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ON DIFFERENCE SETS OF SEQUENCES OF
INTEGERS. III

By
A. SARKOZY (Budapest)

1. Let & be a sei of positive integers b;<h,<.... A set of positive integers
uy<uy<... will be called an o/-set relative to & if its difference set does not coan-
tain an element of #; in other words, if

) Uy —i, = b,

is not solvable in positive integers x, y, z.

L. Lovasz conjectured that if u;<uy<... is an «/-set relative to the set of
the squares of the positive integers (i.e. u,—u, = z* is not solvable in positive
integers x, y, z) then

@ 2 L=0(x)

U=

must hold. In Part I of this series (see [10]}, I proved this conjecture in the following
sharper form: if u,<uwu,<... is an &-set relative to the set of the squares then

3) S 1= O(x (oglog x)m]i.

= (log x)'# [

I proved this theorem by adapting that version of the Hardy—Littlewood method
which has been elaborated by XK. F. RotH in [4] and [5], in order to prove that if a
set of positive integers u,<u,<... does not contain an arithmetic progression of
three terms, then (2) must hold, more exactly,

x3
4 ol
“) ,,léle 0 loglogx
(In Part 11 of this series, I gave a lower estimate for
max 2 1

where the maximum is taken for those sets u;<wu,<... which form an o/-set relative
to the set 12,22, ..., %2 ...; see [11].)

In the case of the arithmetic progressions of three terms, we may use the follow-
ing simple fact:

() Aseta+qu,, atqu,, ..., a+qu, (where a is an integer and £, q, uy, U, .., 4,
are positive integers) does not contain an arithmetic progression of three terms if
and only if also the set u, u,, ..., u, has this property.
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356 A, SARKOZY

This fact plays a role of basic importance in the proof of (4). In the proof of
(3), I could replace this assertion by the following one:

() A set a+q%uy, a+4%u,, ..., a+¢*y, (where a is an integer and ¢, g, uy,
Uy, ..., 4, are positive integers) is an «/-set relative to the set of the squares if and
only if also the set u, #,, ..., #, has this property.

(Note that here we have ¢® in place of g.)

Starting cut from (3), one might like to show that (2) must hold also for sequ-
ences #y<wp,~<.. which form an «f-set relative to certain other fixed set
bi<by=<..., e.g. relative to

3 b, = i*

(where k=3 is a fixed integer and i=1,2,..),

(6) by=7{i)

(wher f(x) is a fixed polynomial with integral coefficients and i=1, 2, ...} and

N b; = p;

(where p; denotes the i® prime number and i=1,2,...), respectively.

Tke case (5) can be treated in the same way as the special case £=2; namely,
the analogue of (ii) holds also in the general case k=2 with g* in place of ¢% Thus
it can be shown by the method used in [10] that if the set wy<u,<... forms an
of -set relative to the set (5) {also in case &£=3) then (2) must hold.

On the other hand, in cases (6} and (7), simple counter examples can be given.
Namely, let f(x)=x2+1 and u;=6, u,=12, ..., %;=6i, .... Then (2) does not hold,
however, 3 |u,—u, and 6|u,—u, thus wu,—u,=b=7"+1 and w,—u#b =p,
{for 1=y<x, z=1,2,..).

P. Frdés raised the conjecture that if

®) b= i?—1
(i.e. f(x)=x2—1 in (6)) respectively

(for i=1,2,..), and #<u,<... forms an o/-set relative to the set by<b,<...,
then (2) must hold.

In both cases the difficulty is that an analogue of (i) or (ii) does not exist; thus
we have to modify Roth’s method. We shall be able to avoid this difficulty by using
estimates for exponential sums of the form

(10) b;; e(b; )
alb;

where g is small in terms of x. (Throughout this paper, we use the notation e*** =
= e(x) where o is real.)
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Since the cases (8) and (9) can be investigated analogously, we are going to
discuss only the case (9). The remaining part of this paper will be devoted to the
discussion of this case, i.e. the solvability of the equation

(aH u,—u, = p,—1.

Consequently, we shall write briefly “«/-set” instead of “s/-set relative to the set
pi—1, po—L o p—1, 0070 ) ] .

