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ABSTRACT

Let r,m,a and a; be integers with » > 0,m > 0,¢ > 0 and a; > 0 for
1 <7 <m. Let A be an r-coloring of N. Hilbert’s Cube Lemma. guarantees that

m
there exists a monochromatic m-cube of the form Qn(a, a1, ..., @m) = {a+ I €a; :
=1

€; = 0 or 1}. Three different proofs of this lemma are given.

Hilbert Cube Lemma can be generalized in two different aspects. First, we
can give a criterion where to look for a monochromatic m-cube. Szemerédi’s Cube
Lemma gives that criterion. Secondly, we can give more information about the
m-cube. This was done by Schur. Schur’s Theorem guarantees the existence of a
monochromatic set of the form Q2(0, a1, a2)\{0} in every finite coloring of [1, N]
if N is big enough.

Schur’s result can be extended by replacing Q2(0, a1, a2)\ {0} with @ (0, a4, ...
»am)\{0}, where m is finite and a; # a; for ¢ # j. This is called the Rado-
Sanders-Folkman’s Theorem or simply Folkman’s Theorem. Folkman’s Theorem
states that for any finite coloring of N there exists an arbitrarily large finite
sets S = {ai,...,ax} of positive integers such that {ZI a; : 0 # I C [Lk]}
is monochromatic. The finite form for Folkman’s Thegrem is: For all positive
integers and k there is M = M(, k) such that for every -c oloring of [1, M]

k
there exist distinct ay, ..., ax € [1, M] with all a; are distinct such that 3 a; < M
=1
and {ZI a; : @ # I C [1,k]} is monochromatic.
ic

The Finite Unions Theorem, an analogue to Folkman’s Theorem, is also stud-
ied. In its finite form, the Finite Unions Theorem guarantees that for all positive
integers and k there exists F' = F(, k) such that for any n > F, if P,, the
set of all non-empty subsets of [1,n], is - colored then there is a pairwise disjoint
collection D C P, with | D |= k such that FU (D), the set of all unions of elements
of D, is monochromatic.

Then, we give upper bounds for M and F, where M and F are as in Folkman’s
Theorem and the Finite Unions Theorem respectively.

Finally, we prove Hindman’s Theorem that guarantees the existence of a mono-
chromatic ‘infinite cube’ in every finite coloring of N. We also prove this theorem
by using methods of Topological Dynamics.
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Chapter 1
INTRODUCTION

Ramsey Theory is a part of Discrete Mathematics that has its root in the works of
D. Hilbert (1892}, I. Schur (1916), B.L. van der Waerden (1927) and F.P. Ramsey
(1930). These four results were established for different reasons, not being aware
of each other. In the thirties, R. Rado unified and extended the results of Hilbert,
Schur and van der Waerden and since that time many mathematicians, led by the
great P. Erdés, have been involved in the development of Ramsey Theory.

In this thesis two aspects of the generalization of the earliest result from above
will be studied.

Hilbert’s Cube Lemma guarantees that for any finite coloring of N and for
any m € N there exists a monochromatic structure that we call an ‘m-cube’ of

the form
Qm(a,a ,...;am) = {a+ Z €a; €, =0o0r 1,1 <7< m}.

In Chapter 2 we give three different proofs of Hilbert’s Cube Lemma. In this chap-
ter we also discuss Szemerédi’s Cube Lemma. This lemma generalizes Hilbert’s
statement. It tells us where to look for a monochromatic ‘m-cube’.

Another way to generalize Hilbert’s Cube Lemma is to give more information
about the ‘m-cube’.

In Chapter 3 we discuss Schur’s Theorem. Schur’s Theorem guarantees that
for any 7 € N there exists n € N so that for any r-coloring of [1,n] there is a
monochromatic set of the form @ (0,a ,a )\{0}. In this chapter, two problems
related to Schur’s Theorem are discussed in detail.

In Chapter 4 we go one step further. In this chapter we give two different
ways to prove the fact that for any finite coloring of N and for any m € N there
is a monochromatic set of the form Q,,(0,a ,...,an)\{0} such that all the a;’s
are different. This statement is known as the Rado-Sanders-Folkman Theorem or
simply Folkman’s Theorem.

In Set Theory there is an analogue to Folkman’s Theorem. It is called the
Finite Unions Theorem. In Chapter 5 we give that analogy. Also, we prove the
Finite Unions Theorem independently.

Both Folkman’s Theorem and the Finite Unions Theorem have their finite
forms, i.e., both of them can be stated in the form where the phrase ”...for any
finite coloring of N..." is replaced by the phrase ”...for any 7 € N thereisn € N
such that for any r-coloring of [1,n]...".

1



CHAPTER 1. INTRODUCTION 2

In Chapter 6 we discuss the upper bound for such n in both Folkman’s The-
orem and the Finite Unions Theorem.
As a result of our discussion in Chapter 4, Chap;:er 5 and Chag)ter 6, we have

the following fact. Let m,r € N and let n > ¥ |, where r*”  is a tower of
height 2r(m — 1). Then for any r-coloring of [1,2"] there is a monochromatic set
of the form Q(0, ay, ---, @)\ {0} such that all the a;’s are different.

Our last step is to prove Hindman’s Theorem. Hindman’s Theorem guaran-
tees the existence of a monochromatic structure that we call an ‘infinite cube’ of
the form Q(0,a1,as,...) = {3 @; : F C N and 1 <| F |< oo}. We give two

ieF
different proofs of this fact. In Chapter 7 we give a proof due to Baumgartner
and in Chapter 8 we give a proof of Hindman’s Theorem by using the methods of
Topological Dynamics. Also, in Chapter 8 we prove van der Waerden’s Theorem
by using Topological Dynamics.

This thesis has two objectives. The first objective is to point out the steps
in the development of Hilbert’s result. Secondly, detailed proofs of the results
mentioned before are given.

Generally, this thesis follows the book ”Ramsey Theory” by R. Graham, B.
Rothchild and J. Spencer [16]. Some relatively new papers related to the first
objective are also presented.

In this introduction we provide some background material such as notations,
definitions and theorems which will be used in the next chapters.

1.1 Notations and Definitions.

e In this thesis, N denotes the set of natural numbers, Z denotes the set of
integers, Q denotes the set of rational numbers, and R denotes the set of
real numbers.

o If m,n € N with m < n, then [m,n] denotes {t € N : m < i < n}.
e If n € N then Z" denotes {(z1, ..., Zn) : z; € Z}.

e If p is a prime number then the set of non-zero integers modulo p is denoted

by Z5 = {1,..,p— 1}.

e If X is a set then we define | X | to be the number of elements of X for
finite sets X and we write | X |= oo if X is an infinite set. The notation
| X |< oo indicates that X is a finite set.

e If X is a set and m € N then we define P(X) to be theset {Y : 0 #Y C
X and | Y |< oo} and we define [X]™ to be the set {Y : ¥ C X and
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| Y |=m}. For convenience we write P([1,n]) as P,, and [[L,n]]™ as [1,n]™,
for every n € N.

e If X is a subset of N then we define P(X) to betheset {>_ z: F € P(X)}.
zeF

e For integers m,a,q; withm > 1,a > 0 and a; > 1, 1 < 7 < m, we define
m
the m-cube Qm(a,a,,...,an) to be the set {a+ ) €a; : ¢ = 0 or 1 for
=1
1<i< m}.

e If S is a set and 7 is a natural number then an r-coloring of S is a function
from S into [1,7]. If A is an r-coloring of S and T' C S, then we say that T
is A-monochromatic or simply monochromatic if A(z) is constant for z € T.

e If £k € N, then an arithmetic progression of length k is a set of the form
{a+id:0<i<k-1} witha,d € N.

1.2 Background Theorems

We introduce two background theorems where the proof of each theorem can
be found in [16].

Theorem 1.1 (Van der Waerden, 1927) Let c,k € N. Then there ezists a
positive integer W = W(c, k) with the property: If n > W and [L,n] is c-colored
then [1,n] contains a monochromatic arithmetic progression of length k.

Theorem 1.2 (Ramsey, 1930) Let ¢,k,s € N. Then there exists a positive
integer R = R(c, k,s) with the property: If n > R and [1,n}|* is c-colored then
there ezists a set X € [1,n]* such that [X]F is monochromatic.

We say that R(c,k,s) is a Ramsey number. If & = 2 we write R(c, 2, s) as
R(c,s).

(Theorem 1.1 will be used in the proofs of Lemma 4.1 and lemma 4.2. Theorem
1.2 will be used in the proofs of Theorem 3.1, Theorem 3.2, and Theorem 5.1.)



Chapter 2
HILBERT’S CUBE LEMMA

In this chapter we will discuss Hilbert’s Cube Lemma. Besides the pigeon hole
principle, this lemma can be considered as the earliest partition theorem. This
lemma was established in 1892 in connection with Hilbert’s investigation of the
irreducibility of rational functions.

Definition 2.1 Let m,a,q; be integers with a>0,m>1,a; > 1,1 <i<m. We
define the m-cube Qn(a,ay, ...,a,) to be the set

{a—{-Ze, re=00r1,1<i<m}.

For example, the 2-cube Q»(a, a1, az) is the set {a,a +a;,a+az,a+a; +as}-

Definition 2.2 Let n,r be positive integers. An r-coloring of [1,n] is a function
from [1,n] into (1,7]. If

A:[l,n] — [1,r7]
is an r-coloring of [1,n] and A C [1,n], then A is monochromatic if there erists
i € [1,7] such that A(z) =i for every = € A.
Theorem 2.1 (Hilbert’s Cube Lemma) Let m,r be positive integers. Then

there exists a positive integer n = H(m,r) such that for every r-coloring of [1,n]
there is a monochromatic m-cube

m
Qm(a.ai, ..., am) ={a+Zeiaf:e.-=00r L1<i<m}
t=1

contained in [1,n].
We will give three different proofs, each of which illustrates a different tech-
nique. Proof 1 is Hilbert’s original proof. Proof 2 proves a density version of

Hilbert’s Cube Lemma. This density version is often called Szemerédi’s Cube
Lemma. Proof 3 is somewhat similar to proof 2.

Proof 1 (Hilbert, 1892). We want to find n = h,, such that if [1,h,,] is
r-colored (r is fixed), there is a monochromatic m-cube contained in [1, hp,].

We will make use of the Fibonacci sequence { F,, }nen which is defined by Fy =
0,F1 =land Foyp = F 1 +F,, n > 0. This sequence starts off 0, 1, 1, 2, 3, 5, 8, 13,
..So0that Fo =1,F; =3, Fs =8,... .
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Form =1, a 1-cube is {a,a +a;}, i.e., a two-element set. Clearly, if [1,r + 1]
is r-colored then there are at least two elements with the same color. In other
words, there is a monochromatic 1-cube. Therefore h; < 7+ 1.

1 2 3 r+1

- . . r
& & ¢ - - - 2
~. Same color

Furthermore, since there are r different values for a; and r different colors
then there are r? different types of 1-cubes possibly occurring in an r-coloring of
[1,7 + 1]. Hence, if 72 + 1 consecutive blocks each of length r + 1 are r-colored,
there are at least two blocks, where each of these blocks has a monochromatic
1-cube of the same type.

1 2 r  r+l 1 2 T T+1
o & - - - ¢ A6 & - - - 0
block 1 block 2
N
two similar blocks
1 2 r ™1 1 2 r r+1
A A - - - & A
block r2 block r2+1

Consider that the union of these two 1-cubes forms a monochromatic 2-cube.
Hence, hy < (r+ 1)(r?2+ 1) < (7 + 1)%. Now, since there are r different colors, r
possible values of a; and at most (r+1)(r2+1) —2 possible values of a;, then there
are at most r-r-((r+1)(r?+1)—2) < (r+1)° different types of 2-cubes. Therefore
if (r + 1)° consecutive blocks each of length (r + 1)(r2 + 1) are r-colored, there
are at least two blocks where each of these blocks has a monochromatic 2—cube
of the same type. Again, the union of these two 2-cubes forms a monochromatic
3-cube. Hence, h3 < (r+1)(r2+1)(r + 1)3 < (r + 1)2. Since there are r different
colors, r possible values of a;, at most (r + 1)(r2 + 1) — 2 possible values of as,
at most (r + 1)(r2 + 1)(r + 1)° — 3 possible values of a3, then there are at most
ror-((r+ D)2+ 1) = 2)((r+ D)2+ 1)(r + 1)% — 3) < (r + 1)'3 different types
of 3-cubes which can occur.

Continuing the process we have

m hm # types which can occur
1 (r+ 1)} < (r+1)°

2 (r+1)(r*+1) < (r+1)3 < (r+1)°

Q

<(r+1)°3 < (r+1)%
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We will show by induction that &,, < (r+ 1), and that when [1, (r +1)7]
is r-colored, there is a monochromatic m-cube of one of less than (r + 1)Fm+:
different types.

We have seen that this is true for m = 1.

Suppose that it is true for m — 1, i.e., Ap_1; < (7 + 1)%2m-1 and there are less
than (r + 1)%2m-n+1 = (r 4 1)P2m—1 different types of (m — 1)-cubes. Therefore if
(r + 1)Fem-1 consecutive blocks each of length (r + 1)¥2t=-1 are r-colored, there
are at least two blocks where each of these blocks has a monochromatic (m — 1)-
cube of the same type. Again, the union of these two (m — 1)-cubes forms a
monochromatic m-cube, hence h,, < (r+1)F2tm-v . (r+ 1)F2m-1 = (r +1)P2= | and
there are less than (r + 1)2m+ different types of m-cubes.

