
88 communications of the acm | may 2011 | vol. 54 | no. 5

review articles

I
l

l
u

st

r
a

ti

o
n

 b
y

 M
a

tth

e

w
 c

o
o

p
e

r

The program termination problem, also known
as the uniform halting problem, can be defined as
follows:

Using only a finite amount of time, determine
whether a given program will always finish running

or could execute forever.
This problem rose to prominence before the

invention of the modern computer, in the era of
Hilbert’s Entscheidungsproblem:a the challenge to
formalize all of mathematics and use algorithmic
means to determine the validity of all statements.
In hopes of either solving Hilbert’s challenge, or
showing it impossible, logicians began to search
for possible instances of undecidable problems.
Turing’s proof38 of termination’s undecidability is
the most famous of those findings.b

The termination problem is structured as an infinite

a	 In English: “decision problem.”
b	 There is a minor controversy as to whether or not Turing proved the undecidability in38. Technically

he did not, but termination’s undecidability is an easy consequence of the result that is proved. A
simple proof can be found in Strachey.36

set of queries: to solve the problem
we would need to invent a method ca-
pable of accurately answering either
“terminates” or “doesn’t terminate”
when given any program drawn from
this set. Turing’s result tells us that
any tool that attempts to solve this
problem will fail to return a correct
answer on at least one of the inputs.
No number of extra processors nor
terabytes of storage nor new sophisti-
cated algorithms will lead to the devel-
opment of a true oracle for program
termination.

Unfortunately, many have drawn
too strong of a conclusion about the
prospects of automatic program ter-
mination proving and falsely believe
we are always unable to prove termi-
nation, rather than more benign con-
sequence that we are unable to always
prove termination. Phrases like “but
that’s like the termination problem”
are often used to end discussions that
might otherwise have led to viable par-
tial solutions for real but undecidable
problems. While we cannot ignore
termination’s undecidability, if we
develop a slightly modified problem
statement we can build useful tools.
In our new problem statement we will
still require that a termination prov-
ing tool always return answers that
are correct, but we will not necessarily
require an answer. If the termination
prover cannot prove or disprove termi-
nation, it should return “unknown.”

Using only a finite amount of time,
determine whether a given program
will always finish running or could
execute forever, or return the answer
“unknown.”

Proving
Program
Termination

doi:10.1145/1941487.1941509

In contrast to popular belief, proving
termination is not always impossible.

By Byron Cook, Andreas Podelski,
and Andrey Rybalchenko

 key insights
 � �For decades, the same method was used

for proving termination. It has never been
applied successfully to large programs.

 � �A deep theorem in mathematical logic,
based on Ramsey’s theorem, holds the
key to a new method.

 � �The new method can scale to large
programs because it allows for the
modular construction of termination
arguments.

c
r

e
dit

 tk

may 2011 | vol. 54 | no. 5 | communications of the acm 89

90 communications of the acm | may 2011 | vol. 54 | no. 5

review articles

This problem can clearly be solved,
as we could simply always return “un-
known.” The challenge is to solve this
problem while keeping the occurrenc-
es of the answer “unknown” to within
a tolerable threshold, in the same way
that we hope Web browsers will usu-
ally succeed to download Web pages,
although we know they will sometimes
fail. Note that the principled use of
unknown in tools attempting to solve
undecidable or intractable problems
is increasingly common in computer
science; for example, in program anal-
ysis, type systems, and networking.

In recent years, powerful new ter-
mination tools have emerged that re-
turn “unknown” infrequently enough
that they are useful in practice.35 These
termination tools can automatically
prove or disprove termination of many
famous complex examples such as
Ackermann’s function or McCarthy’s
91 function as well as moderately sized
industrial examples such as Windows
device drivers. Furthermore, entire
families of industrially useful termi-
nation-like properties—called live-
ness properties—such as “Every call to
lock is eventually followed by a call
to unlock” are now automatically

provable using termination proving
techniques.12,29 With every month, we
now see more powerful applications
of automatic termination proving. As
an example, recent work has demon-
strated the utility of automatic ter-
mination proving to the problem of
showing concurrent algorithms to be
non-blocking.20 With further research
and development, we will see more
powerful and more scalable tools.

We could also witness a shift in the
power of software, as techniques from
termination proving could lead to
tools for other problems of equal dif-
ficulty. Whereas in the past a software
developer hoping to build practical
tools for solving something related to
termination might have been fright-
ened off by a colleague’s retort “but
that’s like the termination problem,”
perhaps in the future the developer
will instead adapt techniques from
within modern termination provers
in order to develop a partial solution
to the problem of interest.

The purpose of this article is to fa-
miliarize the reader with the recent
advances in program termination
proving, and to catalog the underly-
ing techniques for those interested in

adapting the techniques to other do-
mains. We also discuss current work
and possible avenues for future inves-
tigation. Concepts and strategies will
be introduced informally, with cita-
tions to original papers for those inter-
ested in more detail. Several sidebars
are included for readers with back-
grounds in mathematical logic.

Disjunctive Termination Arguments
Thirteen years after publishing his
original undecidability result, Turing
proposed the now classic method of
proving program termination.39 His
solution divides the problem into two
parts:

Termination argument search: Find
a potential termination argument in
the form of a function that maps every
program state to a value in a math-
ematical structure called a well-order.
We will not define well-orders here,
the reader can assume for now that we
are using the natural numbers (a.k.a.
the positive integers).

Termination argument checking:
Proves the termination argument to
be valid for the program under con-
sideration by proving that result of the
function decreases for every possible
program transition. That is, if f is the
termination argument and the pro-
gram can transition from some state s
to state s¢, then f(s) > f(s¢).

(Readers with a background in logic
may be interested in the formal expla-
nation contained in the sidebar here.)