For x=1,2,..., let A(x) denote the greatest number of integers that can
be selected from 1,2, ..., x to form an &f-set and let us write

£ { qa
a{x)y = AS) .
We shall prove the following
THEOREM.
(logloglog x)® (loglogloglog x) )
(x) =
(12) alx) =0 ( loglog x)? ’
g

Throughout this paper, we use the following notations:
We denote the distance of the real number x from the nearest integer by | x|,
ie. |x|=min {x—[x], [x]+1—x}. If 4,b are real numbers and b>0 then we

define the symbol min ja by

0
(13) min{a E} =g
£l 0 L.

C,cy, Coy ..oy My, M, ... will denote (positive) absolufe constants. We shall

use also Vinogradov’s notation: if f and g are two functions such that g=0 and
there exists an absolute constant C satisfying | f|=Cg then we write f<g.

2. In this section, we estimate exponential sums of the form

S(@) = Sy() = 3 (ogp)e((p—1)a)

P=EN

and

(14) P@) =Py = 3 (bgp)e[p“la].
EgM q
glp—1

(Here and in what follows, we shall leave the indices if this cannot cause confusion.)

LemMma 1. Let u be an arbitrary positive real number, M a positive integer for which
M~ -+, and b, g, m integers satisfving

15) 1 =56 < (log M)
and
(16) 1 =g < (log M)
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Then there exists an absolute constant ¢;=0 such that

M
(17 - Jog p = w(bg) +O(Me—aVieM)  for (mg+1,b) =1
v O(Me=ciV) for (mq+1,5)> 1
p_lql__17~(1 b
T_m mod b)

(where ¢, and the implicite constant in the error term may depend on u but not on
b, g, m).
.. -1 . .
ProoF. The conditions g|p—1 and ‘DT =m (mod b) can be rewritten in the
equivalent form

(18) p=mg+1 (modbg).

Thus for (mg+1,b9)=1, ie. (mg+1,5)=1, we have to show that

Mg
S logp = ——1—+0 (Me—ciVie M),
p=Mg+1 £» #(bq) (
p=mg+1 (modbyg)

but this is a consequence of the prime number theorem of the arithmetic prog-
ressions of small (< (log M)’) modulus (see e.g. [3], pp. 136 and 144).

For (mg+1, bg)=1, ie. (mg+1, b)=1, (18) implies that (mg+1, b)|p. Hence,
(ng-+1, b) is a prime number and p=(mg+1, b). Thus in this case, the left hand
side of (17) consists of the single term

log p = log (mg+1,5) = log b < log(log M)* = uloglog M = o(Me—c/loeM)
which completes the proof of Lemma 1.

LeMMA 2. Let u be an arbitrary positive real number, M a positive integer for
which M- +co, and a, b, g integers satisfying (15), (16) and (a,b)=1. Let us
define the integer my , for (b, )=1 by

(19) myg+1=0 (modb) and 0=m, =b—1.

Then there exists an absolute constant c¢,>0 such that

P(g)-ruale) -

_ (b i) —_u( )e[mb,q b]+0(1Me alieM)  for (B, g) =1
0(Me”°2V’°gM) Jor (b, gq)=>1

(where c, and the implicite constant in the error term may depend on u but not on
a, b, q).
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ProoF. By (15) and Lemma 1,

a a p—1 a
— = — = ? «e—14 =
@) P(5) = Pus(3) E:Maogm[ —3)
;p—l

b—1 a
= Zelng) 2 reer=
p_—l_sM
—=
glp—1
”—;-l.zm(modb)

a Mg (b—] ~ _)
— - 0 M cl}/logM —
O§m§;—1e (m b] o(bg) i mz='o ¢

(mg+1,b)=1

Mq [ a) . V
2 m O ((log M)t Me—cflog M) =
(P(bq) Oémgb_le b + (( og ) 4

{mg-+1.5)=1

Mq > e [m 3]—{—0(]&/[(3*”2“"81‘4).