Proof 2. Fix m and r and pick n such that n > 3(3r)®". Let A C [1,n] with

n

| A|> 2. There are at least 2: elements of the form b — a, with a,b € 4

and a < b, each of which is in [1,n]. Therefore some difference occurs at least
; -1/n > 3—:; times. Leta; = y; —z;,1 <1 < 3%;, T,y € A with z; < ;.
Let Ay ={a€A:a;+a € A}. Then| A, |> 355 -
Now, for 1 < k<m,let s =; (3r)2k_1, then 3s* = 1 (3r)2k . Then,

1/ 2 1 1 n n 1 n 1 1
— S — — e — a — . —_— =—---——~>—.
n(2> 1) 2 -

- I3 - - k
since 1- % > L orn > 3s, which is truesince n > 1 (3r)*" and s = 1 (3r)* ,k <
m.

Therefore,

forl1 <k <m.
By taking k£ =1, we get

=
N
NETH
N’
3
S

> = s
- %(37')2 3r?
and from this we get

a1€l,n], Ai={a€ A: a1+a€A}|A1|_1(3)

Starting with A;, by the same argument we get
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n

age[l,n], A2={a€A1:a2+aeA1},|A2|2 5% -
1 (37)

Since a; + A; € A then €a; + A; C A, where € = 0 or 1. Similarly, since
ap + Az C A, then e;ar + Ay C A;, where €2 =0 or 1 50 €;a; + €2a2 + Ay C A, for
€,60=00r 1.

By continuing this process we get

ai, ..., @m € [1,7]
with
€1a;+ ... +€nam +ARC A
and

T2 1L
3 (37‘)

| Am |2
Since | A, |[> 1 we can find an a € A,, such that {a+ i €xar - € = 0 or

k=1
1}CAN

Let us observe that Proof 2 indeed proves the claim of Hilbert’s Cube Lemma.
Let N=CjU...UC, with C;NC; =0 for i 5 j, and let forn € N and i € [1,7]

cM =cin (1,7

Clearly,
[1,7] =__Ej1 c™.

If for all i € [1, 7]
|c )<=

then
n= Z |c™ < n.

Thus, there is i € [1,7] with

I "'(.")‘ | - .”'. .
i Mo = .
T

In other words, for any r-coloring of {1, n] there are at least 2 elements of the
same color and Proof 2 shows that there is an m-cube in that color, if n is large

PP |
e lea-.
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This leads us to the following important statement, known as Szemerédi’s
Cube Lemma. Szemerédi's Cube Lemma was a. part of Szemerédi’s proof of Roth’s
Theorem.

In 1936 P. Erd&s and P. Turdn gave the following question.

If A C N is a set such that

i sup A0 L]

n—oo n

> 0,

does A contain arbitrarily long arithmetic progressions? In 1952, K. F. Roth
proved that A must contain at least an arithmetic progression of length three.
Using the statement that now we call Szemerédi’s Cube Lemma, in 1969, Sze-
merédi gave a different proof of Roth’s result and showed that if A is as above
then A must contain at least an arithmetic progression of length four. In 1972,
Szemerédi gave a positive answer to the Erdés-Turdn question.

Corollary 2.1 (Szemerédi’s Cube Lemma) Let ¢ be fixed, 0 < ¢ < 1. Let
n > (%)2 Let A C [1,n] with | A |> cn. Then A contains an m-cube, for
m 2> loglogn — C, where C is a constant depending only on c.

Proof. Given a positive integer n and 0 < ¢ < 1. We can find an integer m such

that
2m
&) =<0
c c

Pick a positive integer r such that 7 < % . From the first inequality we have
A\ _1/3\" 1, g
> | - >~ - > - .
»2(3) =3(2) =500

|A[>cn_>_-7-)'-.
T

2m+1

Moreover,

From Proof 2, A contains an m-cube. Taking the logarithms of the above
inequalities we have:

2™ log % <logn < 2™ log %

3
= mlog2+loglog-2 < loglogn < (m + 1) log2 + loglog p

The second inequality gives:
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loglogn log log 3

log 2 Tog 2 —1>loglogn —-C. B

Proof 3. Let n be a fixed positive integer and for each positive integer d, let
ty=4n""2 . Let A C [1,n] with | A |> t;. It will be shown that there exist

d
a,ay,...,aq € [1,n] with Qq4(a,a1,...,a5) ={a+ Y €a;: ¢, =0o0r 1} C A.
i=1

For d = 1, we have t; = 4n/2. Since a 1-cube is a two element set, we need
just 4n'/2 > 2, which is true since n > 1.

Let d > 2 and assume the result is true for d — 1. Let A = {a, ...,a:} C [1, 7]
with | A [=¢ > t,.

Consider that

t t ta(ta ~1) _ t2 _2 1
(2)>(2d)=—-———2———-22d=4712 §3=n.4n1 21__1=td_1.'n,

Since | A |=t < n, at least £4_; of the different a; — a;, ¢ > j, are equal, say

{ai, —aj 1<k <ty } = {w}

Let A ={a;, : 1 < k <ty_.}. Since| A’ |=t4_;, by the induction hypothesis,
there exist a,ay,...,aq—1 € [1, 'n] with Qt_]_(a., ay, ..., at—l) Q A

But, if z € A’ then =z +w € A. Hence, Q(a,ay, -..,az—1,w) C A'.

Now let 0 < ¢ < 1 be given and d be the largest integer with

 loglogn —loglog (¢)
- log 2

?

then t; < cn, if we take tg = anl3d
Thus we have shown that if ¢ is given, 0 < c < 1, and A C [1,n], | 4[> cn,

an
loglog n—loglog( 4 i
q< e ognlogo; og(2) , then | A [> t4, s0 A contains a d-cube. &




Chapter 3
SCHUR’S THEOREM

Our goal now is to prove a strengthened form of Hilbert’s Cube Lemma. Recall
that Hilbert’s Cube Lemma guarantees that for any m € N and any finite coloring
of N there are a non-negative integer ag and positive integers ay, ..., a, such that
Qm(ao,ay, ..., am) 1s monochromatic. Two natural questions are:

1. Can we say anything about ag?

2. Can we choose aq, ay, -.., @y in such a way that a; # a; if ¢ 3 57

The answers to both of these questions are: yes, we can. Actually, in the
next chapter we will see that for any m € N and any finite coloring of N we
can find arbitrarily many monochromatic sets Qm(0, a1, -.., am)\{0} with a; # a;
for 7 # j. This statement follows from the result proved independently by Rado
(1969), Sanders (1969) and Folkman (1970).

In this chapter we discuss Schur’s Theorem, the first result that partially
answered the first question above. Schur’s Theorem guarantees that for any finite
coloring of N there exists a monochromatic set of the form Q»(0, a;, a2)\{0}-

Let us note that Schur’s original paper from 1916 was motivated by the famous
Fermat’s Last Theorem. Some authors (see [16], Ch.3) consider Schur’s Theorem
as the earliest result in Ramsey Theory.

Theorem 3.1 (Schur’s Theorem, 1916) For all > 1 there ezists n =n(r) €
N such that for every r-coloring

A :[1,n] — [1,7],

there ezist z,y,z +y € [1,n] such that {z,y,z + y} is monochromatic.

Proof. To prove this theorem we apply Ramsey’s Theorem. Let N be the
Ramsey number R(r,3), i.e., the minimal n such that for every r-coloring of
[1,n]* ={A C[1,n] : | A |= 2} there exists a set T C [1,n] with | T |= 3 so that
[T]?={B C T :| B |= 2} is monochromatic. Let

A:[1,N-1] — [1,7]

be an r-coloring of [1, N — 1]. This coloring will induce an r-coloring A* of the
edges of the complete graph K on the vertex set {0,1,...,N — 1} by

A =A(i-F 1), i# 7

10



CHAPTER 3. SCHUR’S THEOREM 11

By the definition of IV, Ky must contain a triangle with the vertices {z, 7, k}
with A*({Z,7}) = A ({7, k}) = A*({j,k}). Without lost of generality we can
assume ¢ > j > k. Let

zc=i—jandy=1t—k.
Then
Az) =Ay) = Az +y).®

We note that Hilbert’s Cube Lemma only gives a monochromatic set {a +
z,a+y,a+  + y}. Also, Hilbert’'s Cube Lemma is a density result, but Schur’s
Theorem is not (take the odd integers).

Until here we only prove the existence of n. An illustration below shows how
to get more information about the number n.

I . Let =5 and take ng > 327. Let
A :[1,n] — [1,5]

be a 5-coloring of [1, np] with no monochromatic z,y,z+y. Let ¢; < 5 be the most
frequently occurring color in [1,ng], and let zo < z; < ... < Z,,—1 have color i;.
Let Ny = {z; —z9,1 < i < ny; —1}. Then N; misses color i; (otherwise z; — o, Zo
and (z; — zo) + zo have color %), and n, > % or ng < 5n; (or m; > 66). Now let
i be the most frequently occurring color in N7 and let

A_l(iZ) N Nl = {yO <y <Yy<..< ynz—l}'
Let
No={yi—yp:1<i<n,—1}.

Then N, misses i; and %;. Also ny > 221 or n; < 4ny + 1 (or np > 17). Now
let 73 be the most frequent color in N, and let

A—'l(ig) NNy = {Zo < <2»pL...<L Zna—l}
Let
Ny={z—2:1<i<n3-—1}

Then,
(1) N3 misses color 3, since zp, 21, 22, ..., Zng—1 all have color 73.
(ii) N3 misses color %2, since otherwise
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z — 20 = (Yr — Yo) — (¥5 — Yo) = Y& — y; has color 5.
(iii) N3 misses color %1, since otherwise

z — 20 = Yr — Y;j = (Ta — Za) — (Tp — To) = To — Zp has color i,.
Also n3 > 222 or ny < 3n3 + 1 (or n3 > 6).
Let 74 = most frequent color in N3 and let

A_l(i4) M N3 = {’LUO <wp<w <..< w,,‘_l}.
Let
N4={wi—wo:l_<_i§n4—l}

Then, ny > 222 or ng < 2n4 + 1 (or ng > 3) and N, misses colors :
- 14, Since otherwise w; — wy, Wy, w; are monochromatic.
- 13, since otherwise w; — wo = (2x — 20) — (2 — 20) = 2x — 2; has color i3, but
then z; — z;, z;, 2, are monochromatic.
- 13, since otherwise w; — wo = 2k — 2; = (Yo — Yo) — (Y8 — Yo0) = Yo — Y has color
22, but then y, — Y3, Y3, Yo are monochromatic.
- 11, since otherwise w; — wp = Yo — yp = (s — Zo) ~ (z: — zg) = = — z; has color
%3, but then =, — z¢, ,, T; are monochromatic.

Thus N4 is monochromatic in color is.

Since (ws — w;) + (wy; — wg) = (w2 — wp), and wy — wy, we — wqg have color s,
wg — w; can not have color 5. But, checking as before, w, — w; must also avoid
colors 14,1%3,%2,%;. This is impossible. Therefore there must be a monochromatic
set {x,y,:r +y} in [1177'0]'

This argument can be re-stated as follows :

Let

A : [1,n0] — [1, 5]

be a 5-coloring of [1,ng| such that there is no monochromatic set {z,y,z + y} in
[1,7m). Then by the above arguments we get

ng < dng
n1547-12+l
no <3ng +1
ng<2n4+1

‘n.,;Sl-l-i—l.
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Therefore,
n<3:-24+3-2+3+1
n<4'+4'4+4-3+1
1 1 1
ng55!+5!+5-4-3+5-4+5=5!(1+1+§T+§+E)<5!e.I

We define S(r) to be the minimum of n(r) where n(r) satisfies Schur’s Theo-
rem. One can use the method of the illustration to show that

S(r) <|rle] +1

for all r > 1.

However one can show directly that if m = [rle] + 1, then every r-coloring
of the edges of K, gives a monochromatic K3. Therefore by the proof of Schur’s
Theorem given previously one gets S(r) < [rle] + 1. We note that so far, the best
known upper bound is S(r) < rl{e — 3;).

From Schur’s theorem we can derive the following corollary.
Corollary 3.1 For all m > 1, there erists N = N(m) such that
z™ + y™ = 2™ (mod p)

always has a non-trivial sclution for each prime p > N.

Proof. Fix m > 1 and let p be a prime with p > S(m), where S(m) is as in
Theorem 3.1. Then every m-coloring of [1, p— 1] gives monochromatic u, v, w with
u+v=w. Let

Z; = {1127 3’ P 1}’

the set of non-zero integers modulo p. This forms a cyclic group under multipli-
cation modulo p. Say

Z; = {91: eeey gp—1}7
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for some g € Z;.
Let t € Z;, then t = g* and t™ = gF™, for some k with 1 < k < p — 1. Hence,

the mth powers in Z; are exactly

m ,.2m . 3m
9,9 9 -0

so these mth powers form a subgroup generated by g™. This subgroup has order

p—1
ng(mwp - 1) )
Now let
H={t":teZ}. (2)

H is a subgroup of Z; of index n = ged(m,p — 1) < m. Therefore Z; is
decomposed into cosets

t1H,t.H, ..., t, H,
where ¢; € Z3,1 < 7 < n.

Since a, b belong to the same coset if and only if ab~! € H, we see that the
cosets of Z; (relatively to H) define an n-coloring A of Z; with

A(a) = A(D) if and only if ab™! € H. (42)
Since n < m, by Schur’s Theorem there exist a, b, ¢ € [1,p — 1] with
Ala) =A(B)=A(c)anda+b=c.

From A(a) = A(b) = A(c), by (i) we have 1,a7'b and a~'c € H.
Therefore in Z; we have

ala+atb=a"lc
or
l+atb=a"lc,

with 1,a7*b and a~!c € H. By (¢), there exist z,y, 2 € Z; with 1 =z™, a7b = y™
and a"lc = z™, i.e., there exist z,y, z in [1, p— 1] such that 2™ +y™ = 2™ (modulo
p). Nl
Now, we finish this chapter with two problems related to Schur’s Theorem.
First, let
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fF:N— N

be the function defined in the following way. For » € IN, let f(r) be such that
(i). There is A : [1, f(r)] — [1,r] such that for any z,y € [1, f(r)]

Alz) = AQy) = (Al +1) £A@) or 5+ > £(r))
(ii). For any A : [1, f(r) + 1] — [1,7] there are z,y € [1, f(r) + 1] with
Afz) = A(y) = Az +y).

