
The Dynamic Descriptive Complexity of

k-Clique

Thomas Zeume⋆

TU Dortmund University
thomas.zeume@cs.tu-dortmund.de

Abstract. In this work the dynamic descriptive complexity of the k-
clique query is studied in a framework introduced by Patnaik and Im-
merman. It is shown that when edges may only be inserted then k-clique
can be maintained by a quantifier-free update program of arity k − 1,
but it cannot be maintained by a quantifier-free update program of arity
k−2 (even in the presence of unary auxiliary functions). This establishes
an arity hierarchy for graph queries for quantifier-free update programs
under insertions. The proof of the lower bound uses upper and lower
bounds for Ramsey numbers.

1 Introduction

The k-clique query — does a given graph contain a k-clique? — can be expressed
by an existential first-order formula with k quantifiers. In this work we study
the descriptive complexity of the k-clique query in a setting where edges may
be inserted dynamically into a graph. In particular we are interested in lower
bounds for the resources necessary to answer this query dynamically.

The dynamic descriptive complexity framework (short: dynamic complexity)
introduced by Patnaik and Immerman [14] models the setting of dynamically
changing graphs. For a graph subject to changes, auxiliary relations are main-
tained with the intention to help answering a query Q. When an insertion (or,
in the general setting, a deletion) of an edge occurs, every auxiliary relation is
updated through a first-order query that can refer to both the graph itself and
the auxiliary relations. The query Q is maintained by such a program, if one
designated auxiliary relation always stores the current query result. The class of
all queries maintainable by first-order update programs is called DynFO.

Since k-clique can be expressed in existential first-order logic, it can be triv-
ially maintained by a first-order update program. Therefore for characterizing
the precise dynamic complexity of this query we need to look at fragments of
DynFO. It turns out that k-clique can still be maintained when the update for-
mulas are not allowed to use quantifiers at all and auxiliary relations may only
have restricted arity. We obtain the following characterization.

⋆ The author acknowledges the financial support by DFG grant SCHW 678/6-1.

Main result: When only edge insertions are allowed then k-clique (k ≥ 3) can
be maintained by a quantifier-free update program of arity k − 1, but it
cannot be maintained by a quantifier-free update program of arity k − 2.

Actually we prove that every property expressible by a positive existential
first-order formula with k quantifiers and, possibly, negated equality atoms can
be maintained by a (k − 1)-ary quantifier-free program under insertions.

In order to understand why the lower bound contained in the above result
is interesting, we shortly discuss the status quo of lower bound methods for the
dynamic complexity framework. Up to now very few lower bounds are known;
all of them for fragments of DynFO obtained by either bounding the arity of
the auxiliary relations or by restricting the usage of quantifiers (or by restricting
both). Usually those bounds have been stated only for the setting where both
insertions and deletions are allowed. We emphasize that our lower bound for the
insertion-only setting immediately transfers to this more general setting.

The study of bounded arity auxiliary relations was started by Dong and Su
[4]. They exhibited concrete graph queries that cannot be maintained in unary
DynFO, and they showed thatDynFO has an arity hierarchy for general (that is
non-graph) queries. Both results rely on previously obtained static lower bounds.

Hesse started the study of the quantifier-free fragment of DynFO (short:
DynProp) in [13]. Although this fragment appears to be rather weak at first
glance, deterministic reachability [13] and regular languages [9] can be main-
tained in DynProp. In [9], Gelade et al. also provided first lower bounds. They
proved that non-regular languages as well as the alternating reachability problem
cannot be maintained in this fragment. The use of very restricted graphs in the
proof of the latter result implies that there is a ∃∗∀∃∗FO-definable query that
cannot be maintained in DynProp. In [16] it was shown that reachability and
3-clique cannot be maintained in the binary quantifier-free fragment of DynFO.

In general, it is a difficult task to prove lower bounds in the dynamic com-
plexity setting; even when update formulas are restricted to the quantifier-free
fragment of first-order logic. We are not at the point where we can, when given a
query, apply a set of tools in order to prove that the query cannot be maintained
in DynProp. Finding more queries that cannot be maintained in DynProp
seems to be a reasonable approach towards finding more generic proof methods.

