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Abstract. 

The first result concerns branching programs having 

width (log n) °{*). We give an f l (n log n~ log log n) lower 

bound for the size of such branching programs com- 

puting almost any symmetric Boolean fnnction and in 

part icular  the following explicit fnnction: "the sum of 

the input variables is a quadratic residue mod p" where 

p is any given prime between n 1/4 and n 1/3. This is 

a strengthening of previous nonlinear lower bounds ob- 

tained by Chandra,  Furst, Lipton and by Pudlgk. We 

mention that  by i terat ing our method the result can be 

further strengthened to lfl(nlog n). 

The  second result is a C "  lower bound for read-once- 

only branching programs computing an explicit Boolean 

function. For n = (~), the function computes the par- 

ity of the number of triangles in a graph on v ver- 

tices. This improves previous exp(cx/n ) lower bounds 

for other  graph functions by Wegener and Z£k. The 

result implies a linear lower bound for the space com- 

plexity of this Boolean function on "eraser machines",  

i.e. machines that  erase each input bit immediately af- 

ter having read it. 

Permission to copy without fee all or part of this material is granted 
provided that the copies are not made or distributed for direct 
commercial advantage, the ACM copyright notice and the title of the 
publication and its date appear, and notice is given that copying is by 
permission of the Association for Computing Machinery. To copy 
otherwise, or to republish, requires a fee and/or specific permission. 

© 1986 A C M  0 - 8 9 7 9 1 - 1 9 3 - 8 / 8 6 / 0 5 0 0 / 0 0 3 0  $00.75 

1. Iutroduetion. 

1.1. Branehing programs. 

A Boolean function in n variables is a mapping from the 

set of 2" (0,1) input strings to { 0, 1 }. Several models of 

computat ion of such functions have been considered in 

the l i terature (Turing machine, Boolean circuit, decision 

tree, Boolean formula, etc.). Branching programs are 

a model generalizing decision trees. The program is 

a directed aeyclic graph. To avoid confusion we shall 

use the terms nodes and arcs to refer to the elements 

of this digraph. (We shall use branching programs to 

do computat ion on graphs; these graphs (input objects) 
will have vertices and edges.) 

One of the nodes of the branching program is a 

source (has fan-in zero) and is called START, some 

other nodes are sinks (fan-out zero) and are called ter- 
minal nodes. All non-terminal  nodes have fan-out two. 

The  two arcs leaving a non-terminal node are labeled 0 

and 1. Each non-terminal  node is labeled by an input 

variable and each terminal node is labeled 0 or I. We 

shall assume that  the program is leveled, START is on 

level one and arcs go from each level to the next level 

only. This causes no loss of generality to the result in 

Section 3. We shall discuss the effect on the result in 
Section 2 there. 

Each input string a = a l . . . a ,  defines a unique path 

from START to a terminal node: the computation path 
determined by ~. This path, after entering a nontermi- 
nal node labeled xi, proceeds along the arc labeled ai .  

The path ends at a terminal node. The function f com- 

puted by this branching program is defined by sett ing 

f(c~) equal to the label of this terminal node. 
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The size of a branching program is the number of 
nodes. The width of the program is the maximum num- 
ber of nodes on any level. The length is the number 
of levels. The multiplicity of reading is the maximum 
number of times any particular variable is encountered 
as a node label along any computation path. 

An easy counting argument shows that most 
Boolean functions require exponential size branching 
programs. It is desirable to find nontrivial lower bounds 

for explicit Boolean functions (functions that belong to 
P or at least to NP). 

The only known lower bound for the size of an 
unrestricted branching program computing an explicit 
Boolean function is due to Seeiporuk [Ne], [Sa] and is 

l](n=/log 2 n). P. Beame and S. Cook observed [BC] 
that Neeiporuk's technique actually applies to the "ele- 
ment distinctness" problem in the following sense. Let 
xl , . . . ,xrn be m integers between 1 and m ~. Writ- 
ten in binary, they form the input string of length 
n = 2mlogm.  Then any branching program deciding 
whether or not all the xi are distinct must have size 
n (m =) = n(n=/ log  ~ n). 

Another approach that has recently gained popu- 
larity is proving lower bounds for branching programs 
with bounds on various "resources" (width, multiplicity 
of reading). A similar approach to Boolean circuits has 
been quite successful recently [Ya2], [An], [Ra], [tta], 
[AB], [Be]. 

Our aim is to present two more results of this kind 
- -  one under each type of restriction. 

