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ON A PBOBLEM OF FOKMAL LOGIC

By F. P. KAMSEY.
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This paper is primarily concerned with a special case of one of the
leading problems of mathematical logic, the problem of finding a regular
procedure to determine the truth or falsity of any given logical formula*.
But in the course of this investigation it is necessary to use certain
theorems on combinations which have an independent interest and are
most conveniently set out by themselves beforehand.

I.

The theorems which we actually require concern finite classes only,
but we shall begin with a similar theorem about infinite classes which is
easier to prove and gives a simple example of the method of argument.

THEOREM A. Let F be an infinite class, and fx and r positive integers ;
and let all those sub-classes of T which have exactly r members, or, as ice
may say, let all r-combinations of the members of T be divided in any
manner into /* mutually exclusive classes Cf (i = l, 2, ..., /x), so that
every r-combination is a member of one and only one C<; then, assuming
the axiom of selections, T must contain an infinite sub-class A such that
all the r-combinations of the members of A belong to the same C;-.

Consider first the case /x = 2. (If p. = 1 there is nothing to prove.)
The theorem is trivial when r is 1, and we prove it for all values of r by
induction. Let us assume it, therefore, when r = p—1 and deduce it
for r = p, there being, since /x = 2, only two classes Ci} namely Ci and
C,.

• Called iu German the Entscheidungsproblem; see Hilbert und Ack9rmann, Grundzilge
def Theoretischen Logik, 72-81.



1928.] ON A PROBLEM OF FORMAL LOGIC. 265

It -may happen that F contains a member Xi and an infinite sub-class
Fi, not including xlf such that the ^-combinations consisting of xx to-
gether with any p—1 members of F], all belong to C\. If so, I\ may
similarly contain a member x2 and an infinite sub-class Fa, not including
x2, such that all the ^-combinations consisting of x3 together with p—1
members of F2, belong to C\. And, again, F2 may contain an x3 and a
F3 with similar properties, and so on indefinitely. We thus have two
possibilities : either we can select in this way two infinite sequences of
members of F {xu x2, ..., xn, ...), and of infinite sub-classes of
F (F1} F2, ..., rH, ...), in which xn is always a member of rB_i, and FM

a sub-class of Fn_i not including xv, such that all the p-combinations
consisting of xn together with p—1 members of I'n, belong to d; or
else the process of selection will fail at a certain stage, say the n-th,
because FTO_! (or if n = 1, F itself) will contain no member xn and infinite
sub-class Tn not including xn such that all the p-combinations consisting
of xn together with p—1 members of Fn belong to C\. Let us take these
possibilities in turn.

If the process goes on for ever let A be the class (x1} x2, ..., £„, ...)•
Then all these re's are distinct, since if r > s , xr is a member of F,_i and
so of F,_2, Fr_3, ..., and ultimately of Fs which does not contain xs.
Hence A is infinite. Also all p-combinations of members of A belong to
C\; for if xs is the term of such a combination with least suffix s, the other
p—1 terms of the combination belong to. Fs, and so form with xs a
/^-combination belonging to C\. F therefore contains an infinite sub-
class A of the required kind.

Suppose, on the other hand, that the process of selecting the a;'s and
F's fails at the n-th stage, and let yx be any member of Va_i. Then the
(p—l)-combinations of members of Fn_i— (yi) can be divided into two
mutually exclusive classes C[ and C'z according as the p-combinations
formed by adding to them yx belong to d or C2, and by our theorem (A),
which we are assuming true when r = p—1 (and [x = 2), Tn-i—(yi) must
contain an infinite sub-class Av such that all (p—l)-combinations of the
members of A{ belong to the same d; i.e. such that the p-combinations
formed by joining i/i to p—1 members of Ax all belong to the same d.
Moreover, this d cannot be C\, or y\ and Ax could be taken to be xn and
Tn and our previous process of selection would not have failed at the
n-th stage. Consequently the p-combinations formed by joining yx to
/>—1 members of Ax all belong to C2. Consider now Aj and let y2 be
any of its members. By repeating the preceding argument Ax—(y2)
must contain an infinite sub-class A2 such that all the p-combinations
got by joining y2 to p—1 members of A3 belong to the same Ct.
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And, again, this d cannot be d, or, since y<2 is a member and A2 a sub-
class of Aj and so of r,,_i which includes Ax, y2 and A2 could have been
chosen as xn and Tn and the process of selecting these would not have
failed at the n-th stage. Now let y3 be any member of A2; then A2— (?/3)
must contain an infinite sub-class A3 such that all p-combinations con-
sisting of y3 together with />—1 members of A3, belong to the same Cit

which, as before, cannot be Ci and must be C2. And by continuing in
this way we shall evidently find two infinite sequences ij1, y2, .., yn, •••
and Aj, A2, ..., A,M ... consisting respectively of members and sub-classes
of F, and such that yn is always a member of An_i, A7l a sub-class of An_!
not including yn, and all the p-combinations formed by joining yn to p—1
members of AM belong to C2; and if we denote by A the class
(yi> y?, •••> yn, •••) w e have, by a previous argument, that all p-combina-
tions of members of A belong to C2.

Hence, in either case, F contains an infinite sub-class A of the re-
quired kind, and Theorem A is proved for all values of r, provided that
fi = 2. For higher values of fx we prove it by induction; supposing it
already established for /* = 2 and fx = v—1, we deduce it for /* = v.

The r-combinations of members of F are then divided into v classes
Ci (i = 1, 2, ..., v). We define new classes G[ for i = 1, 2, ..., v—1 by

Ci-i = Cv-\-\-Gv.

Then by the theorem for /x = v—1, F must contain an infinite sub-
class A such that all r-combinations of the members of A belong to the
Rame C'i. If, in this €[, i ^ v—2, they all belong to the same d, which is
the result to be proved; otherwise they all belong to Cl-i, i.e. either to
C_i or to Cv. In this case, by the theorem for p. = 2, A must contain an
infinite sub-class A' such that the r-combinations of members of Af

either all belong to Cv-\ or all belong to Cv; and our theorem is thus
established.

