
ON ACCRichard Beigel and Jun TaruiAbstract. We show that every language L in the class ACC canbe recognized by depth-two deterministic circuits with a symmetric-function gate at the root and 2logO(1)n AND gates of fan-in logO(1)n atthe leaves, or equivalently, there exist polynomials pn(x1; : : : ; xn) overZ of degree logO(1)n and with coe�cients of magnitude 2logO(1)n andfunctions hn : Z ! f0; 1g such that for each n and each x 2 f0; 1gn,�L(x) = hn(pn(x1; : : : ; xn)). This improves an earlier result of Yao(1985). We also analyze and improve modulus-amplifying polynomialsconstructed by Toda (1991) and Yao (1985).1. Introduction and Overview1.1. The ACC Problem. Strong lower bounds have been established forthe size of constant-depth circuits that compute explicit Boolean functions inthe case that the allowable gates are NOT, OR, AND, and MODq, where q isa �xed prime power. (For Boolean variables y1; : : : ; y� , MODm(y1; : : : ; y�) = 1if P yi � 0 (mod m), and 0 otherwise.) A series of work by Furst et al. (1984),Ajtai (1983), Yao (1985), and H�astad (1986) has established a near-optimal ex-ponential lower bound for the size of constant-depth circuits with NOT, OR,and AND gates that compute PARITY. Razborov (1987) and Smolensky (1987)have shown that to compute the MODq function, constant-depth circuits withNOT, OR, AND, and MODq0 gates require exponential size if q and q0 are pow-ers of distinct primes. For more information about these results and this lineof research including history, motivations, and applications, see Sipser (1992)and Boppana & Sipser (1990).It remains an open problem, however, to show a limitation of constant-depth circuits with MODm gates, where m is a �xed composite: The class ACC



2 Beigel & Tarui| de�ned by Barrington (1989) and considered further by Barrington (1989),Barrington & Th�erien (1988), McKenzie & Th�erien (1989), and Yao (1985) |consists of languages recognized by a family of constant-depth polynomial-sizecircuits with NOT and unbounded fan-in OR, AND, and MODm gates, wherem is �xed for the family. It is an open problem to show some explicit language(e.g., a language in NP) is not in ACC.1.2. Boolean Functions and Polynomials. Considering representability(in several senses) of a Boolean function by a polynomial has provided manyinsights in the theory of shallow circuits. Work along this line can give (1) a pos-itive result by showing that (a) predicates in a certain class can be representedin a certain sense by polynomials of some restricted type (e.g., polynomials ofdegree polylogarithmic in the number of variables) and that (b) such polyno-mials can be simulated by certain circuits. It can also give (2) a negative resultthat some function f is outside a class C by showing, in addition to (a), that(c) function f cannot be represented by polynomials used for class C in (a).The work of Razborov (1987) and Smolensky (1987) mentioned above is abeautiful example of type (2). Celebrated work of Toda (1991) is of type (1):Although Toda's work is in the context of PH, the polynomial hierarchy, (fora de�nition, see, e.g., Johnson (1990)), it can be translated into the context ofshallow circuits because of the well-known connection established by Furst etal. (1984) between PH and AC0 (the class of languages recognized by constant-depth polynomial-size circuits with NOT, OR, and AND gates; more accurately,corresponding to PH is the class qAC0 obtained by taking the size bound tobe quasipolynomial, i.e., 2logO(1)n). Indeed, corresponding results in terms ofshallow circuits and their improvements have been shown in a series of sub-sequent work by Allender (1989), Allender & Hertrampf (1994), Beigel et al.(1991), Kannan et al. (1993), Tarui (1993), and Toda & Ogiwara (1992). Manyother results obtained by considering polynomial representations are explainedby Beigel (1993).1.3. Results. Yao (1985) obtained the �rst nontrivial upper bound on thecomputing power of ACC circuits. In this paper we simplify Yao's proof andimprove his result (thus both contributions are of type (1) above).For a polynomial p(x1; : : : ; xn) over Z, the ring of integers, de�ne the normof p to be the sum of the absolute values of the coe�cients of p. (Beigel & Tarui(1991) and respectively Yao (1985) use the word \size" to denote what we callnorm and the logarithm of what we call norm.) De�ne SYM+ to be the class oflanguages L for which there exist a family frn(x1; : : : ; xn)g of degree-logO(1)n