1.2. ~ounded width branching programs for symmetric 
functions 

Bounded width branching programs have first been 
promoted by Borodin, Dolev, Fich and Paul [BDFP]. 
Their main result, completed by Yao [Yal] , is a su- 
perpolynomial lower bound for width-2 branching pro- 
grams computing the majority function. Shearer [Sh] re- 
cently proved an exponential lower bound for for width- 
2 branching programs computing the "0 rood 3" func- 
tion. These functions are symmetric (invariant under 
permutations of the variables). Interest in such func- 
tions was in part motivated by the conjecture stated 
in [BDFP] that any bounded width branching program 
computing the majority function would require expo- 
nential size. This conjecture has been proved false 
by David Barrington's surprising result [Bal] that the 
class of Boolean functions computed by polynomial size, 
width-5 branching programs coincides with nonuniform 
NC 1 (log-depth, fan-in 2 Boolean circuits) and thus 

contains all symmetric functions. This may be part of 

the reason why it is so difficult to find even nonlinear 

lower bounds for bounded width branching programs 
for symmetric functions. 

The first such lower bound was derived by a beau- 
tiful Ramsey argument by Chandra, ~lrs t ,  and Lipton 

[CFL] for the function ~in=~ xi = n/2. Unfortunately, 
as it tends to be the case with Ramsey arguments, the 

bound is barely nonlinear: it is fl(nw(n)) where w(n) is 
the inverse function of van der Waerden numbers (see 

[GRS]). 
A more effective lower bound was obtained by P. 

Pudl£k [Pu]. Using a different Ramsey argument, 

he proves 12(n log log n~ log log log n) lower bounds for 

threshold functions and separates (by the same amount) 
the power of width k and width k + 1 branching 

programs for each k. He also proves a nonlinear 

lower bound under no width constraint for the majority 

function as well as an 12(n log log n~ log log log n) lower 

bound for bounded width branching programs for all 
but a bounded number of symmetric Boolean functions. 

The first result of this paper gives a more effective, 

12(nlogn/loglogn) lower bound for bounded width 

branching programs computing any member of a large 
class of symmetric Boolean functions (Section 2). In this 

range, Ramsey methods no longer seem to help and we 

have to establish some "global" structure. The width 

bound we impose is not a constant, only (logn) °{l). 

We hope that it will be possible to eliminate this width 

bound altogether. 

1.3. Limited reading 

A read-k-times-only branching program is allowed to 
encounter each variable at most k times along any com- 
putation path. This hierarchy of classes of branching 
programs was introduced by Masek [Ma]. Wegener [We] 
conjectures an exponential gap between the levels of 
this hierarchy and gives candidate Boolean functions 
computable with polynomial size read-k-times-only pro- 
grams but conjectured to require exponential size read 
(k - 1)-times-only programs. 

No superpolynomial lower bounds are known, how- 

ever, even for read-twice-only branching programs com- 
puting an explicit Boolean function, and no such bound 
will appear in this paper. 

In connection with the history of read-once-only 
branching programs we should mention a paper by For- 
tune, ttopcroft and Schmidt [FHS]. In the context of 
program schemes, they gave an exp(ex/-n) lower bound 
for computing an explicit function by read-once-only 
branching programs satisfying the additional restriction 

that the variables have to be examined in precisely the 
same order along each computation path. Without this 
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restriction, however, their function is computable by a 

read-once-only branching program of polynomial size 

and is indeed defined by such a program. 

Wcgener [We] and Zbk [Za] independent]y prove 

an exp(cx/'n ) lower bound for read-once-only branching 

programs computing certain, clique related graph prop- 

erties. Wegener's property is NP-colnple te  (presence 

of a clique of size v/2 where v is the number of ver- 

tices), Z~ik's is polynomial t ime decidable (recognizing 

the graphs that  consist of a clique of size v/2 and v/2 

isolated vertices.) We shall improve the lower bound 

to C"  (for a different function, also a polynomial t ime 

decidable graph property) (Section 3). 

1.4. Space-complexity: the eraser RAM 

It h~s been noted ([Ma], [BFKLT], [Pu]) that  a lower 

bound S(n) on the size of the smallest branching pro- 

gram computing a Boolean function fn of n variables 

implies an fl(log S(n)) lower bound on the space com- 

plexity of the family { fn : n = 1, 2 , . . .  } on any reason- 

able model of computation.  