The lower bound provided by the main result follows this approach and is
interesting in two ways. First, it exhibits, for every k, a query in ∃kFO that
cannot be maintained in (k − 2)-ary DynProp, even when only insertions are
allowed. We believe that finding simple queries that cannot be maintained will
advance the understanding of dynamic complexity. Second, the main result es-
tablishes the first arity hierarchy for graph queries, although for a weak fragment
of DynFO and for insertions only.

The proof of the lower bound uses upper and lower bounds for Ramsey
numbers. This has been quite curious for us.

A natural question is how far this method to prove lower bounds can
be pushed. As an intermediate step between the quantifier-free fragment and

DynFO itself, Hesse suggested the study of quantifier-free update programs
with auxiliary functions [13]. The main result can be extended as follows.

Extension of the main result: k-clique (k ≥ 3) cannot be maintained by a
quantifier-free update program of arity k−2 with unary auxiliary functions.

So far there have been only two lower bounds for dynamic classes with auxil-
iary functions. Alternating reachability was actually shown to be not maintain-
able in the quantifier-free fragment of DynFO even in the presence of a successor
and a predecessor function [9]. Further, in [16], it was shown that reachability
cannot be maintained in unary DynProp with unary auxiliary functions. Thus
our extension is a first lower bound for arbitrary unary auxiliary functions and
k-ary auxiliary relations, for every fixed k. We also explain why the lower bound
technique does not extend to binary auxiliary functions. To this end we show that
binary DynQF can maintain every boolean graph property when the domain is
large with respect to the actually used domain.

Related work. Up to now we mentioned only work immediately relevant for this
work. For the interested reader we give a short list of further related work.

Further lower bounds have been shown in [1, 2, 10]. Further upper bounds
have been shown in [8, 12, 15, 10]. Many other aspects such as whether the
auxiliary relations are determined by the current structure (see e.g. [14, 3, 10])
and the presence of an order (see e.g. [10]) have been studied.

Outline. In Section 2 we fix some of our notations and in Section 3 we recapitu-
late the formal dynamic complexity framework. In Sections 4 and 5 we prove the
upper and lower bound of the main result, respectively. In Section 6 we study
the extension of DynProp by auxiliary functions.

Acknowledgement. I am grateful to Thomas Schwentick for encouraging discus-
sions and many suggestions for improving a draft of this work. Further I thank
Nils Vortmeier for proofreading.

2 Preliminaries

We fix some of our notations. Most notations are reused from [16]. The reader can
feel free to skip this section and return when encountering unknown notations.

A domain D is a finite set. A (relational) schema τ consists of a set τ of
relation symbols together with an arity function Ar : τ → N. A database D of
schema τ with domain D is a mapping that assigns to every relation symbol R ∈
τ a relation of arity Ar(R) over D. A τ -structure S is a pair (D,D) where D is a
database with schema τ and domain D. If S is a structure over domain D and D′

is a subset of D, then the substructure of S induced by D′ is denoted by S ↾D′.
A tuple ~a = (a1, . . . , ak) is ≺-ordered with respect to a linear order1 ≺ of the

domain, if a1 ≺ . . . ≺ ak. The k-ary atomic type 〈S,~a〉 of ~a over D with respect

1 All linear orders in this work are strict.

to S is the set of all atomic formulas ϕ(~x) with ~x = (x1, . . . , xk) for which ϕ(~a)
holds in S, where ϕ(~a) is short for the substitution of ~x by ~a in ϕ. As we only
consider atomic types here, we will often simply say type instead of atomic type.

For a set A, denote by Ak the set of all k-tuples over A and, following [11],
by [A]k the set of all k-element subsets of A. A k-hypergraph G is a pair (V,E)
where V is a set and E is a subset of [V]k. If E = [V]k then G is called complete.
An r-coloring col of G is a mapping that assigns to every edge in E a color from
{1, . . . , r}. A r-colored k-hypergraph is a pair (G, col) where G is a k-hypergraph
and col is a r-coloring of G. If the name of the r-coloring is not important we
also say G is r-colored.