Coming now to finite classes it will save trouble to make some con-
ventions as to notation. Small letters other than x and y, whether
Italic or Greek (e.g. n, r, fx, m) will always denote finite cardinals,
positive unless otherwise stated. Large Greek letters (e.g. F, A) will
denote classes, and their suffixes will indicate the number of their
members (e.g. Tm is a class with m members). The letters x and y will
represent members of the classes T, A, etc., and their suffixes will be
used merely to distinguish them. Lastly, the letter C will stand, as
before, for classes of combinations, and its suffixes will not refer to the
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number of members, but serve merely to distinguish the different classes
of combinations considered.

Corresponding to Theorem A we then have

THEOREM B. Given any r, n, and /J. we can find an mo such that, if
m ^ mo and the r-combinations of any Tm are divided in any manner into
[x mutually exclusive classes Ci (i = l, 2, ..., /A), then FTO must contain a
sub-class An such that all the r-combinations of members of An belong
to the same C^

This is the theorem which we require in our logical investigations, and
we should at the same time like to have information as to how large m0

must be taken for any given r, n, and /x. This problem I do not know how
to solve, and I have little doubt that the values for m0 obtained below are
far larger than is necessary.

To prove the theorem we begin, as in Theorem A, by supposing that
(x — 2. We then take, not Theorem B itself, but the equivalent

THEOREM C. Given any r, n, and k such that n-\-k^r, there is an
m0 such that, if m^mo and the r-combinations of any Tm are divided
into two mutually exclusive classes d and C2, then Tm must contain tioo
mutually exclusive sub-classes An and Ak such that all the combinations
formed by r members of An+Ak which include at least one member from
An belong to the same Ci.

That this is equivalent to Theorem B with u = 2 is evident from
the fact that, for any given r, Theorem C, for n and k, asserts more
than Theorem B for n, but less than Theorem B for n-\-k.

The proof of Theorem C must be performed by mathematical in-
duction, and can conveniently be set out as a demonstration that it is
possible to define by recursion a function / ( r , n, k) which will serve as
Wo in the theorem.

If r = 1, the theorem is evidently true with m0 equal to the greater
of 2)i—l and n-\-k, so that we may define

/ ( I , n, k) = max {In—1, n+k) (w > 1, k > 0).
For other values of r we define / ( r , n, k) by recursion formulae in-

volving an auxiliary function g{r, n, k). Suppose that / ( r—1, n, k) has
been defined for a certain r—1, and all n, k such that n-\-k ^ r—1, then
we define it for r by putting

/(r, 1, k) =f(r-l, k-r+2, r-2)+l (&+1 > r),
g(r, 0, k) = max (r— 1, k),

g{r, n, k) = f\r, 1, g(r, n—1, k)\ (n > 1),

f(r, n, k) = f{r, n-1, g{r, n, k)\ (n > 1).
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These formulae can be easily seen to define f(r, »/, k) for all positive
values of r, n and k satisfying n-\-k^:r, and g(r, n, k) for all values
of r. greater than 1, and all positive values of n and k; and we shall
prove that Theorem C is true when we take m0 to be this fir, n, k).
We know that this is so when r = l, and we shall therefore assume it
for all values up to r—l and deduce it for r.

When n = 1, and m ^ m0 = / ( r—l, fc—r+2, r—2)-f 1, we may take
any member x of rw to be sole member of Ax and there remain at least
f(r—l, k—r-f2, r—'2) members of Tm—(x); the (r—l)-combinations of
these members of Vm—(x) can be divided into classes C[ and C'> accord-
ing as they belong to C\ or C% when x is added to them, and, by our
theorem for r—l, Tm— (x) must contain two mutually exclusive classes
A/._r+2, Ar_ such that every combination of r—l terms from A/,._,.+ >+A,_2-
(since one of its terms must come from A/>_,+2, A,_« having only r—2
members) belongs to the same €[. Taking Ak to be this AA_,+..+A(._2

all combinations consisting of x, together with r—l members of A/,, be-
long to the same C,-. The theorem is therefore true for r when n = 1.

For other values of n we prove it by induction, assuming it for n — 1
and deducing it for n. Taking

m > m0 =f(r, n, k) =f\r, n — 1, g(>; n, k)},

r m must, by the theorem for n—1, contain a An_i and a A^-,,,,,^ such
that every combination of r members of A,l_i-+-A(/(,.i „,/.), at least one term
of which comes from An_!, belongs to the same d, say to Gv If, now,
Ay(rtmt*;) contains a member x and a sub-class At not including x, such that
every combination of x and r—l members of A* belongs to Gx, then,
taking An to be An_i+(;c) and A;, to be this Ak, our theorem is true. If
not, there can be no member of A3(.,.,«,;.) which has a sub-class of 7c mem-
bers of Aj,(ri „_ /.:) connected with it in this way. But since

g(r, n, h) =f\r, 1, g{r, n—1, k)),

Aj(i-,n,A-) must contain a member x1 and a sub-class A!7(,>w_ii/>.), not including
xlt such that xx combined with any r—l members of A?(r>7l_iifc) gives a
combination belonging to the same Ci, which cannot be Glt or xx and any
k members of Ag^,,i-i,k) could have been taken as the x and Ak above.
Hence the combinations formed by xx together with any r—1 members
of Ag(r,n-i.i) all belong to C2. But now

g(r, n-1, k) =f{r, 1, g(r, n-% k)\,

and A9(r>H-i,j;) must contain an x2 and a Ag^tn-otk), not including x2, such
that the combinations formed by x2 and r—l members of Ag(r)n_.2,k) all
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belong to the same d, which must, as before, be C2, since x2 and A,,^ „_•_>, A-
are both contained in A?(nn)/,) and g(r, w—2, k) ^ k. Continuing in this
way we can find n distinct terms xlt x2, ..., xa and a A^O.A) such that every
combination of r terms from (xlf xz, ..., jn)4-Aff(r,o,k) belongs to C2, pro-
vided that at least one term of the combination comes from (xv x2, ..., xn)..
Since g(r, 0, k) ̂  k this proves our theorem, taking An to be (x1? x2, ..., x,,).
and A/, to be any k terms of Ag^o^y

Theorem C is therefore established for all values of r, n, and k,,
with wo equal to f(r, n, k). It follows that, if /JL = 2, Theorem B is true
for all values of r and n with w0 equal to f(r, n—r-f-l, r—1), which we
shall also call h(r, n, 2).