- <p(bq) 0O=m=b~1 b
(mg+1,by=1
Here
a g a
@) 5 em=Se(md) = ua=
0=m=b—1 b m=0 b dl(mg+1,b)

(mg+1,b)=1

= Sud) 3 e[md).
aib O=m=ph—-1
dimg+1

Let m, denote the least non-negative integer m for which d|mg—+1 holds. Then
(23) meq+1=0 (modd),

and d|mqg+1 holds if and only if

24) (mg+1)—(meg+1) = (m—mg)g =0 (modd).
By (23),
(25) d,9)=1
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(24) and (25) imply that dlmg+1 holds if and only if m—m;=0 (modd). Thus

with respect to (g, b)=1, the inner sum in (22) is

a bid—1
3 e[mf) =S e(omring) =
=m=b— j=
dimg+1

b a .
= (mob] for blda ie. bld

(7
I
el
g

Hence, the inner sum in (22) is different from 0 only if 5(d; but by d|b, this implies
that b=d, and by (25), also (b, ¢)=1 must hold. Thus we obtain from (22) that

=0 for b1d.

a
0§m§b—1 e(m E] =

(mg+1,p)=1

b |
[por 5 e(mt)=nerfelmy) = ubrelmy) for .01,
blmg+1

0 for (b,g)=>1

where m, satisfies (23), i.e. myg+1=0 (modb); hence, my=my ,. Puiting this
into (21), we obtain (20) and the proof of Lemma 2 is complete.

LEMMA 3. Let u be an arbitrary positive real number, M a positive integer for
which M— 4, a, b, q integers satisfying (15), (16} and (a, b)=1, finally, B any
real number. Ther

(26) P(&tp) = Puo (4 8) =

e (map) 2 3 o)+ (MIpl+ 1) Me=I™F) for (b, )= 1
O(M Il + ) Ye-V) for (b, )= 1

where my, o is defined (for (b, q)=1}) by (19).
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Proor. Applying Lemma 2, we obtain by partial summation that
EéM

1 {%+B]J =
dio—1

=, 2 fesne ()} () -

—=M
qIP -1

- E[rfg)renl)eon-

= >h., {%] () —e((n+ D)+ Pu [ o)1+ 1B

(27) Py, (% + ﬁ] = 3 (logp)e {p 2

For 1=n=VM,

eli)] =] 2 o)

[IA

= Slog(gn+1) = nlog(gn+1) < V3 log ((log MYV I+1) = O (VM log M)
k=1

and
|_nq
lo(®q)
(with respect to (16)).
For YM<n=M, (16) implies that
1= qg<(log M)* < (logn¥* = 24(log n)* < (log n)*

(if M is sufficiently large depending on u) thus Lemma 2 can be applied with 2u
and » in place of u and M, respectively.
Summarizing, we obtain from (27) (using Lemma 2) that for (b, g)=1

u(b)e (mbfq %}l =ng < VM (log M)*

Pua(§+8) ={ 2 oL u®re[m.i g) com—e(@+Dp) +
+ e u(tye(m, ) (01 D) +
A2 F) -5t (mdf)) comet ey«

+ {PM,q (%] - (‘%M(m?g (mb,q 'Z—)] e((M+ 1)5)} =
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= w0, t) Z e+

=2]: O (VM log M+YM(log MY le(mB)—e((n+1) B)| +

+ VZ O(ne=<eVs ) le(nB) —e((n+1) )| + O (Me—<VioeM) =

yml
= Ly e, t) Zetp+ 3 oM p) ¢

M T AF ——
+ Z O(Me—czylongﬁ!)+0 (Me—czl/logM) -
n=lyM]+1

gD(bq) ﬂ(b)e(mb q Z] 2 e(nf)+O((M|B|+1) Me—caf1oeh)

while for (b, g)>1,
Iyl
Pua5+8) = 3 Pua (2] cnm—e(ert 1) +

(3] c@p—e(@+DB)+ P,y (3) e+ p)

+2Pb

n=lVMl+1
[Vl
=2 0(VMlog M)|e(np)~e((n+1) )|+

3 O (ne~<s¥7oem) o (nf) — e((n+ 1) B)| + O (Me~c:V e )

n=[yl+1
Ml — M —
= S O0(Me—eVoeMg)+ 5 O(Me—<Vloe™ i8]} +

n=1 n=[yM]+1

. +0(MeeV 8 M) = O (M |B) +1) Me~ <o)
smce
le@f)~e((n+1)B)] = 1—e(B)] = le(—B/D—e(B[2)] = 2 |sin np| = 27 |B]

and the proof of Lemma 3 is complete.
LemMA 4. If a, b are integers such that a=b, and f is an arbitrary real number

