order logic, such as infinitary languages and logics with generalized quantifiers,
as instances of a single concept. Once the concept was there, it was meaningful to pose
questions, like the following: Does first-order logic permit a simple characterization



68 Ph.G. Kolaitis, J.A. Vddndnen | Annalis of Pure and Applied Logic 74 (1995) 23-75

among all abstract logics? Lindstrom answered this question affirmatively in a num-
ber of interesting ways, and this really got the subject into a good start.

The 1970s were a period of intense research activity on abstract model theory, but
only the beginning of finite model theory. In its present form, abstract model theory
does not cover finite model theory and, as a result, the fundamental notions of
abstract model theory must be modified and reformulated if they are to apply to logics
defined on finite models only. There is a strong motivation for undertaking a study of
abstract finite model theory. Indeed, first-order logic on finite structures is so weak
that the need of studying its extensions seems more urgent than on infinite structures.

Our purpose in this section is to modify Lindstrom’s [40] definition of an abstract
logic in such a way that it covers also logics based on restricted classes of structures.
We shall then discuss, how this new concept may help us bring some order into the
family of various logics on finite structures.

We use, as much as possible, the notation of [8]. A vocabulary is a set of relation,
function and constant symbols. A vocabulary may be also many-sorted. We use T,
g, ... to denote vocabularies. We fix a binary predicate symbol < to denote the
ordering of finite ordered structures. The following vocabularies will be frequently
referred to:

J, = {t| 1 is an arbitrary single-sorted vocabulary},

T ={1eT,|<e1}.

The universe of a many-sorted structure is defined as the union of the various
universes of different sorts. We shall consider below subclasses of the class of all
structures. This is where our definition of an abstract logic differs from the usual one.
We allow the logic to be defined relative to a restricted class of structures, like the class
of all finite structures, or the class of all ordered finite structures. Another new feature
in our definition is that we declare already in the definition of a logic which variable
symbols are allowed. This is because we want to include logics with a limited finite
number of variables only. The variable symbols may be for elements of arbitrary sort
or for a limited collection of sorts. We use ¥~ to denote a set of variable symbols. Let
Assgn, - be the class of assignments of variables of ¥~ in A, ie., the class of functions
f with ¥" as domain and elements of the universe of 4 of the appropriate sort as values.

Definition 6.1. An abstract logic on A is a 5-tuple L = (%, 7,4, V", ), where

(1) 7 is a set of vocabularies. '

(2) &£ and & are mappings defined on vocabularies T €. such that #[] is a class
(the class of #-formulas of vocabulary 7) and #[1] is a class of t-structures.

(3) 7" is a set of variable symbols.

(4) F is a relation of elements of " [1], #[t] and Assgn, -, where T is an arbitrary
vocabulary and 4 e [1]. If (4, ¢, f) is in the relation F,, we write 4 F, o[ f].
Moreover, the following properties (5)—(9) are required to hold:

(5) If r = g, then Z[7] = Z[7].
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(6) f Ae #'[1] and Ak, @[ f], then pe £ [1].

(7) Isomorphism property. If A, Be A [1], o L[1], fe Assgn, ,, AF, o[ f] and
n:A =B, then BE, o[nf].

(8) Reduct property. If Ae #'[1'], o L[], fe Assgn, v, AF o[ f] and T =7/,
then A|tk o[ f].

(9) Renaming property. Suppose p:t — 1’ is a bijection mapping sort symbols to
sort symbols, predicate symbols to predicate symbols of the same arity, function
symbols to function symbols of the same arity and constants to constants so that sorts
that symbols of 7 are equipped with correspond via p to sorts the respective symbols
are equipped with in t". If Ae #"[1], then let A? € # [1'] be the results of renaming
objects of 4 according to p. Then for all p € £[1] there is ¢ € £ [1'] such that for all
Ae X' [t] and all fe Assgn, , ,

AFLo[f] <= AR @"[f].

The concept “A is a model of ¢”, where Ae #'[1] and ¢ e £[1], is defined to mean
Vfe Assgn, ,(AE @[ f]), and denoted by A F ¢.