On ACC 3norm-2logO(1)n polynomials over Z and a family fhng of functions from Z tof0; 1g such that for each n and each x 2 f0; 1gn, �L(x) = hn(rn(x1; : : : ; xn)),where �L denotes the characteristic function of L. (Beigel & Tarui (1991)called the class SYM+ by the name SYMMC. Here we have adapted the no-tation proposed by Beigel et al. (1991) and Barrington (1992).) By standardtechniques of Beigel et al. (1994) it is immediate that a language L is in SYM+if and only if L can be recognized by depth-two size-2logO(1)n circuits with asymmetric-function gate at the root (top) and AND gates of fan-in logO(1)nat the leaves (bottom). (A symmetric-function gate computes some symmetricBoolean function, i.e., a Boolean function that only depends on the numberof inputs that are 1. A NOT gate can appear in a circuit as a negated inputliteral xi.)Yao (1985) showed that ACC is contained in a probabilistic version ofSYM+: If L is in ACC, there exist �nite sets Sn of degree-logO(1)n norm-2logO(1)n polynomials in n variables, \simple" probability distributions �n onSn, and functions hn : Z ! f0; 1g such that for each n and each x 2 f0; 1gn,when r 2 Sn is randomly chosen according to �n, �L(x) = hn(rn(x1; : : : ; xn))with high probability.In this paper we show that ACC is in fact contained in SYM+:Theorem 1.1. ACC � SYM+:We can think of Yao's result and our improvement as exhibiting somewhatsurprising representational power of low-degree polynomials or as raising thenew problem of showing that some explicit language is outside SYM+ or somesubclass of SYM+ by analyzing (maybe a restricted class of) low-degree poly-nomials algebraically or combinatorially (i.e., showing (c) above for SYM+).In both senses it seems more useful to think of SYM+ in terms of low-degreepolynomials as opposed to depth-two circuits (hence our de�nition of SYM+above).Actually we obtain a \uniform" version of Theorem 1 by using the Valiant{Vazirani method due to Toda (1991) for probabilistic simulations of OR andAND. If we do not care about uniformity, we can instead use a simple noncon-structive argument together with the Razborov{Smolensky method, and obtainpolynomials of lower degree in the end. We include a full explanation of howto do this, and the paper is totally self-contained as to proving Theorem 1 asstated (without uniformity). (As for the proof of the uniform version, we referthe reader to the literature for a discussion of the Valiant{Vazirani method.)



4 Beigel & TaruiWe also show the following extension of Theorem 1.1, in which we allow anoutput gate to be any symmetric-function gate, not just a MODm gate.Proposition 1.2. Let L be a language recognized by a family of constant-depth size-2logO(1)n circuits having a symmetric-function gate at the root andNOT, OR, AND and MODm gates elsewhere, where m is �xed for the family.Then L is in SYM+.We prove Theorem 1.1 by showing how one can convert an ACC circuit toan equivalent modular polynomial circuit in which each gate evaluates a low-degree polynomial modulo some prime p, and showing how one can collapsesuch a modular polynomial circuit using modulus-amplifying polynomials. Inthis way, we can present all arguments explicitly in terms of polynomials, whichis the way that they are best seen.1.4. Modulus-Amplifying Polynomials. Say that an integer polynomialP (x) in one variable is k-modulus-amplifying if for all