For other values of /* we prove Theorem B by induction, taking w0.
to be h(r, n, /x), where

h(rt «, 2) = / ( r , w—r+1, r ~ l )

&(r, n, M) = fc|r, A(r, n, / / - I ) , 2[ (M > 2).

For, assuming the theorem for /*—1, we prove it for fx by defining new.
classes of combinations

c2 = £ Ci.

If then m. ^ //(̂ ", n, p.) = /i{r, /j(r, n, fi—1), 2}, by the theorem for
fx •= 2, Fm must contain a Th(r,r,,».-\) *n e r-combinations of whose members
belong either all to C\ or all to C>. In the first case there is no more to
prove; in the second we have only to apply the theorem for ju—1 to

In the simplest case in which r = fi = 2 the above reasoning" gives
m0 equal to /i(2, n, 2), which is easily shown to be 2n(w~1)'2. But for this,
case there is a simple argument which gives the much lower value
m0 = n !, and shows that our value h(r, n, fi) is altogether excessive.

For, taking Theorem C first, we can prove by induction with regard
to n that, for r = 2, we may take m0 to be A". (>i+l)!. (k is here supposed
greater than or equal to 1.) For this is true when n = l , since, if
vi^2k, of the m—1 pairs obtained by combining any given member of
Tm with the others, at least k must belong to the same 0*. Assuming
it, then, for n—1, let us prove it for n.

If m^k . (n-fl)! = /c(n+l). n !, Fm must, by the theorem for n—1,
contain two mutually exclusive sub-classes i\u_! and Afc(n+i) such that all
pairs from Au_i+A;,(,,.+i), at least one term of which comes from Au_i,
belong to the same d, say C\. Now consider the members of A/,(ll+1); in*
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the first place, there may be one of these, x say, which is such that there
are k other members of Afc(w+1) which combined with x give pairs
belonging to d. If so, the theorem is true, taking A.(l to be An-y+{x);
if not, let xx be any member of A^+i). Then there are at most k—1
other members of Afc(n+i) which combined with Xi give pairs belonging
to Ci, and A;,(ll+])—(xj) must contain a Akn any member of which gives
when combined with Xi a pair belonging to C%. Let x% be any member of
Ajtn, then, since x2 and A^ are both contained in Ajk()l+1), there are at most
k—1 other members of Aj7l which when combined with x? give pairs
belonging to Gx. Hence Akn—Gr2) contains a Afc(W_i) any member of
which combined with x2 gives a pair belonging to C2. Continuing in this
way we obtain xx, x2, ..., xn and Afc, such that every pair xif x-, and
every pair consisting of an Xi and a member of Ak belongs to C^..
Theorem C is therefore proved.

Theorem B for n then follows, with the mQ of Theorem C for n—1
and 1, i.e. with mo equal to n\*; and it is an easy extension to show
that, if in Theorem B r = 2 but /n =£ 2, we can take m0 to be •»!!!. ...,
where the process of taking the factorial is performed [x—1 times.

II.

We shall be concerned with logical formulae containing variable
propositional functions, i.e. predicates or relations, which we shall denote
bj' Greek letters <f>, x, ty, etc. These functions have as arguments in-
dividuals denoted by x, y, z, etc., and we shall deal with functions with
any finite number of arguments, i.e. of any of the forms

In addition to these variable functions we shall have the one constant
function of identity x = y o r - {Xt y)m

By operating on the values of <f>, x> V̂> •••> a n d = with the logical opera-
t l o n s ~ meaning not,

V „ or,

„ and,

(x) „ for all x.

(Ex) ,, there is an x for which,

* But this value is, 1 think, still much too high. It can easily be lowered slightly even
when following the line of argument above, by using the fact that if k is even it is impossible
for every member of an odd class to have exactly k — 1 others with which it forms a pair of C\,
for then twice the number of these pairs would be odd; we can thus start when k is even with
a A* („ t u - i ins tead of a A*(,1 + ))
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we can construct expressions such as

[(*, y){</>(x, *,) V z = */}] V {(M*)x{»)\

in which all the individual variables are made "apparent" by prefixes
(x) or {Ex), and the only real variables left are the functions <f>, x, ••••
Such an expression we shall call a first order formula.

If such a formula is true for all interpretations* of the functional
variables <f>, x, Â, etc., we shall call it valid, and if it is true for no inter-
pretations of these variables we shall call it inconsistent. If it is true
for some interpretations (whether or not for all) we shall call it
•consistent}.

The Entscheidungsproblem is to find a procedure for determining
whether any given formula is valid, or, alternatively, whether any given
formula is consistent; for these two problems are equivalent, since the
necessary and sufficient condition for a formula to be consistent is that
its contradictory should not be valid. We shall find it more convenient
to take the problem in this second form as an investigation of consistency.
The consistency of a formula may, of course, depend on the number of
individuals in the universe considered, and we shall have to distinguish
between formulae which are consistent in every universe and those which
are only consistent in universes with some particular numbers of
members. Whenever the universe is infinite we shall have to assume the
axiom of selections.

The problem has been solved by BehmannJ for formulae involving
only functions of one variable, and by Bernays and Schonfinkel§ for
formulae involving only two individual apparent variables. It is solved
below for the further case in which, when the formula is written in
"'normal form", there are any number of prefixes of generality (x) but
none of existence (Ex)\\. By "normal form"H is here meant that all the
prefixes stand at the beginning, with no negatives between or in front
of them, and have scopes extending to the end of the formula.