The Fortune-Hopcroft-Schmidt  result mentioned 

above corresponds to on-line space complexity: the in- 

put  bits are read once and in a given order only. The 

[FHS] result provides an fl(,v/~) space lower bound for 

such computat ion (independently of the given order of 

input bits). 
General read-once-only branching programs suggest 

the following machine model which we call eraser RAM. 

This is a RAM with a special read-only input tape. The 

machine decides in the course of the computat ion in 

what order to read the input but once an input cell 
has been read, it is erased. Let us measure the space 
required by a computat ion by the number of bits stored 

at any given t ime on the worktape. 

The  following is immediate.  

Proposi t ion.  H a language L can be recognized by an 
eraser RAM in space S(n) then the set L ,  = LN{ 0, 1 }" 

can be recognized by a read-once-only branching pro- 

gram of size exp(O(S(n)). 

The results of Wegener and Zbk thus imply an 

fl(x/-6. ) lower bound for the eraser RAM space complex- 

ity of their respective Boolean functions. Our result 

implies a linear lower bound on the same model. 

Z. Bounded width branching programs: the result 

The value of a symmetr ic  Bolean function f is fully de- 

termined by the sum of the input variables. Let N ( f )  

denote the set of those integers from zero to n corre- 

sponding to output  1. 

The  term "almost all symmetric  Boolean functions" 

refers to a (1 - o(1)) fraction of the 2" possible choices 

of the set N(f ) .  

We shall prove a lower bound for a class of of sym- 

metric Boolean functions. This class includes almost all 

symmegric functions as well as the following construc- 

tive example: Let p be a prime, n 1/4 < p < n 1/3, and 

let N ( f )  consist of the quadratic residues mod p. 

Theorem. Let f be almost any symmetric Boolean func- 

tion or the example given above. Suppose a leveled 

branching program of width < (log n) c computes f 

where c is an arbitrary constant. Then the size of 

this branching program is at least n log n / C log log n for 

some positive constant C. 

Comments .  CI .  In a more complete version of this 

paper, we shall improve the lower bound to f l ( n l o g n ) ,  

using the method of the present proof iteratively. 

C2. The constraint that  a program of width w is 

leveled can be elinfinated at the cost of reducing the 

size bound by a factor of w. This makes no difference 

for bounded width programs but is not permissible in 

our more general case. 

C3. We hope that  it will be possible to eliminate 

both the width constraint and the restriction of ]ev- 

eledness and still obtain a reasonable lower bound (say 

~ C n , , / r f f~) ) .  
Proof. For a contradiction, we shall assume that  a 

branching program of size N < en log n / l o g  log n com- 

putes our Boolean function, where e is a small constant 

to be specified later. 

At the cost of adding at most 2 to the width and at 

most tripling the size, we may assume that  all terminal 

nodes are on the last level. 
We say that  two sets A, B of variables are levelwise 

disjoint if no xi 6 A and x./ 6 B appear  on the same 

level of the program. (In particular,  these sets must be 

disjoint.) Given such a pair of sets, we define A-levels 

and B-levels inductively: a level is an A-level if it has 

no B-nodes and either it has at least one A-node or 

it is the first level or the preceding level is an A-level. 

Otherwise it is a B-level. An alternation occurs at level 

L if L is either the first level or the last level or L is an 

A-level followed by a B-level or conversely. 

Lemma 1. There exist levelwise disjoint sets A, B of 
variables such that [A[ = [B[ > n *-So, and the num- 

ber of alternations is less than 2e log n~ log log n. 

Proof. Let H be the set of those variables which ap- 

pear as node labels no more than 2N/n times. Clearly, 

IHI _> n/2. 
Let us now divide the levels of the branching pro- 

gram into k = log 2 n blocks B l , . . . ,  Bk such that  each 

block contains at most 2N/k  nodes. With each vari- 

able xi E H we associate a (0, l )-str ing code(x/) = a = 

a l  . . .  ~-k where c~ i = 1 precisely if zi  appears as a node 
label in 'block Bj .  For each variable in H, the number  of 
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l ' s  in a code string is at most 2N/n  < 2e log n~ log log n, 

therefore the number of distinct code strings for H is at 
most k eN/" = n 4~. Let a be the most frequent code 

string for H and let A ~ C H be the set of those vari- 

ables with code a. We have fall > n l -4~/2 ;  let A C A ~ 

have cardinality fAt = n 1-5~. 

A block Bi is an a-block if a i  = 1. The number of 

nodes in the union of the a-blocks is at most 

4N2/nk < 4¢2n/( loglog n) 2 < n/4. 