then
] e(kﬁ)} = mm{b a+1, ZHﬁH}

k
(For |B|=0, the right hand side is defined by (13).)
This lemma is identical to Lemma 1 in [10]
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Lemyma 5. Let u be an arbitrary positive real number. There exist constants M,
c;=>0 (which may depend on u) such that if M=>=M,, furthermore, a, b, q are in-
tegers sasisfying (15), (16) and (a, by=1, finally, B is a real number satisfying

ngVﬂTg_AY
(28) 8l = S5
then
Mg 1
2——— for B =—
| (a Lo a ; o (b)p(q) M
I T ) R 1

o®o@p T 7

Proor. We are going to apply Lemma 3.
For (b, g)=1, the main term in (26) in Lemma 3 can be estimated in the follow-
ing way, by using Lemma 4 (and with respect to (28)):

M

ot h0re(my) Z e =

- 9 . 1 _ q . __1_ =
=200 min{ 2uﬁu} = o ®o®@ min {31 213[} =
_ Mg =1
B o) for [l M
I R S 1 _
2e®e@p o 7z =P
Thus Lemma 3 yields that
Mg . 1
, —=— for [fl=-—
! _ b UM
!PM,q(%w)i<o((Mim+1>Me-cZVl°gM)+ o |
20(B)o(q) B] for - g7 =181

To obtain (29) from this inequality, it suffices to show that here the first term on
the right (the O(...) term) is less than the second term. The first term is the greatest

and the second is the least if |f| is the possibly greatest, i.e. |B|=ecs/losM/M. Then
the first term is

(30) O ((ecsylogM_*_ 1) Me—cgylogM’ =0 (Me(c:s’Cg)VlogM’
while the second term is (with respect to (16) and for large M)
gM M M

- Me—2c:,{/log M.

—_— > - ____
20(B)p(g)ecsl 8™ 2becs105M  2(log My ecoloeM
For c;=6,/4 and M=M,(u), the latter is greater than (30) and Lemma 5 is proved.
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LemMa 6. If X, Y are real numbers, a, b .integers.and « a real number such that
Y=b=X/Y, 1<Y<X1/4 (a,b)=1. and

|
i

a
*75

le(oe)l=lpS2;((logp)e -De) = i;ZX(Iogp)e(pa)i<<XY‘”2(10gX)”-

I|I\

1
b2
then

This is essentially a consequence of Theorems 1 and 3 of ViNoGRADOV in {12],
Chapter IX; see also MonTGomERY [1], Chapter 16, and MONTGOMERY—VAUGHAN
{2], Lemma 3.1.

Lemma 7. If M(=0), q, a, b are integers and o. is a real number satisfying

(31 l=g=logM
and
(32) (a,b) =1,
Jurthermore, writing
(33) Q = M(log M)™%,
also
(34 2(log MY =b=Q
and
a
9 |- ' i
hold then for large M,
M
PRrROOF.

! oy
(37) Py =| 3 uogme((p—l) —)l =

=iy q

;p—l

-2 toene(o-n2){: Fefo-n i)}

p=qM-+1
114 o+
_ LS > teene(e-n2 -
j=0 p=gqg
1] o j 1 o
=3 ZSqM+1( p )é-q-g' qM+1( 7 )
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Let us write v:GfTﬂ. By Dirichlet’s theorem, there exist integers A, B such
that

(38) 4,8 =1,
(39) 1= B =20
and

! A 1
o 5~
by (39) and (40), also ,

A 1
41 ly —-—EI <
holds. .
We are going to show that these conditions imply that

) B> b,

Let us assume indirectly that
43) B= %b.
By (35), y can be written in the form
a 0

@ Lt _ F+Fé+j _axbi, 0,
g g bg ~ bgQ

where |0;/<1. Let us define the integer U and the positive integer ¥ by
a+bj U

@s) L= 7

(46) o, vy=1.

By (32), (a+bj, b)=1, thus

co)) (a+bj, bg) = q.

(45), (46) and (47) imply that

(48) b=V =bg.