3 Dynamic Setting

The following introduction to dynamic descriptive complexity is borrowed from
previous work [16, 17]. Although the focus of this work is on maintaining the
k-clique query under insertions, we introduce the general dynamic complexity
framework in order to be able to give a broader discussion of concrete results.

A dynamic instance of a query Q is a pair (D, α), where D is a database
over a domain D and α is a sequence of modifications to D, i.e. a sequence of
insertions and deletions of tuples over D. The dynamic query Dyn(Q) yields as
result the relation that is obtained by first applying the modifications from α

to D and then evaluating the query Q on the resulting database. The database
resulting from applying a modification δ to a database D is denoted by δ(D). The
result α(D) of applying a sequence of modifications α = δ1 . . . δm to a database
D is defined by α(D)

def

= δm(. . . (δ1(D)) . . .).
Dynamic programs, to be defined next, consist of an initialization mechanism

and an update program. The former yields, for every (input) database D, an
initial state with initial auxiliary data. The latter defines the new state of the
dynamic program for each possible modification δ.

A dynamic schema is a tuple where τin and τaux are the schemas of the input
database and the auxiliary database, respectively. We always let τ

def

= τin ∪ τaux.

Definition 1. (Update program) An update program P over a dynamic schema
(τin, τaux) is a set of first-order formulas (called update formulas in the following)
that contains, for every R ∈ τaux and every δ ∈ {insS ,delS} with S ∈ τin, an
update formula φRδ (~x; ~y) over the schema τ where ~x and ~y have the same arity
as S and R, respectively.

A program state S over dynamic schema (τin, τaux) is a structure (D, I,A)
where D is a finite domain, I is a database over the input schema (the current
database) and A is a database over the auxiliary schema (the auxiliary database).
The semantics of update programs is as follows. For a modification δ(~a), where
~a is a tuple over D, and program state S = (D, I,A) we denote by Pδ(S) the

state (D, δ(I),A′), where A′ consists of relations R′ def

= {~b | S |= φRδ (~a;
~b)}. The

effect Pα(S) of a modification sequence α = δ1 . . . δm to a state S is the state
Pδm(. . . (Pδ1(S)) . . .).

Definition 2. (Dynamic program) A dynamic program is a triple (P, Init, Q),
where
– P is an update program over some dynamic schema (τin, τaux),
– Init is a mapping that maps τin-databases to τaux-databases, and
– Q ∈ τaux is a designated query symbol.

A dynamic program P = (P, Init, Q) maintains a dynamic query Dyn(Q)
if, for every dynamic instance (D, α), the relation Q(α(D)) coincides with the
query relation QS in the state S = Pα(SInit(D)), where SInit(D) is the initial
state for D, i.e. SInit(D)

def

= (D,D, Initaux(D)).

Definition 3. (DynFO and DynProp) DynFO is the class of all dynamic
queries that can be maintained by dynamic programs with first-order update
formulas and arbitrary initialization mappings. DynProp is the subclass of
DynFO, where update formulas are not allowed to use quantifiers. A dynamic
program is k-ary if the arity of its auxiliary relation symbols is at most k. By
k-ary DynProp (resp. DynFO) we refer to dynamic queries that can be main-
tained with k-ary dynamic programs.

In the literature, classes with restricted initialization mappings have been
studied as well, see [17] for a discussion. The choice made here is not a real
restriction as lower bounds proved for arbitrary initialization hold for restricted
initialization as well. On the other hand, our upper bounds also hold for other
settings of initialization; with the single exception of Theorem 6, which requires
arbitrary initialization. Furthermore our results also hold in the related setting
where domains can be infinite.

4 k-Clique can be maintained under insertions with

Arity k − 1

In this section we prove that the k-clique query can be maintained in (k−1)-ary
DynProp when only edge insertions are allowed. Instead of proving this result
directly, we show that the class of all semi-positive existential first-order queries
can be maintained in DynProp under insertions.

