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THE DISTRIBUTION OF QUADRATIC RESIDUES
AND NON-RESIDUES

D. A. BurgEss

1. If p is a prime other than 2, half of the numbers
1, 2, ..., p—1

are quadratic residues (mod p) and the other half are quadratic non-residues.
Various questions have been proposed concerning the distribution of the
quadratic residues and non-residues for large p, but as yet only very
incomplete answers to these questions are known. Many of the known
results are deductions from the inequality

N+H

2, ()| <woen g

found independently by Pélya* and Vinogradovf, the symbol (—g—)

being Legendre’s symbol of quadratic character.

My object in the present paper is to prove an inequality which in some
respects goes further than (1), and to make a few deductions from it. The
result in question is:

THEOREM 1. Let 8 and € be any fixed positive numbers. Then, for all
sufficiently large p and any N, we have '

N+H
g: (—1"-) } <eH (2)
n=N+1 P
provided H > pits, (3)

This implies, in particular, that the maximum number of consecutive
quadratic residues or non-residues (mod p) is O(ptt?) for large p. Previously
it was known only that the number is O(p"?).

Theorem 1 enables me to improve on Vinogradov’s estimate§ for the
magnitude of the least (positive) quadratic non-residue (modp). Using

* G. Polya, ‘“Uber die Verteilung der quadratischen Reste und Nichtreste »,
Géttinger Nachrichten (1918), 21-28.

t I.M. Vinogradov, ‘ Sur la distribution des résidus et des non-résidus des puissances ”,
Journal Physico-Math. Soc. Univ. Perm, No. 1 (1918), 94-96.

1 H. Davenport and P. Erdos, ‘‘ The distribution of quadratic and higher residues ”,
Publicationes Mathematicae (Debrecen), 2 (1952), 252-265.

§ I. M. Vinogradov, ‘‘ On a general theorem concerning the distribution of the residues
and non-residues of powers ’, Trans. American Math. Soc., 29 (1927), 209-217.
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(1), he proved that this least quadratic non-residue is O(p*) for any fixed
« > $e12, Using Theorem 1 instead, but otherwise following Vinogradov’s
argument, I prove:

THEOREM 2. Let d denote the least positive quadratic mon-residue
(modp). Then d = O(p*) as p—co, for any fixed o > Le~112,

The result of Theorem 1 can be made more explicit, in that the right-
hand side of (2) can be replaced by a particular function of p, H, 8. The
result can also be extended to characters other than the quadratic character.
These further results, which will form the subject-matter of a later paper,
have enabled me to improve also on Vinogradov’s estimate* O(pit+?) for
the least primitive root (mod p).

The starting point for all this work is an estimate (Lemma 2 below)
which was mentioned by Davenport and Erdos (loc. cit., footnote on p. 262)
and which is a consequence of A. Weil’s proof of the analogue of the
Riemann Hypothesis for algebraic function-fields over a finite field.

I take this opportunity of thanking Prof. Davenport for much valuable
advice, and also for preparing the final draft of the paper.

2. LEmma 1. Let f(x) be a polynomial of odd degree v with integral
coefficients and highest coefficient 1. Suppose that f(x) is square-free (mod p),

that is, that there is no identity of the form f(x)= (g(x)) 2 fi(x) (mod p) with
polynomials g(x), fi(x), where g(x) is not a constant. Then

2 (1) |< p—1ypm, @)
z\ P
where the summation is over a complete set of residues (mod p).

Proof. The result is a consequence of A. Weil’s theoremt that the
congruence zeta-function for the algebraic function-field generated by the
equation y% = f(z), over the finite field of p elements, has all its roots on
the critical line. This congruence zeta-function has the same roots as the
congruence L-function}

L(s) =140, p~°+...+0,_ p~¢~Ds,

where oy = E} (f%‘) > .

* See E. Landau, Vorlesungen tiber Zahlentheorie 1T, 178-180.

t A. Waeil, *“ Sur les courbes algébriques et les variétés qui s’en déduisent °, Actualités
Math. et Sci., No. 1041 (1945), Deuxiéme partie, §IV.