By (40), y can be written in the form

49) =3+

where [6,|< 1.
(44) and (49) yield that
U 6o, 4 6,

"=V V90 T BV 2Be0’
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hence, with respect to (34) and (48),

U _Al_16] Bl 1 1 _
50) 7 "F = 5e0 T3B40 =~ Fe0 T3540 =

_ 1+ 1 _ 1 L]
= bgQ ' 2Bgb T bgQ ' 2BV’

On the other hand, we obtain from (38), (43), (46) and (48) that

U 4
vE B
thus “
s g4 _wE L
'V B VB VR
(50) and (51) yield that
1 1 1 1 1

VB~ T5q0 128V’ B ~ he0°
hence, with respect to (34), (43) and (48),
-9 VB 1 B _ 7 1 1 b
bgQ 9@ b 9@ 2 0O

Thus the indirect assumption (43) leads to a contradiction, which proves (42).
Let us write X=gM+1, Y=(og M)*. Then for large M,

(52) 1=7 = (log M}® < (M+1)V% = XA,

1

furthermore, by (34) and (42),

(53) B> %b = (log M)® = Y,

finally, by (33) and (39),

(54) B=2¢0 =2gM(log M) " = 2(gM -+ D{log M)* <
< (gM+1)(log M)~ = X}Y.

In view of (38), (41), (52), (53) and (54), Lemma 6 can be applied with gM +1,
(lcg M)*®, A, B and y in place of X, Y, a, b and . With respect to (31), we obtain
that

< (gM+1)((log M)*)~"2(log (gM+ 1)) =

o+ J
ISqM+1(7)' = !SqM-)-l( q' }

= ((log M) M+ 1)(log M)~ *{log ((log MIM+ 1)} <
< (log MYM(log M)~ **(log M)" = M(log M)~2.
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Putting this into (37), we obtain that

M

i M,q(a)y<<__2 M(IOgM) = (] gM)2

which completes the proof of Lemma 7.

LeMMma 8. There exists an absolute constant ¢,(=0) such that for n=3,

) ,n) - ¢ n _
4 “nloglogn’
This lemma is well-known; see e.g. [3], p 24,

LEMMA 9. Let g, M be positive integers, R a real number such that

(35) g=logM
and
(56) 3=R=logM.

Let Sy, denote the set of those real numbers o for which OSU<1 holds and there
do not exist integers a, b such that

(57) (a,b) =1,
(58) 1=b=<R
and
! !
o a1, R
(39 ia b| = M log logR"~

Then for «€ Sy y and large M,

(60) Py, (o)) < 2M_ loglog R

v R

PrOOF. Let us define Q by (33). By Dirichlet’s theorem, for all a€ Sy, there
exist integers A, B such that

(61) (4,B) =1,

(62) 1=B=0

and | .
A 1

If 2(log M)** = B, then Lemma 7 can be applied, with 4 and B in place of a
and b, respectively. We obtain that

M
(64) |PM__q(oc)| << W .
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By (56), the right hand side of (60) can be estimated in the following way:

q loglog R loglog R logloglog M M
5 . . : = =
@ @M TR MR =Y T e T Gy
for sufficiently large M. (64) and (65) yield (60).
If
(66) B < 2(log M)¥

and M is large then we may apply Lemma 5 with a=4, b=B, f= oc—% and

u=41. Namely, for large M, (15) and (15) hold by (55) and (66). Furthermore, by
(63),
Al 1 _ 1 (ogM

‘|ﬁf='““-§i<B—Q‘=§= [T

which implies (28) for sufficiently large M. Thus, in fact, all the assumptions in
Lemma 5 hold. Applying Lemma 5, we obtain that for large M,

Mg 1
2——=—— for [f|=—
-~ (B M
7 1Py ()] < ?(B)¢(q) R
— 4 __ for —= 18-
»(B)o (@Bl M

‘The right hand side is maximal for Iﬁfé-ﬂ%. Thus for R=B, we obtain by apply-

ing Lemma 8 that
[Py, g ()] < 2Mq <« loglog B Mg - loglog R gM

o(B)o(q) B olg) R ¢

{with respect to R=3).
Finally, if B<R then €Sy, implies that

i}

Lo4l_ 1 R
B

8) Bl = !ac——— ﬁ.loglogR
which yields also |ﬁ1>ﬁ since it can be shown easily that

_r
loglog R

for R=3. Thus we obtain from (67) and (68) that

q 1: q M.loglogR

q = °
BBl ~ o@ 1Bl @ R

which completes the proof of Lemma 9.

