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Suppose the time to failure of each of the components is exponentially distributed 
with mean 1/1 and suppose the system operates for exactly T hours each day. Now, 
a component whose lifetime follows the exponential distribution shows no aging, i.e., 
the probability that the component survives day n + 1 given that it survived day n is 
the same as the probability that a new component will survive day one. Hence the 
stochastic analysis of this (active redundant) system is equivalent to the analysis in 
Section 2 providing we identify 

(i) the number of rings r with the number of components, and 
(ii) the (constant) probability of failure q on a single toss of a ring with the 

(constant) probability e-AT that a component will survive day one (= T hours) 
The play in the ring tossing game can then be identified with the comparison 

between competing systems built from two different types of components. 

ON APPLICATIONS OF VAN DER WAERDEN'S THEOREM 

JOHN R. RABUNG, Randolph-Macon College 

1. Equivalent versions of the theorem. In [1] B. L. van der Waerden relates how 
Artin, Schreier, and he were able to find the proof of the following conjecture of 
Baudet: 

(A) If the set of positive integers is partitioned in any way into two classes, then 
for any positive integer I at least one class contains a set of I consecutive members 
of an arithmetic progression. (Henceforth we shall use the phrase "arithmetic pro- 
gression of length l" to mean a set of I consecutive members of an arithmetic 
progression.) 

Aside from the ingenuity of the proof which finally arose, one of the most in- 
triguing aspects of the paper is the manner in which these men were able to manip- 
ulate Baudet's conjecture into more manageable, yet equivalent forms. The first 
such manipulative step was to consider the following statement suggested by Schreier: 

(B) For any positive integer I there exists a positive integer N(l) such that if the 
set {1,2, ..,N(l)} is partitioned into two classes, then at least one class contains 
an arithmetic progression of length 1. 

This so-called "finite version" of (A) clearly implies (A) and the converse impli- 
cation is shown in [1] using a Cantor diagonal approach. 

From here it was an easy step for Artin to show that (B) is equivalent to: 
(C) For any positive integers k and I there exists a positive integer N(k, 1) such 

that if the set {1, 2, ..*, N(k, l)} is partitioned into k classes, some class contains an 
arithmetic progression of length l. 

This is the statement which van der Waerden proved. (See [1] or [2].) 
Since the appearance of the proof several applications of the theorem have been 

published. (We shall discuss A. Brauer's application to power residues in another 
section of this paper.) However, it has become apparent that the real potential for 
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application of (C) may lie in the size of the numbers N(k, 1). In his proof of (C) van 
der Waerden constructs numbers N(k, 1) which suffice, but it is thought that these 
constructed numbers are terrifically loose. For example, van der Waerden constructs 
N(2, 3) = 67 whereas any N(2,3) ? 9 will work. And just a glance at his general 
construction of these numbers suggests that their growth rate is much greater than 
it need be. As Erd6s points out in [3], tightening of the numbers N(k, 1) may lead 
to settling the question of the existence of arbitrarily long strings of prime numbers 
which are consecutive members of some arithmetic progression. 

But the refinement of the numbers N(k, 1) will not be achieved without an essen- 
tially new proof of (C). Because none have yet been found, one is led back to the 
reasoning of Artin, Schreier, and van der Waerden that perhaps another version 
of the statement would be more manageable. Several equivalent forms of (C) have 
appeared since thne proof was published. In this section we present some other equiv- 
alent versions of (C). These versions seem more explicitly related to the problem 
of primes in arithmetic progression than does the statement of (C). We begin with: 

(D) Let S = {ai}1=, be any strictly increasing sequence of positive integers. 
If there exists a positive integer M such that ai+1 - ai < M,for i = 1,2, *., then 
there exist among the members of S arithmetic progressions of arbitrary length. 

This is quickly seen to be a consequence of (C), for consider the following parti- 
tion of the set of positive integers into M classes: 

Ko = {aj: al E S} = S 

K1 = {ai + 1: aieS} Ko' 

K2 = {al +2: aieS} (Ko UK1)' 

Kj = {ai +j: 
a1-S}n 

(Uh-1 Kh 

KM-1 ={ai + (M-1): aeS} n(UM_1 Kh)'. 

It is clear from the nature of S and the construction of the classes, K., that this is 
indeed a partition of the set of positive integers into M classes. Now by (C) there 
must be an arithmetic progression of length 1 (arbitrary) in some class, say K,. 
Suppose this arithmetic progression is {b, b + d, b + 2d, *. , b + (1- 1)d} . Since 
b E Kn, we have b = a + n for some a E S. Similarly each member of this pro- 
gression is n greater than some member of S. Thus, {a, a + d, a + 2d, ., a + (1- 1)d} 
c S, and the result is obtained. 

