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Abstract. The transformation protocol can make two players share a
secret key using a random deal of cards. A sufficient condition on the
number of cards for the transformation protocol to succeed was known.
However, it has been an open problem to obtain a necessary and suf-
ficient condition. This paper improves the transformation protocol and
gives a necessary and sufficient condition for the improved transforma-
tion protocol to succeed.

1 Introduction

A random deal of cards can be used for players to share a secret. For example,
Winkler [13] gave bidding conventions for the game of bridge whereby one player
can send secret information to her partner. This idea was carried further so that
two players can share a secret key using a random deal of cards [1]. Since then,
several protocols using a random deal of cards have been developed; Fischer and
Wright gave two important protocols called the “key set protocol [2, 5]” and the
“transformation protocol [3].” The properties of the key set protocol have been
investigated extensively [6–12]. For instance, a necessary and sufficient condition
on the number of cards for the key set protocol to succeed was known [7, 9].
On the other hand, concerning the transformation protocol, few results have
been obtained so far. For instance, a sufficient condition for the transformation
protocol to succeed was known [3]. However, it has been an open problem to
obtain a necessary and sufficient condition. In this paper, we will address only
the transformation protocol, and close the open problem above.

The scenario is as follows. Two players Alice and Bob communicate publicly,
while a passive computationally-unlimited eavesdropper Eve overhears all com-
munication. Alice and Bob are assumed to use randomization, that is, they can
flip private fair coins. Let n be a positive real number such that n = log2m for
some integer m ≥ 2 and hence m = 2n. Alice and Bob wish to share an n-bit
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secret key v ∈ {1, 2, 3, · · · , 2n(= m)} which Eve cannot learn. That is, they wish
to share a value v ∈ {1, 2, 3, · · · , 2n} such that, given the information available
to Eve, the (conditional) probability of v = � is exactly 1/2n for every � ∈ [1, 2n].

Let ∆ = {1, 2, · · · , d} be a deck of d distinct cards; an element in the deck ∆
is a card. We call a subset H ⊆ ∆ of ∆ a hand. A sequence δ = (Ha, Hb;He)
of three hands such that {Ha,Hb,He} is a partition of ∆ is called a deal. A deal
δ = (Ha, Hb;He) means that every card in ∆ is dealt to Alice, Bob or Eve so
that Alice, Bob and Eve have hands Ha, Hb and He, respectively, as in the case
of usual card games. We call γ = (a, b; e) the signature of a deal δ = (Ha, Hb;He)
if a = |Ha|, b = |Hb| and e = |He|, where |X | denotes the cardinality of a set X .

Fix a signature γ = (a, b; e) with a, b ≥ 1. For such γ, we always fix the deck
∆ = {1, 2, · · · , a + b + e}. Then, there are exactly

(
a+b+e

a

) · (b+e
b

)
deals having

the signature γ. Assume that Alice, Bob and Eve have their hands Ha, Hb and
He, respectively, from a random deal δ = (Ha, Hb;He) whose signature is γ.
As in the case of usual card games, all the cards in her/his hand are private
to herself/himself. Given such a random deal δ, Alice and Bob wish to share a
secret key: the goal is to design a protocol which makes Alice and Bob share an
n-bit secret key that Eve cannot learn. We say that a protocol establishes an
n-bit secret key exchange for a signature γ = (a, b; e) if the protocol always makes
Alice and Bob share an n-bit secret key v ∈ {1, 2, 3, · · · , 2n} for any random deal
δ = (Ha, Hb;He) having the signature γ and any random result of flipping their
coins.

In this paper, we first improve the transformation protocol. Our “improved
transformation protocol” is superior to the transformation protocol. That is,
the improved transformation protocol establishes an n-bit secret key exchange
for any signature γ for which the (original) transformation protocol does. We
then give a necessary and sufficient condition for the improved transformation
protocol to establish an n-bit secret key exchange for a signature γ = (a, b; e).
We thus close the open problem above.

2 Preliminaries

In this section, we define some terms, and describe the transformation proto-
col [3] given by Fischer and Wright. Fix a signature γ = (a, b; e) with a, b ≥ 1,
and let δ = (Ha, Hb;He) be a random deal having the signature γ.