11}

1P, o (0] =
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3. For arbitrary positive integers M, g, let
(69) uiq, Uo4, ..., Urg
be a2 maximal /-set selected from g, 2g, ..., Mg, and let

7

(70) F(a) = Fy, () = 2 e(wya).

In this section, we estimate this function Fy ().

For an integer b and positive integers m, x, let Ag, . (x) denote the greatest
number of integers that can be selected from b+m, b+2m, ..., b+xm to form an
o-set (so that Ag,(x)=A4(x)).

LemmA 10. For any integers b, d and positive integers m, x, we have

A(b,m) x) = A, m) 0.

Proor. This follows trivially from the fact that the numbers b-+uym, b+uym,
oo, b+um form an of-set if and only if also the numbers d+u;m, d+u,m, ...,
d+um do.

By Lemma 10, we may simplify the notation A ,,(x) in the following way:
let us write A,,(x) instead of Ag, (%), ie. let

A, (x) = A, m(x) (for b=0, 1, £2,...).
Furthermore, let
A (%)

a9 = 22

so that A(x)=A4;(x) and g (x)=a(x); moreover, T=A, (M) in (69) and (70),

thus
A M)

(7)) F) = Fy@ = 3 e(0).

k=1

Lemmas 11 and 12 follow trivially from the definitions of the functions A4,,(x)
and a,(x), respectively.

LemMa 11. If m, x and y are positive integers such that x=y then A, (x)=A,(y).
Lemma 12. For arbitrary positive integers m and x, we have a,(x)=1.

LemMa 13. For arbitrary positive integers m, x and y, we have

(72 Ap(x+y) = A, (x)+ A4,(0),
(73) An(xy) = x4,,(3),

(74) a4, (xy) = a,(y),

(75) a4, (x) = [1 +—§-] a, (7).
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Proor. By Lemma 10, the greatest number of integers that can be selected
from m, 2m, ..., xm and (x+1)m, (x+2)m, ..., (x +y)m to form an of/-set, is 4,(x)
and A4,,(y), respectively; thus the greatest number of integers that can be selected
from m, 2m, ..., xm, (x+Dm, (x+2)m, ..., (x +y)m to form an &/-set, is =4,(x)+
+A4,,(y) which proves (72).

(73) is a consequence of (72).

Dividing (73) by xy, we obtain (74).

Finally, by Lemma 11 and (73),

An(3) = Ay [Hﬂ - IJ}’} = ([ﬂ + 1)Am(y) =

= (Z+1) 40 = @ap 202,

Dividing by x, we obtain (75).

LemMa 14. Let g, b, t, M be positive integers, a an integer, a, f real numbers
such that

(76) oz—-% -y
Let
. f b M 1
F*(0) = Fiy (2) = “bz;( ) {Z;e(a;)] (2’1 e(fj )]j,
5= j=
so that if (a,b)=1 then
M
a,(t) 2; e(fj) for b=1
i=
0 for b>1 (where (a by=1).
Then there exists an absolute constant c; such that
(78)  |Far, () — Fit, o @) = (a5, () — a, (M) M) +c5(|B| M, (¢£) +a (1)) tb.
Proor. We are going to show at first that

(77) Fyp,q(2) =

1 b
(79) Fy, @ =7 2 Z S elouw)+0(a,(t)th).
S

Let us investigate the coefficient of e(a,) on the right hand side.
If th=u,=M then we account e(uu,) exactly tb times, namely for the following
values of j:
j=u—th+ 1, u—tb+2, ...,

Thus the coefficient of e{ou) is

in this case (and its coefficient is the same on the left hand side).
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if
(80) l=su <ib
then we account e(ay;) on the right of (79) for j=1,2, ..., u,, thus its coefficient is
1 L1
(O:) Mkng - [b-;—b— —

on the right and 1 on the left of (79). For the numbers u, satisfying (80), the numbers

g form an «/-set selected from g, 2g, ..., thg thus in view of (73) in Lemma 13,
their number is

= A,b) = 4,(t)b = a,(t)tb.