Now (D) immediately yields: 
(E) If the set of positive integers is partitioned into two classes, then at least one 

of the following holds: 
(1) One class contains arbitrarily long strings of consecutive integers. 
(2) Both classes contain arithmetic progressions of arbitrary length. 
This is clear since if (1) does not occur, then (D) applies in both classes. And 
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since (E) readily implies the Baudet conjecture (A), we see that (D) and (E) are each 
equivalent to van der Waerden's theorem (C). 

Now (D) and (E) both yield "finite versions": 
(D') For any M and 1 there is a positive integer Nd(M, 1) such that any strictly 

increasing finite sequence {ai}l71 of positive integers with differences bounded by 
M (i.e., ai+1 - a,< M) and with am - a, > Nd(M, 1) will contain an arithmetic 
progression of length 1. 

(E') For any M and I there is a positive integer Ne(M, 1) such that whenever the 
set {1, 2, ,Ne(M, l)} is partitioned into two classes at least one of the following 
holds: 

(1) One class contains M consecutive numbers. 
(2) Both classes contain arithmetic progressions of length 1. 
From either of the statements (D') or (E') one sees the connection between 

van der Waerden's theorem and the problem of primes forming consecutive members 
of an arithmetic progression. If one can sharpen the number Nd(M, 1) enough and 
observe a relationship between this number and the rate of growth of gaps between 
consecutive prime numbers, one may be able to settle the question. 

We have not been able to generally sharpen an estimate for Nd(M, 1), but we have 
found best possible values of Nd(M, 1) for some values of M and 1. These are presented 
in section 3 of this paper. 

2. An application of Witt's generalization of van der Waerden's theorem. Very 
shortly after van der Waerden published his proof in [2], A. Brauer [4] showed, 
among other things, that for any positive integers k and 1 there is a number Z(k, 1) 
such that for any prime p > Z with p 1_ (mod k) the reduced residue system 
{1,2,, p -1} modulo p contains 1 consecutive numbers, each of which is a kth 
power residue modulo p. Several authors since have found uniform upper bounds 
on this string of consecutive kth power residues for fixed k and 1. (See for example, 
[5]-[10].) 

J. H. Jordan [11], without the assurance of a general theorem like Brauer's, 
stepped into the domain of Gaussian integers Z[i] and proceeded to find several uni- 
form upper bounds for what he called "consecutive" Gaussian integers which are all 
kth power residues of a prime of sufficiently large norm. The question arises, then, as 
to whether there is a theorem like Brauer's for the Gaussian domain. In this section 
we show that there is such a theorem. 

It is Ernst Witt's generalization [12] of the van der Waerden theorem which allows 
one to use an approach analogous to Brauer's in not only the Gaussian integers, 
but in some other domains as well. Witt's theorem may be stated as follows: 

Let F = {Yi' Y2' -) y be a fixed set of Gaussian integers. For any positive 
integer k there is a positive integer N(k, I) such that if the set 

A ajyj: aj eZ, aj _ 0, aj1= N(k,l)} 
j=l j=1 

is partitioned into k classes, some class will contain a homothetic image, F', of F. 
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(Here we shall say that F' is homothetic to F if F' = Ar + a = {Ay + a: y E F} 
where A is a positive integer and a is an arbitrary Gaussian integer.) Now if in the 
above statement yj E r is such that yj I jyi|, 1 < i < 1, then we see 

I 
| aYj| < (|aj|Iv.I) < LvI zjaj = LYjIN(k,l) 
j=1 j=l j=l 

since aj > 0. Thus, we may also say that if the set of all Gaussian integers with norm 
not greater than (I y., j N(k, 1))2 is partitioned into k classes, then some class will 
contain a homothetic image of F. Let N(k, F) = (max{j yj l: yj E F})N(k, 1). Now we 
can prove: 

THEOREM 1. Given any finiite set of Gaussian integers, say F = {Y1i Y2' ..1Y 
and any sufficiently large Gaussian prime, Xt, there is a set P = {P19P2, "'Pi} 
of quadratic residues modulo ir such that P is a translation of F. 

Proof. Let D(F) = maxtjI yj - yi, yj e- F be called the diameter of F. By 
choosing our prime 7r with large enough norm we can imbed any set of Gaussian 
integers having finite diameter in a reduced residue system modulo 7r. (See Hard- 
man and Jordan [13].) Hence, we see that for ir with sufficiently large norm there is 
either a translated image of F close to the origin consisting entirely of quadratic 
residues or there is a quadratic nonresidue, v, modulo 7t such that 1 _ j v j < D(F) + 1. 
Let R represent any finite array of Gaussian integers which is large enough to con- 
tain some translation of F and vF = {vyj: yj E r} . 