* To avoid confusion we call a constant function substituted for a variable <p, not a value
but an interpretation of <p ; the valties of <p (x, y, z) are got by substituting constant individuals
for x, 7/, and z.

| German erfllllbar.
J H. Behmann, " Beitrage zur Algebra der Logik und zum Entscheidungsproblem",

Math. Annalen, 86 (1922), 163-229.
§ P. Bernays und M. Schonfinkel, "Zum Entscheidungsproblem der mathematischen

Logik ", Math. Annalen, 99 (1928), 342-372. These authors do not, however, include identity
in the formulae they consider.

|| Later we extend our solution to the case in which there are also prefixes of existence
provided that these all precede all the prefixes of generality.

1| Hilbert und Ackermann, op. cit., 63-4.
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The formulae to be considered are thus of the form

where the matrix F is a truth-function of values of the functions
<f>> X> ^ e^c-> an<^ ^ f°r arguments drawn from X\, x2, ..., ov

This type of formula is interesting as being the general type of an
axiom system consisting entirely of "general laws"*. The axioms for
order, betweenness, and cyclic order are all of this nature, and we are
thus attempting a general theory of the consistency of axiom systems of
a common, if very simple, type.

If identity does not occur in F the problem is trivial, since in this
case whether the formula is consistent or not can be shown to be in-
dependent of the number of individuals in the universe, and we have
only the easy task of testing it for a universe with one member onlyt.

But when we introduce identity the question becomes much more
difficult, for although it is still obvious that if the formula is consistent
in a universe U it must be consistent in any universe with fewer members
than U, yet it may easily be consistent in the smaller universe but not
in the larger. For instance,

(xv z2) [«i = X2 v \ <p(xd • ~~ 0Ua) \ ]

is consistent in a universe with only one member but not in any other.
We begin our investigation by expressing F in a special form. F is

a truth-function of the values of <f>, x, ^ , •••, a nd = for arguments drawn
from Xi, Xi, ..., xn. If <p is a function of r variables there will be nrl
values of <f> which can occur in F, and F will be a truth-function of 2,nr

values of <f>, x> Vs •••? and = , which we shall call atomic propositions.
With regard to these Snr atomic propositions there are 22?|V possibilities,
of truth and falsity which we shall call alternatives, each alternative being
a conjunction of 2,n' propositions which are either atomic propositions
or their contradictions. In constructing the alternatives all the 1,nr

atomic propositions are to be used whether or not they occur in F. F
can then be expressed as a disjunction of some of these alternatives,
namely those with which it is compatible. It is well known that such an

* (J. H. Langford, "Analytic completeness of postulate sets", Proc. London Math. Soc.
(2), 25 (1926), 115-6.

f Bernays und Schonfinkel, op. cit., 359. We disregard altogether universes with no-
members.

X Here and elsewhere numbers are given not because they are relevant to the argument,,
but to enable the reader to check that he has in mind the same class of entities as the author.
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expression is possible; indeed, it is the dual of what Hilbert and Acker-
mann call the. "ausgezeichnete konjunktive Normalform"*, and is
fundamental also in Wittgenstein's logic. The only exception is when
F is a self-contradictory tr nth-function, in which case our formula is
certainly not consistent.

F having been thus expressed as a disjunction of alternatives (in our
special sense of the word), our next task is to show that some of these
alternatives may be able to be removed without affecting the con-
sistency or inconsistency of the formula. If all the alternatives can be
removed in this way the formula will be inconsistent; otherwise we shall
have still to consider the alternatives that remain.

In the first place an alternative may violate the laws of identity by
containing parts of any of the following forms :—

Xi = xj. Xj = xk .xi=f= xk (* =£.;, j =£ k, k =£ i),

or by containing Xi = Xj (i =£ j) and values of a function <f> and its con-
tradictory ~ <p for sets of arguments which become the same when &,: is
substituted for Xj [e.g. xx — x2. <p(xv x2, x3). ~ <j>ix^, xlt x3)~\.

Any alternative which violates these laws must always be false and can
evidently be discarded without affecting the consistency of the formula.
The remaining alternatives can then be classified according to the number
of x's they make to be different, which may be anything from 1 up to n.

Suppose that for a given alternative this number is v, then we can
derive from it what we will call the corresponding y alternative by the
following process :—

For 3'i, wherever it occurs in the given alternative, write yi; next, if
in the alternative x-2 = xx, for a.2 write yi again, if not for #2 write y2- In
general, if a'L is in the given alternative identical with any %j with j less
than i, write for xh the y previously written for Xj; otherwise write for
Xi, 7//.+1, where k is the number of y's already introduced. The expression
which results contains v y's all different instead of n a;'s, some of which
are identical, and we shall call it the y alternative corresponding to tlie
given x alternative.

* Op. dt., 16.
t We write x^iy for

SER. 2. VOL. 30. NO. 1726.
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Thus to the alternative

• xl = ;C3 • X2 = Xi.X1J= X2*

corresponds the y alternative

0(2/1) •

We call two y alternatives similar if they contain the same number
of y's and can be derived from one another by permuting those y's, and
we call two x alternatives equivalent if they correspond to similar (or
identical) y alternatives.

Thus

0 0 ( x 3 ) . ~ 0.(x4). xx = x3. x2 = xi.xy=fc x2, (a)

is equivalent to

~ <{>{x^. 0(a:2). <j>{x3). <p{x4) .xi^xi.xi = x3 = x4, (J3)

since they correspond to the similar y alternatives

0(2/1) -

derivable from one another by interchanging i/i and y2, although (a)
and (/?) are not so derivable by permuting the re's.

We now see that we can discard any alternative contained in F
unless F also contains all the alternatives equivalent to it; e.g. if F
contains (a) but not (ft), (a) may be discarded from it. For omitting
alternatives clearly cannot make the formula consistent if it was not so
before ; and we can easily prove that, if it was consistent before, omitting
these alternatives cannot make it inconsistent.