integersN and all integersm � 2, N � 0 (mod m) =) P (N) � 0 (mod mk);N � 1 (mod m) =) P (N) � 1 (mod mk):Toda (1991) was the �rst to discover a construction and an application oflow-degree modulus-amplifying polynomials. Toda constructed a k-modulus-amplifying polynomial of degree �(k2) and used it in proving that BP � �P �P#P[1]. (The polynomials actually constructed by Toda have modulus-amplifyingproperty of a slightly di�erent kind as will be explained in Section 2.3.) Yao(1985) discovered a new application of modulus-amplifying polynomials and ob-tained the result mentioned above; also he noted that a k-modulus-amplifyingpolynomial of degree �(klog2 3) can be obtained by a slightly di�erent con-struction. Both Toda and Yao used a recursive construction. We put thesepolynomials that seem somewhat magical in better perspective and obtain ak-modulus-amplifying polynomial of degree 2k�1, which is optimal. Modulus-amplifying polynomials of lower degree yield polynomials of lower degree in theproof of Theorem 1.1, but are not essential for the proof.2. Proof of Theorem 1.1As usual, we assume without loss of generality that NOT gates in a circuitonly appear as negated input literals xi's. All polynomials in the paper are



On ACC 5over Z. We let Z[x1; : : : ; xl] denote the ring of polynomials over Z in variablesx1; : : : ; xl.Throughout the paper we will be interested in producing low-degree small-norm polynomials. It turns out that for polynomials that we deal with, thenorm is always at most exponential in the degree, and that checking this isusually easy. Thus the reader may mostly pay attention to the degree.2.1. Representing MODpe, OR, and AND Modulo p. In this subsec-tion we show how the MODpe function, where p is prime, and the OR/ANDfunctions can be represented, modulo p, by low-degree small-norm polynomialsover Z.2.1.1 MODpeWe include our own proof of the following lemma, which seems to be folklore(the earliest use we can �nd is due by Chandra et al. (1984)).Lemma 2.1. Let p be a prime and let e � 1. Then, there is a polynomialr(x1; : : : ; xn) of degree pe � 1 and norm nO(pe) such that for each x 2 f0; 1gn,MODpe(x1; : : : ; xn) = r(x1; : : : ; xn) mod p:To prove the lemma, we use the following fact. A proof of this fact usingKummer's Theorem was given by Beigel & Gill (1992); a proof using Lucas'stheorem was given by Beigel & Tarui (1991). Here we give a simple, directproof.Fact 2.2. For a prime p, a positive integer e, and an integer x,x � 0 (mod pe) () 8 i 2 f0; : : : ; e� 1g  xpi! � 0 (mod p):Proof. Write  xpi! = x(x� 1) � � � (x� pi + 1)pi(pi � 1) � � � 1 :The factors in both numerator and denominator take the values 0; 1; : : : ; pi� 1modulo pi. Thus � xpi� � 0 (mod p) if and only if the unique factor in thenumerator that is a multiple of pi is in fact a multiple of pi+1. From this theconclusion follows by a simple induction on i. 2



6 Beigel & TaruiProof of Lemma 2.1. By Fermat's little theorem, for integers y1; : : : ; yk,kYi=1(1� yp�1i ) � � 1 (mod p) if 8 i 2 f1; : : : ; kg yi � 0 (mod p);0 (mod p) otherwise.From this and Fact 2.2, it is easy to see that the following polynomial satis�esthe conclusion.r(x1; : : : ; xn) = e�1Yi=0 0@1�  Pnj=1 xjpi !p�11A= e�1Yi=0 0B@1� 0@ XS�f1;:::;ng;jSj=pi Yj2S xj1Ap�11CA : 22.1.2 OR and ANDA probabilistic polynomial p(x1; : : : ; xn) is a random variable that is uniformlydistributed over some �nite multiset 