A positive existential first-order query over schema τ is a query that can be
expressed by a first-order formula of the form ϕ(~y) = ∃~xψ(~x, ~y) where ψ is a
quantifier-free formula that contains only literals of the form zi = zj and R(~z)
with R ∈ τ . For semi-positive existential first-order queries literals of the form
zi 6= zj are allowed as well.

We will prove that every semi-positive existential first-order query can be
maintained in DynProp when only insertions are allowed. More precisely, it
will be shown that (k− 1)-ary DynProp is sufficient for boolean queries with k
existential quantifiers. In particular k-Clique can be maintained in (k− 1)-ary
DynProp. Before turning to the proof we give some intuition.

Example 1. We show how to maintain 3-Clique in binary DynProp under in-
sertions. The very simple idea is to use an additional binary auxiliary relation R

that stores all edges whose insertion would complete a triangle. Hence a tuple
(a, b) is inserted into R as soon as deciding whether there is a 3-clique contain-
ing the nodes a and b only depends on those two nodes. More precisely (a, b) is
added to R, if an edge (c, a) is inserted to the input graph and the edge (c, b) is
already present (or vice versa).

Thus the update formula for R is

φRinsE(u, v;x, y)
def

= u 6= v ∧ x 6= y ∧
(

(

E{u, y} ∧ v = x
)

∨
(

E{u, x} ∧ v = y
)

∨
(

E{v, y} ∧ u = x
)

∨
(

E{v, x} ∧ u = y
)

)

where E{x, y} is an abbreviation for E(x, y) ∨ E(y, x).
The update formula for the query symbol Q is

φ
Q
insE(u, v;x, y) = Q ∨R(u, v)

⊓⊔

The general proof for arbitrary semi-positive existential first-order properties
extends the approach taken in the example.

Theorem 1. An ℓ-ary query expressible by a semi-positive existential first-order
formula with k quantifiers can be maintained under insertions in (ℓ+ k− 1)-ary
DynProp.

Proof sketch. For simplicity we restrict the sketch to boolean graph queries.
The proof easily carries over to arbitrary semi-positive existential queries.

Basically a semi-positive existential sentence with k quantifiers can state
which subgraphs with k nodes shall occur in a graph. Therefore it is sufficient to
construct a dynamic quantifier-free program that maintains whether the input
graph contains a subgraph H . Such a program can work as follows. For every
induced, proper subgraph H ′ = {u1, . . . , um} of H , the program maintains an
auxiliary relation that stores all tuples ~a = (a1, . . . , am) such that inserting H ′

into {a1, . . . , am} (with ai corresponding to ui) yields a graph that contains H .
In particular, auxiliary relations have arity of at most k − 1 (as only proper

subgraphs of H have a corresponding auxiliary relation). Furthermore the graph
H is contained in the input graph whenever the value of the 0-ary relation
corresponding to the empty subgraph of H is true. In the example above, the
relation R is the relation for the subgraph of the 3-clique graph that consists
of a single edge, and the designated query relation is the 0-ary relation for the
empty subgraph.

Those auxiliary relations can be updated as follows. Assume that a tuple
~a = (a1, . . . , am) is contained in the relation corresponding to H ′. If, after the
insertion of an edge with end point am, every edge from um in H ′ has a cor-
responding edge from am in the graph induced by {a1, . . . , am}, then the tuple
~a ′ = (a1, . . . , am−1) has to be inserted into the auxiliary relation for the subgraph
H ′ ↾{u1, . . . , um−1}. This is because inserting the graph H ′ ↾{u1, . . . , um−1} into
{a1, . . . , am−1} will now yield a graph that contains H . Observe that for those
updates no quantifiers are needed. ⊓⊔

5 k-Clique cannot be maintained with Arity k − 2

In this section we prove that the k-clique query cannot be maintained by a
(k−2)-ary quantifier-free update program when k ≥ 3. The proof uses two main
ingredients; the substructure lemma from [9, 16] and a new Ramsey-like lemma.
We state those lemmas next.