Let K be the set those variables appearing in a-blocks. 
(K D a . )  

Now, let us consider the codes of those, at least n/4, 

variables not in H U K.  They will all be disjoint from 

a. Using the most frequent code/3 we obtain, as before, 

a set B of variables, ]B I = n I-5~, queried in/3-blocks 

only. Tile number of alternations between A-blocks and 

B-blocks is at most 2N/n.  I 

Let m = IAI : IBI = n ' -5~ .  Let us set all the 

variables not in A u B to zero. We are left with a set of 

2 T M  possible t ruth assignments. 

Let g = ¢c/(1 - 6s). 

Lemma 2. There exist a set E of _> m-62 m+l truth 

assigmcnts to A and a set F of > m-~2  'n+l truth as- 

signments to B such that all truth assignments from the 

set E × F assign the same value to f .  

Proof. Let L 0 , . . . , L s  be those levels where alter- 
nation occurs (including the first and the last levels). 

Select nodes li EL i  inductively as follows. 

Let lo be the START node. To define li, consider 

the set T(i - 1) of all t ruth assignments defining com- 

putat ion paths which pass through Io , . . . , l i - l .  Let li 

be a node in Li to which at least I T ( i -  1)[/]Lil of these 

t ruth assigmnents lead. 

If w denotes the width of the program then T(i) > 

w-i22m. Moreover, the set T(i) is clearly a Cartesian 

product T(i) = E(i) x F(i) where E(i) is a set of t ruth 

assignments A ~ {0, 1} and F(i) is a set of t ruth as- 

signme~ts B ---~ (0,1}. Let E = E(s), F = F(s). 

Clearly, [E] , ]FI  _> w-('+')/22 m. Now, w < (logn) c 

and s < 2e log n /  log log n therefore w ~ _< n 2ec and 

[E],[F[ > n-2e~2m > re- 's2 m+l.  The  node l~ deter- 

mines the value of f on E x F.  | 

The independence of assigning truth values to the 

variables in A and in B is our main structural  tool. Let 

N(E)  stand for the set of those integers which occur 

as the number of A-variables evaluated to 1 by some 

truth a~signment in E.  We define N(F)  similarly. By 

possibly interchanging f with its negation, we obtain: 

Observation 3. N(E)  + N(F) is a subset of N( f ) .  | 

Let q be an integer, n 114 < 2q + 1 < n 113. 

We observe that in some interval of length q, the 

set N(E)  cannot be too sparse, and the same holds for 

N(F).  This is a consequence of the following observa- 
tion. 

Lemma 4. Let Uo < . . .  _< ud be a nondecreasing see- 
d quence of positive numbers and a : ~i=o ui • Let 

further A > 0 and e0, . . . ,  ed be nonnegative coefficients 
d 

such that ~ i = 0  eiui > 2An. Then, for each positive 
integer k _< a/Ud, there exists an interval I of k consec- 

utive integers such that ~ i e l  ei > Ak. 

Proof. Let us extend the definitions of the ui and 

the ¢i to all integral subscripts, setting ui = ei = 0 for 
c o  subscripts i < 0 and i > d. Let ai = ~t=o(Ui_kt -- 

i ui -k t - l ) .  Clearly, ~ j= i - k+ l  aj  = ui, and for j < d we 

h a v e n  j > 0 .  F o r j < 0 ,  a j = 0 .  

Assume, for a contradiction, that y- . i+k-i  L.~i=y ei < 

Ak for every j .  It follows that  A k ~ = o  %. > 
~ o o  a • ~.-..,j+k--1 d i 

3"=--oo J Z..M:j £i = ~ i : 0  Ci a 3" = ~ 3 " = i - k + l  
d F~=o eiui > 2An and therefore ~ j = 0  aj_> 2a/k. 

On the other hand, 
d ~-'~oo ~-~d--tk o o  

~ . i = 0  aS" = L. , t=0 Z - . , j = d - ( t + l ) k + l  a j  = ~ t = 0  U d - t k  < 

ud + a/k.  

A combination of the last two inequalities yields k > 

a/u,l, a contradiction. | 

Corollary 5. Let M be the set of integers { 1 , . . . , m }  
and let G be a subset of 2 M. Suppose [G] _> A2 m+x 

where 0 < A < 1. Let k < xfrn/2 be a positive integer. 

Then there exists an interval I of length k in M such 
that N(G) contains at least Ak members of I. Here 

N(G) is the set of cardinalities of sets in G. 