A well-order can be thought of as a
terminating program—in the exam-
ple of the natural numbers, the pro-
gram is one that counts from some
initial value in the natural numbers
down to 0. Thus, no matter which ini-
tial value is chosen the program will
still terminate. Given this connection
between well-orders and terminat-
ing programs, in essence Turing is
proposing that we search for a map
from the program we are interested in
proving terminating into a program
known to terminate such that all steps
in the first program have analogous
steps in the second program. This
map to a well-order is usually called a
progress measure or a ranking function
in the literature. Until recently, all
known methods of proving termina-
tion were in essence minor variations
on the original technique.

Formally proving program termination amounts to proving the program’s transition
relation R to be well-founded. If (S, ≥) is a well-order then > is a well-founded relation.
Furthermore, any map f into S defines a well-founded relation, by lifting > via f, that
is, {(s, t) | f (s) > f (t)}. Turing’s method39 of proving a program’s transition relation R
well-founded amounts to finding a map f into a well-order, which defines a termination
argument T = {(s, t) | f (s) > f (t)}. To prove the validity of T we must show R ⊆ T. From the
well-foundedness of T and the fact that every sub-relation of a well-founded relation is
well-founded follows that R is well-founded.

In this article we are using the phrase disjunctive termination argument to refer to
a disjunctively well-founded transition invariant.31 This is a finite union T1 ∪ . . . ∪ Tn of
well-founded relations that contains R+, which is the transitive closure of the transition
relation of the program, as a superset, such as, R+ ⊆ T1 ∪ . . . ∪ Tn.

Usually, each T1, . . . , Tn will be constructed as above via some map into a well-order.
Note that the non-reflexive transitive closure (the + in R+) is crucial. It is not sufficient
to show that R ⊆ T1 ∪ . . . ∪ Tn,, as the union of well-founded relations is not guaranteed
to be well-founded. It is the transitive closure that makes checking the subset inclusion
more difficult in practice.

The recent approaches for proving termination for general programs3,4,9,12,14,32 are
based on the proof rule of disjunctively well-founded transition invariants. The proof
rule itself is based on Ramsey’s theorem,34 and it has been developed in the effort to
give a logical foundation to the termination analysis based on size-change graphs.24 The
principle expressed by the proof rule appears implicitly already in previously developed
termination algorithms for rewrite systems and logic and functional programs, see
refs10, 15, 17, 24.

Turing’s Classic Method
and Disjunctive
Well-Foundness

review articles

may 2011 | vol. 54 | no. 5 | communications of the acm 91

The problem with Turing’s meth-
od is that finding a single, or mono-
lithic, ranking function for the whole
program is typically difficult, even for
simple programs. In fact, we are often
forced to use ranking functions into
well-orders that are much more com-
plex than the natural numbers. Luck-
ily, once a suitable ranking function
has been found, checking validity is in
practice fairly easy.

The key trend that has led toward
current progress in termination prov-
ing has been the move away from the
search for a single ranking function
and toward a search for a set of rank-
ing functions. We think of the set as a
choice of ranking functions and talk
about a disjunctive termination argu-
ment. This terminology refers to the
proof rule of disjunctively well-found-
ed transition invariants.31 The recent
approaches for proving termination
for general programs3,4,9,12,14,26,32 are
based on this proof rule. The proof
rule itself is based on Ramsey’s theo-

rem,34 and it has been developed in
the effort to give a logical foundation
to the termination analysis based on
size-change graphs.24

The principle it expresses appears
implicitly in previously developed ter-
mination algorithms for rewrite sys-
tems, logic, and functional programs,
see refs 10,15,17,24.

The advantage to the new style of
termination argument is that it is
usually easier to find, because it can
be expressed in small, mutually in-
dependent pieces. Each piece can be
found separately or incrementally us-
ing various known methods for the
discovery of monolithic termination
arguments. As a trade-off, when using
a disjunctive termination argument, a
more difficult validity condition must
be checked. This difficulty can be mit-
igated thanks to recent advances in as-
sertion checking tools (as discussed in
a later section).

Example using a monolithic termina-
tion argument. Consider the example

code fragment in Figure 1. In this code
the collection of user-provided input is
performed via the function input().
We will assume the user always enters
a new value when prompted. Further-
more, we will assume for now that vari-
ables range over possibly negative in-
tegers with arbitrary precision (that is,
mathematical integers as opposed to
32-bit words, 64-bit words, and so on).
Before reading further, please answer
the question: “Does this program ter-
minate, no matter what values the user
gives via the input() function?” The
answer is given below.c

Using Turing’s traditional method
we can define a ranking function from
program variables to the natural num-
bers. One ranking function that will
work is 2x + y, though there are many
others. Here we are using the formula
2x + y as shorthand for a function
that takes a program configuration
as its input and returns the natural
number computed by looking up the
value of x in the memory, multiply-
ing that by 2 and then adding in y’s
value—thus 2x + y represents a map-
ping from program configurations to
natural numbers. This ranking func-
tion meets the constraints required
to prove termination: the valuation of
2x + y when executing at line 9 in the
program will be strictly one less than
its valuation during the same loop
iteration at line 4. Furthermore, we
know the function always produces
natural numbers (thus it is a map into
a well-order), as 2x + y is greater than
0 at lines 4 through 9.

Automatically proving the valid-
ity of a monolithic termination argu-
ment like 2x + y is usually easy using
tools that check verification condi-
tions (for example, Slam2). However,
as mentioned previously, the actual
search for a valid argument is fa-
mously tricky. As an example, consid-
er the case in Figure 2, where we have
replaced the command “y := y + 1;”
in Figure 1 with “y := input();”. In
this case no function into the natural
numbers exists that suffices to prove
termination; instead we must resort
to a lexicographic ranking function
(a ranking function into ordinals, a
more advanced well-order than the
naturals).

c	 The program does terminate.

Figure 1. Example program.