For stating the substructure lemma we need the following notion of corre-
sponding modifications in isomorphic structures. Let π be an isomorphism from
a structure A to a structure B. Two modifications δ(~a) on A and δ′(~b) on B

are said to be π-respecting if δ = δ′ and ~b = π(~a). Two sequences α = δ1 · · · δm
and β = δ′1 · · · δ

′
m of modifications respect π if δi and δ′i are π-respecting for

every i ≤ m. For a discussion of the lemma we refer the reader to the long
version of [16]. Recall that Pα(S) denotes the state obtained by executing the
dynamic program P for the modification sequence α from state S.

Lemma 1 (Substructure Lemma [9, 16]). Let P be a DynProp-program
with designated Boolean query symbol Q, and let S and T be states of P with
domains S and T . Further let A ⊆ S and B ⊆ T such that S ↾ A and T ↾ B

are isomorphic via π. Then Q has the same value in Pα(S) and Pβ(T) for all
π-respecting sequences α, β of modifications on A and B.

The second ingredient exhibits a disparity between upper bounds for Ramsey
numbers in k-ary structures and lower bounds for Ramsey numbers in (k + 1)-
dimensional hypergraphs. While the first condition in the following lemma guar-
antees the existence of a Ramsey clique of size f(|A|) in k-ary structures over A,
the second condition states that there is a 2-coloring of the complete (k + 1)-
hypergraph over A that does not contain a Ramsey clique of size f(|A|). This
disparity is the key to the lower bound proof.

Lemma 2. Let k ∈ N be arbitrary and τ a k-ary schema. Then there is a
function f : N → N and an n ∈ N such that for every domain A larger than n

the following conditions are satisfied:

(S1) For every τ-structure S over A and every linear order ≺ on A there is a
subset A′ of A of size |A′| ≥ f(|A|) such that all ≺-ordered k-tuples over A′

have the same type in S.
(S2) The set [A]k+1 of all (k+1)-hyperedges over A can be partitioned into two

sets B and B′ such that for every set A′ ⊆ A of size |A′| ≥ f(|A|) there are
(k + 1)-hyperedges b, b′ ⊆ A′ with b ∈ B and b′ ∈ B′.

The two lemmas above can be used to obtain the lower bound for the k-clique
query as follows. The proof of Lemma 2 will be sketched afterwards.

Theorem 2. (k+2)-Clique (k ≥ 1) cannot be maintained under insertions by
a k-ary DynProp-program.

Proof. Towards a contradiction assume that there is a k-ary DynProp-
program P over k-ary schema τ that maintains (k + 2)-Clique. Let n and f

A C
def
= [A]k+1

A′

B
B′

b1

b2

bk+1

b′1

b′2

b′
k+1

b = {b1, b2, . . . , bk+1}

b′ = {b′1, b
′

2, . . . , b
′

k+1
}

Fig. 1. The construction from the proof of Theorem 2.

be as in Lemma 2. For a set A larger than n let ≺ be an arbitrary order on A
and let D

def

= A ⊎ C be a domain with C
def

= [A]k+1. Further let B,B′ be the
partition of [A]k+1 guaranteed to exist by (S2) in Lemma 2.

We consider a state S over domain D where the input graph G contains the
edges

{(b1, b), (b2, b), . . . , (bk+1, b) | b = {b1, b2, . . . , bk+1} ∈ B}

See Figure 1 for an illustration.
By Condition (S1) there is a subset A′ ⊆ A of size |A′| ≥ f(|D|) such that

all ordered k-tuples over A′ have the same τ -type in S. Then by (S2) there are
(k + 1)-hyperedges b, b′ ⊆ A′ with b ∈ B and b′ ∈ B′. Without loss of generality
b = {b1, b2, . . . , bk+1} with b1 ≺ . . . ≺ bk+1 and b′ = {b′1, b

′
2, . . . , b

′
k+1} with

b′1 ≺ . . . ≺ b′k+1. By construction of the graph G, all elements in b are connected
to the node b ∈ C while there is no node in C connected to all elements of b′.
Thus applying the modification sequences

(α) Insert the edges (bi, bj) in lexicographic order with respect to ≺.
(β) Insert the edges (b′i, b

′
j) in lexicographic order with respect to ≺.