For suppose that the formula is consistent, i.e. that for some particular
interpretation of <p, x> 'XP~, •••» ^ is true for every set of E'S, and let p
be an alternative contained in F, q an alternative equivalent to p but not
contained in F. Then for every set of x's one and only one alternative
in F will (on this interpretation of <j>, \ , ^ , ...) be the true one., and this
alternative can never be p. For if it were p, the corresponding y alterna-
tive would be true for some set of y's, and the similar y alternative
corresponding to q would be true for a set of y's got by permuting this
last set. Giving the x's suitable values in terms of the y's, q would then

* We take one function of one variable only for simplicity; also to save space we omit
expressions which may be taken for granted, such as xx = a;,, a;, =£ xA.
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be true for a certain set of x's and F would be false for these x's con-
trary to hypothesis. Hence p is never the true alternative and may be
omitted without affecting the consistency of the formula.

When we have discarded all these alternatives from F, the remainder
will fall into sets each of which is the complete set of all alternatives
equivalent to a given alternative. To such a set of x alternatives w7ill
correspond a complete set of similar y alternatives, and the disjunction of
such a complete set of similar y alternatives (i.e. of all permutations of
a given y alternative) we shall call a form*, A form containing v ys we
shall denote by an Italic capital with suffix v, e.g. Av, Bv.

The force of our formula can now be represented by the following
conjunction, which we shall call P.

For every yx, Ax or Bx or . . . '

For every distinct yu y2, A2 or B.2 or ...

1 (P)
For ever}' distinct yx, y2, ..., yv, At. or Bv or ...

For every distinct yx, y.i7 ..., yn, A,,, or Bn or ...

where A,,, !?„+, etc., are the forms corresponding to the x alternatives
still remaining in F. If for any v there are no such forms, i.e. if no
alternatives with v different x's remain in F, our formula implies that
there are no such things as v distinct individuals, and so cannot be
consistent in a world of v or more members.

We have now to define what is meant by saying that one form is in-
volved in another. Consider a form Av and take one of the y alternatives
contained in it. This y alternative is a conjunction of the values of
0, \, yp-, ..., and their negatives for arguments drawn from y\, y2, •••, yv.
(We may leave out the values of identity and difference, since it is taken
for granted that f/'s are always different.) If / / O we can select n of
these ?/'s in any way and leave out from the alternative all the terms in
it which contain any of the v—fi y's not selected. We have left an
alternative in y. T/'S which we can renumber y\, y2, ..., y,ly and the form
Ep to which this new alternative belongs we shall describe as being
involved in the A,, with which we started. Starting with one particular
y alternative in A,, we shall get a large number of different E^'s by

* Cf. Langford, op. cit., 110-120.
t The notation is partially misleading, since Av hstsno cleser relation, to 4^ than to JBM,
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choosing differently the fx t/'s which we select to preserve; and from
whichever y alternative in Av we start, the E^s which we find to be
involved in Av will be the same.

For example,

{0(01, tfi) • 0(011 0a) • 0(02. 0i) • ~ 0(02 • 0a) \

V I ~ 0(?/i, yd. 0(yif 2/2) • 0(02, 0i) • 0(02, 02)}

is a form /42 which involves the two Ex's

~ 0(0i, yd-

It is clear that if for some distinct set of v i/'s a form Av is true, then
every form E^ involved in Av will be true for some distinct set of ,u T/.'S
contained in the v.

We are now in a position to settle the consistency or inconsistency
of our formula when N, the number of individuals in the universe, is less
than or equal to n, the number of x's in our formula. . In fact, if N ^ n,
it is necessary and sufficient for the consistency of the formula that P
should contain a form AN together with all the forms E^ involved in it
for every /x less than Ar.

This condition is evidently necessary, since the N individuals in the
universe must, taken as y-\, y2, ..., I/N, have some form Ax in regard to
any 0, x, ^> •••> and a ^ forms involved in this AN must be true for
different selections of i/'s, and so contained in P if P is to be true for
this 0, x, ^, ••••

Conversely, suppose that P contains a form AN together with all forms
involved in AN; then, calling the N individuals in the universe
0i, 02, •••, 0A-, we can define functions 0, x, "0", ••• to make any assigned
y alternative in AN true; for any permutation of these N y's another
alternative in AN will be the true one, and for any subset of y's some,
y. alternative in a form involved in AN. Since all these y alternatives are
by hypothesis contained in P, P will be true for these 0, x, ^k,---, and our
formula consistent.

When, however, N~>n the problem is not so simple, although it
clearly depends on the An's in P such that all forms involved in them are
also contained in P. These An

Js we may call completely contained in P,
and if there are no such ^4w's a similar argument to that used when
N^n will show that the formula is inconsistent. But the converse
argument, that if there is an A„ completely contained in P the formula
must be consistent, no longer holds good; and to proceed further we have
to introduce* a new conception, the conception of a form being serial.
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But before proceeding to explain this idea it is best to simplify
matters by the introduction of new functions. Let <p be one of the
variable functions in our formula, with, say, r arguments. Then, if
r<.n, <p will occur in P with all its arguments different [e.g.
<f>(yv y2, '•-, yr)] and also with some of them the same [e.g.
\̂2/i» ,?/2. •••» yr-u 2/i)]» but w e c a n conveniently eliminate values of the

second kind by introducing new functions of fewer arguments than r,
which, when all their arguments are different, take values equivalent to
those of <j> with some of its arguments identical.

E.g. we may put

4>i(yi. y*> •••> y r - i ) = </»(yif y * --, y r - u yd-

In this way <p gives rise to a large number of functions with fewer argu-
ments ; each of these functions we define only for the case in which all
its arguments are different, as is secured by these arguments being 2/'s
with different suffixes. If r > ? i , there is no difference except that <f> can
never occur with all its arguments different, and so is entirely replaced
by the new functions.

If we do this for all the functions <f>, x> Vv--* a n ^ replace them by
new functions wherever they occur in P with some of their arguments
the same, P will contain a new set of variable functions (including all the
old ones which have no more than n arguments), and these will never
occur in P with the same argument repeated.