1 	 x : = input();
2 	 y : = input();
3 	 while x > 0 and y > 0 do
4 		 if input() = 1 then
5 		 x : = x – 1;
6 		 y : = y + 1;
7 		 else
8 		 y : = y – 1;
9 		 fi
10 	 done

User-supplied inputs are gathered via calls to the function input(). We assume that the variables
range over integers with arbitrary precision (in other words, not 64-bit or 32-bit integers). Assuming
that the user always eventually enters in a value when prompted via input(), does the program
terminate for all possible user-supplied inputs? (The answer is provided in a footnote below.)

Figure 2. Example program.

1 	 x := input();
2 	 y := input();
3	 while x > 0 and y > 0 do
4 		 if input () = 1 then
5 		 x := x × 1;
6 		 y := input();
7 		 else
8 		 y := y – 1;
9 		 fi
10 	 done

This program is similar to Figure 1 where the command “y := y + 1;” replaced with
“y := input();”. No ranking function into the natural numbers exists that can prove the
termination of this program.

92 communications of the acm | may 2011 | vol. 54 | no. 5

review articles

Example using a disjunctive termi-
nation argument. Following the trend
toward the use of disjunctive termina-
tion arguments, we could also prove
the termination of Figure 1 by defin-
ing an argument as the unordered
finite collection of measures x and
y. The termination argument in this
case should be read as:

x goes down by at least 1 and is larger than 0.
 or
y goes down by at least 1 and is larger than 0

We have constructed this termina-
tion argument with two ranking func-
tions: x and y. The use of “or” is key:
the termination argument is modu-
lar because it is easy to enlarge using
additional measures via additional
uses of “or.” As an example, we could
enlarge the termination argument
by adding “or 2w − y goes down by
at least 1 and is greater than 1,000.”
Furthermore, as we will discuss later,
independently finding these pieces of
the termination argument is easier in
practice than finding a single mono-
lithic ranking function.

The expert reader will notice the
relationship between our disjunctive
termination argument and complex
lexicographic ranking functions. The
advantage here is that we do not need
to find an order on the pieces of the
argument, thus making the pieces of
the argument independent from one
another.

The difficulty with disjunctive ter-
mination arguments in comparison to
monolithic ones is that they are more
difficult to prove valid: for the benefit
of modularity we pay the price in the
fact that the termination arguments
must consider the transitions in all
possible loop unrollings and not just
single passes through a loop. That is to
say: the disjunctive termination argu-
ment must hold not only between the
states before and after any single itera-
tion of the loop, but before and after
any number of iterations of the loop
(one iteration, two iterations, three
iterations, and so on). This is a much
more difficult condition to automati-
cally prove. In the case of Figure 1 we
can prove the more complex condition
using techniques described later.

Note that this same termination ar-
gument now works for the tricky pro-

gram in Figure 2, where we replaced “y
:= y + 1;” with “y := input();.” On
every possible unrolling of the loop we
will still see that either x or y has gone
down and is larger than 0.

To see why we cannot use the same
validity check for disjunctive termina-
tion arguments as we do for monolith-
ic ones, consider the slightly modified
example in Figure 3. For every single
iteration of the loop it is true that ei-

ther x goes down by at least one and
x is greater than 0 or y goes down by
at least one and y is greater than 0.
Yet, the program does not guarantee
termination. As an example input se-
quence that triggers non-termination,
consider 5, 5, followed by 1, 0, 1, 0, 1,
0, …. If we consider all possible unroll-
ings of the loop, however, we will see
that after two iterations it is possible
(in the case that the user supplied the

Figure 3. Another example program.

1 	 x := input();
2 	 y := input();
3 	 while x > 0 and y > 0 do
4 		 if input() = 1 then
5 		 x := x – 1;
6 		 y := y + 1;
7 		 else
8 		 x := x + 1;
9 		 y := y – 1;
10 		 fi
11 	 done

Does it terminate for all possible user-supplied inputs?

Figure 4. Example program with an assertion statement in line 3.

1 	 if y ≥ 1 then
2 	 while x > 0 do
3 		 assert (y ≥ 1);
4 		 x := x – y;
5 	 done
6 	 fi

Figure 5. Encoding of termination argument validity.

1 	 copied := 0;
2 	 x := input();
3 	 y := input();
4 	 while x > 0 and y > 0 do
5 	 if copied = 1 then
6 		 assert (oldx ≥ x + 1 and oldx > 0);
7 	 elsif input() = 1 then
8 		 copied := 1;
9 		 oldx := x;
10 		 oldy := y;
11 	 fi
12 	 if input() = 1 then
13 		 x := x – 1;
14 		 y := y + 1;
15 	 else
16 		 y := y – 1;
17 	 fi
18 	 done

Encoding of termination argument validity using the program from Figure 1 and the termination
argument “x goes down by at least one and is larger than 0.” The black code comes directly from
Figure 1. The code in red implements the encoding of validity with an assertion statement.

review articles

may 2011 | vol. 54 | no. 5 | communications of the acm 93

inputs 1 and 0 during the two loop
iterations) that neither x nor y went
down, and thus the disjunctive termi-
nation argument is not valid for the
program in Figure 3.

Argument Validity Checking
While validity checking for disjunc-
tive termination arguments is more
difficult than checking for mono-
lithic arguments, we can adapt the
problem statement such that recently
developed tools for proving the valid-
ity of assertions in programs (such as
Slam2).

An assertion statement can be put
in a program to check if a condition
is true. For example, assert(y ≥ 1);
checks that y ≥ 1 after executing the
command. We can use an assertion
checking tool to formally investigate at
compile time whether the conditions
passed to assertion statements always
evaluate to true. For example, most as-
sertion checking tools will be able to
prove the assert statement at line 3
in Figure 4 never fails. Note that com-
pile-time assertion checking is itself
an undecidable problem, although it
is technically in an easier class of dif-
ficulty than termination.d

The reason that assertion checking
is so important to termination is the
validity of disjunctive termination ar-
guments can be encoded as an asser-
tion statement, where the statement
fails only in the case that the termina-
tion argument is not valid. Once we are
given an argument of the form T1 or T2
or … or Tn, to check validity we simply
want to prove the following statement:

Each time an execution passes
through one state and then through
another one, T1 or T2 or … or Tn holds
between these two states. That is, there
does not exist a pair of states, one be-
ing reachable from the other, possibly
via the unrolling of a loop, such that
neither T1 nor T2 nor … nor Tn holds be-
tween this pair of states.