 = fp1; : : : ; psg, where pi 2 Z[x1; : : : ; xn].The degree and the norm of a probabilistic polynomial p are, respectively, themaximum degree and the maximum norm of pi (1 � i � s).The Valiant{Vazirani method due to Toda (1991), as reinterpreted and ex-tended by Allender (1989, Allender & Hertrampf (1994), Beigel et al. (1991),Kannan et al. (1993), and Tarui (1993), and Toda & Ogiwara (1992), yields thefollowing. (For a proof of the particular version stated below, see Tarui (1993)or Beigel et al. (1991); the condition (2) below is a technical one that makes oursubsequent proofs simpler and can easily be satis�ed by raising a polynomialto the (p � 1)-th power.)Lemma 2.3. Let p be a prime and let " > 0. Then there is a probabilisticpolynomial r(x1; : : : ; xn) that has degree d = O(log(1=") log n), norm nO(d),and \easily" constructible sample space of size 2O(log(1=") log2 n), and satis�es thefollowing: (1) For each x 2 f0; 1gn, r(x) mod p = OR(x) with probability atleast 1� ". (2) For each x 2 f0; 1gn, r(x) mod p 2 f0; 1g with probability 1. Asimilar probabilistic polynomial for AND also exists.Remark 2.4. To obtain \uniform" versions of our results we need \easy" con-structibility of a sample space. If we do not care about uniformity, we canalternatively proceed as follows. Let� = f(a1x1 + � � �+ anxn)p�1 : (a1; : : : ; an) 2 f0; : : : ; p� 1gng:



On ACC 7If we take ` = O(log(1=")) large enough and let� = f1� Ỳi=1(1 � qi) : (q1; : : : ; q`) 2 �`g;then for each x 2 f0; 1gn, a randomly chosen r 2 � satis�es (r(x) mod p) =OR(x) with probability at least 1 � 12" as was noted by Razborov (1987) andSmolensky (1987).By a simple probabilistic argument involving the Cherno� bound, the ex-istence of a small subset 
 � � that computes OR with probability at least1 � " can be shown. Fix x 2 f0; 1gn. For large enough N = O((1=") � n), ifwe sample a polynomial from � independently N times and obtain r1; : : : ; rN ,then the probability that ri(x) 6= OR(x) for more than "N ri's is less than 2�nby the Cherno� bound on tail of Bernoulli trials. Thus, there exists a multiset
 � � of size N such that for every x 2 f0; 1gn, (r(x) mod p) = OR(x) exceptfor at most " fraction of r's in 
.The multiset 
 considered as a probabilistic polynomial satis�es the condi-tions of Lemma 2.3 and has lower degree d = O(p log(1=")), norm nO(d), andsmaller sample space of size O((1=") � n). Lower degree and smaller samplespace yield polynomials of lower degree in our subsequent proofs. Actually, toachieve low degree, using a Cherno�-bound argument above at the later stageis more e�ective as will be explained in Remark 2.6.2.2. Modular Polynomial Circuits. In what follows we denote a gate ina circuit by a lower-case letter, e.g., gi, and the Boolean function that a gatecomputes by the corresponding upper-case letter, e.g., Gi. For gates g1; : : : ; gl,we also consider a polynomial in variables g1; : : : ; gl, thus letting g1; : : : ; gl de-note both gates and formal variables in a polynomial. We assume, without lossof generality for all our purposes, that between any pair of gates in a circuit,there is at most one edge. For a gate g in a circuit, input(g) denotes the set ofgates gi such that there is an edge from gi to g.A modular polynomial circuit C for n Boolean variables is similar to astandard circuit except that each gate is labeled by a polynomial instead ofAND, OR, etc. Each nonoutput gate g with input(g)= fg1; : : : ; glg is associatedwith some polynomial r 2 Z[g1; : : : ; gl] and a positive integer m called itsmodulus. We require that each such pair of polynomial r and modulus m hasthe property that for each (g1; : : : ; gl) 2 f0; 1gl, r(g1; : : : ; gl) mod m 2 f0; 1g.Each such gate is interpreted to compute the Boolean functionG(x1; : : : ; xn) = r(G1(x1; : : : ; xn); : : : ; Gl(x1; : : : ; xn)) mod m:



8 Beigel & TaruiAn output gate g with input(g)= fg1; : : : ; glg is associated with some poly-nomial r 2 Z[g1; : : : ; gl] and some function h : Z ! f0; 1g (no modulus isassociated with an output gate), and is interpreted to compute the Booleanfunction h(r(G1(x); : : : ; Gl(x))):A modular polynomial circuit C is strati�ed if each wire in C is betweengates of depth d and d+1 for some d and all the gates at depth i are associatedwith a common single modulus mi. For a modular polynomial circuit: the sizeand the depth are, as in a standard circuit, the number of vertices and thedepth of