A subset S ⊆ ∆ of the deck ∆ is called an (s, i, j)-portion relative to δ if
s = |S|, i, j ≥ 1, and S contains exactly i cards from Alice’s hand Ha, exactly
j cards from Bob’s hand Hb and exactly s − i − j cards from Eve’s hand He.
We often omit the phrase “relative to δ” if it is clear from the context. An
(s, i, j)-portion S is said to be complete if s = i + j, i.e. Eve has no card in S.
Furthermore, an (s, i, j)-portion S is said to be partial if s > i+ j, i.e. Eve has
at least one card in S. A portion S is said to be opaque if Eve does not know
anything about the location of the cards in S \He. Consider the case where Alice
and Bob obtain an opaque complete (s, i, j)-portion S, i.e. an opaque (i+ j, i, j)-
portion S. Since Eve has no card in S, Alice and Bob completely know the
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owners of all cards in S, but Eve knows nothing about it. Therefore, from the
portion S, Alice and Bob can share a log2

(
i+j

i

)
-bit secret key. Thus, an opaque

complete portion immediately brings Alice and Bob a secret key.
A set C of pairwise disjoint portions relative to δ is called a collection relative

to δ. We often omit the phrase “relative to δ” if it is clear from the context.
We say that a collection C = {S1, S2, · · · , Sm} is opaque if Eve does not know
anything about the location of the cards in S1 \He, S2 \He, · · · , Sm \He. If Alice
and Bob obtain an opaque collection C containing complete portions, then they
can share a secret key.

During any execution of the transformation protocol, Alice and Bob start
with the initial collection C0 = {∆}, change C0 into another collection C1, change
C1 into C2, and so on. They finally obtain an opaque terminal collection Ct. A
collection C� can be changed into another collection C�+1, 0 ≤ � ≤ t−1, by a split-
ting transformation or a combining transformation. A splitting transformation
replaces an (s, i, j)-portion in the current collection with several smaller por-
tions. A combining transformation replaces two (s, 1, 1)-portions in the current
collection with a single (s′, 1, 1)-portion for some s′ < s.

To simplify the notation, we hereafter denote by C the current collection
which Alice and Bob maintain if it is clear from the context. Alice and Bob start
with C = C0 = {∆}. We sometimes use C′ to represent a collection resulting from
the current collection C by some transformation.

We first present how to apply a splitting transformation to C, i.e. how to
split a portion S in C.

Splitting: An (s, i, j)-portion S with i + j ≥ 3 can be split so that several
smaller new portions will be acquired. If i ≥ j, then the splitting transformation
proceeds as described below. If i < j, then the roles of Alice and Bob are reversed.

1. Alice randomly partitions S into i sets S′
1, S

′
2, · · · , S′

i, each of size �s/i� or
�s/i�, such that she has exactly one card in each set, and announces the sets.

2. Bob says how many cards he has in each set announced by Alice.
3. Each set in which Bob has at least one card is acquired as a new portion.

Notice that any (s, 1, 1)-portion cannot be split. For an (s, i, j)-portion S,
we say that S is splittable if i + j ≥ 3; and S is non-splittable if i + j = 2, i.e.
i = j = 1.

Alice and Bob repeat applying a splitting transformation to C until any por-
tion in C cannot be split. Then each portion S�, 1 ≤ � ≤ m, in the current
collection C = {S1, S2, · · · , Sm} is a (|S�|, 1, 1)-portion. They next repeat ap-
plying the following combining transformation to C, i.e. repeat combining two
portions S1 and S2 having the same sizes in C.

Combining: Two (s, 1, 1)-portions S1 and S2 with s ≥ 3 can be combined so
that a new portion S′ will be acquired.

1. Alice randomly chooses an integer p ∈ {1, 2}. Let q = 3 − p.
2. Alice constructs and announces a set T consisting of her card in Sp, �s/3�−1

cards randomly chosen from Sp that are not hers, and �s/3� cards randomly
chosen from Sq that are not hers.
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3. Bob announces how many cards he has in T .
(a) If Bob has no card in T , then Alice announces the set difference Sq \ T ,

which is acquired as a new portion S′ = Sq \ T .
(b) If Bob has exactly one card in T , then T is acquired as a new portion

S′ = T .
(c) If Bob has two cards in T , then Alice announces Sp∩T , which is acquired

as a new portion S′ = Sp ∩ T .