It is easy to see that this transformation does not affect the con-
sistency of the formula, for, if it were consistent before, it must be con-
sistent afterwards, since the new functions have simply to be replaced
by their definitions. And if it is consistent afterwards it must have been
so before, since any function of the old set has only to be given for any
set of arguments the value of the appropriate function of the new set*.

• For instance, if <f>(l/i> 2/a> 2/3) ' s a function of the old set, we have five new functions

and any value of <f> is equivalent to a value of one and only one of the new functions. It must
be remembered that the new functions are used only with all their arguments different; for
otherwise they would not be independent, since we should have, for instance, xo( îi #1) equi-
valent to po(yi). But xo(#i> 2/i) n e y e r occurs, and <p(yu y,, yt) is equivalent not to any value
of xo but only to po(jfi).
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In view of this fact we shall find it more convenient to take P in
its new form, and denote the new set of functions by </>0, ,\o, V̂ o, ••••

Suppose, then, that 0O is a function of r variables; there are

values of 0O with r different arguments drawn from y\, 1/2, •••, y,
every y alternative must contain each of these values or its contradictory,
r ! of these values will have as arguments permutations of yi, y%, ..., yr.
Any other set of r J/'S can be arranged in the order of their suffixes as
y«n y**> •••» Vsr, s1<s2<.^... <sr, and it may happen that a given
alternative contains the values of $0 for those and only those permuta-
tions of ySn yi%, ..., y., which correspond (in the obvious way) to the
permutations of yi} y<i, ..., yr for which it (the alternative) contains the
values of 0O; e.g. if the alternative contains <f>o(yi, #2, • •-, y,) and
<l>o(yr, Vr-i, ..., 2/1), but for every other permutation of ?/,, y2, ..., yr con-
tains the corresponding value of ->- 0O) then it may happen that the
alternative contains <po(ySl, y*,, ..., yf) and t/>Q{y,r, ?/,,..„ ..., //,,), but for
every other permutation of //.,,, 7/,2, ..., ySr contains the corresponding
value of -^ <po.

If this happens, no matter how the set of r T/'S, ySl, ys,, ..., yif is
chosen from ylt y^, ..., yn, then we say that the alternative is serial in.
0o*> and if an alternative is serial in every function of the new set we
shall call it serial simply.

Consider, for example, the following alternative, in which we may
imagine $0 and >/̂o to be derived from one "old" function <p by the
definitions

This is serial in 0O, since we always have <po(ySl, y^. ~ 0O(^> #0; but not
in >/r0, since we sometimes have ^Q(ys), but sometimes ~ \fso{ys). Hence
it is not a serial alternative.

We call a form serial when it contains at least one serial alternative,
and can now state1 our chief result as follows.

• Thus, if % is a function of n variables, all alternatives are serial in <pM.
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THEOREM.—There is a finite number in, depending on n, the number
of functions <p, x, ty, •••, o-fid the numbers of their arguments, such that
the necessary and sufficient condition for bur formula to be consistent
in a universe with m or more members is that there should be a serial
form Av completely contained in P. For consistency in a universe of
fewer than m members this condition is sufficient but not necessary.

We shall first prove that, whatever be the number N of individuals in
the universe, the condition is sufficient for the consistency of the formula.
If N ^ n, this is a consequence of a previous result, since, if An is com-
pletely contained in P, so is any AN involved in An.

If A r > n , we suppose the universe ordered in a series by a relation
R. (If N is infinite this requires the Axiom of Selections.) Let q be any
serial alternative contained in An. If <po is a function of r arguments, q
will contain the values of either 0o or ~ <f>o (but not both) for every per-
mutation of yi, y2, ..., yr. Any such permutation can be written
yPl, y^, ..., yPr where plt p2, ..., pr are 1, 2, ..., r rearranged. We make
a list of all those permutations (pi, pa, -••, pr) for which q contains the
values of <p0, and call this list 2. We now give <£0 the constant inter-
pretation that 0o (z\, z3, ..., Zr) is to be true if and only if the order of
the terms z1} z2, ..., zr in the series R is given by one of the permuta-
tions (pi, p2, ..., pr) contained in 2 , in the sense that, for each i, Zi is the
pi-th of Z\, z2, ..., zr as they are ordered by R.

Let us suppose now that yx, y2, ..., yn are numbered in the order
in which they occur in R, i.e. that in the R series y\ is the first of them,
y2 the second, and so on. Then we shall see that, if <f>0 is given the
constant interpretation defined above, all the values of <f>0 and ~ <f>o in q
will be true. Indeed, for values whose arguments are obtained by per-
muting y\, y%, •••, Vr this follows at once from the way in which <p0 has
been defined. For 0o(yffl, yai> ..., ya) is true if and only if the order
of yav 11**, -.., 2/o> i n t n e R series is given by a permutation (plt p2, ..., pr)
contained in S. But the order in the series of yav yav ..., yar is in
fact given (on our present hypothesis that the order of the y's is
Vi> V* •'•-. ?/') by (°"i> °"2> •••> °v)i which is contained in S if and only if
0o(y«n» y<*v •••> y*) ^s contained in q. Hence values of <f>0 for arguments
consisting of the first r y's are true when they are contained in q and
false otherwise, i.e. when the corresponding values of ~ 0 O are contained
in q.

For sets of arguments not confined to the first r y's our result follows
from the fact that q is serial, i.e. that if s1 < s2 < ... < sr, so that
yH, yH} ..., yir are in the order given by the R series, q contains the
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values of 0O for just those permutations of ySl, ySi, ..., ySr which corre-
spond to the permutations of y\, y2, ..., y,- for which it contains the
values of <po, i.e. by the definition of <£0 and the preceding argument, for
just those permutations of ysv yx,, ..., ySr which make <£0 true.

Hence all the values of <pQ and ~~ 0o in q are true when yv y2, ..., yn

are in the order given by the R series.
If, then, we define analogous constant interpretations for xo> ^0 , etc.,

and combine these with our interpretation of $0, the whole of q will be
true provided that yi} y%, ..., yn are in the order given by the R series,
and if yx, y%, ..., yn are in any other order the true alternative will be
obtained from q by suitably permuting the y's, i.e. will be an alternative
similar to q and contained in the same form .4,,. Hence A,, is true for
any set of distinct yx, y2, ..., yn. Moreover, for any set of distinct"
y\, 7/2, ..., yv (v<Cn) the true form will be one involved in An, and since
An and all forms involved in it are contained in P, P will be true for
these interpretations of <pQ, ,\o- V'o, •••, and our formula must be con-
sistent.