its underlying graph respectively; the degree and the norm are themaximum degree and norm, respectively, over polynomials associated with itsgates; its modulus size is the maximum of moduli associated with its gates.Lemma 2.5. For any depth-c size-s fAND;OR;MODmg circuit for n variables,there exists an equivalent strati�ed modular polynomial circuit of depth c0 =O(c), size s0 = 2O(log3 s), degree d = O(m log2 s), norm t = sO(d), and modulussize � m. In particular, for s = 2logO(1)n and m = logO(1)n, we have s0 =2logO(1)n, d = logO(1)n, t = 2logO(1)n.Proof. Let C be a circuit as above and let m = pe11 � � � pe�� be the primefactorization of m. A MODm gate is equivalent to the AND of a MODpe11 gate,: : : , a MODpe�� gate. Thus, by adding some \dummy" gates if necessary, andincreasing size and depth by only a constant factor, we can convert C into anequivalent strati�ed ACC circuit C 0 in which all the MOD gates at the samedepth i share a single modulus peii .Fix depth i and let p = pi and e = ei. A gate at depth i is either an AND,an OR, or a MODpe gate. If there is no MOD gate at depth i, take p = 2. Foreach gate g with input(g) = fg1; : : : ; glg, associate a modulus p, and associatea polynomial r 2 Z[g1; : : : ; gl] as follows.� Case 1: g is a MODpe gate. Associate the polynomial given in the proofof Lemma 2.1.� Case 2: g is an OR gate or an AND gate. Associate a probabilis-tic polynomial given in Lemma 2.3 (take " = 1=(3s)) that has degreed = O(p log2 s), norm sO(d), and sample space of size s0 = 2O(log3 s), andcomputes OR/AND on f0; 1g` with probability at least 1�1=(3s). (Notethat ` � size(C 0) = O(s).)(At the bottom level proceed similarly as above using (1�xi) for each negativeliteral xi.)



On ACC 9Now C 0 has been transformed to a \modular probabilistic polynomial cir-cuit" that, for each x, computes C 0n with probability at least 2=3. We canassume that all probabilistic polynomials used have underlying sample spaceof the same size S = 2O(log3 n) and that each sample space 
 is indexed by theset f1; : : : ; Sg (i.e., 
 = frigSi=1). By �xing i = 1; : : : ; S, thus \�xing" everyprobabilistic polynomial to each of the S ordinary polynomials in its samplespace, obtain S modular (ordinary) polynomial circuits, and connect their Soutput gates g1; : : : ; gS to a new output gate g. Associate with g the linearpolynomial g1 + � � � + gS and the function h : Z ! f0; 1g that computes themajority among gi's: h(y) = 1 if y � dS=2e, and 0 otherwise. We have obtaineda desired modular polynomial circuit. 2Remark 2.6. If we use appropriately ampli�ed Razborov{Smolensky polyno-mials (use � in Remark 2.4) in Case 2 and apply a Cherno�-bound argumentas in Remark 2.4 to independent copies of C 0 thus obtained, we can producean equivalent modular polynomial circuit of size O(sn) and degree O(m log s).2.3. Modulus-Amplifying Polynomials. Recall that a k-modulus-amplifying polynomial Pk satis�es the following conditions for all integers N :N � 0 (mod m) =) Pk(N) � 0 (mod mk);N � 1 (mod m) =) Pk(N) � 1 (mod mk):Toda (1991) constructed polynomials P̂k that satisfy the following slightly dif-ferent conditions and can be used for his applications (and for proving ourtheorem also) just as polynomials Pk:N � 0 (mod m) =) P̂k(N) � 0 (mod mk);N � �1 (mod m) =) P̂k(N) � �1 (mod mk):Toda obtained his polynomials by letting P̂2(x) = 3x4 + 4x3 and P̂2i(x) =P̂2(P̂2i�1(x)) for i > 1. (For 2i�1 < k � 2i, let P̂k(x) = P̂2i(x).) Thus Toda'sP̂k has degree �(k2). Noting that positive coe�cients are not necessary for hisapplications (In retrospect, positive coe�cients are not necessary for Toda'sapplications either), Yao (1985) constructed k-modulus-amplifying polynomi-als Pk starting with P2(x) = 3x2�2x3 and de�ning P2i by the same recurrence.Yao's Pk has degree �(klog2 3). Now we put modulus-amplifying polynomialsin better perspective and construct optimal-degree modulus-amplifying poly-nomials.