As Alice and Bob repeat combining two portions in the current collection
C, the sizes of the portions in C become smaller. Notice that (2, 1, 1)-portions
cannot be combined. When they cannot apply a combining transformation to
C, they obtain a terminal collection C = Ct; the terminal collection Ct possibly
contains (2, 1, 1)-portions, which can be used to share a secret key.

We are now ready to give the full description of the transformation protocol.
Given a random deal δ = (Ha, Hb;He), the transformation protocol proceeds as
follows.

Transformation protocol:

1. The initial collection is C = C0 = {∆}.
2. Splitting is repeated as long as there is a splittable portion, i.e. an (s, i, j)-

portion with i+ j ≥ 3, in C: choose such a portion S in C according to any
prearranged rule, remove S from C, apply a splitting transformation to S,
and add all the new acquired portions to C.

3. Combining is repeated as long as there is a pair of (s, 1, 1)-portions with s ≥ 3
in C: choose such two portions S1 and S2 in C according to any prearranged
rule, remove both S1 and S2 from C, apply a combining transformation to
S1 and S2, and add the new acquired portion to C.

4. From the terminal collection C = Ct, Alice and Bob share an n-bit secret
key, where n is the number of (2, 1, 1)-portions in Ct.

We now describe the definitions of the “potential function” φ and the constant
W [3]. Let c = log3/2 2. The potential function φ(s, i, j) is recursively defined as
follows:

φ(s, i, j) =






2 if s = 2 and i = j = 1;
(s− 2)−c if s ≥ 3 and i = j = 1;
jφ(�s/i�, 1, 1) if i ≥ j and i ≥ 2; and
φ(s, j, i) if i < j.

The constant W is defined as W =
∑∞

s=3(s−2)−c. (One can show that 2.0356 <
W < 2.0358 [3].) Using φ and W , we present the sufficient condition given by
Fischer and Wright as in the following Theorem 1.

Theorem 1 ([3]) Let n be a positive integer, and let γ = (a, b; e) be a signature
with a, b ≥ 1. If φ(a+b+e, a, b) > W +2(n−1), then the transformation protocol
establishes an n-bit secret key exchange for γ.

The condition in Theorem 1, i.e. φ(a + b + e, a, b) > W + 2(n − 1), is a
sufficient condition for the transformation protocol to establish an n-bit secret
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key exchange for γ = (a, b; e). However, it is not a necessary condition in general.
It has been an open problem to obtain a necessary and sufficient condition. This
paper closes the open problem as in the succeeding section.

3 Improved Transformation Protocol

In this section, we first slightly modify the transformation protocol, and then give
a necessary and sufficient condition for our improved transformation protocol to
establish an n-bit secret key exchange for a signature γ = (a, b; e). There are
two main ideas behind the modification. In the remainder of this paper, all
logarithms are to the base 2.

3.1 Stopping Useless Splitting Transformations

In this subsection, we explain the first improvement, i.e. stopping a “useless”
splitting transformation; the idea behind the improvement is naive.

We now explain a “useless” splitting transformation, as follows. Assume that,
during the execution of the transformation protocol, Alice and Bob obtain an
opaque complete splittable portion, say an opaque (3, 1, 2)-portion S. According
to the transformation protocol, S is eventually split into a (2, 1, 1)-portion S′

1 and
a singleton set S′

2 consisting of one card from Bob’s hand. Since the singleton set
S′

2 contains no Alice’s card, S′
2 is discarded, and hence only the (2, 1, 1)-portion

S′
1 is acquired as a new portion. Comparing the original (3, 1, 2)-portion S and

the acquired (2, 1, 1)-portion S′
1, S is preferable to S′

1, because a log 3-bit secret
key is distilled from S while only a one-bit secret key is distilled from S′

1. Thus,
it is “useless” to split S. More generally, one can immediately notice that it is
useless to split a complete portion, i.e. an (i+ j, i, j)-portion for some i and j,
which can be used to share a log

(
i+j

i

)
-bit secret key. Therefore, we never split

a complete portion in our transformation protocol. This is the idea behind the
first improvement. The full description of our transformation protocol will be
given in Section 3.3.

In the remainder of this subsection, we introduce two functions ψC and ψP,
which will be used later to describe a necessary and sufficient condition for our
transformation protocol to establish an n-bit secret key exchange for a signature
γ = (a, b; e).