1 See H. Hasse, ‘‘ Theorie der relativ-zyklischen algebraischen Funktionenkérper,
insbesondere bei endlichem Konstantenkérper ”, Jowurnal fiir Math., 172 (1935), 37-54.
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Thus, if sy, ..., s,_; are the roots of the congruence zeta-function (distinct
in the obvious sense), we have

—0y =P F-ps-t.
Weil’s theorem is that %s; =} for each j, and the conclusion follows.

Lemma 2. Let r be a positive integer, let p be a prime, and let b be any
integer satisfying 0 <h <p. Let

Y xdm
Siw) = I (*T7). (®)
Then Z (84(@))" < 2y phrtr(2pte41) A (6)

Proof. We follow the argument of Davenport and Erdés (loc. cit.,
Lemma 3). We have

(@)= % .. 3 % <(“’+m1) (”+m2')>.

z m=1 my,=lz p
Divide the sets of values of m,, ..., m,, into two classes, putting in the
first class those which consist of at most » distincet integers, each occurring
an even number of times, and putting into the second class all other sets.
The number of sets in the first class is less than (2r)" &, and for each set the
inner sum over « is at most p. Hence the contribution made by the sets
of the first class is less than (2r)” ph".

The number of sets in the second class is at most A% (trivially). For

each set of the second class, the inner sum over x is of the form

5 ((x—i—nl)ex (:t:—}—ns)e.) ’
p

where s<{2r and n,, ..., n, are mutually incongruent (mod p) and
ey, ..., €, are not all even. We can omit those factors (z+mn,)% for which
¢; is even, provided we make an allowance of at most r for those values
of & for which = —n,; (mod p) for some j. We can also replace the odd
exponents e¢; by 1. Thus the above sum differs by at most » from a sum
of the form

xz

s p (e ),

where 1 <k < 2r and u,, ..., w; are mutually incongruent (modp). The
polynomial
J@) = (@+u) ... (@+u)

is square-free (modp) in the sense of Lemma 1, and if £ is odd it follows
from that Lemma that

8| < (k—1)p'2 < 2r pii2,
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This holds also if % is even, for the transformation from z to y defined by
(x+u,)y=1 (mod p)

changes the sum § into a similar sum with k—1 factors instead of & factors,
together with a term — 1 arising from the fact that y = 0 does not correspond
to any x. Thus, when k is even, we get

|8 <1+ (k—2)pt2 < (k—1)p'® < 2rp'2,
as before.
Putting together the results proved, we obtain (6).

3. For any integers H > 0, ¢ >0, t, N we define the interval I(q, {)
to consist of all real z satisfying
<N +H —]—tp'

N+itp
q ¢S q @)

LemMa 3. Let g run through a set of distinct positive integers, @ in
number, all satisfying
91 <9 <4z (8)

and all relatively prime in pairs. Swuppose that
2H g, < p. (9)

Then (for given p, N, H) it is possible to associate with each q a set T(q) of
tndegers t, with 0 <t <<q, their number being ¢q—Q, in such a way that the
wntervals 1(q, t), for all ¢ and all ¢t in T (q), are disjoint.

Proof. We observe first that two of the intervals (7) with the same ¢
but different ¢ are always disjoint, since 0 < H < p.

Now suppose that the intervals I(g, t) and I(¢’, ¢) have a point in
common, where ¢ >¢q’. Then

Nttp N+HAtp o Nit'p N+Hitp

q q q q
whence p(lg'—t'9)+N(q'—q) < Hg,
ptg'—t' ¢)+N(g'—q) > —Hq'.
Hence |p(tg'—t' 9)+N(q'—q)| < Hg < }p,

by (9). This inequality shows that, for any particular pair ¢, ¢’, there is
at most one value for t¢'—t'¢g. Since 0 <f < ¢ and 0 ¢ < ¢’, and since
q, ¢’ are relatively prime, it follows that there is at most one pair ¢, ¢'.