In other words, f(r) is the maximum of all n with the property that we can find
an r-coloring of {1, n] with no monochromatic solution to the equation z +y = =.
Theorem 3.2 For all 7 € N we have that

3 —1

< f(r) £ R(r,3) — 2.

Proof. From the proof of Schur’s Theorem we have that if [1, R(r,3) — 1] is
r-colored there is a monochromatic set {z,y,z + y}. Thus

R(r,3) — 1> f(r)
or
f(r) < R(r,3) —2.
Let n € N and let A : [1,n] — [1,7]. Let
A 1,80+ 1] — (1,7 +1]

be defined in the following way.

A(z), for z € [1, ]
Allz) =< rt+1, forz € [n+1,2n+ 1]
Az —(2n+1)), forz € 2n +2,3n + 1].

Suppose that A is such that for any z,y € [1,7],
Alz) = A(y) = (A(z +y) #A(z) or z +y > n)

and let u,v € [1,3n + 1] be such that A'(u) = A’(v) and u+v < 3n + 1.
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Clearly, there are four cases.
The first case is that u,v € [1,n] and v + v < n. Then

A(u) = Au) # Alu+v) = A'(u+v)

and we have that {u,v,u + v} is not A’-monochromatic.
The second case is that u,v € [1,n] and u+v € [n + 1,2n+1]. In this case,

A'lu) =A) €(l,r]and A'(u+v) =7 +1

and again {u,v,u + v} is not A’-monochromatic.
The third case is that u,v € [n +1,2n + 1]. Now we have that

Aw)y=Av)=r+1

and, since
u+v>2n+1, then A'(u+v) € [1,7].

Thus, {u,v,u + v} is not A’-monochromatic.
The fourth case is that v € [1,n] and v € [2n+2,3n+1]. Sinceu+v < 3n+1
we have that u +v — (2rn + 1) < n and

ANu+v)=Au+v—2n+1)) =A"(u+ (v —2n-1)).
From
Au) = A'(u) = A'(v) = A(v — 2n — 1)
it follows that
A'(u+v) £ A (u).

Hence, {u,v,u + v} is not A’-monochromatic.

Therefore, if A is such that there is no monochromatic solution for z +y = 2
in [1,n] then A’ is such that there is no monochromatic solution for z + y = z in
[1,3n + 1]. In other words, if n < f(r) then 3n + 1 < f(r + 1).

Clearly, f(1) =1 = (3! — 1). Let 7 > 2 be such that

Flr=1)> 53 - 1).
Then
fr) >3- 2o +i=tE-3+2)=lE -1
- 2 2 2

Therefore by the principle of mathematical induction we have that for all
reN
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s@ -1 < f(r).m

A Schur number is any element of the range of the function f. So far the only
known exact values of f(r) are f(1) =1, f(2) =4, f(3) = 13 and f(4) = 44. The
best bounds for f(5) are 160 < f(5) < 321. The lower bound of f(5) was proved
by G. Exoo in [8] and the upper bound was proved by E.G. Whitehead in [26].

For the second problem related to Schur’s Theorem that we discuss, let us
introduce the following notation.
For n € N let S,, be the family of non-empty subsets of [1,n] such that S € S,
if and only if
z,y€ES=>z+y¢S.

Let N=a x{| S|: S €S5,} and let
S,={5€8,:|5|=N}.
Note that for any a,b € [1,7n]
{a,b} € S,..

Thus, S, # 0 and S;; # 0.
It is easy to see that foranyn € N

O;={2k—1:ke[1,fg-]]}esn

and n
T: =[5zl +Ln] €S
Here, for a € R™,
[a] denotes in{k € Z:k > a}

and
la] denotes ax{k€Z:k <a}.
We prove the following.
Theorem 3.3 S € S; =] S |=[3].
Proof. Let S€ S andlet m = ax{z:z € S}. Let

m—2

95— [0,[72]
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be defined in the following way. For a € S and i € [0, [52]] let g(a) =i if and
only if a € {i,m — ¢}. Since

(0,m] = [0, [= 2 U5, ml
we have that

m—2

SN[0,m=(SNo,[

Musn(rzml.

Note that if m is an even number then [Z] = & ¢ S (otherwise & + & = m),
and if m is an odd number then [Z] = m - [Z52].
Therefore

5=, u(Sn{m—i:ie s )

Hence, g is well defined. Furthermore, if a,b € S are such that g(a) = g(b) =1
then {a,b} C {#,m —i}. If a # b then {a,b} = {i,m —i} and a+b=m € S. This
is not possible and therefore a = b. Thus, g is 1 — 1. This means that

1S 1=l9(8) s (P21 1= < [51

On the other hand since O} € S, and since | O}, |= [2], we have that
| S |> [§]. Therefore

|SI=T3].m

Remark 8.1 Let n = 8 and let us consider the set A = {1,4,6}. Clearly, A € Ss.
Let us note the following two facts. First, | A |=3 < [§] = 4. Secondly, for any
z € [1,8]\A, AU {z} ¢ Ss. This means that there are n such that

S, G {S€S8:5U{z} ¢ S, for all z € [1,n]\S}.
Next, we discuss the following problem.

Problem. For given n, find all elements of S%.
Theorem 3.4 Let k € N. Then

* _ * x
S2k+1 - {02k+11 2k+1J -

Proof. Clearly,
Sz ={{1,3},{2,3}} = {05, T3}
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and
S5 = {{11 3, 5}: {3:41 5}} = {Ogng}

so that the claim is true for k =1 and k = 2.
Let k£ > 3 be the smallest integer such that there exist a set S € S35, with

O S # Lors1- (%)

Then {2k,2k + 1} C S. Indeed. If 2k + 1 ¢ S then S € Sj,. This implies, by
Theorem 3.3, that

2k+1
2

E=120 =18 1= 12—k,

which is impossible. If 2k ¢ S, then
S\{2k+1} € Sae-1)+1 = Sae—1-
Since, by our choice of k,
35(1:-1)4-1 =Sk = {O'.;‘k—lyT;k—l}
in the case if 2k ¢ S we would have that
S=T5_1U{2k+1} = [k,2k —1JU {2k + 1}.

Since k > 3 we have that k41 € [k, 2k—1]. Thus, if 2k ¢ S then {k, k+1,2k+1} C
S. this contradicts the fact that § € S3;,,. Therefore {2k,2k + 1} C S. Hence,
Lk¢S

Now, let

S§'=5\{2k,2k+1}, B=[2,k-1JU[k+ 1,2k —1],

then S’ C B and
[S'|=(k+1)—2=k—1.

Let
Sl =5 nN[2,k-1]

and
Se=S5"N[k+1,2k—1].

Then we can express S’ as a disjoint union of S} and 5%, i.e.,
S'=8]US;.
If S] = 0 then §' = [k + 1,2k — 1]. It implies
S=k+1,2k+1]=T5
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which contradicts (x). If S; = 0 then S’ = S7. It implies
E—-1=S8=5IK2,k=-1]l=(k~-1)—-1=k-2.

Impossible. Therefore
§'=85US;
with
S #£0#S.
Let S; = {a1,...,ap} where2 < a; < ... < ap, < k—1. Since for 1 <7 < p, we
have a; +2k —a; =2k Sand a; +2k+1—a; =2k + 1€ S then

C={2k—~a1,2k+1—ay,....2k—ap,2k+1—a,} C[k+1,2k —1]\S,

Note that | C |> p + 1. Hence
k—1=|8|=| 8 |+]|S8|<p+{(k—1)— (p+1)} =k — 2. Impossible.
Conclusion: S5, = {0541 Tor 1} foralk e N. 1

Now, we want to find Sf if & is even. It is easy to check that

S; = {{1-' 3}, {21 3}’: {31 4}’ {1’4}} = {OE:T&:’?} U {{1’4}}:
Se ={{1,3,5},{3,4,5}, {4,5,6},{2,5,6},{1, 4, 6} = {08, T:, Tg Yu{{2,5,6}, {1,4,6}}

and

Sz ={{1,3,5,7},{4,5,6,7}. {5,6,7,8},{2,3,7,8}} = {07, 77, Tz }U{{2,3, 7,8} }

Theorem 3.5 For k£ > 5,
Sok = {T‘:k—l! O2k—1 T3}

Proof. Let k& > 5. Clearly, {T5._;, Osx_1, Tor} € Si- It is enough to show tkat
if T € S35, with 2k € T then T = T3,.. Let n > 5 be the smallest integer such that
2neT e S;.\{73.}-

Suppose that 2n —1 ¢ T. Then | T\{2n} |=n — 1 and T\{2n} € S5, _,.

ET\{2n} =T;,_; = [n —1,2n — 3|, then {n,2n} C T. This contradicts the
fact that T € &5,..

I T\{2n} = O3,_3, then {3,2n—3} C T\{2n}. This implies {3,2n—~3,2n} C
T which contradicts the fact that T' € S3,,.

If T\{2n} = T3,_, = [n,2n — 2], then {n,2n} C T. This contradicts the fact
that T' € S;,,. Therefore, by the choice of n, the only possibility is n = 5. In this
case

T\{2n} € Ss = {07, 17, Tz } U {{2,3,7,8}}.
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Since T\{2n} # O, T\{2n} # T and T\{2n} # Ty then T\{2n} = {2,3,7,8}.
This implies {2, 8,10} € T which contradicts the fact that T € S},.

Hence, 2n — 1 € T if 2n € T € S;,,. Note that in this case 1,n ¢ T.

Let 7" =T\{2n—1,2n}. Then|T' |=n—2and T" C [2,n—1|U[n+1,2n—2].
Furthermore, we can express T” as

- T'=T1UT,
where
Ti=T'Nn[2,n—1]
and
T,=T'N[n+1,2n— 2]
If7] = 0 then " = T3 = [n + 1,2n — 2]. This implies T = [n + 1,2n]| = T},
contradicting the fact that T € S5 \{T5,}.

T, =0then 7" = T] = [2,n —1]. Since n > 5 then {2,4} C 2,n—1] =
T" C T, contradicting the fact that T € S;,,.

Therefore
T #0 #T,.
Let
T; = {ab == aP}
with

2<a<..<ag,<n-—1L

There are two possibilities: either 2n — 2 € Tj or 2n — 2 ¢ T5.
If 2n — 2 € T then a, < n — 1 (otherwise {n — 1,2n — 2} C T C T which is
impossible since T' € S3,,). Therefore

D={2n—-1-0;:1<i<p}U{2n—0a;:1<i<p}C[n+1,2n-2\T3.

Note that | D |> p + 1. Hence,
n—2=|T =T | +|Ts |<p+{(n-2) — (p+ 1)} = n — 3. Impossible.
Thus 2n — 2 ¢ T;. Let
Té = {bh o0 bq}

where
k+1$b1$...§bq<2n—2.

Therefore
E={2n—-1—-0;:1<j<qtU{2n—-b:1<j7i<q} C2,n—1\T}.
Note that | F |> g + 1. Hence,

n=2=|T =T |+ |z |<{(n-2) - (g+1)}+g=n-3.
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This contradiction completes the proof. &

22



Chapter 4

GENERALIZATION OF
SCHUR’S THEOREM

In this chapter we will see two closely related generalizations of Schur’s Theorem.
They are Rado’s Theorem and Folkman'’s Theorem.

Since Folkman’s Theorem can be derived from Rado’s Theorem, we will state
and prove Rado’s Theorem first. To do this we need the definition of the regularity
of a system of equations.

Let S = S(z;, ..., Z») denote a system of equations in the variables zi, ..., Tn.

Definition 4.1 Let T be a set of real numbers. We call S to be r-regular on T
if for every r-coloring of T we can find ay,...,a, € T which are not necessarily
distinct such that {ai,...,a.} is monochromatic and (ay,...,a,) is a solution to
the system S. Furthermore, if S is r-regular on T for every positive integer r,
then we say that S is regular on T'.

According to Schur’s Theorem, for each positive integer r and any r-coloring of
N we can find a1, as, a3 such that a; +a2—a3 = 0 and a;, a;, a3 are monochromatic,
hence the equation z; + 22 — z3 = 0 is regular on N.

Theorem 4.2 below gives the sufficient and necessary conditions of regularity
of a system of linear homogeneous equations. We prove this for the special case
of a single linear homogeneous equation.

Theorem 4.1 Let S : ¢1T1 + ... + cnzn = 0,c € Z be a linear homogeneous
equation. Then, S is regular on N if and only if there exists a positive integer k
with 0 < k < n such that .
k
2 ¢ =0

J=1
with not all c, =0.

To prove the theorem, we need a lemma :

Lemma 4.1 Let 7,k,s > 1. Then there ezists n = n(r,k,s) so that if [1,n] is
r-colored, there exist a,d > 0 with

{a,a+d,a+2d,...,a+ kd} U {sd} (+)

monochromatic.

23
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Proof. Induction on r. Let » = 1. There are two possibilities, either &£ < s or
k>s:
- If k£ < s, then by taking n = s and @ =d = 1 we have

{a,a+d,a+2d,...,a+kd} U {sd} ={1,2,...,1 + k} U {s},

a monochromatic set in [1,n].
-Ifk > s, then by takingn =%k + 1 and a = d = 1 we have

{a,a+d,a+2d,...,.a+ kd} U {sd} = {1,2,...,1 + k},

a monochromatic set in [1,n].

Therefore we can take n(k,1,s) = max{k + 1, s}.

Using van der Waerden's Theorem, let W(r,¢) be the minimal W such that if
[1, W] is r-colored there exists a monochromatic arithmetic progression of length
t+1.

Let 7, k, s be given. Assume that 7 > 2 and that n(r — 1, k, s) exists. Take

n=sW(r kn(r - 1,k, s))
and let
x: [1,n] — [1,7]

be an r-coloring of [1,n].