yields one graph with a (k + 2)-clique and one graph without a (k + 2)-
clique, respectively. However, by the substructure lemma, the program P yields
the same result since the substructures induced by ~b = (b1, . . . , bk+1) and
~b ′ = (b′1, . . . , b

′
k+1) are isomorphic. This is the desired contradiction. ⊓⊔

In the following we give a rough sketch of the proof of Lemma 2. The k-
dimensional Ramsey number for r colors and clique-size l, denoted by Rk(l; r),
is the smallest number n such that every r-coloring of a complete k-hypergraph
with n nodes has a monochromatic clique of size l. The tower function towk(n) is

defined by towk(n)
def

= 22
.
.
.
2n

with (k−1) many 2’s. The following classical result
for asymptotic bounds on Ramsey numbers due to Erdős, Hajnal and Rado is
the key to prove Lemma 2. The concrete formulation is from [5].

Theorem 3. [6, 7] Let k, l and r be positive integers. Then there exist positive
constants ck, ck,r and lk such that

(a) Rk(l; r) ≤ towk(ck,rl)

(b) Rk(l; 2) ≥ towk−1(ckl
2) for all l ≥ lk

The theorem immediately implies that (T1) Ramsey cliques in r-colored k-

dimensional complete hypergraphs are of size at least Ω(log(k−1)(n)); and
that (T2) there are 2-colorings of the (k + 1)-dimensional complete hyper-

graphs such that monochromatic cliques are of size O((log(k−1)(n))
1
2). Here

log(k)(n) denotes log(log(. . . (logn) . . .)) with k many log’s. Those conditions are
already quite similar to the conditions (S1) and (S2). The major difference is
that (T1) is about hypergraphs and not about structures with a k-ary schema.

Fortunately the upper bound from Theorem 3 can be generalized to Ramsey
numbers for structures. To this end some notions need to be transferred from
hypergraphs to structures. Let τ be a k-ary schema, let S be a τ -structure over
domain D and ≺ an order on D. A subset D′ ⊆ D of S is called an ≺-ordered τ-
clique if all ≺-ordered k-tuples ~a ∈ D′k have the same τ -type. Denote by R(l; τ)
the smallest number n such that every τ -structure with n elements contains an
≺-ordered τ -clique of size l, for every order ≺ of the domain.

Theorem 4. Let τ be a schema with maximal arity k and let l be a positive
integer. Then there exists a constant c such that R(l; τ) ≤ towk(cl).

Proof. The proof of Observation 1’ in [9, p. 11] yields this bound. For the sake
of completeness we repeat the construction.

Let S be a τ -structure over domain D of size towk(cl). Further let ≺ be
an arbitrary order on D. Define a coloring col of the complete k-dimensional
hypergraph with nodes D as follows. An edge {e1, . . . , ek} with e1 ≺ . . . ≺
ek is colored by the type 〈S, e1, . . . , ek〉. By Theorem 3 there is an induced
monochromatic sub-k-hypergraph with domain D′ ⊆ D with |D′| ≥ l. By the
definition of the coloring col, two ≺-ordered k-tuples over D′ have the same type
and therefore D′ is a ≺-ordered τ -clique in S as well. ⊓⊔

The previous theorem implies that (T1’) Ramsey cliques in k-ary structures

are of size at least Ω(log(k−1)(n)). Then Lemma 2 follows from the facts (T1’)

and (T2) by choosing f as the function in Ω(log(k−1)(n)) guaranteed to exist
by (T1’). The function f satisfies (S1) and (S2) due to (T1’) and (T2). This
completes the lower bound proof.

6 Adding Auxiliary Functions

In quantifier-free update programs, as considered up to here, only the modified
and the updated tuple can be accessed while updating an auxiliary tuple. Since
lower bounds for first-order update programs where arbitrary elements can be
accessed in updates seem to be out of reach for the moment, it seems natural to
look for extensions of quantifier-free update programs that allow for accessing
more elements in some restricted way.

Here we study DynProp programs extended by auxiliary functions, an ex-
tension proposed by Hesse [13]. Auxiliary functions are updated by update terms
that may use function symbols and a special if-then-else construct. For a discus-
sion of previous work on this extension we refer to the introduction. A formal
treatment of this extension can be found in [16, 9].