10 Beigel & TaruiThe conditions for Pk above are equivalent to the following congruences inZ[x], the ring of polynomials in one variable over Z.Pk(x) � 0 (mod xk); (2.1)Pk(x) � 1 (mod (x� 1)k): (2.2)The polynomials xk and (x � 1)k are relatively prime in Z[x]; i.e., thereare polynomials f(x), g(x) 2 Z[x] such that f(x)xk + g(x)(x� 1)k = 1. Thisfollows from the solution we give below. (Alternatively we can argue as fol-lows: In a commutative ring, two ideals (in our case (xk) and ((x � 1)k) arerelatively prime if and only if their radical ideals are relatively prime. (Fora proof, see a textbook on commutative algebra, e.g., Atiyah & MacDonald(1969, Proposition 1.16., p.9).) But the radicals of (xk) and ((x� 1)k) are (x)and (x�1) respectively, and are clearly relatively prime. In fact xk and (x+s)kare relatively prime in Z[x] if and only if s = 1 or �1.) Thus by the Chineseremainder theorem (applied for the ring Z[x]), the equations (2.1) and (2.2)have a unique solution in Z[x] modulo xk(x�1)k. We explicitly solve (2.1) and(2.2) and get a degree 2k � 1 solution, thus achieving the optimal degree.Consider (1�x)k in Z[[x]], the ring of formal power series over Z. Since itsconstant term is 1, it is invertible in Z[[x]]; i.e., we can �nd Rk 2 Z[[x]] suchthat (1�x)kRk = 1. Throw away all the terms in the power series Rk of degreek and higher, and obtain the polynomial Qk. Then 1� (1�x)kQk is a solutionto (2.1) and (2.2). In fact,Rk = 1(1� x)k = (1 + x+ x2 + � � �)k =Xj�0 k + j � 1j !xj:Thus Qk = k�1Xj=0  k + j � 1j !xj;and Pk = (�1)k+1(x� 1)k 0@k�1Xj=0  k + j � 1j !xj1A + 1is our solution. Note that the norm of Pk is 2O(k). In what follows, Pk denotesthe polynomial constructed above. The e�ect of using our Pk's instead of thepolynomials constructed by Toda and Yao will be mentioned in Remark 2.9.