We first introduce a function ψC which maps a portion S (relative to a deal δ)
to a nonnegative real number. (Strictly speaking, the variable of the function ψC

should be a pair (S, δ) instead of S, but we write simply ψC(S).) The function
ψC is called the completely potential function. Intuitively, it means that a ψC(S)-
bit secret key can be distilled directly from a portion S. Remember that, from
a complete portion, namely an (i + j, i, j)-portion, Alice and Bob can share
a log

(
i+j

i

)
-bit secret key. Hence, we define the completely potential function

ψC(S) = ψC(s, i, j) for an (s, i, j)-portion S as follows:

ψC(s, i, j) =
{

log
(
i+j

i

)
if s = i+ j;

0 otherwise.
(1)
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We next introduce a function ψP which maps a portion S (relative to a
deal δ) to a nonnegative real number. The function ψP is called the partially
potential function. Roughly speaking, whereas a ψC(S)-bit secret key can always
be distilled directly from a portion S, a ψP(S)-bit secret key may be distilled
from S by splitting and/or combining.

We first define the partially potential function ψP(S) = ψP(s, i, j) for a com-
plete portion S, i.e. an (s, i, j)-portion S with s = i+ j. Since such a portion S
is never split and never combined, we define

ψP(s, i, j) = 0 if s = i+ j. (2)

We then define ψP for a partial portion S, i.e. an (s, i, j)-portion S with
s > i + j. We will define ψP for a partial non-splittable portion S in the suc-
ceeding subsection; thus, we now consider a partial splittable portion S, i.e. an
(s, i, j)-portion S such that s > i+j ≥ 3. Note that such a portion S will be split.
We recursively set ψP(S) to be the summation of ψP(S′

1), ψP(S′
2), · · · , ψP(S′

m),
where S′

1, S
′
2, · · · , S′

m are the portions acquired by some particular splitting trans-
formation, called the “worst” splitting. Assume for the moment that i ≥ j, i.e.
Alice does not have fewer cards in S than Bob. Furthermore, assume that Alice
does not have more cards in S than Eve, i.e. s − (i + j) ≥ i, or s ≥ 2i + j. As
the “worst” splitting, we consider the case where Alice would split the portion
S into i subportions so that Bob has exactly one card in every S′

�, 1 ≤ � ≤ j.
One may assume that S′

1, S
′
2, · · · , S′

i are sorted in non-increasing order of their
cardinalities. Note, in this case, that each of the acquired portions S′

1, S
′
2, · · · , S′

j

is either a (�s/i�, 1, 1)-portion or a (�s/i�, 1, 1)-portion. Note, furthermore, that
each of the first j subportions S′

1, S
′
2, · · · , S′

j is a partial portion, i.e. |S′
�| ≥ 3

for every �, 1 ≤ � ≤ j, because Eve has i or more cards. We now count the
numbers of (�s/i�, 1, 1)-portions and (�s/i�, 1, 1)-portions. Let r be the remain-
der when dividing s by i, that is, let r = s mod i. If r = 0, then there are
exactly j (s/i, 1, 1)-portions. If 1 ≤ r < j, then there are exactly r (�s/i�, 1, 1)-
portions and exactly j − r (�s/i�, 1, 1)-portions. If j ≤ r, then there are exactly
j (�s/i�, 1, 1)-portions. Thus, for an (s, i, j)-portion S such that s > i + j ≥ 3,
i ≥ j and s ≥ 2i+ j, we define

ψP(s, i, j) =






jψP(s/i, 1, 1) if r = 0;
rψP(�s/i�, 1, 1) + (j − r)ψP(�s/i�, 1, 1) if 1 ≤ r < j;
jψP(�s/i�, 1, 1) if j ≤ r,

(3)

where r = s mod i. Next assume that Alice has more cards than Eve, i.e. s −
(i+ j) < i, or s < 2i+ j. Then, at least one (2, 1, 1)-portion is always produced,
and hence, for an (s, i, j)-portion S such that s > i+ j ≥ 3, i ≥ j and s < 2i+ j,
we define

ψP(s, i, j) = 1 if s > i+ j ≥ 3, i ≥ j and s < 2i+ j. (4)

For the case of i < j, we define

ψP(s, i, j) = ψP(s, j, i) if s > i+ j ≥ 3 and i < j. (5)
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3.2 Combining with Dummy Cards

In this subsection, we explain the second improvement; we introduce an oper-
ation called “combining with dummy cards,” whereby Alice and Bob can effi-
ciently utilize “unused” portions.