Now consider it to be a Gaussian prime such that jir j > 2N(2, R) + 1, thus 
assuring that a reduced residue system (of the Hardman-Jordan type) modulo 7r, 
when broken into two classes will contain a homothetic image of R in one of the classes. 
In particular, either the class of quadratic residues or the class of quadratic non- 
residues will contain such an image, say R' = AR + a for some nonnegative integer 
A and a a Gaussian integer. Now if A and the elements of R' have the same quadratic 
nature modulo 7r, then multiplication by A- 1 modulo ir yields R" = R + A- 1 con- 
sisting entirely of quadratic residues modulo it. 

If A and the elements of R' are of differing quadratic nature modulo 7r, then 
R" = R + A-'a consists of quadratic nonresidues. But now R + A la contains as 
a subset some translation of vF, say vF + c'. Since v is a quadratic nonresidue, 
r + v- la' is made up of quadratic residues modulo 7t, and we are done. 

Following Brauer's argument in similar fashion, one can establish 

THEOREM 2. Given any finite set F of Gaussian integers and any positive integer 
k, there exists a translation oJ F consisting entirely of kth power residues modulo 
any sufficiently large Gaussian prime ir with N(r) =1 (mod k). 

In the interest of moving toward applications of Witt's Theorem similar to those 
mentioned in the first section of this paper, we note that this theorem has the fol- 
lowing equivalent versions analogous to (D) and (E) of the preceding section: 

(A) If X = tail}' is any sequence of Gaussian integers for which there exists 
a finite set H = t{q1, q2, qM} of Gaussian integers such that 
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Z[i] c ? u (? + 'l) u (? + l2) U u( + qM) 

then for any F = {Y1,Y2-') ,Y,} C: Z[i, ? contains a homothetic image of F. 
This statement is proved in the same way as statement (D) of the preceding section 

was proved. And from (A) we get: 
(B) For any partition of the set of Gaussian integers into two classes one of the 

following must occur: 
(1) One class contains a translation of any finite set of Gaussian integers. 
(2) Both classes contain a homothetic image of anyfinite set of Gaussian integers. 
To establish (B) one needs only to observe that in such a partition if we view each 

class as a sequence of Gaussian integers, either the condition of (A) will apply to both 
sequences (and, hence, (2) holds) or that condition will fail to hold for one of the 
sequences. In the latter case the class K where the condition fails will have arbitrarily 
large "holes" in it in the sense that for any positive integer M we could find 4 E Z[i] 
such that 

{ceZ[i]: j4-4j ? MI nK = 0. 

(For, if not, we could use H = eC E Z[i]: I I | M} in the statement of (A).) 
So (B), like (E) of the preceding section, brings forth the question of "patterns" 

of prime Gaussian integers. Of course, just as there are arbitrarily large gaps in the 
set of rational primes, so there are arbitrarily large holes in the set of Gaussian 
primes. But still one is led to study a "finite version" of (B) as weighed against the 
growth rate of holes in the set of Gaussian primes. Here, as in the rational case, 
such studies have so far yielded little fruit because of the unwieldy size of the con- 
stants involved in finite versions of Witt's Theorem. This is not unexpected since 
Witt's proof is essentially the same as that of van der Waerden in the rational case. 

3. Some numerical results. Let {ai},' 1 be a strictly increasing sequence of positive 
integers such that for some fixed positive integer M we have ai - ai < M for 
i = 1,2, ..., rm-1. From statement (D') of the first section of this paper we know 
of the existence of a number N(M,l) such that if am -a _ N(M, 1), then among 
the members of the given sequence there is an arithmetic progression of length 1. 
We direct our attention to the number N(M, 1). Clearly, once such a number is 
found, any larger number would serve the same purpose. Let N*(M, I) = min{N(M, 1)}. 
Under this definition, displaying a value of N*(M, 1) for some M and I implies the 
existence of a sequence {ai}l=1 with differences between successive members 
bounded by M such that am - a, = N*(M, 1) - 1, and such that the sequence 
contains no arithmetic progression of length 1. In presenting our numerical results 
we shall also present such sequences which show our constants to be correct. Ac- 
tually we shall give the sequence of differences associated with the original sequence; 
that is, if {ai}l= 1 is a sequence to be displayed, we shall instead display the sequence 
{di}m'J= where di = ai+1 - ai for i = 1,2, m m-1 . We shall also impose on our 
sequences the condition that di + di +1 > M for i = 1, 2, , m -2. One easily sees 
that this condition in no way alters the generality in computations of N*(M, I). 
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To give an easy example of how the computations were made, let us consider 
the calculation of N*(2, 3). That is, we consider all sequences of differences di with 
each di = 1 or 2 and with di + di+1 > 2. Suppose d1 = 1. Then d2 = 2 and d3 = 1 
or 2. If, however, d3 = 2 = d2, then two consecutive differences are alike which, 
of course, means three members of the original sequence are in arithmetic pro- 
gression. So we consider the case when d3 = 1. This means d4 = 2, and again 
since d4 + d3 = d2 + d1, we have an arithmetic progression of length 1 = 3 in the 
original sequence. This exhausts all cases with d1 = 1. Similar argument shows that 
with d1 = 2 one gets the sequence of differences {2,1,2} before exhausting all 
possibilities. A corresponding original sequence might be {1, 3, 4,6}. This is, in one 
sense, the longest such sequence with no three terms in arithmetic progression. 
Since here, in the notation of the preceding paragraph, am -a1 = 5, we get 
N*(2, 3) = 6. 