On ACC 112.4. Collapse by Modulus Ampli�cation. For an integer a and a positiveinteger m, de�ne a mod m to be the unique integer in the range [��; �] thatis congruent to a modulo m, where � = � = m�12 if m is odd; and � = m2 � 1,� = m2 if m is even. Note that a = a mod m if m � 2 jaj + 1. Also notethe following obvious property of the norm: If a polynomial p(x1; : : : ; xn) hasnorm N , then for any x 2 f0; 1gn, �N � p(x) � N .Fact 2.7. Suppose that a polynomial r(x1; : : : ; xl) has norm N and that posi-tive integers m and k satisfy mk � 2N +1. Let a1; : : : ; al be integers satisfying(ai mod m) 2 f0; 1g (1 � i � l). Then,r(a1 mod m; : : : ; al mod m) = r(Pk(a1); : : : ; Pk(al)) mod mk:Proof. r(a1 mod m; : : : ; al mod m)= r(Pk(a1) mod mk; : : : ; Pk(al) mod mk)= r(Pk(a1) mod mk; : : : ; Pk(al) mod mk) mod mk= r(Pk(a1); : : : ; Pk(al)) mod mk: 2The following lemma says that we can \collapse" strati�ed modular poly-nomial circuits using modulus-amplifying polynomials Pk, and, combined withLemma 2.5, lets us �nish the proof that ACC � SYM+. The lemma is statedin a bit more general setting than necessary: It allows moduli of order logO(1)ninstead of O(1).Lemma 2.8. Let fCng be a family of strati�ed modular polynomial circuitsof depth O(1), size 2logO(1)n, degree logO(1)n and norm 2logO(1)n, and modulussize logO(1)n. Then, the language recognized by C is in SYM+, i.e., thereexist a family frn(x1; : : : ; xn)g of degree-logO(1)n norm-2logO(1)n polynomialsand a family fhng of functions from Z to f0; 1g such that for each n and eachx 2 f0; 1gn, Cn(x) = hn(rn(x1; : : : ; xn)).Proof. Let fCng be as above. Fix n and let d = depth(Cn). The proof isby induction on d. For the base case d = 1, the output gate of Cn is associatedwith a polynomial rn(x1; : : : ; xn) of degree logO(1)n and norm 2logO(1)n and afunction hn : Z ! f0; 1g, and there is nothing to prove since by de�nition ofmodular polynomial circuit, Cn(x) = hn(rn(x)). For the case d � 2:



12 Beigel & Tarui� Let fg1; : : : ; glg be the set of gates at depth 1 and assume that the outputgate g is associated with a polynomial r(g1; : : : ; gl) and a function h : Z!f0; 1g.� Let fy1; : : : ; y�g be the set of gates at depth 2 and assume thatthe gates g1; : : : ; gl at depth 1 are associated with polynomialsr1(y1; : : : ; y�); : : : ; rl(y1; : : : ; y�) respectively and with a common modu-lus m = logO(1)n. (ri may be a polynomial in the variables that form aproper subset of fy1; : : : ; y�g; but such a polynomial can be regarded asa polynomial in y1; : : : ; y�; this simpli�es notations below.)We show that we can collapse these top two levels. Take k = logO(1)n largeenough so that mk � 2 norm(r) + 1. Recall that in a modular polynomialcircuit, for each ~y = (y1; : : : ; y�) 2 f0; 1g� , (ri(~y) mod m) 2 f0; 1g; thus byFact 2.7, r(r1(~y) mod m; : : : ; rl(~y) mod m)= r(Pk(r1(~y)); : : : ; Pk(rl(~y)) ) mod mk:Thus let r0(~y) = r(Pk(r1(~y)); : : : ; Pk(rl(~y)) )and de�ne h0 : Z ! f0; 1g byh0(z) = h(z mod mk):Then for each ~y = (y1; : : : ; y�) 2 f0; 1g� ,h( r(r1(~y) mod m; : : : ; rl(~y) mod m) )= h(r0(~y) mod mk)= h0(r0(~y)):It is not hard to see that the polynomial r0 has degree logO(1)n and norm2logO(1)n.Introduce a new output gate g0 and associate with g0 polynomial r0 andfunction h0. Let C 0n be the new circuit thus obtained. Then C 0n is equivalentto Cn and has depth d � 1, size smaller than that of Cn, degree logO(1)n, andnorm 2logO(1)n. The inductive step is complete, and we have proved the lemma.2 Now the proof of Theorem 1.1 is complete.