This statement can be verified a
program transformation where we
introduce new variables into the pro-
gram to record the state before the
unrolling of the loop and then use

d	 Checking validity of an assertion statement is
an undecidable but co-recursively enumerable
problem, whereas termination is neither r.e.
nor co-r.e. problem.

an assertion statement to check the
termination argument always holds
between the current state and the re-
corded state. If the assertion checker
can prove the assert cannot fail, it has
proved the validity of the termination
argument. We can use encoding tricks
to force the assertion checker to con-
sider all possible unrollings.

Figure 5 offers such an example,
where we have used the termination
argument “x goes down by at least one
and x is greater than 0” using the en-

coding given in Cook et al.14 The new
code (introduced as a part of the en-
coding) is given in red, whereas the
original program from Figure 1 is in
black. We make use of an extra call to
input() to decide when the unroll-
ing begins. The new variables oldx
and oldy are used for recording a state.
Note that the assertion checker must
consider all values possibly returned
by input() during its proof, thus the
proof of termination is valid for any
starting position. This has the effect of

Figure 6. Encoding of termination argument validity using previous program.

1 	 copied := 0;
2 	 x := input();
3 	 y := input();
4 	 while x > 0 and y > 0 do
5 	 if copied = 1 then
6 		 assert((oldx ≥ x + 1 and oldx > 0)
7 				 or
8 			 (oldy ≥ y + 1 and oldy > 0)
9);
10 	 elsif input() = 1 then
11 		 copied := 1;
12 		 oldx := x;
13 		 oldy := y;
14 	 fi
15 	 if input() = 1 then
16 		 x := x – 1;
17 		 y := y + 1;
18 	 else
19 		 y := y – 1;
20 	 fi
21 	 done

Encoding of termination argument validity using the program from Figure 1 and the termination
argument “x goes down by at least one and is larger than 0 or y goes down by at least one
and is larger than 0.” The black code comes directly from Figure 1. The code in red implements
the encoding of validity with an assertion statement.

Here, we give a brief summary of implementation strategies based on disjunctive
termination arguments deployed by the recent termination checkers:

Refinement:9,14 In Cook et al.,14 the termination argument begins with ø. We first
attempt to prove that R+ ⊆ ø. When this proof fails, rank function synthesis is applied
to the witness, thus giving a refinement T1 to the argument, which is then rechecked
R+ ⊆ ø ∪ T1. This process is repeated until a valid argument is found or a real
counterexample is found.

In Chawdhary et al.,9 the termination argument T is constructed following the
structure of the transition relation R = R1 ∪ . . . ∪ Rm by using a ranking function
synthesis procedure, which is used to compute a well-founded overapproximation
WF(X) of a binary relation X. The initial candidate T = WF(R1) ∪ . . . ∪ WF (Rm) is extended
with WF (WF (Ri) ° Rj) and so on until the fixpoint is reached.

Variance analysis:3,32 As described in some detail in this article, the approach from
Berdine et al.3 and Podelski et al.32 uses program transformations and abstract
interpretation for invariants to compute an overapproximation T1; T2, . . . , Tn such that
R+ ⊆ T1 ∪ T2 . . . ∪ Tn. It then uses rank function synthesis to check that each Ti is well-
founded.

In contrast to the refinement-based methods, variance analysis always terminates,
but may return “don’t know” in cases when a refinement-based method succeeds.

Implementation Strategies

94 communications of the acm | may 2011 | vol. 54 | no. 5

review articles

considering any possible unrolling of
the loop. After some state has been re-
corded, from this point out the termi-
nation argument is checked using the
recorded state and the current state. In
this case the assertion can fail, mean-
ing that the termination argument is
not valid.

If we were to attempt to check this
condition in a naïve way (for example,
by simply executing the program) we
would never find a proof for all but the
most trivial of cases. Thus, assertion
checkers must be cleverly designed to
find proofs about all possible execu-
tions without actually executing all of

the paths. A plethora of recently devel-
oped techniques now make this pos-
sible. Many recent assertion checkers
are designed to produce a path to a bug
in the case that the assertion statement
cannot be proved. For example, a path
leading to the assertion failure is 1 →
2 → 3 → 4 → 5 → 7 → 8 → 9 → 10 →
11 → 12 → 16 → 17 → 4 → 5 → 6. This
path can be broken into parts, each
representing different phases of the ex-
ecution: the prefix-path 1 → 2 → 3 →
4 is the path from the program initial
state to the recorded state in the failing
pair of states. The second part of the
path 4 → 5 → . . . 5 → 6 represents how

we reached the current state from the
recorded one. That is: this is the unroll-
ing found that demonstrates that the
assertion statement can fail. What we
know is that the termination argument
does not currently cover the case where
this path is repeated forever.

See Figure 6 for a version using the
same encoding, but with the valid ter-
mination argument:

x goes down by at least 1 and is larger than 0
 or
y goes down by at least 1 and is larger than 0.

This assertion cannot fail. The fact
that it cannot fail can be proved by a
number of assertion verification tools.

Finding Termination Arguments
We have examined how we can check
a termination argument’s validity via
a translation to a program with an as-
sertion statement. We now discuss
known methods for finding monolith-
ic termination arguments.