An abstract logic on finite structures is an abstract logic on the class & of all finite
structures.

Example 6.2. First-order logic FO is (# 0, 7,,¥,¥ ., Fro), where ¥, is an infinite set
of variable symbols, # (’[ 1] is the set of ordinary first-order t-formulas, and Fgg is the
ordinary satisfaction predicate of first-order logic. This is the single-sorted version.
First-order logic on finite structures FO/F =(F6,7,,%,¥,,Fro) 1s obtained by
substituting & for . First-order logic on ordered finite structures is FO/F_ =
(FO,T,%-,7,.Fro) is obtained by substituting F for &. First-order logic with
k variables on finite structures is FO/F = (F O, T, F, ¥+, Fro), Where ¥; is a set of
k variable symbols. The formulas of this logic are obtained from FO[1] by simply
leaving out all formulas which contain variables which are not in ;.

Examples 6.3. Second-order logic SO is (¥2%,9,, %, ¥, Fso), where 7, and ¥, are as
above, #?[1] is the set of ordinary second-order t-formulas, and kg is the ordinary
satisfaction predicate of second-order logic. Second-order logic differs from first-order
logic in that it allows quantification over n-ary relations on the universe. Second-order
logic on finite structures is SO/F = (¥*, T, F, Ve, Fso). Second-order logic on or-
dered finite structures is SO/F, = (L*, T, F <,V w, Fso)-

Example 6.4. X {-fragment of second-order logicis (X1, 7., %, V%), kx1), where X {[t] is
the set of existential second-order t-formulas
IR, ...3R, 0,

9€Lyo[tU{Ry,..., R,}], and ky: is the natural restriction of Fgo. As above, we get
a version for finite (£]/#) and ordered finite structures (X'1/#.) by replacing & by
F or F_.
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Example 6.5. Monadic X i-fragment of second order logic is (X} 1,7, %, V=, Fxi
where X1 | [7] is the set of monadic existential second-order t-formulas

IR, ...3R,0,

where Ry, ..., R, are monadic predicate symbols and g€ &,,,[tU{R;, ..., R,}], and
Fx:, 1s the natural restriction of Fgo. As above, we get a version for finite (X 1.1/%)and
ordered finite structures (X1 /%.) by replacing & by & for Z..

Example 6.6. We have infinitary logic with k variables (£~ .,,, 7., %, ¥¢.F &+ ) and its
versions % /# for finite models and %% ,/#. for ordered finite models.

Example 6.7. For any collection Q@ = {Q;: iel} of generalized quantifier on &, we
have infinitary logic with k variables and with generalized quantifiers Q, namely
L5ol@) = (L50(0). 7., S ¥4, F 41 9) There is a version £5,,(Q)/F for finite mod-
els and a version % ,(Q)/#. for ordered finite models. If ¥} is replaced by ¥, the
logics Fw(Q), Leu(@)/F and ¥3.,(0)/F. are obtained.

Example 6.8. The logic of PTIME-properties. We let PTIME be the abstract logic
(P, T, F,7,, Eerime), Where 2[ 1] is the set of PTIME properties of finite z-structures
and 4 Fprnve ¢ if and only if A has the property ¢. The properties in 2[t] are assumed
to be closed under isomorphisms. The logic NP of NP-properties is defined similarly.
By restricting to ordered finite models we get PTIME_ and NP_.

Example 6.9. Fixpoint logic is FP = (FP,7,,.%,¥,, Frp) and, as above, we have also
FP/# and FP/#_. For any collection @ = {Q;: iel} of monotone simple unary
generalized quantifier, we have fixpoint logic with generalized quantifiers Q: FP(Q) =
(FP(Q), 7, S, Vo, F 4 ) together with FP(Q)/# and FP(Q)/Z..