The following table displays some values of N*(M, 1) which we have found 
using essentially the above technique and the CDC 3800 computer at the Research 
Computation Center, Naval Research Laboratory, Washington, D.C. 

N*(M, 1) Sequences of differences {di}72j' of maximal length 

N*(2, 3) = 6 1{2, 1, 2} 
N*(3, 3) = 18 {3, 2, 3, 1, 3, 2, 3} 
N*(4, 3) = 27 {1, 4, 3, 4, 2, 4, 3, 4, 1} 
N*(5, 3) = 64 {5, 4, 5, 3, 5, 4, 5, 1, 5, 4,5, 3, 5, 4,5} 
N*(6, 3) = 102 {5, 6, 4, 6, 2, 6, 4, 5, 6, 5, 3, 5, 6, 5, 4, 6, 2, 6, 4, 6, 5} 
N*(2,4) = 15 {2, 2, 1, 2, 2, 1, 2, 2} 
N*(3, 4) = 57i {3, 3, 2, 2, 3, 3, 1, 3, 3, 2, 3, 3, 1, 3, 3, 2, 3, 3, 1, 3, 1, 3, 2} 
N*(2, 5)-= 291 {1, 2, 1,2, 2,25,1,2, 2, 25,1,2, 2, 2,1,2,1} 
N*(2,6) = 57 {2,2, 1,2,1 2,2,2, 1,2,2,2,2,512, 1,2, 1,2, 1,2,2,2,2, 1,2,2,2, 1, 

2, 1, 2, 2} 

We also found the partial results N* (4,4) _ 160 and N* (2, 7) _ 193. 
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ELEMENTARY EVALUATION OF 4(2n) 

BRUCE C. BERNDT, The Institute for Advanced Study and University of Illinois 

1. Introduction. Let Bj denote the jth Bernoulli number (defined below in 
Section 2). Euler's formula 

(1.1) ((2n) - k-2n )(2ic) B2n, (n > 1) 
k I 

2(2n)! 

is one of the most beautiful results of elementary analysis. Perhaps the three most 
common methods of proving (1.1) are by the use of the Fourier series for the 
Bernoulli polynomials [4, p. 524], by the use of the calculus of residues in conjunction 
with the Laurent expansion of cotx (given below) in terms of Bernoulli numbers 
[10, pp. 141-143], and by the method of Euler, described in [1], for example. 
T. M. Apostol [1] recently gave a proof of (1.1) that uses knowledge of symmetric 
functions and one of Newton's formulas. The idea for Apostol's proof can be found 
in the Yagloms' book [14, pp. 131-133], although they only establish (1.1) for 
n = 1 and n = 2. I. Skau and E. Selmer [11] use a similar method, but they do 
not explicitly evaluate C(2n) in terms of Bernoulli numbers. 

Apostol's paper [1] contains a survey of "elementary" methods used to establish 
(1.1). An even more recent paper of E. L. Stark [12] contains a lengthy bibliography 
of papers on the evaluation of C(2) and C(2n). To the references cited in the two 
aforementioned papers, one can add the paper of R. Hovstad [3] and H. Rade- 
macher's book [9, pp. 121-124]. 

In this paper, two new proofs of (1.1) are given. The proofs use only elementary 
calculus. The first proof, especially, is suitable for presentation in an ordinary cal- 
culus class. 

2. Properties of Bernoulli numbers and polynomials. The Bernoulli polynomials 

B.(x), 0 < n < oo, are defined by 

tex t a) 

(2.1) e' __ = - Bn(X)tnln! (|t I < 2i)o 
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