Rank function synthesis. In some
cases simple ranking functions can
be automatically found. We call a
ranking function simple if it can be
defined by a linear arithmetic expres-
sion (for example, −3x = −2y + 100).
The most popular approach for find-
ing this class of ranking function uses
a result from Farkas16 together with
tools for solving linear constraint sys-
tems. (See Colón and Sipma11 or Polel-
ski and Rybalchecko30 for examples
of tools using Farkas’ lemma.) Many
other approaches for finding rank-
ing functions for different classes of
programs have been proposed (see
refs1, 6−8, 19, 37). Tools for the synthesis of
ranking functions are sometimes ap-
plied directly to programs, but more
frequently they are used (on small
and simplified program fragments)
internally within termination proving
tools for suggesting the single ranking
functions that appear in a disjunctive
termination argument.

Termination analysis. Numerous
approaches have been developed for
finding disjunctive termination argu-
ments in which—in effect—the valid-
ity condition for disjunctive termina-
tion arguments is almost guaranteed
to hold by construction. In some cas-
es—for example, Berdine et al.3—to
prove termination we need only check

Figure 7. Program prepared for abstract interpretation.

1 	 copied := 0;
2 	 x := input();
3 	 y := input();
4 	 while x > 0 and y > 0 do
5 	 if copied = 1 then
6 		 skip;
7 	 elsif input() = 1 then
8 		 copied := 1;
9 		 oldx := x;
10 		 oldy := y;
11 	 fi
12 	 if input() = 1 then
13 		 x := x – 1;
14 		 y := y + 1;
15 	 else
16 		 y := y – 1;
17 	 fi
18 	 done

Figure 8. Example C loop over a linked-list data-structure with fields next and data.

c = head;
while (c != NULL) {
 if (c – >next != NULL && c – > next – >data == 5) {
	 t = c – >next;
	 c–>next = c –> next –>next;
	 free(t);
 }
 c = c–>next;
}

Figure 9. Example program illustrating nontermination.

1 	 x := 10;
2 	 while x > 9 do
3 	 x := x – 232;
4 	 done

Example program demonstrating nontermination when variables range over fixed-width numbers. The
program terminates if x ranges over arbitrary size integers, but repeatedly visits the state where x =
10 in the case that x ranges over 32-bit unsigned numbers.

review articles

may 2011 | vol. 54 | no. 5 | communications of the acm 95

that the argument indeed represents a
set of measures. In other cases, such
as Lee et al.24 or Manolios and Vroon,26
the tool makes a one-time guess as to
the termination argument and then
checks it using techniques drawn from
abstract interpretation.

Consider the modified program
in Figure 7. The termination strat-
egy described in Berdine et al.3 and
Podelski and Rybalchenko32 essen-
tially builds a program like this and
then applies a custom program analy-
sis to find the following candidate ter-
mination argument:

(copied ≠ 1) or
(oldx ≥ x + 1, oldx > 0, oldy
> 0, x ≥ 0, y > 0) or
(oldx ≥ x, oldy ≥ y + 1, oldx
> 0, oldy > 0, x > 0, y ≥ 0)

for the program at line 4—meaning we
could pass this complex expression to
the assertion at line 4 in Figure 7 and
know that the assertion cannot fail.
We know this statement is true of any
unrolling of the loop in the original
Figure 1. What remains is to prove that
each piece of the candidate argument
represents a measure that decreases—
here we can use rank function synthe-
sis tools to prove that oldx > x + 1 and
oldx > 0 . . . represents the measure
based on x. If each piece between the
ors in fact represents a measure (with
the exception of copied ≠ 1 which
comes from the encoding) then we
have proved termination.

One difficulty with this style of ter-
mination proving is that, in the case
that the program doesn’t terminate,
the tools can only report “unknown,”
as the techniques used inside the ab-
stract interpretation tools have lost
so much detail that it is impossible
to find a non-terminating execution
from the failed proof and then prove it
non-terminating. The advantage when
compared to other known techniques
is it is much faster.

Finding arguments by refinement.
Another method for discovering a ter-
mination argument is to follow the ap-
proach of Cook et al.14 or Chawdhary
et al.9 and search for counterexamples
to (possibly invalid) termination argu-
ments and then refine them based on
new ranking functions found via the
counterexamples.

Recall Figure 5, which encoded the
invalid termination argument for the
program in Figure 1, and the path lead-
ing to the failure of the assertion: is 1
→ 2 → 3 → 4 → 5 → 7 → 8 → 9 → 10
→ 11 → 12 → 16 → 17 → 4 → 5 → 6.
Recall this path represents two phases
of the program’s execution: the path
to the loop, and some unrolling of the
loop such that the termination con-
dition doesn’t hold. In this case the
path 4 → 5 → . . . 6 represents how we
reached the second failing state from
the first. This is a counterexample to
the validity of the termination argu-
ment, meaning that the current ter-
mination argument does not take this
path and others like it into account.

If the path can be repeated forever
during the program’s execution then
we have found a real counterexample.
Known approaches (for example, Gup-
ta et al.21) can be used to try and prove
this path can be repeated forever. In
this case, however, we know that the
path cannot be repeated forever, as
y is decremented on each iteration
through the path and also constrained
via a conditional statement to be posi-
tive. Thus this path is a spurious coun-
terexample to termination and can
be ruled out via a refinement to the
termination argument. Again, using
rank function synthesis tools we can
automatically find a ranking function
that demonstrates the spuriousness of
this path. In this case a rank function
synthesis tool will find y, meaning that
the reason this path cannot be repeat-
ed forever is that “y always goes down
by at least one and is larger than 0.” We
can then refine the current termina-
tion argument used in Figure 5:

x goes down by at least 1 and is larger than 0
with the larger termination argument:
x goes down by at least 1 and is larger than 0
 or
y goes down by at least 1 and is larger than 0

We can then check the validity of
this termination argument using a tool
such as IMPACT on the program in Fig-
ure 6. IMPACT can prove this assertion
never fails, thus proving the termina-
tion of the program in Figure 1.

Further Directions
With fresh advances in methods for
proving the termination of sequen-

In recent years,
powerful new
termination tools
have emerged that
return “unknown”
infrequently enough
that they are useful
in practice.