We first explain an unused portion. Consider the case where Alice and Bob
obtain a terminal collection Ct = {S1, S2, · · · , Sm} when the transformation pro-
tocol terminates. There is no pair of portions Sg and S� in Ct with sg = s� ≥ 3. If
all the m portions in Ct are (2, 1, 1)-portions, then Alice and Bob share an m-bit
secret key, and hence there is no “unused” portion. However, if Ct contains an
(s, 1, 1)-portion with s ≥ 3, then such a portion is not used to share a secret key,
and hence it is unused.

In order to utilize unused portions, we need to combine two portions of
different sizes. For this purpose, we add “dummy” cards to the smaller portion.
For example, consider a (6, 1, 1)-portion S1 and a (5, 1, 1)-portion S2. We add
one dummy card x to the portion S2 so that the resulting portion U2 = S2 ∪{x}
has the same size as S1. The dummy card x is chosen not in S1 ∪ S2. Alice
and Bob regard the dummy card x as Eve’s card. Then, we apply to S1 and U2

a combining transformation described in Section 2. Let U ′ be the new portion
acquired by combining. If U ′ has the dummy card x, then remove it from U ′.
That is, let S′ = U ′ \ {x}, which is acquired as a new portion. In this way,
one can combine two portions of different sizes. We thus obtain the following
operation, called combining with dummy cards.

Combining with dummy cards: An (s1, 1, 1)-portion S1 and an (s2, 1, 1)-
portion S2 with s1 ≥ s2 ≥ 3 can be combined so that a new portion S′ will be
acquired, as follows.

1. Let D be any set of dummy cards such that |D| = s1−s2 and D∩(S1∪S2) =
∅. All the dummy cards in D are added to S2, that is, let U1 = S1 and
U2 = S2 ∪D. Note that D is an empty set if s1 = s2.

2. Alice randomly chooses an integer p ∈ {1, 2}. Let q = 3 − p.
3. Alice constructs and announces a set T consisting of her card in Up, �s1/3�−1

cards randomly chosen from Up that are not hers, and �s1/3� cards randomly
chosen from Uq that are not hers.

4. Bob announces how many cards he has in T .
(a) If Bob has no cards in T , then Alice announces the set difference Uq \ T

and let U ′ = Uq \ T .
(b) If Bob has exactly one card in T , then let U ′ = T .
(c) If Bob has two cards in T , then Alice announces Up ∩ T and let U ′ =

Up ∩ T .
5. If U ′ has dummy cards, then remove them from U ′, i.e. let S′ = U ′ \D. Alice

and Bob acquire S′ as a new portion.

When an (s1, 1, 1)-portion S1 and an (s2, 1, 1)-portion S2 such that s1 ≥
s2 are combined with dummy cards, the acquired portion S′ has size at most
�2s1/3�; in particular, if Alice chooses p = 2 in step 2 and Bob has no card in T
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announced by Alice, then the acquired portion S′ = (U1\T )\D = S1\T contains
no dummy card, and hence |S′| = �2s1/3�. Thus, in the “worst” combining, the
acquired portion S′ always has the size of exactly �2s1/3�.

Since we have not defined ψP for a partial non-splittable portion, i.e. an
(s, i, j)-portion with s > i + j = 2, we complete the definition of ψP in the
remainder of this subsection. That is, we define ψP(s, 1, 1) for s ≥ 3. Note that,
by combining, two (3, 1, 1)-portions become a (2, 1, 1)-portion which yields a one-
bit secret key, and that two (s, 1, 1)-portions with s ≥ 4 become a (�2s/3�, 1, 1)-
portion in the “worst” case. Thus, we recursively define

{
ψP(3, 1, 1) = 1/2; and
ψP(s, 1, 1) = 1

2 ψP(�2s/3�, 1, 1) if s ≥ 4. (6)

Notice that ψP(s, 1, 1) is monotonically decreasing in s for all integers s ≥ 3.
We have thus completed the definition of ψP. In our transformation protocol
whose full description will appear in the succeeding subsection, we combine
an (s1, 1, 1)-portion S1 and an (s2, 1, 1)-portion S2 with dummy cards only if
ψP(S1) = ψP(S2); otherwise, the “partially potential” may decrease; for exam-
ple, if a (3, 1, 1)-portion S1 and a (4, 1, 1)-portion S2 were combined, then a
(3, 1, 1)-portion S′ would be obtained in the “worst” case, and hence the “par-
tially potential” decreases by 1/22.