The lower bound from the previous section can be generalized to quantifier-
free programs that may use unary functions.

Theorem 5. (k+2)-Clique (k ≥ 1) cannot be maintained under insertions by
a k-ary DynProp-program with unary auxiliary functions.

The proof is along the same lines as the proof of Theorem 2. Instead of the
substructure lemma for DynProp a corresponding lemma for DynQF from
[9, 16] is used. However, this substructure lemma for DynQF requires to exhibit
isomorphic substructures that, additionally, have similar neighbourhoods.

A natural question is whether the lower bounds transfer to k-ary auxiliary
functions. We conjecture that they do, but we will argue that the techniques used
so far are not sufficient for proving lower bounds for binary auxiliary functions.

The fundamental difference between unary and binary auxiliary functions is
that, on the one hand, unary functions can access elements that depend either
on the tuple that has been modified in the input structure or on the auxiliary
tuple under consideration but not on both. On the other hand binary functions
can access elements that depend on both tuples.

A consequence is that binary DynQF can maintain every boolean graph
property when the domain is large with respect to the actually used domain. We
make this more precise. In the following we assume that all domains D are a
disjoint union of a modifiable domain D+ and a non-modifiable domain D−, and
that modifications may only involve tuples over D+. Auxiliary data, however,
may use the full domain. A dynamic complexity class C profits from padding if
every boolean graph property can be maintained whenever the non-modifiable
domain is sufficiently large in comparison to the modifiable domain2.

Above we have seen that DynProp with unary auxiliary functions does not
profit from padding.

Theorem 6. Binary DynQF profits from padding.

Proof sketch. We only show how ternary DynQF profits from padding, the
adaption to binary DynQF is not difficult. Let Q be an arbitrary boolean graph
property. In the following we construct a ternary DynQF program P which
maintains Q if 2|D

+|2 = |D−|. The idea is to identify D− with the set of all
graphs over D+, that is D− contains an element cG for every graph G over D+.
A unary relation RQ stores those elements of D− that correspond to graphs
with the property Q. Finally the program maintains a pointer p to the element
in D− corresponding to the graph stored in D+. The pointer is updated upon

2 Note that this type of padding is different from the padding technique used by
Patnaik and Immerman for maintaing a PTIME-complete problem in DynFO [14].

edge modification by using ternary functions fins and fdel initialized by the
initialization mapping in a suitable way.

The programP is over schema τ = {Q, p, fins, fdel, RQ} where p is a constant,
fins and fdel are ternary function symbols, RQ is a unary relation symbol and
Q is the designated query symbol.

We present the initialization mapping of P first. The initial state S for a
graph H is defined as follows. The functions fins and fdel are independent of H
and defined via

fS
ins(a, b, cG) = cG+(a,b)

fS
del(a, b, cG) = cG−(a,b)

for a, b ∈ D+ and cG ∈ D−. For all other arguments the value of the functions is
arbitrary. Here G+(a, b) and G−(a, b) denote the graphs obtained by adding the
edge (a, b) to G and removing the edge (a, b) from G, respectively. The relation
RS

Q contains all cG with G ∈ Q. Finally the constant pS points to cH .
It remains to exhibit the update formulas. After a modification, the pointer p

is moved to the node corresponding to the modified graph, and the query bit is
updated accordingly:

tpins(u, v) = fins(u, v, p) tQins(u, v) = RQ(fins(u, v, p))

tpdel(u, v) = fdel(u, v, p) tQdel(u, v) = RQ(fdel(u, v, p))

By further extending the non-modifiable domain, this construction can be ex-
tended to binary DynQF. ⊓⊔

Hence the ability to profit from padding distinguishes binary DynQF and
DynProp extended by unary functions. Although the proof of the preceding
theorem requires the non-modifiable domain to be of exponential size with re-
spect to the modifiable domain, the construction also explains why the lower
bound technique from the previous sections cannot be immediately applied to
binary DynQF. In the lower bound construction only tuples over the set A are
modified, while tuples containing elements from C = [a]k are not modified. Thus,
by treating C as a non-modifiable domain, it can be used to store information
as in the proof above. As the modification sequences used in the lower bounds
are of length k2, finding similar substructures in structures with binary auxiliary
functions becomes much harder.