96 communications of the acm | may 2011 | vol. 54 | no. 5

review articles

tial programs that operate over math-
ematical numbers, we are now in the
position to begin proving termination
of more complex programs, such as
those with dynamically allocated data
structures, or multithreading. Fur-
thermore, these new advances open
up new potential for proving proper-
ties beyond termination, and finding
conditions that would guarantee ter-
mination. We now discuss these av-
enues of future research and develop-
ment in some detail.

Dynamically allocated heap. Con-
sider the C loop in Figure 8, which
walks down a list and removes links
with data elements equaling 5. Does
this loop guarantee termination?
What termination argument should
we use?

The problem here is that there are
no arithmetic variables in the program
from which we can begin to construct
an argument—instead we would want
to express the termination argument
over the lengths of paths to NULL via
the next field. Furthermore, the pro-
grammer has obviously intended for
this loop to be used on acyclic sin-
gly linked lists, but how do we know
that the lists pointed to by head will
always be acyclic? The common solu-
tion to these problems is to use shape
analysis tools (which are designed to

automatically discover the shapes of
data-structures) and then to create
new auxiliary variables in the program
that track the sizes of those data struc-
tures, thus allowing for arithmetic
ranking functions to be more easily
expressed (examples include refs4,5,25).
The difficultly with this approach is
that we are now dependent on the ac-
curacy and scalability of current shape
analysis tools—to date the best known
shape analysis tool40 supports only
lists and trees (cyclic and acyclic, sin-
gly and doubly linked) and scales only
to relatively simple programs of size
less than 30,000 LOC. Furthermore,
the auxiliary variables introduced by
methods such as Magill et al.25 some-
times do not track enough informa-
tion in order to prove termination (for
example, imagine a case with lists of
lists in which the sizes of the nested
lists are important). In order to im-
prove the state of the art for termina-
tion proving of programs using data
structures, we must develop better
methods of finding arguments over
data structure shapes, and we must
also improve the accuracy and scal-
ability of existing shape analysis tools.

Bit vectors. In the examples used
until now we have considered only
variables that range over mathemati-
cal numbers. The reality is that most

programs use variables that range
over fixed-width numbers, such as
32-bit integers or 64-bit floating-
point numbers, with the possibility
of overflow or underflow. If a program
uses only fixed-width numbers and
does not use dynamically allocated
memory, then termination proving is
decidable (though still not easy). In
this case we simply need to look for a
repeated state, as the program will di-
verge if and only if there exists some
state that is repeated during execu-
tion. Furthermore, we cannot ignore
the fixed-width semantics, as over-
flow and underflow can cause non-
termination in programs that would
otherwise terminate, an example is
included in Figure 9. Another com-
plication when considering this style
of program is that of bit-level opera-
tions, such as left- or right-shift.

Binary executables. Until now we
have discussed proving termination of
programs at their source level, perhaps
in C or Java. The difficulty with this
strategy is the compilers that then take
these source programs and convert
them into executable artifacts can in-
troduce termination bugs that do not
exist in the original source program.
Several potential strategies could help
mitigate this problem: We might try to
prove termination of the executable
binaries instead of the source level
programs, or we might try to equip
the compiler with the ability to prove
that the resulting binary program pre-
serves termination, perhaps by first
proving the termination of the source
program and then finding a map from
the binary to the source-level program
and proving that the composition with
the source-level termination argument
forms a valid termination argument
for the binary-level program.

Non-linear systems. Current ter-
mination provers largely ignore non-
linear arithmetic. When non-linear
updates to variables do occur (for ex-
ample x := y * z;), current termina-
tion provers typically treat them as
if they were the instruction x := in-
put();. This modification is sound—
meaning when the termination prover
returns the answer “terminating,” we
know the proof is valid. Unfortunately,
this method is not precise: the treat-
ment of these commands can lead to
the result “unknown” for programs

Figure 10. Example of multi-threaded terminating producer/consumer program.

1 	 while x > 0 do
2		 x := x – 1;	 1	 while 	 y > 0 do	
3 		 lock(lck)	 2			 lock (lck)
4 		 b := x;	 3			 y:=b;
5 		 unlock(lck)	 5			 unlock(lck)
6 	 done		 6 	 done

To prove that the thread on the left terminates we must assume that the thread on the right always
calls unlock when needed. To prove that the thread on the right always calls unlock when needed,
we must prove that the thread on the left always calls unlock when needed, and so on.

Figure 11. Collatz program.

1 	 while x > 1 do
2 		 if x is divisible by 2 then
3 		 x := x=2;
4 		 else
5		 x := 3x + 1;
6 		 fi
7 	 done

We assume that x ranges over all natural numbers with arbitrary precision (that is, neither 64-bit
vectors nor 32-bit vectors). A proof of this program’s termination or non-termination is not known.

review articles

may 2011 | vol. 54 | no. 5 | communications of the acm 97

that actually terminate. Termination
provers are also typically unable to find
or check non-linear termination argu-
ments (x2, for example) when they are
required. Some preliminary efforts in
this direction have been made,1,6 but
these techniques are weak. To improve
the current power of termination prov-
ers, further developments in non-lin-
ear reasoning are required.