3.3 Our Protocol and Results

We generalize a key set protocol [2, 5] to a “multiple key sets protocol,” whose
definition is omitted in this extended abstract due to page limitation. As ex-
plained in Sections 3.1 and 3.2, we modify the transformation protocol and
obtain the following improved transformation protocol. Given a random deal δ,
the improved transformation protocol proceeds as follows.

Improved transformation protocol:

1. If the signature γ = (a, b; e) of δ satisfies 0 < e < max{a, b}, then the
multiple key sets protocol is executed so that Alice and Bob share at least
a min{a, b, �(a+ b− e)/2�}-bit secret key, and the improved transformation
protocol terminates. If e = 0 or e ≥ max{a, b}, then go to step 2.

2. The initial collection is C = C0 = {∆}.
3. Splitting is repeated as long as C contains a partial splittable portion, i.e. an

(s, i, j)-portion with s > i + j ≥ 3: choose such a portion S in C according
to any prearranged rule, remove S from C, apply a splitting transformation
to S, and add all the new acquired portions to C.

4. The operation of the combining with dummy cards is repeated as long as
there are two portions S1 and S2 in C such that S1 is an (s1, 1, 1)-portion,
S2 is an (s2, 1, 1)-portion, s1 ≥ s2 ≥ 3, and ψP(S1) = ψP(S2): choose such
two portions S1 and S2 in C according to any prearranged rule, remove both
S1 and S2 from C, apply a combining transformation with dummy cards to
S1 and S2, and add the new acquired portion to C.
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5. Alice and Bob share a
∑

S∈Ct
ψC(S)-bit secret key from the terminal collec-

tion C = Ct, and the improved transformation protocol terminates.

In step 1, we use the multiple key sets protocol because this protocol is effective
when a signature γ = (a, b; e) satisfies 0 < e < max{a, b}.

We now give the definition of our potential function ψ which maps a collection
C to a nonnegative real number as follows:

ψ(C) =
∑

S∈C
ψC(S) +

⌊
∑

S∈C
ψP(S)

⌋

. (7)

(We takes the floor in the second term of the right hand side, because a set of
partial portions is transformed into several (2, 1, 1)-portions, each of which yields
a one-bit secret key.) We write ψ(a+ b + e, a, b) instead of ψ(C0) if C0 = {∆} is
a singleton collection relative to a deal δ having a signature γ = (a, b; e).

Considering the case where the multiple key sets protocol runs, we define a
function Ψ(a, b; e) for a signature γ = (a, b; e) with a, b ≥ 1, as follows:

Ψ(a, b; e) =
{

min{a, b, �(a+ b− e)/2�} if 0 < e < max{a, b};
ψ(a+ b+ e, a, b) otherwise. (8)

We have the following Theorem 2 as our main result. We omit a proof of
Theorem 2 due to the page limitation.

Theorem 2 Let n = logm for an integer m ≥ 2, and let γ = (a, b; e) be a
signature with a, b ≥ 1. Then the improved transformation protocol establishes
an n-bit secret key exchange for γ if and only if Ψ(a, b; e) ≥ n.

4 Conclusions

The transformation protocol can efficiently make players share a perfect secret
key using a random deal of cards. A sufficient condition for the transformation
protocol to establish an n-bit secret key exchange was known. However, it has
been an open problem to obtain a necessary and sufficient condition. This pa-
per improves the transformation protocol, and gives a necessary and sufficient
condition for the improved transformation protocol to establish an n-bit secret
key exchange as in Theorem 2. Our improved transformation protocol is entirely
superior to the original transformation protocol. Thus, Theorem 2 closes the
open problem above.

Fischer and Wright [3, 5] proposed a method for reducing the problem of a
multiparty n-bit secret key exchange to the problem of a 2-party n-bit secret
key exchange. Hence, using this method, one can easily extend our protocol so
that it performs a k-party n-bit secret key exchange with k ≥ 3.

This paper addresses only the transformation protocol. Therefore, it still re-
mains open to obtain a necessary and sufficient condition for any (not necessarily
transformation) protocol to establish an n-bit secret key exchange for a signature
γ [4, 14].
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