Proof. Without  loss of generality we may assume 

that  sets of size _< m/2 comprise the greater half of [G[. 

Let us now apply Lemma 4 to the sequence ui = (m), 

i _< m/2, with coefficients ei = i if IX[ = i for some 

X E G; ei = 0 otherwise. I 

An application of Corollary 5 with A = m -~ to both 

E and F yields intervals I ,  J of length q in M such that ,  

sett ing P = I n N(E)  and Q = J n N ( F ) ,  we obtain 

(a) Ie l ,  [Ol > q ' - ~ ;  
(b) P + Q is a subset of N( f ) .  

Assuming 6 < 1/2 (i.e. e < 1/(2c + 6)), one can 

show, using the method of tr igonometric sums, that  this 

situation is impossible for most sets N ( f )  and in par- 

t icular in the case hen p = 2q - 1 is a prime and N ( f )  

consists of the quadratic residues (nonresidues) rood p. 

(See [Va] or [Vi] as general references for the method of 

tr igonometric sums.) 
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Let R = N ( f )  o ( I +  J). Note that I + d  is an 

interval of length p. 

According to (b), the equation 

(1) z + y = z ,  x E P ,  y E Q ,  z E R  

has [PIIQ[ solutions. We show that the actual num- 

ber of solutions is substantially less: approximately 
[P[[Q[[R[/p only, assuming certain bound for the dis- 

crete Fourier coefficients of R. This bound is valid for 

most sets including such random-looking explicit ones 

as quadratic residues mod p. 

Note that by our definition of the sets P, Q and 

R, the solutions of (1) are precisely the solutions of the 

congruence 

(2) x + y ~ _ z m o d p ,  z E P ,  y E Q ,  z E R .  

For a finite set T of integers mod p, let 

(3) PT(J) = ~ w t j  (j  = O, . . . ,p - -  1) 
t E T  

where w = exp(2~ri/p) is a primitive pth root of unity. 

Let 

(4) Cr = max [~oT(j)[. l _<./_<p- 1 

Although the method of trigonometric sums has 

been widely used in additive number theory, the fol- 

lowing simple lemma does not seem to have been stated 
explicitly. A similar lemma (with a similar comment) 

appears in Ruzsa [Ru]. 

Lemma 6. Let v denote the number of solutions of (2) 
where P, Q and R are arbitrary sets of rood p residue 
classes for a positive integer p (not necessarily prime). 
Then 

(5) lu IPIIQIIRII-<¢R~I. 
p 

Proof. The number of solutions of (2) is precisely 

l p - I  
(6) ~ ~ ~Op(j)~OQ(j)~R(--j). 

j = 0  

The dominant term here corresponds to j = 0 and 
gives the expected number [P[[QI[R[/p. In order to es- 
timate the error term, we observe that for any set T, 

p--1 

(7) ~ I~or(J)l 2 = plTI 
j=O 

(because the matrix (w'i/./~)p×p is unitary). 

The error term is 

1 p-I ~ p--I 

I~opCj)~oqCj)~oRC--J)l _< OR ~ I~oP0)ll~o~0)l. 
"= j = 0  

We estimate the right hand side using the Cauchy 

inequality and the above identity. We obtain that the 
error term is 

p--1 p--1 

<_ - ~ % ( ( ~  I~o.,,(j)l:~)(~ I~%(j)l~)) '/~ = ¢#(IPIIQI)'/~. 
P j=:0 3'=0 

It is easy to see that ~a  = O ( p l y )  for almost 
every set R and CR _< (1 + x/~)/2 when p is a prime and 
R is the set of quadratic residues (non-residues). There- 
fore Lemma 6 implies that the contribution of the error 
terms is indeed negligible, thus completing the proof of 

the Theorem. | 

3. Read-once-only branching programs: the result 

Let n = (~) and let us fix a bijeetion between the set 
{ 1 , . . . , n }  and the set of pairs from { 1 , . . . , v } .  Each 
string x = x l . . . x n  E {0,1}n can be thought of as 
representing a graph G(x) on the vertex set { 1 , . . . ,  v }. 
The value of each input variable corresponds to the pres- 

ence or absence of an edge between a given pair of ver- 
tices in G(x). 

Let fn(x) denote the number of triangles in G(x) 
modulo 2. 

Theorem. There exists a positive constant a such that 
every read-once-on!y branching program computing fn 
has size at least 2 an. 