Example 6.10. In his definition of fixpoint logic with counting Immerman uses the
following type of a many-sorted structure [9]: let v denote a special sort reserved for
a set of integers together with arithmetic operations on it. A counting vocabulary is
a vocabulary which has no relations, functions or constants of sort v except the
arithmetic ones. An intended structure for a counting vocabulary consists of a struc-
ture A of cardinality n of some vocabulary t and a disjoint set {1, ..., n} as the universe
of sort v together with basic arithmetic operations on these numbers. We denote such
structures by (A4, [n]) and call them counting structures. We use 7. to denote the set of
counting  vocabularies. Immerman’s fixpoint logic  with counting is
FP. = (FP,7.,%,7%,,Frp ), where FP, is the class of fixpoints of formulas of FO..
FO, is the extension of first-order logic by all counting quantifiers 3i x. The semantics
of 3ix is defined as follows: If (4, [n]) is a counting structure and i is a term denoting
an element of [n], then (A4, [n]) F 3i xp(x) if there are at least i elements a of A with
(4, [n]), ak o(x).
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One can also account for such diverse things as recursive model theory and logic
programming, by considering the class of recursive structures and the class of
Herbrand structures, respectively. In this paper, however, we will be focusing on
abstract logics on the class & of all finite structures.

An abstract logic in the sense of Lindstrom [40] is an abstract logic as above on the
class & of all structures. In essence, our definition differs from Lindstrém’s in that the
L-satisfaction relation is restricted to structures in 2 and all closure properties are
relativized appropriately to 4.

Most of the above abstract logics satisfy all the usual closure properties of abstract
logics. The only known failures are the following: X} is not closed under negation
because the class of infinite models over the empty vocabulary is X1, but the class of
finite models is not. Fagin [16] showed that X'} /% is not closed under negation.
Z1.1/F is not closed under V,because reachability for undirected finite graphsis 2| ,
(see [5]), but connectedness is not ([16]). It is not known whether £}/#, Z1/#., NP
and NP are closed under negation or not.

A few results of abstract model theory still hold for abstract logics on an arbitrary
class o of structures. This is, for example, the case with the result that if the
Craig Interpolation Theorem holds for an abstract logic L, then Beth’s Definability
Theorem also holds for L. Let us recall this familiar result in our framework and
notation.

Definition 6.11. (1) An abstract logic (&, 7,4, , k,) satisfies the Craig Interpola-
tion Theorem if for all te 7 and '€ 7 and all sentences ¢ e L[1] and ¢’ e L[1'], the
following is true: if for every U t'-model A and every f, A F, ¢ implies 4 F, ¢/, then
thereis e L[t n 1] so that for every 1ut-model A and every f, 4 k; ¢ implies 4 F, 0
and A4 k; 0 implies 4 F; ¢'.

(2) An abstract logic (¥, 7,4, ¥, k,) satisfies the Beth Definability Theorem if for
all tU{R}e 7 and for all o€ [t U {R}], where R is a relation symbol not in 1, the
following is true: if every t-model has exactly one expansion to a tw {R}-model of o,
then there is a 0(x)e L[7] so that 6(x) defines R in every model of ¢.

(3) An abstract logic (£, 7, 4, ¥, k) satisfies the Robinson Consistency Theorem
if for all T< L[t nt;], Ty<L[t,] and T, <L[r,], where.7,,7,€Z and
T < T1nT,,thefollowing is true: if T is complete (i.e. any two models of T satisfy the
same sentences of L[1; n7,]), T, has a model and T, has a model, then T, U T, has
a model.

The standard proof shows that if L is closed under 1 and A and L satisfies the
Craig Interpolation Theorem, then L satisfies the Beth Definability Theorem. It is also
well-known that FO/# satisfies neither the Craig Interpolation Theorem nor the
Beth Definability Theorem [24,21]. On infinite models the Robinson Consistency
Theorem implies the Craig Interpolation Theorem [42, 1.3], but this is not true on
finite models, as the following simple result shows.
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Proposition 6.12. If L = (%, .7, 4,7, k) is an abstract logic such that FO/% <L,
H S F and A is closed under reducts and expansions, then L satisfies the Robinson
Consistency Theorem.