These facts yield that, in fact, the error term in (79) is O(q, (1)1d).
The term e(au,) in the inner sum in (79) can be rewritten in the following way:

el = (8 ] = ¢ (%) o =
= o (%) et etpu-i) = ¢ [&) e 1+ 00w ) =

= o(%) et8)+ 0B = (%) ety + 011811y
since |u,—j|<tb in the inner sum, and

e —1| = le(v/D—e(=y/D)| = [Zsinmy| = 2ny| = 2nly|

for any real number 7.
Thus the inner sum in (79) can be estimated in the following way:

) > e =3 (e(%)emrromsm) =
JSu,<j+tb J=u<jtib
i, =5 (mod b) =9 (mod b)

- [e{%]e(ﬂjHO(lﬁltb)}, 2.
it Emoat)

Let us define the integer v by
v<j=v+b, v=s (modb).

Then for the numbers u, satisfying j=wu,<j-+1b and u,=s (mod b), the numbers
u,q form an o/-set selected from vg+-bq, vg+2bq,, ..., vg+1tbg. Thus by Lemma 10,
Z 1= A(uq,bq)(t) = Abq(t) = abq(t)t-

= <j+tb
1, = s(mod b)

Hence, defining D(j, t, b, s) by
2 1= abq(t)t—D(j: z, b: s)s

J=Eu<j+1b
u,=s(modb)
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we have D(j, ¢ ¢, s)=0. Puatting this into (81):

isu g be(auk) = (e (fbi) e(ﬂ.}) + O(Iﬁ[ tb)(abq(l))r _D(,]a t9 bs S)) =
k_’.;(n{o-‘:-itb)

= (%] et (a1~ DU 1,0, )+ O(Plasy)20).
Thus (79) yields that

1 & X (as ) .
6 Fua® =35 3 3 e(5) e a@1-00 1.5, 9)+OBlanre D) +
+0(a,(t)b) = abq(l‘) [SZIE[‘;S)][Ze(ﬁJ))
1

> Zo(%)epinb 9+

tb s=1j

+0(2E bM- [ﬁ[abq(t)ﬁb)JrO(aq(t)w

= Fo@— 3 3 (%) e(8)DU, 1, b, )+ 011 Mary(©) +a,(0)15)

s 1
Putting here a=f=a=0, we obtain that
a,(MYM = A, (M) = a,,q(t)M Z’ 2])(1,1 b, 5)+0(a,(¢)tb),

s 1 j=1
hence

2’ Z’D(],t b, 8) < (ap (1) —ag (M) M +cza,(t)th.

s—l i=

Thus (82) vields that
| Fat, o () — Fig, o ()| <
—% DUjs 1, by )+ co(1B] Matyy (1) +a, (1)) tb <
< ((a,,q(t)—aq(ﬂl))M+cﬁaq(t)tb) + ¢ (|B] May, (8)+a,(£))th <
= (abq(t)_aq(M))M+CS(|ﬁiMabq(t)+aq(t))tb

which proves Lemma 14.

uM@
Tz

4. (12) will be deduced from a lower estimate for

3 . H
a*(t) = max a,,(t)

in terms of a,(M) where t=0(M) and R~ +e<>, however, ¢ is relatively large,
R is small in terms of M.
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LemMA 15. Let t, M, q be positive integers, R a real number such that

(83)
(34
(85)

1M,
g =logM,
3=R=logM.

Then there exist absolute constants cy, ¢,y such that for sufficiently large M,

(86)

+a* () (a* (t)—a,(M))+(a* (1)) (— log R+

(a,(M))? = co{(a* () —aq(M))gR log R+

R5
M? (log log R)? )

+a*(t) [e—chiag_M + lig_l;__g_l_l_)}.

Proor. We are going to use a modification of that version of the Hardy—
Littlewood method which has been elaborated by K. F. RoTtH in [4] and [5].
P(), F(x) and F*(x) will denote the functions defined by (14), (71) and (77).

(Werecallthatu,, us, ..
form a maximal ,szi-set selected from g, 2g, ..

87

1 4,00

A, (M)
= [ 3 ewn 5 ecud I (ozne(l

namely,

or in equivalent form,

is not solvable, since the numbers u, ¢, u.q, ...

Let us write
(8%)
then by (85),
(89
for large M.