Let us consider the restriction of x on [1, W(r, kn(r — 1, k, s))]- By van der
Waerden’s Theorem, among [1, W{(r, kn{r—1, k, s))] we can find a monochromatic
arithmetic progression

a,a+d,d +2d,...,d + kn(r — 1,k,s)d’ (%)

for some positive integers a’ and d'.

Consider two possibilities :

(1). There exists 7 € [1,n(r — 1,k, s)] such that sd’j has the same color as
(3%).

(ii). For every j € [L,n(r — 1,k, s)],sd'7 and (#*) have different color.

If (i) happens then we also have

{d',d +jd,d +2jd,...,d + kjd'} C {a',a'+d',a' +2d, ....,a' + kn(r — 1, &, s)d'},

since kjd' < kn(r — 1, k, s)d'.

By taking a = a’ and d = jd’ we conclude that (*) has the same color as (**),
and we are done.

If (ii) happens then {sd'j : 1 < j < n(r —1,k,s)} is (r — 1)-colored. Let

f:{sd,2sd',3sd,...,n(r - 1,k,s)sd} — {1,2,...,n(r — Lk, )}
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with z
flz) = -
Then f is 1 — 1. So an {r — 1)-coloring of {sd’,2sd’, 3sd', ...,n(r — 1,k, s)sd'}
will result in an (r — 1)-coloring of [1,n(r — 1, k, s)] and vice versa. Therefore the
(r — 1)-coloring x of {sd',2sd’,3sd', ...,n(r — 1,k,s)sd'} will result in an (r — 1)-

coloring x’ of [1,n(r — 1, &, s)]. (Here, we take x/(z) = x(sd'z).) By the induction
hypothesis, there exist a”,d” > 0 such that

{d",d" +d",..,a" + kd'} U {sd"}
is a monochromatic set under X’ in {1,n(r — 1, k, s)]. Therefore
{sd'a",sd'(a" +d"), ..., sd'(a" + kd")} U {sd'sd"}
is monochromatic under y in
{sd',2sd',3sd',...,n(r — 1,k,s)sd'}.

By taking a = sd'a” and d = sd’d”, then () is monochromatic in [1,n]. B

Let us note that Lemma 4.1 generalizes both van der Waerden’s Theorem and
Schur’s Theorem. Clearly Lemma 4.1 implies van der Waerden’s Theorem. If in
Lemma 4.1 we take s =1 and k& = 1, then we have Schur’s Theorem.

Corollary 4.1 Let 7,k,s > 1. Then there ezists n = n(r,k, s) so that if [1,n] is
r-colored, there exist a,d > 0 such that
{a+Md:| A< k)U{sd}

1s onochromatic.

The proof of this Corollary is simply from Lemma 4.1 by taking &’ = 2k to
find o', d’ such that {a',d’ + &',a’ +2d, ..., a’ + 2kd’) U {sd'} is monochromatic.
Then by taking d = d’ and a = @’ + kd’, the Corollary is proved.

Proof of Theorem 4.1 (<=) Suppose 0 < £k < n and ¢;, + ... + ¢;, = 0 with
not all ¢; =0for1 < j < k. If Kk =n then (z1,---zp) With 2, = ... =z, =m
satisfies the equation for every m € IN. Therefore we can assume 0 < k& < n.
Re-numbering if necessary, assume that

c1 +ca... +c =0.
Let

B = Cg41 + .-- +Cn-
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If B=0 then (z1,..,Z,) Withz; = ... =z =mand 24y = ... =z, = p
satisfies the equation for every m,p € N. Hence we may assume 0 < k£ < n and
Ciy1 + ... +Cp =,'é 0. Let

A = ged(cy, .-, C)

where w = ged(A, B).
Since w | B we find v € Z such that B = vw. Hence,

_A_B

w )
s v

or
Av— Bs = 0.
Taking t = —v, we have
At + Bs = 0. (2)

Furthermore, since A = gcd(cy, .., ¢k ), we find ay, ..., € Z such that ¢ oy +
.-+ crap = A. Letting A\; = o t, we have

cl)‘l + ...+ Ck)\k = At. (‘ii)
From (%) and (i%), we have
A1 + oo F eI+ (Chpr + oo +Ca)s = 0.

Let x : N — [1,7] be an r-coloring of N and let M = maz{| X: | : 1 <7 < k}.
By Corollary 4.1 there are a,d > 0 such that

X={a+M:| < M}U{sd}

is monochromatic. Note that a + \;d € X, 1 < i < k. Now, let (z1,...,z,) € Z™
be such that

zi=a+ \d,for1 <i <k,

z;=s8d, for k+1<i<n.
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Then {zi, ...,zn} C X. Thus {z1, ..., Zn} is monochromatic. Furthermore,

n k n
azxy + ... +cpzy, = Zc,-a:,—=2ci(a+/\,-d) + sd Z Ci

=1 =1 i=k+1

i=1 i=1 i=k+1

k k n
=aZc.—+d|:Zc,-)\,-+s > 61] =0+ d(At + Bs) =0.

Thus, (z1, ..., Z,) is a monochromatic solution of S. Therefore S is regular.

(=). We will prove the contrapositive.
Let {c1,.--,cn} € Z be such that if @ # F C [1,n] then Y ¢; # 0. Let p be a

ieF
prime such that p > max{| }_ ¢; |: @ # F C [1,n]}. Define Fj, the (p—1)-coloring
icF

on N in the following way. If a € N and b € [1,p — 1}, then Fp(a) = b if and only
if there are a non-negative integer ¢ and an integer m such that

a = p*(mp + b).
Thus, Fp(a) = b if and only if there is a non-negative i such that

a
— = b{mod p
= ( )

For example, F5(25) = F5(5%(0-5+1)) = 1 and F5(37) = F5(5°(7-5+42)) = 2.
Note that, for a,z,y € N

F(az) = F(ay) = Fp(z) = Fp(y).

Indeed, if & = p*(map+ba), T = P’ (MLp+b;), y = p*(m,p+b,) with by, b;, b, €
(1,p— 1], then

Qr = pi+j{(mamzp + mabg: + mzba)p + babz}
and
ay = pi+k{(mc=myp + by + Myba)p + baby }-

Since Fp(az) = Fy(ay) then byb, = baby(mod p).
If, let us say, b > by, then there is ¢ € N such that

ba(by — by} = boby — baby = qp.

This contradicts the fact that p is prime and b,,b, — b, € [1,p— 1] so p {
be(bz — by). Thus,
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Fo(z) = by = b, = F(y).

Now, let us consider the equation S:

i cz; =0, ()

and suppose that (a,, ..., an) is an F-monochromatic solution of (x). Let a =

ged(ay, ...,a,) and let a; = aal, ¢ = 1,...,n. By our note above, we have that

(@}, ..., al) is an F-monochromatic solution of (*) where ged(af, ...,al,) = 1.
Hence,

F={ie[l,n]:pta;}#0.

Since (ai,...,a;) is an Fj-monochromatic solution of (*), there exists b €
[1,p — 1] such that

Fp(a}) =b,1<i<n.
For i € F, let m; € Z be such that
a; = m;p+ b,
and let m € Z be such that

Z c;a; = mp.

i€[l,n]\F

Thus,

n

0=>) cai=> cai+ » cq

i=i ieF ig[l,n[\F

= ci(mip+b) +mp
teF

=pY cmi+b) c+mp

ieFr ieF

=(m+> eam)p+bY e

ieF icF
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Hence,

ch,- == —(m+Zc;m,-)p.

1y icF

From the facts that b < p and p is prime

Pl e

ieF
This contradicts the fact that p >| >~ c; [#0.

teF
Therefore S is not regular. This completes the proof. ®

Theorem 4.1 characterizes the regularity of a single linear homogeneous equa-
tion. It is usually named as Rado’s Theorem-Abridged. This next theorem gives
the necessary and sufficient conditions for the regularity of an arbitrary system
of linear homogeneous equations. Before doing this we need the definition of the
columns condition of a matrix.

Definition 4.2 A matrizc C = c;; with entries from Z is said to satisfy the
Columns condition if we can order the column vectors ¢y, ..., ¢, so that there ezist
0=ky < k) <ky<..<k=n such that if we define columns A;, As, ..., A; by

ke

A-i= Z ¢y,

J=ki—1+1

then A; =0 and
ki1
A{ = E ai;C;

i=1
for 1 <i<t and a;; € Q.
Now we are ready to state the generalization of Theorem 4.1.

Theorem 4.2 (Rado’s Theorem Complete). The system of linear homoge-
neous equations (with coefficients from Z) Cx = 0 is regular on N if and only if
C satisfies the Columns condition.

It turns out that this Theorem is equivalent to:

The system of linear homogeneous equation Cx = 0 is regular on N if and
only if for every prime number p the system has a monochromatic sclution with
the coloring F,, defined in the proof of Theorem 4.1.

The proof of this Theorem can be found in [16].

A special case of Rado’s Theorem is Folkman’s Theorem.
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Definition 4.3 Let S C N. We define P(S), the sum-set of S to be P(S) =
{>" e;s,where €, =0, 1 and €, =1 for a finite non-zero number of s}.

seS
Theorem 4.3 (Folkman’s Theorem). If N s finitely colored then there exist
arbitrarily large finite sets S such that P(S) is monochromatic.

Folkman'’s Theorem is a generalization of Schur’s Theorem. To see that, it is
enough to ask that the set S in Folkman’s Theorem has two elements. If S = {a, b}
then P(S) = {a,b,a + b}, and for such S Folkman’s Theorem gives us the claim
of Schur’s Theorem.

Here is 2 way to connect Folkman’s Theorem and Rado’s Theorem.
Let ke Nand P, = {T : 0 # T C [1,k]}. Let us consider the system S of
2k — 1 equations with 2¥ — 1 unknowns, given by:

Ty = Zﬂ:{i}, T € F.
€T

If the claim of Folkman’s Theorem is true, then for any finite coloring of
N there exists S € N such that | S |= k£ and P(S) is monochromatic. Let
S = {ay,...,ar}. For T € P, let ar = 3 a;. Note that for 7 € [1,k], a; = ag;-

i€T
Also, ar € P(S) forall T € P . Thus, {ar : T € P} is a monochromatic solution
of the system Sk.

Hence, Folkman’s Theorem implies that Sk is a regular system for any k£ € N.

Now, assume this system S is a regular system for every ¥ € IN. Let [ be
given. It is not difficult to check that there are distinct Ay, T € B, such that {
Ar : T € B } is the set of solutions of ;. By Corollary 87 in [16] pp.62, since
the system S; is regular, then for any finite coloring of N, the system S; has a
monochromatic solution L = {ar : T € P} such that T # T" => ar # ar.

Let S = {aq},.-ag} Then | S |= I and P(S) = L is monochromatic.
Hence if S; is regular for every £ € N, then the claim of Folkman's Theorem is
true.

Therefore, Folkman’s Theorem is equivalent to the regularity of the system
Sk, k€ N.

It can be shown that Si satisfies the Columns condition. Hence Folkman’s
Theorem follows from Rado’s Theorem.

The statement that is now generally called Folkman’s Theorem was inde-
pendently proved by Rado, Sanders and Folkman, so sometime it is called the
Rado-Sanders-Folkman Theorem.

However, we will prove Folkman’s Theorem without using Rado’s Theorem.
Here, we shall prove the finite form of Folkman’s Theorem.

Let {a;} be a sequence and I be a finite non-empty set. We define a(7) to be
2 Gi.

il
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Then, using a standard compactness argument Folkman's Theorem can be
restated as :

Theorem 4.3 For all ¢ and k, there exists M = M(c, k) such that for every
c-coloring of [1, M| there ezist ay, ...,ax € [1, M] with all a; distinct, such that all
a(I) are monochromatic, I € P.

To prove Theorem 4.3’ we use the following lemma. :

Lemma 4.2 For all positive integers ¢ and k there exists n = n(c, k) so that if
(1,n] is c-colored there ezist a; < az < ... < ax with all a(I) < n so that the color
of a(I) depends only on maz(I),I € Fk.

Proof. The proof of Lemma 4.2 is based on van der Waerden’s Theorem.
Fix c. We show the existence of n(c, k) by induction on k. Clearly, it is trivial
for £ = 1. Suppose that it is true for k. Let

n = n(c, k + 1) = 2W(c, n{c, k)),

where W(c,n(c, k)) denotes the minimal W such that if [1, W] is c-colored there
exists a monochromatic arithmetic progression of length n(c, k) + 1. Now, let

x i [Lin] — [Ld]
be a c-coloring of
[1,n] = {1, ..., W(c,n(c, k), W(c,n(c, k) + 1,...,2W (e, n(c, k)) }
Consider the second half of the c-coloring of [1,n], i.e. the c-coloring of
{% +1,...,n} = {W(e,n(c, k) +1,...,2W(c,n(c, k))}.
By van der Waerden’s Theorem and the fact that
{Wi(e,n(c, k)) +1,...,.2W(e,n(c, k))}
is a translate of the set
{1,2,....., W(c,n(c, k) },

among the set

{g +1,..,n} = {W(c,n(c, k) +1, ... 2W(c, n(c, k))}

we can find positive integers ax4+1 and d so that {arr; +Ad : 0 < A < n(c, k)}
is monochromatic in {W(c,n(c, k)) + 1,...,2W(c,n(c, k))}. Here, ary1 > § >
n{c, k)d.
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Now consider the c-coloring of {d, 2d, ..., n(c, k)d}. Since
{d,2d,...,n(c,k)d} and {1,2,...,n(c, k)}

are equivalent, by the induction hypothesis we can find ¢; < a3 < ... < @ in
{d,2d, ...,n(c, k)d}with all

Z a; < n(c, k)d

ie[lg[l,kl

k
so that the color of Y a; depends only on max(I;).
=1
Let

A= {a11 A2y +-ey ak-i—l}'
If j < k+ 1, then by the induction hypothesis, the a(I) where max(I) = j are
monochromatic. If max(l) = &+ 1 then

a’(I) = Q41 T Ad7

with 0 < X < n(c, k), so all of the a(I) with max(I) = k£ + 1 have the same color.
Therefore the lemma, is proved. B
Proof of Theorem 4.3’ Fix ¢ and &k and take

M = M(c,k) =n(c,c(k — 1) +1).
Perform a c-coloring of [1, M]. By Lemma 4.2 there exist
a; < ... < Qgk—1)+1

with all a(I) < M so that the color of a(I) depends only on max(I). Now, color
the indices of a;’s, i.e.,
[L,e(k —1) +1]

by coloring 7 with the color of all a(I), with max(l) = 7. Since we color a set of
c(k — 1) + 1 members with at most ¢ colors, the pigeon hole principle guarantees
that we can find a subset

SCle(k—1)+1]

with | S |= k such that S is monochromatic. Let
A={a;:1 € S}.