First we outline the idea of the proof. 
We shall use the term %dge" to mean any of the (~) 

pairs of vertices. (These are the edges of the complete 
graph K,.) Let P be a path in a branching program. 
We shall say that an arc of P labeled 1 from a node 
labeled x~ has the effect of accepting the edge e; the 

arc labeled 0 from the same node rejects e. The edges 
accepted by P form the graph A(P),  the rejected edges 
form the graph R(P).  The union of these two edge sets 

constitutes the set D(P) of edges determined by P. 
Assume f .  is computed by a read-once-only branch- 

ing program of size less than 2 en for some appropriately 
selected small positive constant ~. From this assump- 
tion we shall derive 

(8) the existence of a node w in the program, two paths 
Po and P1 both leading from START ~o w, and an edge 
e not determined by either t~, such that the parity of 
the number of triangles containing e in the graph A(Pi) 
isi .  
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The read-once-only property implies that after w, 

the program follows the same path of computation for 
input graphs A(Po)we and A ( P i ) u e  and thus leads to 
the same terminal node. This means these two graphs 
have the same number of triangles mod 2; the same 
holds for A(Po) and A(Pl).  This contradicts the choice 

of the Pi and e. 
We proceed to showing how w, e, Po, and Pl satis- 

fying (8) are found. 
The depth of a node is its distance from START. 

Proposition 1. Let P be a path from START to a termi- 
nal node. If three edges are undetermined by this path, 

they cannot form a triangle. 

Proof. Suppose, to the contrary, that the edges 
el, e2, e3 of a triangle are left undetermined by P. Then 
the parity of the number of triangles in each graph 
A(P) u ei must agree with the parity of the number of 
triangles in A(P).  But then adding all the three edges 
at once will change the parity, a contradiction. ] 

Corollary 2. The depth of each terminal node is at least 
v(v - 2)/4. 

Proof: by TurAn's Theorem in graph theory (of. [Lo, 
Probl.10.30,34]). Any path of length less than v ( v - 2 ) / 4  
leaves more than v2/4 edges undetermined, forcing the 
graph of undetermined edges to contain a triangle. | 

It follows that for any constant c < 1/4, there are 
precisely 2 Cn computation paths of length cn beginning 
at START. Consequently there exists a node w such 
that at least 2 (~-~)" paths of length cn connect START 
to w. 

Let us fix c at a quite small value; any c < 10 - s  
will be safe. Then, ¢ must be even smaller; let us set 
g == C 3 / 2 ,  

Usi~lg w as a "checkpoint", we shall classify the 
edges according to their status at the time various com- 
putation paths pass through w. We shall see that these 
classes exhibit a strong structure. 

Let D denote the set of edges determined by at least 
one path from START to w. Let U denote the set of 
the remaining (undetermined) edges; [DI + ]u[  = n .  

Proposition 3. Let P be any path from START to w. It 
is impossible that three edges ex, e~, e3 form a triangle, 
where el E D - OFF), e2, e3 ~ D(P).  

Proof. The proof is similar to that of Proposition 
1. Suppose the contrary. The read-once-only property 

implies that ex is not tested along any path starting 

at w and therefore the parity of the number of trian- 
gles in A(P) and A(P) t.j {el } is the same. In other 
words, el is contained in an even number of triangles 
in A(P) u { ex }. Similarly we infer that the number of 

triangles containing e, in the graph A(P) u { e,, e2, ea } 
is even. But this nmnber is precisely one greater than 
the number just shown to be even, a contradiction. I 

Let A R  denote the set of those edges which are ac- 
cepted along some path from START to w and are re- 
jected along some other. Clearly, A R C  D. 

Proposit ion 4. There is no triangle el, e2, e3 with e, 6 

AR, e~, e3 C U. 

Proof: a parity argument similar to the proofs of 
Propositions 1 and 3. | 

One can deduce from Proposition 3 that most edges 
determined along any path between START and w are 
actually determined along P, i.e. the set D - D(P)  is 
small. Moreover, most edges determined by some path 
to w are both accepted and rejected along paths to w, 
i.e. D - AR is a small set. More specifically: 

Lemma 5. (a) ]D - D(P) ]  < 3c3/2n. 

(b)  IVl > (1 - c - 3 ~ / ~ ) ~  

(c) IARI _> (c - ~)n. 
(d) ID - AR I < 4c3/2n. 

Proo£ For a set A of edges, let dega(p) denote the 
degree of p with respect to the graph formed by A. 