We construct the set 7'(q) for each ¢ by removing from the set 0 <t <g¢q
all those values of ¢ which occur in any pair ¢, ¢, corresponding to any
¢’ #q. The number of values of ¢ removed in this way is at most @—1,
hence we can construct the sets 7'(¢) so that each of them contains ¢—@
numbers ¢.
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4. Proof of Theorem 1. It suffices to prove the inequality (2), for any
N, on the agsumption that
P <H < pit; (10)
for if H > ptt® the conclusion follows from (1).
We suppose that ‘
N+H
’ b (%>‘>5H 11)

for some N and some H satisfying (10), and deduce a contradiction if p
is sufficiently large.
For any positive integer ¢ < p, we have

N+H -1  N+H
¢ @5 % @
n=N+1 \P -0  n=N+1 p

n=—tp (mod ¢)

n=N+1

Putting n = —#p+-gz in the inner sum, the conditions on z are

N—{—1+tp<é<N—|—H+tp
g 7 g9

Thus z runs through the integers of the interval I(g, t) defined in (7).

Since
3 -G -G)E)
it follows from (11) that
g-1

eHL X
t=0

(12)

T (£
zelgh \ P
We now apply Lemma 3, taking the set of integers ¢ in that Lemma to
consist of all the primes in the interval

1plt < g < plia, (13)

The condition (9) is amply satisfied, by (10). The number of integers ¢
is @, given by
Q = n(p"")—n(3p"). (14)

Summing (12) over the primes ¢ in question, we obtain

g—1
HQ<E X

g t=0

> (i> <z =

zellg \ P q teT(q)

since the number of integers z in I(g, t) is less than 2Hg~! and since all but
Q of the values of ¢ belong to T'(g). Since Xg—! < 2p~Y4 @ by (13), we have

z (2)
zeligh) \ P

for large p, since @ = o(p'%) by (14).

= (Z) |+§Q.2Hq-1,

zel{g,t)

DI

gteT@

> HQ(e—4p™ Q) > {eHQ
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Let I denote the general interval I(g,t). All these intervals are
disjoint by Lemma 3, and their number is

?(q—Q) <p™Q. _ (15)

We can rewrite the last result as

%)

For any positive integer &, we have

5 () 5, ) - &, () e

zeI \P m=1nel \P m=1 \lnel \ P

z

I

> }eHQ. (16)

where |¢,| <2m. Hence

rom+m 2 L
T 3 —) =h 2 (E2)=3 ¢

neIml( D zel(p> m=1¢m
Thus, with the notation of (5), we have

2 (3)
zeI \P
Summing over I and using the estimate (15) for the number of intervals I,

we deduce from (16) that
2 X |8,(n)| > teHQh—2pV* Qh2.
I nel

2 |8,(n)| =h — 2R,
nel

Take h = [{eHp—Y4]; (17)
then %‘. ZI]Sh(n)] > }eHQh.

By Holder’s inequality,

1/2r 1/2r

2z Ismi<{z 217 {2 2 sl

whence
X [8,(n)r> (2eHQR)r (p4Q . 3p~ Y4 H)1-2r,
I nel

on recalling that the number of integers in any interval I is at most 3p—V4 H.
Since the intervals I are disjoint, it follows that
2| 8 (x) [r > (Fye) HQR>.
® :
Comparing this with the result of Lemma 2, we obtain
(—]—_12—6)2" HQ her < (27‘)’])7&'-'— 37-])1[2 hr,

Now @ > COp** (log p)—* with some positive absolute constant C, by (14).
Since H > ptté, the left-hand side is large compared with the second
term on the right, for any fixed r, if p is sufficiently large. Further, if we
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choose r > 61, then, since
h > Lep?
by (17), we have
k> () p,
and this makes the left-hand side large compared with the first term on the
right. Thus we have a contradiction, and this establishes the result.

5. Proof of Theorem 2. Since }e Y2=0.15... >}, we can suppose,
on taking H = [ptt?], that H <<d?. Then every quadratic non-residue
(mod p) up to H has a prime factor ¢ which is a quadratic non-residue,
and this prime is at least d. Since the number of multiples of ¢ not
exceeding H is [Hq™'], we have

H
z(ﬁ)>ﬂ_2 > [Hq—1]>H{1—2 p> _q-l},
n=1 \P d<q<H d<q<H

the summation being over primes g.
It follows from Theorem 1, with N = 0, that

1 -2 X g1 <eg

d<¢<H
that is,

LI a> 10,
By a well-known result, the sum on the left is

log log H—log logd+o(1)
as p—>oco. Putting d = HY8, we obtain
logB>%—e¢

for all sufficiently large p, and since H = [p+*] the result follows.
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