Concurrency. Concurrency adds an
extra layer of difficulty when attempt-
ing to prove program termination. The
problem here is that we must consider
all possible interactions between con-
currently executing threads. This is es-
pecially true for modern fine-grained
concurrent algorithms, in which
threads interact in subtle ways through
dynamically allocated data structures.
Rather than attempting to explicitly
consider all possible interleavings of
the threads (which does not scale to
large programs) the usual method for
proving concurrent programs correct
is based on rely-guarantee or assume-
guarantee style of reasoning, which
considers every thread in isolation
under assumptions on its environ-
ment and thus avoids reasoning about
thread interactions directly. Much of
the power of a rely-guarantee proof
system (such as Jones22 and Misra and
Chandy28) comes from the cyclic proof
rules, where we can assume a proper-
ty of the second thread while proving
property of the first thread, and then
assume the recently proved property
of the first thread when proving the as-
sumed property of the second thread.
This strategy can be extended to live-
ness properties using induction over
time, for example, Gotsman et al.20 and
McMillan.27

As an example, consider the two
code fragments in Figure 10. Imagine
that we are executing these two frag-
ments concurrently. To prove the ter-
mination of the left thread we must
prove that it does not get stuck waiting
for the call to lock. To prove this we
can assume the other thread will al-
ways eventually release the lock—but
to prove this of the code on the right
we must assume the analogous prop-
erty of the thread on the left, and so
on. In this case we can certainly just
consider all possible interleavings of
the threads, thus turning the concur-
rent program into a sequential model

representing its executions, but this
approach does not scale well to larger
programs. The challenge is to develop
automatic methods of finding non-cir-
cular rely-guarantee termination argu-
ments. Recent steps20 have developed
heuristics that work for non-blocking
algorithms, but more general tech-
niques are still required.

Advanced programming features.
The industrial adoption of high-level
programming features such as virtual
functions, inheritance, higher-order
functions, or closures make the task of
proving industrial programs more of a
challenge. With few exceptions (such
as Giesl et al.18), this area has not been
well studied.

Untyped or dynamically typed pro-
grams also contribute difficulty when
proving termination, as current ap-
proaches are based on statically dis-
covering data-structure invariants and
finding arithmetic measures in order
to prove termination. Data in untyped
programs is often encoded in strings,
using pattern matching to marshal
data in and out of strings. Termination
proving tools for JavaScript would be
especially welcome, given the havoc
that nonterminating JavaScript causes
daily for Web browsers.

Finding preconditions that guarantee
termination. In the case that a program
does not guarantee termination from
all initial configurations, we may want
to automatically discover the condi-
tions under which the program does
guarantee termination. That is, when
calling some function provided by a
library: what are the conditions under
which the code is guaranteed to return
with a result? The challenge in this
area is to find the right precondition:
the empty precondition is correct but
useless, whereas the weakest precon-
dition for even very simple programs
can often be expressed only in com-
plex domains not supported by today’s
tools. Furthermore, they should be
computed quickly (the weakest pre-
condition expressible in the target log-
ic may be too expensive to compute).
Recent work has shown some prelimi-
nary progress in this direction.13,33

Liveness. We have alluded to the
connection between liveness prop-
erties and the program termination
problem. Formally, liveness proper-
ties expressed in temporal logics can

With fresh
advances in
methods for
proving the
termination
of sequential
programs that
operate over
mathematical
numbers, we are
now in the position
to begin proving
termination of
more complex
programs.

98 communications of the acm | may 2011 | vol. 54 | no. 5

review articles

Conclusion
This article has surveyed recent ad-
vances in program termination prov-
ing techniques for sequential pro-
grams, and pointed toward ongoing
work and potential areas for future
development. The hope of many tool
builders in this area is that the current
and future termination proving tech-
niques will become generally avail-
able for developers wishing to directly
prove termination or liveness. We also
hope that termination-related appli-
cations—such as detecting livelock at
runtime or Wang’s tiling problem—
will also benefit from these advances.

Acknowledgments
The authors would like to thank Lu-
cas Bourdeaux, Abigail See, Tim Har-
ris, Ralf Herbrich, Peter O’Hearn, and
Hongseok Yang for their reading of
early drafts of this article and sugges-
tions for improvement.	

References
1.	 Babic, D., Hu, A.J., Rakamaric, Z., and Cook, B. Proving

termination by divergence. In SEFM, 2007.
2.	 Ball, T., Bounimova, E., Cook, B., Levin, V., Lichtenberg,

J., McGarvey, C., Ondrusek, B., Rajamani, S.K. and
Ustuner, A. Thorough static analysis of device drivers.
In Proceedings of EuroSys, 2006.

3.	 Berdine, J., Chawdhary, A., Cook, B., Distefano, D.
and O’Hearn, P. Variance analyses from invariance
analyses. In Proceedings of POPL, 2007.

4.	 Berdine, J., Cook, B., Distefano, D. and O’Hearn, P.
Automatic termination proofs for programs with
shape-shifting heaps. In Proceedings of CAV, 2006.

5.	 Bouajjani, A., Bozga, M., Habermehl, P., Iosif, R., Moro,
P. and Vojnar, T. Programs with lists are counter
automata. In Proceedings of CAV, 2006.

6.	 Bradley, A., Manna, Z. and Sipma, H. Termination of
polynomial programs. In Proceedings of VMCAI, 2005.

7.	 Bradley, A., Manna, Z. and Sipma, H.B. Linear ranking
with reachability. In Proceedings of CAV, 2005.

8.	 Bradley, A., Manna, Z. and Sipma, H.B. The polyranking
principle. In Proceedings of ICALP, 2005.

9.	 Chawdhary, C., Cook, B., Gulwani, S., Sagiv, M. and
Yang, H. Ranking abstractions. In Proceedings of
ESOP, 2008.

10.	 Codish, M., Genaim, S., Bruynooghe, M., Gallagher, J.
and Vanhoof, W. One loop at a time. In Proceedings of
WST, 2003.

11.	 Colón, M. and Sipma, H. Synthesis of linear ranking
functions. In Proceedings of TACAS, 2001.

12.	 Cook, B., Gotsman, A., Podelski, A., Rybalchenko, A.
and Vardi, M. Proving that programs eventually do
something good. In Proceedings of POPL, 2007.

13.	 Cook, B., Gulwani, S., Lev-Ami, T., Rybalchenko, A.
and Sagiv, M. Proving conditional termination. In
Proceedings of CAV, 2008.

14.	 Cook, B., Podelski, A. and Rybalchenko, A. Termination
proofs for systems code. In Proceedings of PLDI, 2006.

15.	 Dershowitz, N., Lindenstrauss, N., Sagiv, Y. and
Serebrenik, A. A general framework for automatic
termination analysis of logic programs. Appl. Algebra
Eng. Commun. Comput., 2001.