Having thus proved our condition for consistency sufficient in any
universe, we have now to prove it necessary in any infinite or sufficiently
large finite universe, and for this we have to use the Theorem B proved
in the first part of the paper.

Our line of argument is as follows : we have to show that, whatever
0o, Xo> V̂Oj ••• we take P will be false unless it completely contains a
serial An. For this it is enough to show that, given any <p0, Xo, ̂ o, •••,
there must be a set of n ly's for which the true form is serial*, or, since
a serial form is one which contains a serial alternative, that there must
be a set of values of y\, yi, ..., yn for which the true alternative is serial.

Let us suppose that among our functions <p0, \0. V'o, ••• there are «i
functions of one variable, a2 of two variables, ..., and a,, of n variables,
and let us order the universe by a serial relation R.

The N individuals in the universe are divided by the at functions of
one variable into 2"1 classes according to which of these functions they
make true or false, and if N ^ 2°1A;1 we can find fci individuals which
all belong to the same class, i.e. agree as to which of the ax functions
they make true and which false, where ki is a. positive integer to be
assigned later. Let us call this set of kx individuals \\v

Now consider any two distinct members of IY,, Z\ and z2 say, and
let Z\ precede z2 in the R series. Then in regard to any of the as func-
tions of two variables, <po say, there are four possibilities. We may either

• F o r t hen P caD only be t r u e for <p0, xo. *K-> . . . b y completely con ta in ing th i s t r u e serial form.
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have
(1) <t>0(zu z^> . <po(z2, zj,

or (2) </>0{zv z^ . ~ <f>0(z2, zx),

or (3) ~ ^0(^, zj. <f>0(zif zx),

or (4) ~ <f>0(z1} z*). ~ 0o(2r2, ̂ J .

0o thus divides the combinations two at a time of the members of I\ ,
into four distinct classes according to which of these four possibilities
is realised when the combination is taken as Z\, z? in the order in which
its terms occur in the R series; and the whole set of a2 functions of two
variables divide the combinations two at a time of the members of I \ ,
into 4°3 classes, the combinations in each class agreeing in the possibility
they realise with respect to each of the 02 functions. Hence, by
Theorem B, if ki = h(2, fc2, 4"-), I\ , must contain a sub-class Tki of Jc2

members such that all the pairs out of IY, agree in the possibilities they
realise with respect to each of the a2 functions of two variables.

We continue to reason in the same way according to the following
general form :—

Consider any r distinct members of rVr_,; suppose that in the R
series they have the order Z\, z2, ..., zr. Then with respect to any
function of r variables there are 2r! possibilities in regard to Z\, Z3, ..., zri

and the ar functions of /• variables divide the combinations r at a time
of the members of rYr_, into 2'!°r classes. By Theorem B, if
Jcr_! = h(r, kr, 2r!">•)*, rfcr_, must contain a sub-class l\r of kr members
such that all the combinations r at a time of the members of IYr agree
in the possibilities they realise with respect to each of the ar functions
of r variables.

We proceed in this way until we reach Tfc/1_,, all combinations w—1 at
a time of whose members agree in the possibilities they realise with
respect to each of the an_x functions of n—1 variables. We then deter-
mine that kn_x shall equal n, which fixes &M_2 as h(n—l,n, 2('l-1)!(l"-1)
and so on back to fci, every fcr_! being determined from kr.

If, then, N^2aiki, the universe must contain a class I \ , . , or Tn

(since kn-\
 = n) °f n members which is contained in rfcr for every r,

r = 1, 2, ..., w—1. Let its n members be, in the order given them by R,
V\, V2, • ••, Vn- Then for every r less than n, yu y?, ..., yn are contained in
I \ and all r combinations of them agree in the possibilities they realise

* If ar = 0 we interpret h(r, kr, 1) as kr and identify rir_, and r*r<
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with respect to each function of r variables. Let yh, ySi, ..., ySr

(sx < s2 < ... < sr) be such a combination, and xo a function of r variables.
Then ?/.v ySt, ..., yfr are in the order given them by R, and so are
2/ii Vz, •••> Vr\ consequently the fact that these two combinations agree
in the possibilities which they realise with respect to xo means that xo is
true for the same permutations of ySl, ySi, ..., ySr as it is of yu y2. ..., yr.
The true alternative for yu y?, ..., y.n is therefore serial in xo, and
similarly it is serial in every other function of any number r of variables* ;
it is therefore a serial alternative.

Our condition is, therefore, shown to be necessary in any universe
of at least 2a>k1 members where kx is given by

(r = w - 1 , n-2, ..., 2).

For universes lying between n and 2ai kx we have not found a necessary
and sufficient condition for the consistency of the formula, but it is
evidently possible to determine by trial whether any given formula is
consistent in any such universe.

III.
We will now consider what our result becomes when our formula

( a j l f x 2 , ..., xn)F((f>, x , V^» • • • » = » x v x* • • • » xn)

contains in addition to identity only one function <p of two variables.
In this case we have two functions <pQ, \jso given by

Vk) = <t>iyi, Vk) ii^k),

so that ax = 1, a2 = 1, ar = 0 when r > 2. Consequently

1c2 = ks = ... = &n_x = n and k± = h(2, n, 4);

but the argument at the end of I shows that we may take instead
/ci = n ! ! !, and our necessary and sufficient condition for consistency
applies to any universe with at least 2 . n! ! ! individuals.

In this simple case we can present our condition in a more striking
form as follows.