7 Conclusion and Future Work

In this work we exhibited a precise dynamic descriptive complexity characteriza-
tion of the k-clique query when only insertions are allowed. The characterization
implies an arity hierarchy for graph queries for DynProp under insertions. We
also discussed the limit of our proof methods.

While proving lower bounds for full DynFO — a major long-term goals in
dynamic descriptive complexity — might be really hard to achieve, we believe

that the following goals are suitable for both developing new lower bound meth-
ods and for further improving the current methods.

Goal 1. Prove general quantifier-free lower bounds for insertions and deletions
for the reachability query and the k-clique query.

It is known that both queries cannot be maintained in binary DynProp. We
conjecture that 3-clique cannot be maintained in DynProp under deletions.

Goal 2. Find a general framework for proving quantifier-free lower bounds.

Goal 3. Find a natural query that cannot be maintained in binary DynQF.

References

[1] Guozhu Dong, Leonid Libkin, and Limsoon Wong. On impossibility of decre-
mental recomputation of recursive queries in relational calculus and SQL. In
DBPL ’95, page 7, 1995.

[2] Guozhu Dong, Leonid Libkin, and Limsoon Wong. Incremental recomputation in
local languages. Inf. Comput., 181(2):88–98, 2003.

[3] Guozhu Dong and Jianwen Su. Deterministic FOIES are strictly weaker. Ann.
Math. Artif. Intell., 19(1-2):127–146, 1997.

[4] Guozhu Dong and Jianwen Su. Arity bounds in first-order incremental evalua-
tion and definition of polynomial time database queries. J. Comput. Syst. Sci.,
57(3):289–308, 1998.

[5] Dwight Duffus, Hanno Lefmann, and Vojtech Rödl. Shift graphs and lower bounds
on Ramsey numbers rk(l; r). Discrete Mathematics, 137(1-3):177–187, 1995.

[6] P. Erdös and R. Rado. Combinatorial theorems on classifications of subsets of a
given set. Proc. London Math. Soc. (3), 2:417–439, 1952.

[7] Paul Erdős, András Hajnal, and Richard Rado. Partition relations for cardinal
numbers. Acta Mathematica Hungarica, 16(1):93–196, 1965.

[8] Kousha Etessami. Dynamic tree isomorphism via first-order updates. In
PODS ’98, pages 235–243, 1998.

[9] Wouter Gelade, Marcel Marquardt, and Thomas Schwentick. The dynamic com-
plexity of formal languages. ACM Trans. Comput. Log., 13(3):19, 2012.

[10] Erich Grädel and Sebastian Siebertz. Dynamic definability. In ICDT ’12, pages
236–248, 2012.

[11] R.L. Graham, B.L. Rothschild, and J.H. Spencer. Ramsey Theory. Wiley Series
in Discrete Mathematics and Optimization. Wiley, 1990.

[12] William Hesse. The dynamic complexity of transitive closure is in DynTC0.
Theor. Comput. Sci., 296(3):473–485, 2003.

[13] William Hesse. Dynamic Computational Complexity. PhD thesis, University of
Massachusetts Amherst, 2003.

[14] Sushant Patnaik and Neil Immerman. Dyn-FO: A parallel, dynamic complexity
class. J. Comput. Syst. Sci., 55(2):199–209, 1997.

[15] Volker Weber and Thomas Schwentick. Dynamic complexity theory revisited.
Theory Comput. Syst., 40(4):355–377, 2007.

[16] Thomas Zeume and Thomas Schwentick. On the quantifier-free dynamic com-
plexity of reachability. In MFCS ’13, pages 837–848, 2013. Full version available
at http://arxiv.org/abs/1306.3056.

[17] Thomas Zeume and Thomas Schwentick. Dynamic conjunctive queries. In
ICDT ’14, pages 38–49, 2014.

	The Dynamic Descriptive Complexity of k-Clique