16.	 Farkas, J. Uber die Theorie der einfachen
Ungleichungen. Journal für die reine und angewandte
Mathematik, 1902.

17.	 Geser, A. Relative termination. PhD dissertation, 1990.
18.	 Giesl, J., Swiderski, S., Schneider-Kamp, P. and

Thiemann, R. Automated termination analysis
for Haskell: From term rewriting to programming
languages. In Proceedings of RTA, 2006.

be converted into questions of fair ter-
mination—termination proving were
certain non-terminating executions
are deemed unfair via given fairness
constraints, and thus ignored. Cur-
rent tools, in fact, either perform this
reduction, or simply require the user to
express liveness constraints directly as
the set of fairness constraints.12,29 Nei-
ther approach is optimal: the reduc-
tion from liveness to fairness is ineffi-
cient in the size of the conversion, and
fairness constraints are difficult for
humans to understand when used di-
rectly. An avenue for future work would
be to directly prove liveness properties,
perhaps as an adaption of existing ter-
mination proving techniques.

Dynamic analysis and crash dumps
for liveness bugs. In this article we have
focused only on static, or compile-time,
proof techniques rather than tech-
niques for diagnosing divergence dur-
ing execution. Some effort has been
placed into the area of automatically
detecting deadlock during execution
time. With new developments in the
area of program termination proving
we might find that automatic methods
of discovering livelock could also now
be possible. Temporary modifications
to scheduling, or other techniques,
might also be employed to help pro-
grams not diverge even in cases where
they do not guarantee termination or
other liveness properties. Some pre-
liminary work has begun to emerge
in this area (see Jula et al.23) but more
work is needed.

Scalability, performance, and preci-
sion. Scalability to large and complex
programs is currently a problem for
modern termination provers—cur-
rent techniques are known, at best, to
scale to simple systems code of 30,000
lines of code. Another problem we face
is one of precision. Some small pro-
grams currently cannot be proved ter-
minating with existing tools. Turing’s
undecidability result, of course, states
that this will always be true, but this
does preclude us from improving pre-
cision for various classes of programs
and concrete examples. The most fa-
mous example is that of the Collatz’
problem, which amounts to proving
the termination or non-termination
of the program in Figure 11. Currently
no proof of this program’s termination
behavior is known.

19.	 Giesl, J. Thiemann, R., Schneider-Kamp, P. and Falke,
S. Automated termination proofs with AProVE. In
Proceedings of RTA, 2004.

20.	 Gotsman, A., Cook, B., Parkinson, M. and Vafeiadis, V.
Proving that non-blocking algorithms don’t block. In
Proceedings of POPL, 2009.

21.	 Gupta, A., Henzinger, T., Majumdar, R., Rybalchenko, A.,
and Xu, R. Proving non-termination. In Proceedings of
POPL, 2008.

22.	 Jones, C.B. Tentative steps toward a development
method for interfering programs. ACM Trans. Program.
Lang. Syst., 1983.

23.	 Jula, H., Tralamazza, D., Zamfir, C. and Candea, G.
Deadlock immunity: Enabling systems to defend
against deadlocks. In Proceedings of OSDI, 2008.

24.	L ee, C.S., Jones, N.D. and Ben-Amram, A.M.. The
size-change principle for program termination. In
Proceedings of POPL, 2001.

25.	 Magill, S., Berdine, J., Clarke, E. and Cook, B.
Arithmetic strengthening for shape analysis. In
Proceedings of SAS, 2007.

26.	 Manolios, P. and Vroon, D. Termination analysis with
calling context graphs. In Proceedings of CAV, 2006.

27.	 McMillan, K.L. Circular compositional reasoning about
liveness. In Proceedings of CHARME, 1999.

28.	 Misra, J and Chandy, K.M. Proofs of networks of
processes. IEEE Trans. Software Eng., 1981.

29.	 Pnueli, A., Podelski, A., and Rybalchenko, A. Separating
fairness and well-foundedness for the analysis of fair
discrete systems. In Proceedings of TACAS, 2005.

30.	 Podelski, A, and Rybalchenko, A. A complete method
for the synthesis of linear ranking functions. In
Proceedings of VMCAI, 2004.

31.	 Podelski, A, and Rybalchenko, A. Transition invariants.
In Proceedings of LICS, 2004.

32.	 Podelski, A. and Rybalchenko, A. Transition predicate
abstraction and fair termination. In Proceedings of
POPL, 2005.

33.	 Podelski, A., Rybalchenko, A., and Wies, T. Heap
assumptions on demand. In Proceedings of CAV, 2008.

34. Ramsey, F. On a problem of formal logic. London Math.
Soc., 1930.

35.	 Stix, G. Send in the Terminator. Scientific American
(Nov. 2006).

36.	 Strachey, C. An impossible program. Computer
Journal, 1965.

37.	 Tiwari, A. Termination of linear programs. In
Proceedings of CAV, 2004.

38.	 Turing, A. On computable numbers, with an application
to the Entscheidungsproblem. London Mathematical
Society, 1936.

39.	 Turing, A. Checking a large routine. In Report of a
Conference on High Speed Automatic Calculating
Machines, 1949.

40.	Yang, H., Lee, O., Berdine, J., Calcagno, C., Cook, B.,
Distefano, D. and O’Hearn, P. Scalable shape analysis
for systems code. In Proceedings of CAV, 2008.

Byron Cook is a Principal Researcher at Microsoft’s
research laboratory at Cambridge University, and a
professor of computer science at Queen Mary, University
of London, England.

Andreas Podelski is a professor of computer science at
the University of Freiburg, Germany.

Andrey Rybalchenko is a professor of computer science
at the Technische Universität München, Germany.

© 2011 ACM 0001-0782/11/05 $10.00