Proof. Suppose T = L[t,n1,]is complete and Ty < L[t;] and T, < L[1,], where
11, T,€ 7, such that T < Ty N T,. Suppose furthermore that T, has a model 4, and
T, has a model A4,. Let B; be the reduct of A; to the vocabulary 7, n1,,i = 1,2. Since
T is complete, B, and B, satisfies the same sentences of FO[7, n7,]. Hence B; and B,
are isomorphic. Let 4 be an expansion of 4, to a 7, U 1,-structure such that the reduct
of A to the vocabulary 7, is isomorphic with 4,. Now AET, uT,. [

Corollary 6.13. FO/# satisfies the Robinson consistency theorem. As a result, the
Robinson consistency theorem does not imply the Craig interpolation theorem on finite
structures.

Thus, some of the basic results of traditional abstract model theory carry over to
abstract logics on an arbitrary class " of structures, but not all. This is particularly
true when we consider the class # of all finite structures. Therefore, it seems that the
whole theory has to be redeveloped to cover, for example, the case of finite structures.

The first important results in abstract model theory were the characterizations of
first-order logic due to Lindstrom. Lindstrom characterized first-order logic as
a maximal logic which satisfies the compactness theorem and the downward Lowen-
heim-Skolem theorem. It is well-known that FO/# does not satisfy the compactness
theorem. Therefore this characterization is not valid on finite models. In another
result, Lindstrom characterizes first-order logic as a maximal logic which satisfies
both the downward and the upward Lowenheim—-Skolem theorem. This also fails on
finite models as FO/# trivially fails to satisfy the upward Lowenheim—Skolem
theorem.

Kolaitis and Vardi [35] characterized when a class " of finite structures is
definable by a sentence of .#% ,. From this, we can obtain a Lindstrém-type result
about the infinitary logic #* , on finite structures. We prove this result for logics of
the form #% ,(Q). Before we can state this result, we need a new definition.

Definition 6.14. Let L = (¥, 7,4, 7", k,) be an abstract logic and let @ be a sequence
of monotone simple unary quantifiers. We say that L has the (k, Q)-Karp property if
whenever 4 and B are structures in " such that Player II wins the (k, Q)-pebble game
on A and B, then A and B satisfy the same sentences of L.

Proposition 6.15. Let Q be a sequence of monotone simple unary quantifiers and let k be
a positive integer. The infinitary logic ¥* ,(Q)/F is the biggest abstract logic
L=(%L,7,4,%,k)with & = F which has the (k, Q)-Karp property.
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Proof. The abstract logic £~ ,(Q)/F itself satisfies the (k, Q)-Karp property by The-
orems 3.4 and 3.9. Suppose then L = (¥, 7, %,¥, k,) satisfies the (k, @Q)-Karp prop-
erty, and ¢ € #[t]. By Theorem 3.9, a necessary and sufficient condition for a class
A of finite models to be definable in .#% ,(Q) is that .~ satisfy the following condition:
if A € & Player II wins the (k, @)-pebble game on 4 and B, then Be . If we let A~ be
the class of finite t-models of ¢, we get that % is definable in £% ,(Q). Thus
L Z5,Q/7. O

The preceding result holds for sequences of monotone Lindstrom quantifiers as
well, once Definition 6.14 1s extended to this case. The proof is unaffected by this
generalization.

Proposition 6.15 is special to finite structures, since on the class & of all structures
the k-Karp property alone cannot characterize #% , as a maximal logic. This can be
seen as follows: Let WO be the Lindstrom quantifier {(4, R): R well-orders A}. It is
easy to see that £~ (W O) satisfies the k-Karp property on any structures. However, if
infinite structures are allowed, W O is not definable in .#,,,, and therefore &% (W 0) is
not a sublogic of % . We conclude by posing the following problem.

Problem. Characterize fixpoint logic or partial fixpoint on finite structures as a unique
logic having certain model-theoretic properties.

As mentioned in the introduction, fixpoint logic has emerged as an important
extension of first-order logic on finite structures. Thus, a Lindstrom-type characteriza-
tion of fixpoint logic on # may provide us with new insights for this logic and explain
its rich closure properties.
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