Then P(A) is monochromatic. B



Chapter 5

THE FINITE UNIONS
THEOREM

In Set Theory, we have a theorem analogue to Folkman’s Theorem. It is called
the Finite Unions Theorem. In this chapter first we show that analogy. Then, we
also prove the Finite Unions Theorem independently.

For a non-empty set X, let P(X) be the set of all non-empty finite subsets of
X. For convenience, we write P([1,n]) as P,.

Definition 5.1 Let X be a non-empty set and let I be a non-empty index set. A
family of sets D = {D; :i € I} C P(X) is called a disjoint collection if for any
i,7 € I,1 % j, we have D; N\ D; = 0. Next, we define FU(D), the family of finite
unions of D, to be the set {U D;:T € P(I)}.
i€T
In the rest of this chapter we assume that I is a finite set.
Theorem 5.1 (Finite Unions Theorem). If P(N) is finitely colored then there

ezist arbitrarily large disjoint collections D CP(N) such that FU(D) is monochro-
matic.

As in the case of Folkman’s Theorem, we prove Theorem 5.1 in its finite form.

Theorem 5.1’ For all ¢,k € N, there ezists F = F(c, k) such that for any n > F,
if P, is c-colored then there exists a disjoint collection D CP, with | D |= k such
that FU(D) is monochromatic.

There is a natural correspondence between P(IN) and IN. This correspondence
is given in the following way.
Let & : P(N) — N be defined by

(1) =)  2*.

iel

We show that I = J if and only if &(I) = &(J).
Let I, J € P(N) with I # J. We can express [ and J as

I=AuCand J=BUC,

where

33
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C=INnJand ANB=0.

Note that at least one of A and B is not empty. Without loss of generality
assume A # 0 # B.
If &(I) = ®(J) then

Z gi+l + Z i+l Z 9i+l + Z 9i+1

i€A 1ieC ieB ieC

or

Z oit+l _ Z 9i+1

icA i€B
Since AN B = 0 then
min{2*! : 4 € A} # min{2'*' : j € B}.
Without loss of generality assume that

200+ — min{2**! :{ € A} < min{27*!: j € B} = 27°+L

So
gio+l Z 9+l _ Z i+l
:gto i€B
Hence,

1 i1 _ L i+l
1+2io+l .Z2+ - 2io+1 .Z2+ ’
icA i€B
iF#io
contradicting the fact that the left hand side is an odd number and the right hand
side is an even number. Therefore ®(I) 5# ®(J) if I % J. Since from the definition
of ® we have ®(I) = ®(J) if I = J, then we have

I = Jif and only if ®(I) = ®(J).

To prove that Theorem 5.1’ and Theorem 4.3’ are equivalent, we first prove
that Theorem 5.1’ implies Theorem 4.3'. To show this, let ¢,k € N and let x be
a c-coloring of [1,2F(=%)]. Next, define the c-coloring x’ of Pr(cx) by

X (D) = x(2(D)) = x(D_ 2,
ieD
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for D € Pp(c,k).
Let us note that x’ is well defined. Indeed, for D C [1, F(c, k)] we have

Fh)  Fleh-1
@(D) — 221-}-1 < Z i+l _ Z 2t — 2F(C,k) —1le [1’ 2F(C.k)]-
€D i=1 =0

Thus, if D € Pp(.x) then ®(D) € [1,2F(F] and ¥’ is well defined.
By Theorem 5.1, there exists a disjoint collection D = {D; : 1 < i < k} C
Pr(x) such that FU{D) is x’-monochromatic. Let a¢; = ®(D;),1 <i < k. For

I € P, we have
S(UierDs) =» (> 2 =) a.

iel jeD; el

Thus, for each I, J € P, we have

xO ey =x(UD) =x(JD:) =x_ ).

el il et ieJ
Thus, M(c, k) < 2F(R) | so that the claim of Theorem 4.3’ is true.

To prove the converse we need a lemma, :

Lemma 5.1 Let k,n,, ..., and t be positive integers. There is a positive integer
m' sothatif | S|=m >m and [S]' ={A C S:| A |= i} is n; -colored for
1 < i < k, then there exists T C S, with | T |=t so that for each i,1 <1 < k,
[T ={B C T :| B |=1} is monochromatic.

Proof. Let k,ny,...,nx and t be given. From Ramsey’s Theorem we know that
for every triple of positive integers (c, k, s) there exists ny = ng(c, k, s) such that
for every c-coloring of [1,no]f = {4 C [1,n0] : | A |= k} there exist j,1 < j < ¢,
and aset T C [1,ng] with | T |= s so that [T]* ={B CT :| B |= k} is colored j.

Now, define a sequence my, ..., my inductively with

my = no(ny, 1,1)
and
m; = nﬂ(ni)i1 mi—1)12 < z < k.

Next, let m’ =my and | S |=m > m/. Perform an n;-coloring of [S]},1 <i <
k. By the definition of mg, there exist ji, 1 < 7r < nt, and a set Sk, C S with
{ Sk—1 |= me_y so that [Se—1]* = {B C Sk_; : | B |= k} is colored jx. Then, by
the definition of my_;, there exists a set Sp_p C Sk—1 with | Sx—2 |= mi_2 so that
[Sk—2]Ft = {B C Sk—2 : | B |[= k — 1} is colored jx—;. Continuing this process
we have a sequence S = Sk 2 Sk-1 2 ... 2 S1 2 So, where | Sp |== t so that for
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all i with 1 < i < k, [So] = {B C Sp : | B |= i} is colored j; and the lemma is
proved. M

Now we are ready to prove that Theorem 4.3’ implies Theorem 5.1’. Let ¢ and
k be fixed positive integers and let ¢ = M(c, k) be as in Theorem 4.3'. Let

Ny =Nz =..=TN; =C,

and let m’ be a positive integer whose existence is guaranteed by Lemma 5.1.
Let m > m' and let f : B, — [1,c| be a c-coloring of F,,. We note that for
A,mi={AC([l,m]:|Al|=1}, i=1,..4¢,

f ![l,m]i

is a c-coloring of [1,m]'. Since m > m/, by Lemma 5.1 there is T C [1,m)],|
T |=t = M(ck)such that each [T|' = {A C T :| A |=1i} C[I,m]is
monochromatic. In other words, for each ¢ € [1, M(c, k)] there is j € [1,c] such
that for all A € [1,m]",
f(A)=7.
Thus, we can define g, a c-coloring of [1, M (¢, k)] in the following way.
For i € [1, M(c, k)],

g(7) =7 if and only if f(A) =,

for A € [TT".
By Theorem 4.3 there are ay, ...,ax € [1, M(c, k)] and p € [1, c] such that for
r € P{a1, -, ak}),
g(r) =p.
Since
k
> a: < M(c,k)
i=1

we can find a disjoint collection
D={D;:1<i<k} C P(T)

such that
IDi [=a,—,1§z’§k.

Since
Di N DJ‘ = @

for 7 # j then for any D, , ..., D;, € D,

I Dil U e U Dis I=[ ‘D‘il I +"'+ I Dia l= ai‘L + bl + aila =r e P({ali "‘Ja'k})'
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From g(r) =p and D; U ...UD;, € [T]” we have that

f(Dil u..u Di’) =Dp.

Therefore FU(D) is f-monochromatic. Hence, F/(c, k) exists and F'(c,k) < m' R

To prove the Finite Unions Theorem without using Folkman’s Theorem, we
need two lemmas :

Lemma 5.2 For each pair of positive integers ¢ and k there is a positive integer
n =n(c, k) so that if
V={V;:1<i<n}

18 a disjoint collection and = is an eguivalence relation on FU (V) with at most c
equivalence classes, then there exists a disjoint collection

D = {Dy, ..., Dy} C FU(V)

so that
D1 =~ Dl us

for every S € FU(D).

Proof. Induction on k. For £ = 1 we have n(c,1) = 1 for every positive integer
c.
Fork > 1 we show that

n(c, k) < (c+1)+n(%(cz+c3),lc—1). (%)

To prove (%), let n = (c+1)+n(3(F+c3),k—1),let V={V;: 1 <i<n} bea
disjoint collection and let = be an equivalence relation on FU (V) with equivalence
classes Ay, ..., A..

Let T € FU({Vz42, -, Vn}). Then the set { U{V4,..,V;}UT :1<j<c+1}
has (¢ + 1) elements. Since in FU(V) there are at most ¢ equivalence classes, we
can find a triple p,q,7 with 1 < p < ¢ < ¢+ 1,1 £ 7 < ¢ such that the sets
U{W, ...V} UT and U{V4, ..., Vg} UT are both in A;.

Now, for each T' € FU({Ves2,-.-, Va}) let us fix a triple f(T) = (p,q,?) with
the property as above. Next, on FU({V.a, ..., Va}) we define a binary relation =
with

Ty = Tz if and only if f(T1) = f(T2)-

Clearly, = is an equivalence relation on FU({V.2, ..., Va})-
Since the number of elements of the set {(p,¢,i): 1 <p<g<c+1,1<i< ¢}

is ( c-iz- 1 ) - ¢ = 1(c? + c®), then the number of elements of the set {f(T): T €
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FU({Ves2, -, Va})} is at most (c® +¢?). Thus the number of equivalence classes
with respect to the equivalence relation = is at most 3(c? + ¢*). By the induction
hypothesis there exists a disjoint collection

T = {Tls eeey Tk-—l} g FU({I/::+2) seey I/'n.]’)
so that
T1 = T]_ U S,

for every S’ € FU(T).
Let f(Th) = (p,g,t) with1 <p<g<c+1andl <7< c Hence, for every
S’ € FU(T), we have

UW{W, .., Vo3 UTL UV, . VU T U, L VB U T U S
and
u{Vi, .. V) UT U S ()
are all in A;.
Now define D; = U{V},....Vo} UT,D; = T;, for 2 £ ¢ < k-1, D =
U{Vpt1,-.., g} and let D = {Dy,..., Dx}. Note that D is pairwise disjoint and

that D, € A;.
Next, define S’ = S — U{V4, ..., Veq1}, for S € FU(D). Since S € FU(D), we

can express:
S =By UB.UU{T},, - T;.}),

where

B — U{Vla =eey Vp}, 'if Dl g. S
1=1 o, if D; ¢ 8,

Bk={ BJ{V;H-L: L3 Vq}) iii:fDDkggg
’ k )

and U{T},, ..., 5.} € FU(T).
Note that for S as above,

§'=8—-U{W,..., e} = U{T5, -, Tin} € FU(T).

Consider the two possibilities : either Dy € S or Dy C S.
-If Dy € Sthen B, =0 and S = B; US. Thus,

DiUS =U{W,...V,}UT1)UBUS
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= U{W, - V}UB)UTIUS

= u{\,...Vz,HhuTius.

Since S’ € FU(T), by (%) we have that D; U S € A,.
- If Dk 5.__. S then Bk = U{Vp-*-l, ...,"/q} and S = B]_ U (U{Vp-i-ly ...,‘/q}) us.
Thus,

DiuUS = (U{V1, ey V;z} Un)uB U (U{VP-Fh e Vq}) us
=U{W, - Vo UBLU{Vop, ...V HUTIUS

= (U{W, ..., Vg}) UT1 U S, and again by (**),D;US € A;.

Therefore in both cases, we have D; = D; U S as required. B

Lemma 5.3 Given positive integers ¢ and k, there ezists a positive integer r =
7(c, k) so that if
V={V ..V}

is a disjoint collection and = is an equivalence relation on FU(V) with at most ¢
equivalence classes, then there is a disjoint collection

£ ={E,,..,.E} C FU(V)

so that
Ei =~ Ei us

for1<i<kand S € FU{E, ..., Ex}).

Proof. Induction on k. Clearly, r(c,1) =1 for every ¢. Now let k£ > 1. We show
that

r{c, k) <n(c,1 +r(c, k—1)).

Take r = n(c,1+ r(c, k — 1)), where n(c,1 + r(c, k — 1)) refers to Lemma 5.2,
let

V= {W,...Vi}

be a disjoint collection and let ~ be an equivalence relation on FU(V) with at
most ¢ equivalence classes. By Lemma 5.2 there exists a disjoint collection
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D= {EI) Dl) ooy Dr(c,k—l)} c FU(V)
so that
E1 ~ E1US (***)

for every S € FU(D).
By applying the induction hypothesis to

W ={D1,...,Drcr—1)}
there exists a disjoint collection
&' ={E,,...Ex} CFUW) CFU(V)
so that
E;~E;US

with S € FU({E;, ..., Ex}) and i = 2, ..., k.

To prove our lemma it is enough to show that F; = Ey\US for S € FU({Ex, ..., Ex}).
Let S € FU({E, ..., Ex}). Then we can express:

S=BuUS,
where
B={ E}, if £, €8,
0,fELEL S,
and
S' € FU({E,,...,E}) C FU(D).
Thus,

ELUS=EU(BUS)

=(ELUB)U S

= E1 US’.
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Since ' € FU(D),E,US = E1 U S’ = E;(by (**x)).
Now, let £ = {E1,...,Er}. Then £ is a disjoint collection, € CFU (V) and
Ei = E,' USfor S e FU({El, ooy Ek}) and i = 1, ceey k.8

Now we are ready to prove the Finite Unions Theorem :
Take n = r{c,c(k — 1) + 1) and let Ay, ..., A; be a partition of P,. Let

V={{1},...{n}}.