(a) Let e = pq be any edge in D -  D(P).  By Propo- 
sition 3, every vertex is adjacent in D(P) to at least one 
end of e. Therefore, 

degDiP)(p ) + degD(p)(q ) ..> ( v -  2). 

Adding up these inequalities for all pq E D - D(P)  we 
obtain 

(9) ZdegD_D(p)(p)degD(p)(p)  > ( v - 2 ) [ D -  D(P)[. 
P 

On the other hand, also by Proposition 3, the neighbor- 

hood in D - D(P)  of any vertex p induces a clique in 
D(P).  Therefore 

degD- (P}(P < D(P)I = c n  = c 2 " 

Consequently, 

(10) degD_D(p)(p ) < 1 + CI]2v. 

Colnbining (9) and (10), 

I D - D ( P ) ]  < 1 +  d / 2 v  - ~ - -~  Z degv(p)(P) 
P 

2 + 2c112v 
- v -  2 [D(P)[ < 3c3/2n. 
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(b) follows immediately from (a) since ]U I = n - [ D ] .  
(c) Clearly, the logarithm of the number of START- 

to-w paths is a lower bound for [AR[. 

(d) By (a), [D[ <_ [D-D(P)[+]D(P)]  _< 3cS/2n+cn. 

Combining this inequality with (c) we obtain [ D - A R [  
(~ + 3C3/2)n = 4c3/2n. | 

Lemma 5(b) implies that the graph U has a vertex 
Po of degree greater than d = (1 - ¢ - 4c3/2)v. Let S 
be a set of precisely d neighbors of P0 in U and let T be 
the complement of S (]T[ + IS] = v). 

Proposition 4 implies that no edge in A R  has both 
of its endpoints in S. From this, it follows that A R  

is "mostly" bipartite, with bipartition (S, T). We can 
actually deduce even more structure: most vertices in 
T are adjacent in A R  to either almost all or to ahnost 
no vertices in S (about half of the vertices will satisfy 
each alternative). More precisely, let us divide T into 
three classes, To, Tl, T2. We shall refer to a moderately 
large constant K,  20 < K _< 1/(8c112). 

Let To consist of those p 6 T which have more than 
Kc~/2v neighbors in S in the graph D - AR.  We put 
p E T - To into T1 or T2 according to whether p has 
more AR-neighbors in S than U-neighbors or not. Let 
deg~R(p ) denote the number of AR-neighbors of p in S 
and analogously for other classes. 

Letup .  6. (a) IT01 < 2c~/g. 
(b) For each p 6 T, ,  deg~(p) _< 5c3/2v. 

(c) For each p e T2, deg~R(p) _< 5c3/2v. 

Proofi By Lemma 5(d), 

ITolKc~/2v _< ID - ARI _< 4c 3/2n. 

Claim (a) is now immediate. 
To prove (b) and (c) , le t  p 6  T - T o .  Let N1 and 

N2 denote the sets of U-neighbors and AR-neighbors of 
p in S, resp.; let ni = [Ni[. Since p ~ To, we have 

(11) nt + n2 > I S ] -  g c l / 2 v  > 6v/7. 

On the other hand, by Proposition 4, all edges be- 
tween Nl and N2 belong to D - AR.  By Lemma 5(d) 
it follows that nxn2 < 4c3/2n < 2c3/2v 2. Consequently, 

rain{ha,n2} <_ 2nan2 < 5c3/2v. I 
nx + n2 

Let X denote the set of AR-edges between Tl and 

S. 

Corollary ~. (a) (1 - -~)cv/2 _< IT, I < (1 + 4c' /2)cv/2.  
3c 2 (b) l a R - X l < ~ v  . 

Proof. We begin with (b). Clearly, 

JAR - X] < IT} 2 + IT2[maxveT, deg~R(p) + ITo[ISI. 

By definition, [TI _< (c + 4c3/2)v. We use Lemma 6(c) 
to estimate the second term and Lemma 6(a) and the 
fact IS] < v for the last term. 

For the upper bound in (a), we obtain from Lemma 
6(5) that 

IDI IDI 
IT, I <_ _< 

minveT, deg~(p ) [ S] -- 5c3/2v" 

Lemma 5(a) provides the bound ID] < (c + 3c3/2)n. 

By the definition of S (after the proof of Lemma 5), 
[S[ = (1 - c -  4c3/2)v. A combination of these estimates 
yields the desired upper bound. 