• We have shown this when r <n; we may also have r = n, but then there is nothing to
prove since in a function of n variables every alternative is serial.
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It is necessary and sufficient lor the consistency of the formula that
it. should be true when <fr is replaced by at least one of the following
types of function :—

(1)

(2)

(3)

(4)

The universal function

The null function

Identity

Difference

X

X

= X

=/=x

X =

x =;

•y =

• y4

= y-

f=y-

zy

(5) A serial function ordering the whole universe in a series, i.e. satisfying

(a) (x) ~ (f>(x, x),

(b) {x, y)[x = y V ;<p{x, y). - <J>(y, x)\V{<f,(y, x). - <p(x, y)\],

(c) {x, y,z){^<p(x, y)V ~ <j>(y,z)V <f>(x, z)}.

(6) A function ordeiin^ the whole universe in a series, hut also holding

between every term and itself, i.e. satisfying

(a') (x)<p(x,x)

and (b) and (c) as in (5).
Types (l)-(4) include only one function each; in regard to types (5)

and (6) it is immaterial what function of the type we take, since if one
satisfies the formula so, we shall see, do a)! the others*.

We have to prove this new form of our condition by showing that P
will completely contain a serial An if and only if it is satisfied by func-
tions of at least one of our six types. Now an alternative in n y's is
serial in \0 if it contains

either (i) xoti/i) • Xo(^) • ••• Xo(//«> or, for short, nXo(?/.),

or (ii)

but not otherwise, and it will be serial in <j>o if it contains

either

or

or

or

(a)

(b)

(c)

(d)

n
n
II

n

Uy,,ih>-~U'J..yX

~-Uy,,j,).~^,y,)

* A result previously obtained for type (5) by Langford, op. cit.
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There are thus altogether eight alternatives serial in both <po and ,\o got
by combining either of (i), (ii) with any of (a), (b), (c), (d); but these
eight serial alternatives only give rise to six serial forms, since the
alternatives (i) (b) and (i) (c) can be obtained from one another by
reversing the order of the y's and so belong to the same form, and so do
the alternatives (ii) (b) and (ii) (c).

It is also easy to see that any formula completely containing one of
these six serial forms will be satisfied by all functions of one of the six
types according to the scheme

Form (i) (a) (i) {b and c) (i) (d) (ii) (a) (ii) {b and c) (ii) (J.)

Type, of function 1 6 3 4 5 2

and that conversely a formula satisfied by a function of one of the six
types must completely contain the corresponding form. For instance,
a function of type 6 will satisfy the alternative (i) (b) when y\, y2, ..., yn

are in their order in the series determined by the function, and when
2/i> 2/s> ••-, Vn a r e m a n y other order the function will satisfy an alterna-
tive of the same form.

In the language of the theory of postulate systems we can interpret
our universe as a class K, and conclude that a postulate system on a base
(K, R) consisting only of general laws involving at most n elements
will be compatible with K having as many as 2. n! ! ! members if and
only if it can be satisfied by an R of one of our six types.

IV.

Let us, in conclusion, briefly indicate how to extend our method in
order to determine the consistency or inconsistency of formulae of the
more general type

(Ezi,z3t ...,*«)(3i, x2, ..., xn)F(<p, x, V'. •••' = . *i, *a» •••» *«. »i. *a. •••» xn)

which have in normal form both kinds of prefix, but satisfy the condi-
tion that all the prefixes of existence precede all those of generality.

As before, we can suppose F represented as a disjunction of alterna-
tives and discard those which violate the laws of identity. Those left
we can group according to the values of identity and difference for argu-
ments drawn entirely from the z's. Such a set of values of identity
and difference we can denote by Hi ( = , zx, zs, ...,• zin), and F can be put
in the form
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and the whole formula is equivalent to a disjunction of formulae.

(Ezv z2 ^m)]JEf1(=, zlt z2, ..., zw)

. (xv x2, ..., xn) Fity, ..., = , zu ..., zm, xlt ..., xn)\

V(Ezlt z%, :.., zm)\H%(=, zlt ..., zm)

Vetc.

Since if any one of these formulae is consistent so is their disjunc-
tion, and if their disjunction is consistent one at least of its terms must
be consistent, it is enough for us to show how to determine the con-
sistency of any one of them, say the first. In this iJi( = , Z\, z2, ..., zm)
is a consistent set of values of identity and difference for. every pair of
2's. We renumber the ^'s Z\, z2, ..., zM using the same suffix for every
set of z's that are identical in Hi, and our formula becomes

(Ezlt z-2, . . . , z j ( x v x 2 , ..., xn)Fx{<p, x , • • •, = , z1} z 2 , ..., z^, x u x i t . . . , x n ) , (i)

in which it is understood that two 2's with different sumxes are always
different.

Now supposing the universe to have at least /*+n members, we con-
sider the different possibilities in regard to the x's being identical with
the 2's, and rewrite our formula

( II

in which -> means " if, then " and

G(<j), ..., x.n) = ILFity, x, .

tlie product being taken for

" n = = x m Zi, Z.2, -.., Z^,

and in G any term x-, = Zj is replaced by a falsehood {e.g. xt ^ Xi) not
involving any z.

Next we modify G by introducing new functions. In G occur values
of, e.g. <f>, with arguments some of which are z's and some x's; from
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these we define functions of the x's only by simply regarding the «'sas
constants, and call these new functions <pQ, xo, •••• Values of <p, x, ty, • ••,
which include no re's among their arguments, we replace by constant
propositions p, q, .... The only values of identity in G are of the form
Xi =• Xj and these we leave alone. Suppose that by this process G turns
into«

- ^ ( 0 > X > V r » • • • » 0 o > X o > • • • , P > ( 7 » • • • > = 1 * i > * 2 i • • • » : c ' i ) -

Then the consistency of formula (i) in a universe of N individuals is
evidently equivalent to the consistency in a universe of A7—/* individuals
of the formula

, i ? , • • • » 0 o » X o > • • • » ^ t q , • • • > = , ^ i . - i ' - . i . •••, » n ) .

But this is a formula of the type previously dealt with, except for the
variable propositions y, q, ..., which are easily eliminated by considering
the different cases of their truth and falsity, the formula being consistent
if it is consistent in one such case.