Then V is a disjoint collection with n sets. On FU(V) we define a binary
relation = by

ST if and only if S,T € A;

for some ¢ € {1, ...,c}. Then = is an equivalence relation.
By Lemma 5.3 there exists a disjoint collection

E={E,... Eq—1y+1} C FU(V)
so that Eg ~ Ei US with S € FU({E«;, aeey Ec(k—l)+1}) and i = 1, eeey C(k - 1) + 1.
Let i={E€&:Ec A}, 1<i<c Clearly, £ = JA and AN A; =0

i=1
fori#j. Ifforalli €1, | A |{<k—1ltheneclk—1)+1=|& |<clk—1).
Thus, there is j € [1,¢] such that | A; |> k. Let

D={E;,..E }C A CCE
Since E; € A; and E; € A; imply that
E, UE;, €A;
for every p,q with 1 < p,¢ < k then
FU(D) C A;

and the theorem is proved. &



Chapter 6
UPPER BOUNDS

For positive integers ¢ and k, let M(c, k) denote the least integer n so that if
[1,n] is c-colored, then there exist distinct aj,as, ...,ax such that all a(l) are
monochromatic, and let F(c,k) denote the least integer n so that if P, is c-
colored there exists a disjoint collection D of cardinality & such that FU(D) is
monochromatic. (Recall that for 6 # I C {1,2,...,k}, a() =>_ a;, and that

i€l
FU(D) is the set of all finite unions of elements of D.) We recall that Folkman’s
Theorem and the Finite Unions Theorem guarantee the existence of M(c, k) and

F(c, k), respectively. Now we will find upper bounds for M(c, k) and F(c, k).
At the beginning of Chapter 5, we have shown that

M(c, k) < 2F @R,

Thus 2(=*) is an upper bound of M(c, k). .

To find an upper bound of F(c, k), we will prove the following theorem:
Theorem 6.1 Let ¢,k > 2 be positive integers and let F(c, k) be defined as above.
Then

_.3
Flc,k) <&
.’3
where ¢ 3°  is a tower of height 2¢(k — 1).
The following lemma. is required to prove Theorem 6.1:

Lemma 6.1 Let n(c, k) and r(c, k) be the functions given in Lemma 5.2 and

Lemma 5.8 respectively. Then for ¢ > 2, k > 2,
(i)_ 2(k-2)c(3k-1) < C (3":) s
(ii). n(c, k) < 262 | and
3

.3
(iti). (c, k) < S where ¢ ¥ is a tower of height 2(k — 1).

Proof. (i). Note that
() = (@3 (@) (3 (3

and since ¢ > 2,
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c(sk—l) Z 2(3]:—1)
For every real number z we have 3*+! > z. Therefore 3¥~! > k — 2. Thus,
B > 9k=2E*1)

(ii). To show that n(c, k) < 262G | for ¢, k > 2, we use induction on &:
From the proof of Lemma 5.2 we have

n(c,1) =1

and for £ > 2,
n(c,k) < (c+ 1) +n(%(c2 + ),k —1).
Therefore, for ¢ > 2 and k = 2 we have
n(c,2) < (c+1) + n(%(& +63),1) = e+ 1) +1 < ¢ = 2063,

Thus, the Lemma is true for & = 2.

For the induction step, we need first to show that n(c,k) > ¢, for ¢,k > 2.
To show that this inequality is true, let us observe the following special case. Let
¢ > 2 be fixed and let V = {{1}, ..., {c}}. We define a relation = on FU(V) by

S~Tifandonlyif |S|=|T]|.

Then = is an equivalence relation on FU (V). Furthermore, for any S € FU(V)
we have S #% 0 and S C [1,c], so | S |€ [1,c]. Therefore, there are at most c
equivalence classes. (On the other hand we know that {1},[1,2],(1,3], ..., [1, ] are
in different classes. Thus, there are exactly ¢ equivalence classes.)

Now, let £ > 2 and D = {Dy,...,Di} € FU(V) be a disjoint collection.
Therefore

D %@#Dg&ﬂlenD2=0
Thus
| Dy [<| D1 UDs |,

so D; and D; U D, are in the different equivalence classes. Here, D, € FU(D).
By the definition of n(c, k) we have n(c, k) >| V | = c. In particular we have

nk—1)>3>c+1,
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forc> 2 and k > 2.
Hence, for £ > 2

n(c,k) < (c+1) + n(%(c2 +), k1)
<n(c k~1)+ n(%(c2 +c),k—1)

<n(dk-1)+n(c k—-1)

=2n(c® k—1).
Thus, by the induction hypothesis
n(c, k) <2263 (c3)3k_2 = 2(k-2) (cs)sk_z,

and our claim is proved.
(iii). To prove this inequality we use induction on k.
From the proof of Lemma 5.3 we have

r(c, 1) =1,

and
r(c, k) <n(c, 1 +r(c, k — 1)).
Therefore,
r(c,2) < nle, 1 +r(c, 1)) = n(c, 2).

By (ii), we have

r(c,2) < .
Here, 3 is a towersof height 2 = 2-(2—1). Thus, the Lemma is true for & = 2.

Now, let m = ¢ be a tower of height 2(k —2) with & > 2. By the induction
hypothesis,

1+7(c,k—-1) <m.

Let us observe that from the definition of n(c, k) we have
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n(c, k) <n(c,k+1).
Thus, for £ > 2
r(c, k) < nlc,1+r(c,k— 1)) < nlc,m),
and because of (ii) and (i),
(e, k) < 2m=A 8N £ 37

Since ¢®™ is a tower of height 2 + 2(k — 2) = 2(k — 1), our claim is proved.

Proof of Theorem 6.1 From the definition of F(c, k) and the proof of the Finite
Unions Theorem on p. 41 we have

F(c,k) < r(c,ck —c+1).

By Lemma 6.1(iii),
‘_3
F(c,k) <&

3

where ¢ is a tower of height 2(ck —c+ 1 — 1) = 2¢(k — 1), so the Theorem is
proved. B



Chapter 7
HINDMAN’S THEOREM

A natural question which arises from the Folkman’s Theorem is: can we consider
S to be an infinite set? In fact, the answer is yes, we can. Therefore we have the
following theorem :

Theorem 7.1 (Hindman’s Theorem) Let N be finitely colored. Then there is

an infinite set T, < 3 < ... such that {Y z; : I € P(N)} is monochromatic.
il

We must note that Hindman’s Theorem is not a corollary of Folkman’s The-
orem since the existence of finite arbitrarily large monochromatic structures does
not imply the existence of infinite monochromatic structures. This theorem was
proved by Neil Hindman in 1974. His proof is very long and needs several difficult
preliminary lemmas. In the same year James E. Baumgartner gave a much shorter
proof.

We can see that Hindman’s Theorem is equivalent to:

Theorem 7.2 Let P(N) be partitioned into sets Hy, ..., H.. Then there exist i
with 1 <1 < k and an infinite disjoint collection D such that FU(D) C H..

The equivalence is given in the same way as the analogy between Folkman’s
Theorem and The Finite Unions Theorem.

In the rest of this chapter, we assume that all disjoint collections are infinite.

We follow the proof of Theorem 7.2 due to Baumgartner [1].
We start with the following definition.

Definition 7.1 Let D be a disjoint collection. We say that X C P(N) is large
for D if for any disjoint collection D' C FU(D) we have that

FUMD)NX #0.

Let D* be the family of all sets that are large for D. Note that D* s §, since
{P(N),FU(D)} € D~.
Baumgartner’s proof of Theorem 7.2 is based on the following four lemmas.

k
Lemma 7.1 ¢). If X €D* and if X =Y Xx for some k € N, then there is a
disjoint collection D' C FU(D) and ip € [1,k] such that X;, € D'".

46
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b). If X € D* then for every n € N,
X(n)={A€ X :min A >n} €D".

Proof. a). It is enough to show that if X € D* and X = X; U X, then there is a
disjoint collection D’ C FU(D) such that either X; € D™ or X, € D’".

Let X = X; U X, € D*. Suppose that our claim is not true. Let D’ C
FU(D).Then X; ¢ D™*. By Definition 7.1 there is D” C FU(D’) such that

FUMD") N X, =0.

The assumption that the claim is not true implies that X, ¢ D”*. Hence, there is
a disjoint collection D" C FU(D") C FU(D) such that

FUD"YNX,=0.
Clearly,

FUD"YNnX,=0.
Thus

FUMD")NX = FU(D")N (X1 U Xo) = (FUD") N Xy) U (FU(D") N X,) = 0.

This contradicts the fact that X € D*.

b). Let n € N and let D' C FU(D) be a disjoint collection. Since D’ is
infinite,
D'n)={BeD :minB>n}+#0

(otherwise, for all B € D', minB < n and | D’ |< n). It follows that D'(n) is
infinite. Since X € D*,

FU(D'(n))NX #0.
Let A€ FU(D'(n)) N X. Since A € FU(D'(n)) we have that
min A > n.
Thus,
A e X(n).
Therefore
Ae FU(D)YNX(n)

and X(n) e D*. &
Lemma 7.2 Let X € D*. Then there ezists £ C FU(D), | € |< oo, such that if
A € FU(D) with
An(U B)=0,
BEE
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then there is D € FU(E) with
AuDeX.

Proof. Suppose that the claim of Lemma 7.2 is not true. Let Ay € FU(D). By
our assumption that the claim of the lemma is not true, if we take & = {4p},
there is A; € FU(D) with

AQ N A]_ = @

and
AgUA; € X.

Let, for k£ > 2, A be defined in the following way. Let Ag, ..., Ax—1 be defined and
let
gk—-]. = {AO: “esy Ak—l}'

Let Ax € FU(D) be such that
k—1
40 (G 4) =0
and that for all D € FU(E¢-1),
ArUuD ¢ X.

Let, for each n € N,
Bn = A2n @) A2n+1

and let
D' ={B,:n>0}.

Clearly, D' is a disjoint collection and D' C FU(D). If D € FU(D’) N X then
there exists ' C P(N) with

D=U B,.
neFr

Let m = max F. Then

D = Ao Aom B.)).
2 +1U( 2 U(neFL\J{m} ))

Clearly,
7
D =AU (neFL\J{m} B,) € FU(Em)-

But
D=Ay,nnuD eX

contradicts our choice of Asm41- Thus,

FU(D)NX =0,
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and this contradicts the fact that X € D*. Therefore the claim of Lemma 7.2 is
true. B

Lemma 7.3 Let X € D*. Then there exists D € FU(D) such that
Xp={AeX:AuDeX}eD"

for some D' C FU(D).

Proof. Let £ be as in Lemma 7.2. Since £ is finite, there is a disjoint collection
D’ C FU(D) such that
ANn(U B)=10
BeE

for all A € FU(D'). Let D” C FU(D’) be a disjoint collection. Since X € D*, we
have that
FUMD')NX #0

and from FU(D") C FU(D’) we have that
FUMDNYN(XNFUD))=(FUD)YNFUD"))NX=FUMD"')NX #0.
Thus,
XNFUD) eD".

By our choice of £ and D, for any A € X N FU(D’) there is D € FU(E) such
that
AUD e X,

or in other words, for each A € X N FU(D') there is D € FU(E) such that
A € Xp. Thus,
XNFU(D) S Y, Xp.

Since X N FU(D') € D'* we have that

Xp € D™
P

Since £ is finite, by Lemma 7.1a), there is D € £ such that Xp € D™*. &

Lemma 7.4 Let X € D*. Then there exists a disjoint collection D' C FU(D)
such that
FU(D') C X.

Proof. Let X € D*. Take Dy = D and X, = X. Let Dy € FU(Dg) and
D, C FU(Dy) be as in Lemma 7.3, i.e., Dy and D, are such that

X, = Xp, € D..
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LetneNandlet {D;:0<7<n},{D;:0<:<n-1}and {X;:0<i<n}
be defined. Then we take Dpy1 C D,, D, C FU(D,,) and X3 € X, to be as in

Lemma 7.3, i.e.,
Xn+1 = (Xn)D,; < D;.H‘

Note that by the proof of Lemma 7.3 we can take D, to be such that
Dr & FU(Dn+1).
Thus, we can choose D; in a way such that
i#j=D;ND;=0.
Let
Do = {Dr :n > 0}.

Let Ag € FU (Do) N X. We define {A;}2, in the following way. Let n € N and
let Ag,...,An_1 € FU(Ds) be defined. let us consider the set

Co=1{k: D CT A,

Since Ay, ..., An—1 € FU(Ds) we have that ng; A; € FU(Dy) and therefore C,, is

a finite set. Let
k, = maxC,.

Let
Doo,n. = Doo\{Dz 12 < kn} = {D, 11> k'n. —+ 1}.

Since
i1>kn+1=>D; € FU(Dx, 11)

we have that
Dm,n g FU(Dkn+1).

Hence,
an+1 N FU(Dm,n) 7é 0.

we take A, to be any element of X, 1 N FU(Den). Note that
i<n=>A.NA; =0

Let
D' ={A;:i>0}.

Clearly, 7’ is a disjoint collection. We claim that

FU(D) C X.
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Since, for any 7 > 0,
A‘i g Xk.‘+1 g. X

we have that
D CX.