For the lower bound we first observe that [X I > 
(c - e - 7c /K)v2 /2  > (1 - 8 / K ) c v : / 2 .  This follows 
from Lemma 5(e) and part (b) of this Corollary. On 
the other hand, trivially, IT~I > [XI/v. | 

The structural consequence of Lemma 6 and Corol- 
lary 7 for the A R  graph is that the subgraph X induced 
between T1 and S is a nearly complete bipart i te graph, 
and X contains almost all edges of AR.  

In order to focus on X, let us make a decision on the 
value of each input variable (edge) in A R - X .  There are 

2 jAR-X[ < 2 (3/g)cv~ possible outcomes (by Corollary 

7(b)). Let us choose the one that is the most frequent 
among the START to w computation paths. Having 
fixed these values,we still have at least 

(12) 2 (c-e)"-(3/K)c'J2 > 2 ~v~(1-7/g) 

computation paths left. Let H denote the set of these 
paths: 

(13) log [HI _> 2 v 2 ( 1 -  7 / K ) .  

(The base of the log is 2.) 

Let t = [Tl] and s = IS]. We see, that logllI  [ is 
nearly ts. In order to complete the proof, we show, that,  
unless situation (8) arises, the number of subgraphs of 
X arising from paths P 6 H must be substantially less 
than 2t": only about 2 t~/2. This is impossible because 
different paths define different subgraphs of X. (This in 
turn is true since the possible branchings on variables 
in A R  - X have been eliminated.) 

The proof is based on a counting lemma in mod 2 

linear algebra. 
Let A, B, C be (0, 1)-matrices of tim same dimen- 

sions. 
We shall say that A ~ C rood B if for every i , j ,  

B[i,jl = 0 implies A[i,j] = C[i,j].  

Lemma 8. Let A l , . . . ,  AN be t x s matrices over the 

two-element field GF(2).  Let further B and C be s x s 
matrices over GF(2).  Let fl be the number of l ' s  in B.  
Assume that A~T Ai _= C mod B for every i. Then 

t 
(14) log N < fl + ~(s + t + logs). 
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Proof. First we estimate the nmnber of t × s matrices 
of rank _< t /2 over GF(2).  There are less than 2 t~/~ 
possible choices of the colunm space. Given the colunm 
space of dimension < t/2, there are < 2 t/2 choices for 
each column, giving a total of < 2 t{*+t}/2 matrices. 

Next, we estimate the number of those Ai hav- 
ing rank > t/2. Such a matrix has a set of t /2 lin- 
early independent columns; they are positioned in any 
of (t~2) < st/~ ways. Let us fix their positions, say 

colunms 1 , . . . , t / 2 ,  and decide their entries. Let us 
estimate, how many ways the remaining columns can 
be filled. For each pair ( i , / )  where 1 <_ 1' <- t /2 < 
i < s ~nd B[i,j] = O, we have a linear condition 

t ~ k =  ~ xik A[k, j] = eli ,  j] for the prospective entries zik. 
All these equations are linearly independent and their 
number is > t(2s - t)/4 - [3. This reduces the number 
of candidates (2 t*) by a f ~ t o r  of 2 -t{2~-t}/4+#. The 

number of those Ai of rank > t/2 is thus 

(15) < st~22 ts-t{2s-t)14+# = 2 #+~{s+~+l°gs}.  

Add the bound 2 t{~+t}/2 on the number of low rank 
matrices to this; the figure in (14) is a generous overes- 
timate of logarithm of the sum. | 

Let now s = IS[, t = IT1[ and for each P e II let Ap 
be the t × s adjacency matrix of the bipartite subgraph 
of X defined by P. (This graph is the restriction to 
Tl x S of A(P).) Let B be the s x s adjacency matrix of 
the induced subgraph of D -  AR on S. (Recall that the 
complement, relative to S, of this graph belongs entirely 
to U by Proposition 4.) Observe that the entries of 
A~ Ap count the number of common neighbors of each 
pair of vertices in S. The falsity of (8) is thus precisely 
the statement that all the AFAR ~ C rood B rood 2 
for some fixed s × s matrix C. The number of l ' s  in B 
is fl = ID - AR I < 4c3/2n < 2c3/2v2 by Lemma 5(b). 
Using the upper bound of Lemma 7(a) for t we now infer 
from Lemma 8 that 

log [HI I < f l+~(s+t+logs)  < f l+~(v+logv)  

(16) 
c ~ . . . .  1~2 21ogv, 

< -V {1+12c / + _ _ _ _ ) .  
4 v 

This contradicts (13) for large v, completing the proof 

of the Theorem. | 
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