On ACC 13Remark 2.9. Let � denote the degree of the polynomial obtained by our proofmethod. For a polynomial-size depth-d ACC circuit, � = log2�(d) n and thenorm of the polynomial is nlog2�(d) n. The degree and the norm correspond,respectively, to the bottom fan-in and the size of depth-two circuits that char-acterize SYM+.More speci�cally: Let C be a strati�ed polynomial-size depth-d (assumed � 2) circuit having only MOD gates and such that all the MOD gates atthe same depth i are MODpi gates for some prime pi of order O(1). Then� = �(log(�+1)d�1�1 n), where � = 1 in our case, and � would be log2 3 and 2 ifone uses Yao's and Toda's modulus-amplifying polynomials respectively.Now consider a circuit that is similar to C, but has AND/OR gates in addi-tion and assume that we use our degree 2k�1 modulus-amplifying polynomialsPk. (The analysis below remains valid as far as the degree is O(k).)In this case, � = �(log� n), where � = 2d+1 � 2 if one uses Razborov{Smolensky polynomials together with a nonconstructive argument as explainedabove, and � = 2d+2 � 3 if one uses the Valiant{Vazirani method.Remark 2.10. The function hn : Z! f0; 1g obtained in the proof above hasthe following form.hn(N) = ( 1 if (� � � ((N mod M1) mod M2) � � � mod Mc) � dS=2e;0 otherwise,where eachMi is a power of prime. Recently, F.Green et al. (1992) have shownthat hn can be taken to be a \Mid-Bit" function, whose value on an integerN is the t(n)-th least signi�cant bit of the standard binary expansion of N forsome t(n) = logO(1)n. Barrington's 1992 survey includes explanations of otherrecent work that is related to this paper.Remark 2.11. Theorem 1.1 still holds when we allow a modulus m of MODgates to grow as far as m = logO(1)n and m has only O(1) distinct prime factors.On the other hand, if we allow O(log n= log log n) distinct prime moduli ofmagnitude O(log n), any symmetric Boolean function on n variables can becomputed by a circuit of the form: an OR at the root, at most n ANDs offan-in O(log n) at the next level, and O(log2 n= log log n) MODs at the bottom.Thus if a similar result holds in this case, then TC0 (the class of languagesrecognized by constant-depth polynomial-size threshold circuits) is containedin SYM+.



14 Beigel & Tarui3. Proof of Proposition 1.2We proceed as we did to prove ACC � SYM+: Show that we can convertsuch circuits as in the proposition to equivalent low-degree small-normmodularpolynomial circuits, and use Lemma 2.8 to �nish the proof.Let C be a circuit of size N = 2logO(1)n with a fan-in F output gate gcomputing a symmetric function and F ACC subcircuits C1; : : : ; CF belowg. The symmetric-function gate g computes some Boolean function that onlydepends on PFi=1Ci(x). Thus we want a construction that can determine, foreach x, the number of i's (1 � i � F ) such that Ci(x) = 1. We proceed asfollows:1. Using a probabilistic polynomial of sample size S = 2logO(1)n that com-putes OR/AND with error probability at most 1=(3FN), convert eachCi (1 � i � F ) to a strati�ed modular probabilistic polynomial circuitthat computes Ci with error probability at most " = 1=(3F ).2. For each Ci, by �xing a probabilistic polynomial to be each of the Sordinary polynomials in its sample space, create S strati�ed modular(ordinary) polynomial circuits and let 	i = fg(1)i ; : : : ; g(S)i g be the set ofoutput gates of those S circuits. Clearly, for each input x and each set	i, one of the following two cases holds:(a) At most "S g(j)i 's (1 � j � S) output 1.(b) At least (1 � ")S g(j)i 's (1 � j � S) output 1.For a rational number r that is not of the form j + 12 for some integerj, let nearest-int(r) denote the unique integer k that minimizes jr � kj.It is easy to see that the number of sets 	i for which the case (b) holdsequals nearest-int0@PFi=1PSj=1 g(j)iS 1A :3. Connect the g(j)i 's to a new output gate g0 and associate with g0 the linearpolynomial PFi=1PSj=1 g(j)i and the function h(y) = h(nearest-int(y=S)),where h : f0; : : : ; Fg ! f0; 1g is the function computed by the symmetric-function output gate of C (as expressed in terms of the number of inputsthat are 1).We have obtained an equivalent strati�ed modular polynomial circuit of con-stant depth, size 2logO(1)n, degree logO(1)n, and norm 2logO(1)n. We can useLemma 2.8 to �nish the proof. 2
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