Let A€ FU(D') and let ¢; < ... < i, < r be such that
A=A U(U Ay).
Jj=1

Let Dj,, ..., Dj,. be such that j; < ... < j, and jL:JI A =p§1 D;,. Since r > i, for

all j € [1,n] we have that
r—1

Djm, <Y A
and hence
Jm € Cr.
Thus,
jm S kr-
From

Ar € Xkr+1 g ij+1

we have that

A.UD;, €Xj,.
Since jm = jm—1 + 1 we have that
Kim & Xjmoi+1.
Thus,
AT U Djm. e ij—1+1
and
A"' U DJm U ‘Djm—l E ij-—l‘
Clearly,
A UD; U Djm—l U...u Djx € Xj]_ Cc X.
Thus,
A=A U (jL=J1 A;) =AU (PL__J1 D;,) € X.
Therefore,

FU(D)CX.m

Proof of Theorem 7.2. Since P(N) € D*, for any D, by Lemma 7.1a) there
are i € [1, k] and a disjoint collection D’ such that

H; e D’*.
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By Lemma 7.4 there is D” C FU(T?’) such that
FUMD"YCH; =

52



Chapter 8
TOPOLOGICAL DYNAMICS

In this chapter we study the application of Topological Dynamics to Ramsey
Theory. We will use these methods to prove van der Waerden’s Theorem and
Hindman’s Theorem. In this chapter generally we follow [17].

Definition 8.1 We say that (X,T) is a dynamical system if X = (X,p) is a
compact metric space and T : X — X is a homeomorphism.

Definition 8.2 A dynamical system (X, T') is minimal if for any non-empty closed
subset Y of X we have that

TY)CY =Y =X.

In other words, (X, T') is a minimal dynamical system if the only non-empty closed
T-invariant subset of X is X itself.

Qur first step is to prove the following theorem.

Theorem 8.1 For any dynamical system (X,T) there exists a non-empty closed
T -invariant subset Xo of X such that (Xo,T) is minimal.

Proof. Let 7(X) be the family of all non-empty closed T-invariant subsets of X.
Note that 7(X) 5 @ since X € T(X).
Let C be a chain in 7(X). Thus, C € 7(X) and for any Y, Z € C we have
that
YCZor ZCY.

Since X is compact we have that

N Y #0.

YeC

Clearly,
N YeT7T(X).
YecC

Hence, any chain in 7 (X) has a lower bound that belongs to 7(X). By Zorn's
Lemma, there is X € 7(X) such that for any Y € 7(X) ,

Y CXy=Y =X (*)

To check that (Xp,T’) is a minimal dynamicai system it is enough to show that
T'(Xg) = Xo. Clearly, T(Xo) C Xo. Therefore, T(T'(X5)) € T(Xo), i-e., T(Xo) €

53
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T(X). Thus, T(X,) € T(X) and T(Xo) € Xo. By (), we have T(X;) = Xp, so
that (Xg,7’) is a minimal dynamical system. l

Now we introduce so-called uniformly recurrent points. They are closely re-
lated to minimal dynamical systems and that relationship will be given in Theorem
8.2 and Theorem 8.3. Also, they play the major rolein the proof of the Topological
Hindman’s Theorem.

Definition 8.8 We say that = € X is a uniformly recurrent point for the dynami-
cul system (X, T) if for any € > O there exists N € N with the property: if a € N
then there is n € [a,a + N] such that

p(z,T"z) < e.

For z € X let

X ={Trz:neZ}.

Hence, X is the smallest closed set containing {T"z : n € Z}. Since T is a
homeomorphism we have that (X;,T') is a dynamical system.
Let

X, ={Trz:n=0,1,..}.

Note that X! is T-invariant, but it is not clear if 7' : X — X is onto. For
example, from the definition of X we do not see if T~'z belongs to X..

Theorem 8.2 If a dynamical system (X,T) is minimal then each z € X is a
uniformly recurrent point.

Proof. Let (X,T) be a minimal dynamical system and let € > 0. Let z € X and

let
V={ye X:pz,vy) <e}.
Let -
U= L_JO TV
and let
X' =X\U.

Since U is open then X' is a closed subset of X. Since T"is 1 — 1 and

TW)=0U TV =TVUUDU,

=0

we have that

T(X') = T(X)\T(U) = X\T(U) C X\U = X".
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Hence, X' is a closed T-invariant subset of X. Since X is minimal then we have
that
X' =0.

Therefore
U=X

and {T~™V :n=0,1,2...} is an open cover of X. Since X is compact then there
exists N € N such that

N
X = 90 TV.
Let a € IN and let
y=Tze€ X.
There is n € [0, N] such that
yeT™V.

Thus, there is n € [0, N] such that
Ty =T**""z e V.

Note that N does not depend on the choice of a. Therefore, z is a uniformly
recurrent point. B

Theorem 8.3 If z € X is a uniformly recurrent point for (X,T) then (X, T)
is a minimal dynamical system.

Proof. Let z € X be a uniformly recurrent point for (X,T). Let Z C X be

closed and T-invariant. Note that such Z exists. The reason is that the family of

all closed T-invariant subsets of X7, is not empty, since X belongs to this family.
If z € Z then since Z is closed and T-invariant we have that

X.Cz.

Thus, if z € Z then X, = Z and X is minimal.
Suppose that = ¢ Z. Since Z is closed then we have that

€ = p(z, Z) = min{p(z,2) : z€ Z} > 0.

Let c
V={yeX;:p(z,y) <3}
Clearly,
VNnZ=20.
Let

€
Vi={ye X:p(zy) <3}
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Then
V'nz=0.

Since z is a uniformly recurrent point, there is N € N such that for alla € N
there is n € [a,a + N] with
€
p(z,T"z) < 3

Note that since z € V C X and since X is T-invariant we have that for all
n € N,
Tz € X_.

Thus, for any a € N there is n € [0, N] with
Ta-i-nz c V.
Let z € Z. Since Z C X_. there is a sequence {ax }ren With

lim Tz = z.

k—oo

For each ai, k € N, let n; € [0, N} be such that
Tak+n"$ e V

Since [0, V] is finite, there are n € [0, N] and a sequence {by }ren such that, for
alke N
T™(T%z) = Tz = T** "z € V.

Since {bx}ren is a subsequence of {ax}ren we have that

Hm T%z = z.

k—oo

Thus, since 7T is continuous

lim T™(T%z) = T"z.

k—oo

Note that T"z € Z, since Z is T-invariant. Thus,
p(z,T"z) > €.

On the other hand, from
T (T*z) e V,k e N

we have that _ .
T"zeV={yeX;:p(z,y) < 5}

Hence,
0<eLp(z,T"z) <

D m
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This contradiction means that we must have that z € Z.
Therefore, X is minimal. B

One of our main goals is to prove the following theorem known as the Topo-
logical van der Waerden Theorem.

Theorem 8.4 (the Topological van der Waerden Theorem) Let (X, T) be
a dynamical system. Then for any v € N and any € > 0 there are £ € X and
n € N such that

max{p(z,T"z) :i € [1,7]} < e

From Theorem 8.1 we have that it is enough to consider the case when (X, T)
is a minimal dynamical system.
Also, it is clear that Theorem 8.4 is a special case of the following theorem.

Theorem 8.5 Let r € N. For any compact metric space X, for any set {11, ..., T+}
of commuting homeomorphisms of X, and for any € > 0 there are z € X and
n € N such that

max{p(z,T7z) :1 € [1,7]} <e.

Proof. We prove Theorem 8.5 by induction on 7.

Let r = 1 and let (X,7T) be a minimal dynamical system. By Theorem 8.2
and Theorem 8.3, if z € X then X = X and for given ¢ > 0 there is n € N such
that

p(z,T"z) < e.

Therefore the claim of Theorem 8.5 is true for r = 1.

Let 7 > 1 be such that the claim of the theorem is true for r — 1. Let X be a
compact metric space and let {77, ...,7;-} be a set of commuting homeomorphisms
of X.

Let

XT=Xx.xX

and let p : X™ x X™ — R be given by

PN (@1, s T2, (G2, e Ur)) = J S~ (ol 30))2.

=1

Let
T:X — X

be given by
T(xl, aeey SE,-) = (T]_J?l, ceey 11,-13,-).
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It is not difficult to see that (X, T) is a dynamical system.

Fori € [1,7 — 1], let
S; =TT

From
= (TT-YWGTTY = LT = LT = (T YT =S58,

we have that {5, ..., Sr—1} is a set of 7 — 1 commuting homeomorphisms of X.
Let pz > 0. By the induction hypothesis there are z € X and n € N such that

max{p(z, Stz) : i € [L,r— 1]} < \/T“Tl

Now we have that

(&t 2), TI, o T"2)) = pH(@, 0 2), (TR, o T T, )

r—1

= p(’)((:z:, e I), (STZ, ey SE_1 7, z)) = \} Z (p(z, Srz))? < p.

t=1

Let
AV ={(z,....T):z€ X} C X".

We have seen that for any g > O there are o, 8 € A® and n € N such that
P (e, T"B) < p.

Let € > 0 and let ¢; = §. Since, by the Tychonoff Theorem, X is compact,
there are m € N and Uy, ..., Un, such that

X7 =z§1 U
with, for all | € [1,m]
v, 6 € U= p(v,6) < g
Let ¢, a; € AT and n; be such that
T ay, o) < €.
Since T™ is continuous, there is e € (0,€;) such that for all @ € A®
N a,a;) < 62 = PN (T™ e, o) < €.

Let as € A™ and ny € N be such that

oNT™2az, ;) < €.
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Note that
POT™ 20y, a0) < 1.

Now we proceed inductively and we find sets {co, @1, ..., &m} € AD, {ny, ..., .} C
N and {ey,...,em}, 0 < €i41 < & with
PN (T, ) < €,1 € [1,m]
and, for « € A®™
PN, i) < €0y = p(T™e, 051) <.
Note that since
P (T oy, 04) < €41

we have that
PINT 40y 00) < €
and generally, for ¢ < j
€

p(r) (ij+"j-1+---+ni+1aj’ai) <€ < =

Since
I {U]_, ...,Um} l= m

and
' {a07a11 seey am} |= m + 11

we have that there are 7,7 € [0,m] and | € [1,m] with i < j and o, 0 € U,
Now we have, for n = n; + nj_; + ... + niyq,

pPN(T"ay, 05) < PO Ty, 00) + 0Ny, ) < % + -g— =€

Since o; € A™ | there is z € X such that o; = (z, ..., 7).
Hence,

r

e > p(T" e, @)) = p ((T7z, TRz, ..., T"z), (T, ..., T)) = \l Z (p(TPz,z))?

i=1

and consequently
p(Tiz,z) <€

for all ¢ € [1,r}. Thus, Theorem 8.5 is proved. B

Note that Theorem 8.4 follows if we apply Theorem 8.5 for the set {T, 72, ..., T }.
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Before proving that the Topological van der Waerden Theorem and van der
Waerden's Theorem are equivalent, let us introduce a special dynamical system
that connects the set of all finite colorings of Z and Topological Dynamics.

Let r € N and let C, be the set of all colorings of Z with r colors. Let

Q= (1,7? = {{ai}iez : a: € [1, 7]}

The function
d:C,—Q

given by
(¢) = {ai}iéz

if and only if, for all ¢ € Z,
#(i) = a;
is bijective. We shall identify C, and Q.
For a = {a;}icz and b = {b;}icz, let

M(a,b) ={keN:i|< k= a; =b}.

Let p: Q2 x Q — R be defined by

inf{3z : k € M(a,b)},if M(a,b) # 0
pla,b) = 1, if M(a,b) = 0.
If I € N is such that
(a,b) < L
P 1L+1
then there is £ € M(a,b) with
1 1
< <
pla,b) < L+k ~ 1+1
and consequently
[<k.

Therefore, if [ € N is such that
1
p(a,b) < 77

then
|i|l<l=>a;=0;

Also,
p(a,b) <l=ayg=0b
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and
p(a,b) = 1 = ag # by.
It is not difficult to see that

pla,b) =0<=a=b

and
p(a,b) = p(b,a).
Also, for any a,b,c € Q we have that

p(a,b) < p(a,c) + p(c, b).

Indeed. Let
a = {@;}iez, b = {bi }icz and ¢ = {ci }icz-
If
p(a,b) =0
or

L € {p(a,c), p(c, ) },
the last inequality is obvious. Let us suppose that

p(a,b) >0

and
1 ¢ {p(a,c),p(c,b)}-
Note that since 1 ¢ {p(a,c), p(c, b)}, we have that ag = by = ¢p and hence

p(a,b) < 1.
Let
(a,b) = 1
i 1+k

Thus, k = max M(a,b). This means that
ltl<k=>a;=b;

and
Qr 7“é bk.

Let
1

plac) =777
1 < 1
1+~ 1+1
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we are done. Otherwise,

1 > L = k<l
1+ 14! )
Thus,
lil<k+1<l=a;=¢.
Consequently,
And
bk#ck.
Hence, in this case ]
b= 1%

and again we have that
p(a,b) < p(a,c) + p(e, b).

Therefore, (2,p) is a metric space. By the Tychonoff Theorem, ({2, p) is
compact. (It is easy to check that the product topology and the metric topology
are the same.)

Let T : & —  be the shift operator, i.e., for a = {a;}icz € Q and b =
{bi}iez = Q then
Ta=>bif and only if a;_, = b;, 1 € Z.

Clearly, T is bijective.
Let U be any non-empty open subset of Q. There are a = {a;}icz and n € N
such that

1
" = - —+rC U
U'={zeQ:p(a,2) < T} C U
Let b = {b;}:cz be such that
bi=a;1, 1€Z

and let

V={y€Q=p(b,y)<1-+—(lem}-

Note that
Tb = a.

Let y = {yi}iez € V and let © = {z;:}icz € Q be such that
Ty =z.
From

1
p(b,y) < T¥emrD
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we have that
—(n+l) <i<n+l=b; =y = aix; = Tiy;.
Hence,
li|<n=a; =2,
In other words,
yeV=TyeclU CU,

and 7T is continuous. In the same way we check that 7! is continuous. Therefore,
T is a homeomorphism and (2,7") is a dynamical system. If X is any closed T-
invariant subset of 2 we call (X, T) a symbolic dynamical system.

Theorem 8.6 The Topological van der Waerden Theorem and van der Waerden’s
Theorem are equivalent.

Proof. First we prove that van der Waerden’s Theorem implies the Topological
van der Waerden Theorem.
Let (X,T) be a dynamical system. Let € > 0 and let {A4; : ¢ € {1,7]} be a
covering of X with
z,y € Ai = p(z,y) <e

and
Z#j=>A1mAJ=@

Let y € X and let
f:N—[1,7]

be given by
f(n)=m<<=T"y € An.

Clearly, f is an r-coloring of N and
N =|Jr@).
=1

Let | € N. By van der Waerden’s Theorem there are ¢ € [1,7], a € N and
n € N such that
a+jn€ f71(i), 7 €[0,1].

Thus,
Ai 2 {Tay, Ta-}-ny’ ."1Ta+lny} — {T“y,T"(T“y), ‘",Tln(Tay)}‘

For z = T*y, from
{z,T"z,..., T'"z} C A;

we have )
max{p(z,T""z) : j € [0,]} <,
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i.e., we have the claim of the Topological van der Waerden Theorem.

Now, we prove that the Topological van der Waerden Theorem implies van
der Waerden’s Theorem.
Let (©,T) be the symbolic dynamical system discussed above. Let

z = {Zi}icz €N

and let

X ={Trz:neZ}.
Then (X, T) is a symbolic dynamical system.
Let I € N. By the Topological van der Waerden Theorem there are y =

{y:i}icz € Xz and n € N such that
max{p(y, T"y) : i € [0,]]} < 1.
Let, for i € [0,1], T™y = {4:™},ez. Then
o =y5™,i €[0,1].
On the other hand, for alli € [0,!] and all j € Z
(in)

yj = Yj+in.
Hence,
Yo = Yn = Yon = .-- = Yin-
Since y € X;, there is m € Z such that
(0, T™z) < ——
PAY: 1+in+1

Thus, for
Thz = {Igm)}iez

we have, for all 7 € Z,

i<in+l=>y; =3 =z,
Hence,
1 € [0,l]] = Yin = Trmtin
or equivalently
Tm = Tmin = --- = Tmtin-
In other words,

{m,m+n,..m+In}
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is a monochromatic arithmetic progression of length ({4 1), and we have the claim
of van der Waerden’s Theorem. B

Note that we have proved that the Topological van der Waerden Theorem 1m-
plies that for any finite coloring of Z we have an arbitrarily long monochromatic
arithmetic progression with its common difference in N. The following observa-
tion shows that this fact guarantees an arbitrarily long monochromatic arithmetic
progression for any finite coloring of N.

Let r € N and let
fF:N—1,r].

Let
F:Z —[1,2r +1]

be defined in the following way

f(n), forn>0

Fn)=< f(—n)+rforn<0

L 2r+1, forn=0.
Let ke N.Let a € Z,d € N and ¢ € [1,2r + 1] be such that

F(a)=F(a+n)=..=F(a+kn) =1.
If 7 € [1, 7] we have that @ > 0 and
£(a) = fla+n) = ... = f(a+kn).

If : € [r +1,2r] then
a+jn <0, je0k

Let
b= —(a+ kn).

Then
i=Fla+kn)=f)+r= f(b)=i—r.

For any j € [1, k] we have that
b+ jn=—(a+kn)+jn=—(a+(k—j)n)

and
i=Fla+(k—jn)=fl+in)+r= fb+jn)=i—r.

Thus,
f(b) = f(b+n)=..=f(b+kn).
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Our second main goal is to prove the Topological Hindman’s Theorem.

To formulate and prove the Topological Hindman’s Theorem we need two
definitions and one lemma.

We consider a dynamical system (X, T) and let p denote the metric on X.

Definition 8.4 Two points =,y € X are prozimal if there is a sequence {ny}ren C
N such that
lim p(T™*z,T™y) = 0.

k—oo

Let XX be the space of all mappings of X to itself with the product topology.
One beasis for this topology on X is the family of all sets of the form

{f € X* : f(z:) €Uy i € [1, ]}

where £k € N, z,,...,zx € X, and open subsets Uy, ..., Ur of X are given. The
space XX is also a semigroup under composition.

Let g € XX and let

R, : XX — XX
be defined by
Rq(f) = fg-
We claim that R, is continuous.
To see this, let z;,...,zx € X be given and let {U,...Ur} be a given set of

open subsets of X. Let
zi = g(z;), 1 € [1,k].

Let
U={he X*:h(z;) €U;, i €[L,k]}

and
V={feXX:fz)eU,iclA}

Both U and V are open in X*. For f € V we have that

(RBg(f))(z:) = (fg)(z:) = f(=) € Us

for all i € [1, k].
Thus,
R,(V)CU
and R, is continuous.
For g € XX let
Ly: XX — XX

be defined by
Le(f) = 9f-
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We claim that if g is continuous then L, is continuous too. To see this, let, as
above, z;,...2x € X, Uy, ..U € X, U; open for each 7 € [1, k], and

U={heXX:h(z;) €U, i €[L,k]}.

Since g is continuous and U;, 7 € {1, k| are open, for any 7 € (1, k] there is V;, an
open subset of X, such that
g(Vi) C Us.

Thus,
V={feX¥:f(z)eV; i€ Lk}

is open in X*. Clearly,
Ly(VyCU

and L, is continuous.
Let E be the closure of {T™ : n € Z} in XX. Thus, f € E if and only if for
any z,...,ox € X and any open Uy, ..., Ug such that

feU={heX*:h(z:) €U, i €[1,k]}

there is n € N with 7" € U. In other words, f € FE if and only if for any
Zi,...,Z¢ € X and any open Uy, ..., Uy there is n € N with

flz;) e U; = T"(z:) € U..

for all ¢ € [1, k]
We can reformulate the last statement in the following way:
f € E if and only if for any zi, ...,z € X and any € > 0 there is n € N with

p(f(z:), T (z:)) <€
for all < € [1,].

We claim that F is closed under composition. Indeed. Let f,g € E, let
zy,...,2x € X and let € > 0. Since f € E, there is n € N such that

p(f(g(=z:)), Tmg(z:)) <

DN m

for all z € [1,k].
Since T™ is continuous on X and X is compact, there is § > 0 such that

p(z,y) <6 = p(T"z,T"y) < g

Let m € N be such that
p(g(z:), Tz;) < 6.
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Hence, .
p(T"g(z;), T ™z;) < 5

Thus,

p(F)(@), T™™x:) < p(F(a(x), T"9(2d) + P(T"9(z), T™"z) < 5 + = =

Therefore,
f,.ge E=> fge E.

Definition 8.5 E is called the enveloping semigroup of (X,T).

Note that F is a compact semigroup and for any g € E the restriction of R,
on F is continuous.

Lemma 8.1 If G is a compact semigroup such that for any g € G, the function
R, : G — G given by
Ry(f)=fg

is continuous, then there exists f € G with

ff=f

Proof. Let A be the family of all A C G such that A is a compact semigroup.
Since G € A, we have that A # 0. Let C C A be a chain. Since all elements of C
are compact we have that

Agc A#D.
This fact together with
fig GAQC A= Tfg GAQC 4
gives
Nn Ae A
AeC

Hence, any chain in A has its lower bound and that lower bound belongs to .A.
By Zorn’s Lemma,, there is 4g € A such that for any A€ A

AC Ag= A=A,
Let g € Ag and let us consider the set

Aog ={fg: f € Ao}.
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Clearly, Agg € Ao. Since Ay is compact and since R, is continuous we have that
Aog = Ry(Ag) is compact. Secondly, for any f, f' € Ag we have that fgf’' € Ao

and consequently
(f9)(f'9) = (f9f')g € Aog-
Thus, Agg € A and Agg © Ag. Hence, Agg = Ag. This means that

A={feA:fg=9g}#0.
Since ‘
A'=R*({g}) N4
we have that A’ is compact. This fact together with, for any f, f' € A’

(fFfla=Ff(fg)=Ffg=g

means that A’ € A. Thus, A’ = Ay. Therefore, ge A’ and g2 =g.

The following result is often called the Topological Hindman’s Theorem. It
is due to J. Auslander{1960) and R. Ellis(1960). (Note that Hindman’s Theorem
was proved in 1974.)

Theorem 8.7 (Topological Hindman’s Theorem) If (X,T) is a dynamical
system and if T is any point in X, there exists a uniformly recurrent point y € X
such that = and y are prozimal.

Proof. Let (X,T) be a dynamical system, let z € X and let Y C X, be minimal.
Let E be the enveloping semigroup of (X, T} and let

F={feFE:f(z)eY}.
Let 2’ € Y and let {ns}ren be a sequence such that

lim p(T™z,z') =0

k—o0

Since E is compact and since {I™ : n € N} C F, there is f € E such that for
any open U C XX=, f € U, there is n; with

T e U.
Let {ng, }ienw € {ni}ren be a sequence such that
1
T € {h € XX : p(h(z), f(z)) < ;}

From I
p(c[mk‘.m’ f(Z)) < ;
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for all 7 € N, we have that

lim p(T™z, f()) = 0.

Thus,
0 < p(f(x),2") < p(T™z, f(2)) + p(T™%z,2") —> O

(i—o0)

which means that f(z) = z’.
Hence, f € F and F # 0.

To see that F is closed, let us consider ¢ € E and a sequence {g;}ienw C F
with the property that for any open set U C XX=, g € U, there is g; with g; € U.
Hence, for any j € N there is g;; such that
p \ 1
plg(z), gi;(z)) < 7

Since {gi;(z)}jex € Y and Y is closed, there is 2’ € Y such that for infinitely
many j’s we have that

nel
p(gij(x)ix) < _7

Thus, for those j’s

0 < p(g(),2") < plg(), g5;(2)) + plg, (z),7') < Jl + Jl = %

and consequently,
glz)y=2'€Y.

Therefore, g € F and F is closed, hence compact.
Let f,f' € F. Then

(FF)=) = f(f'(2)) € f(Y).
Since (f f')}(z) € Xz, there is a sequence {m;}icn such that
! if £l 1
p((FF) (=), T™(f'(2))) < 7
Since Y is closed and T-invariant, there is =’ € Y and infinitely many ¢’s with
(gt n 1
p(T™ (f(2)), ) < 7-
For those i’s we have that

0 < p(f(f(2)),2") < p((FF) ), T™(f(2))) + p(T™(f'(z)), &) < % + '1‘ - %



CHAPTER 8. TOPOLOGICAL DYNAMICS 71

which means that
f(fz)=2 €Y
Therefore, for any f, f' € F we have that

(ff)(=z)eY.

This means that F' is a semigroup.
By Lemma 8.1, there is h € F' with

h%?=h.

Note that y = h(z) € Y and by Theorem 8.2, y is a uniformly recurrent point.
We claim y is proximal to z.
Since h € E, for any 7 € N there is p; € IN with

T7 € {f € X2* 1 p(f(2),1(e) < 7 and p(S(h(a)), hlh(a) < 5.

Thus, since h? = h we have .
p(T'pix7 y) < :

and 1
p(T%y,y) < 7
Hence, 0 < p(TPz,TPy) < 2 for all 2« € N. This means Um p(T%z,TPy) = 0
and z and y are proximal. B
Now, we will prove the following theorem.
Theorem 8.8 The Topological Hindman’s Theorem tmplies Hindman’s Theorem.

Proof. Let x be any r-coloring of N and z be any element of Q = [1,r]% such
that
z |n= X-

Let (X,,T) be a symbolic dynamical system as before. By the Topological Hind-
man’s Theorem there exists a uniformly recurrent point ¥ € X, so that £ and y
are proximal.

Let § > 0. Since y is a uniformly recurrent point, there is N € N such that
for any n € N there is ¢ € {1, N] with

: 6
AT y,y) < 3

Since T is continuous and X, is compact, for each i € {1, N] there is §; > 0 with

6

p(2,2") < 8 = p(T*,T°2") < 5
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Let n € N be such that
p(T"z, T y) < §&'.

Note that n exists, since z and y are proximal. Let ¢ € [1, N} be such that

p(Ty,y) <

N O

Then 5 s
p(T™ 'z, y) < p(T™ 'z, T*y) + p(T™y,y) < 3+t5=6

Thus, by taking p = n + 7, we have proved that for any § > 0 there is p € N with
p(T?z,y) < 6 and p(T?y,y) < 6.
Let p; € N be such that
p(TPz,y) <1 and p(TPy,y) < 1.
Let €; € (0,1) be such that
p(z,y) < &1 = p(T™2,T™y) < 1 — p(T™y,y).
For such €; and z € X, with p(z,y) < €, we have that
p(T% z,y) < p(T™ 2, T"'y) + p(TP'y,y) < 1= p(TPy,y) + p(T"y,y) = L.
Let p2 € N be such that
p(TPz,y) < € and p(T™y,y) < €.

Thus,
p(T™z,y) < land p(T%y,y) <1

and
p(T"*Piz,y) < 1 and p(T7* Py, y) < 1.

Now we proceed inductively. Suppose that we have found I, = {p;}~, so that
for any p € P(l,,)
p(T?z,y) < land p(T%y,y) < 1.

As above, for any p € P(I,,) there is ¢, € (0, 1) with
p(z,y) < &g => p(T%z,y) < L.
Let €,41 = min{e,: p € P(I,)}. Clearly, €ny1 < L. Let p,yy € N be such that

p(Tfpn'l*lz, y) < 6,1_'_1 and p(T'?n-I-ly’ y) < €ﬂ+1’



CHAPTER 8. TOPOLOGICAL DYNAMICS 73

Thus, for any p € P(I,) we have
p(TP~+1*Pz,y) < 1 and p(TP+*Py,y) <1
and consequently, for any p € P(I+1)
p(T?z,y) < land p(T?y,y) < 1.
Let I = {p; }ien and let p € P(I). From
p(T%z,y) <1

we have that
y(0) =T%z(0) = z(p) = x(p).
Thus, I = {p;}ien is such that there is j € [1,7], 7 = y(0), so that for any
1 <t < ... <1
X(pil + Dip + ... +pik) = 7.
This is the claim of Hindman’s Theorem. B
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