> Ua,0n 0 (71) denote mtegers such that u, g, u,q, ...

s g, 0 9
Mgq.) Then

f Fla) F(—a)P(a) doe =

0

Jin -

——§M
qlp—l

logp =0,

Usg—Uyg = p—1

> Uq, apg form an of-set.

s—L R
~ MloglogR’
_1_<5S log M [< _1_]
M ~ Mlogloglog M 4
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By (87)’ +é 1-6
[ F@PP@da=~ [ |F)PP@)da,
kence, B v
i +¢ i 1-8 j
[ IF@PP@dx = [ IF@PPe)ds,
5 [y 3 }
1 -3 i 1-4
(90) Nl HOROTLE [ 1F@)]1P(2)] do.
i3 -8

We are going to give a lower estimate for the left hand side and an upper es-
timate for the right hand side.

In order to estimate P(x) for |a|=4J, we apply Lemma 3 with u=1, a=0,
b=1 ((16) holds by (84)). Then m; ,=0 in Lemma 3, thus we obtain with respect
to (89) that there exists an absolute constant ¢y such that for large M and |¢|=3J,

)

(P( o) — ( 3 2 Z'e(noc)l = O ((MS+1) Me—e:VioeM) —
_MlogM —c:,;/m] i
{logloglogMe Vot ) = Mem .

Thus we obtain applying Parseval’s formula that

] o
Ol [ IF@Epeds] =
+o M +8 .
= f IF(O{)P.QD(Q) (Zl’e(noc))da+ f [F(m)lz(fz(a)_go%)_ e(noe))da =
-3 n= =5 o
+e ‘ 16 ;
glﬁ% / ’F(“)'Z(ge(”“)]d“ — [ 1F@P P(a)—(p*gf,g“na) do >
“ I
>;‘(€T) _j'alF(OC)IZ{nﬁe(noc)) d“,__,,f |F(a)]2 Me— el o8 3 oy >
+6
§0(q) f lF(OC)P( e(not)]doc —Me~ CloVIOSMfIF(m)Pd“ —
+8
= -(— f ]F(d)lz( e(noc)} do|—a, (M) M2e—cwlToed =
—0
+
=9@ f IF(“)P( e(na)] do|—a* (£) M2 e~ cwlloeM

—a
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since

(92) a,(M)=a,(t)=a"(1)

by (74), (83) and the definition of the fanction a*(z).
For any complex numbers #, v, we have

?Iu}z—]vlﬁ = luli—vb| = [(u—v)i+uv{E—5)| =
= Ju—olla]+ plfi -5} = ju—o|(ju|+ o) =
= lu—v|(j(w—v)+ol+ o)) = ju—v|(ju—v]+2l]) =

= |lu—o242ju—oljp].

Thus o l
(93) i [ (IF@))2—F*@P) (ée(na))da =
NV
gj f ];F(a)jz |F* (o) 2] ngle(noz)ldaé
f (IF()— F* (@) +2[F()— F*(oc)IIF*(oc)l) e(noc)|da

For a=0, b=1, lemma 14 yields with respect to (92) that
|F(e)— F*(w)| = (aq(t)—aq(M))M+c5(Ioc]Maq(t)+aq(t))t =
= (a*(t)—a (M) M+c;(lo| M+ Da* ()t =

_ (@*(O)—a,(M))M+cyya*(t)t for || = 1/M
= {(a*(t)~aq(M))M+c12 lcla*(£)tM  for 1/M = |o} = é.

375

Thus using also Lemma 4 we obtain from (93) (with respect to (88), (89), (92) and

the inequality

(94) (A+B) = 2424282
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where A, B are arbitrary real numbers) that

(95)

f (IF(cx)l2 IF*(a)lz)( e(noc)]dcx

< [ {(@*®—a,00)M+a*(Ot)+

le|=1/M

+((a* () —a, (M) M+a*(t)r)a*(t) M } Mdo +
+ [ @O —a,(D)M+|ala™(6)eM P+

1M=al=d

+({(a* (@) —a (M)M+ a|a*(t)tM)a*(t) [“_|}|_°C—lda <«
<<(a*(t)—aq(M))2M2+(a*(t))2tﬂ+a*(t)(a*(t)—aq(M))M2+(a*(t))2tM+

@O -a, (OO} [ oodot

YM=lai=s o

+(a*(1))2e2 M2 f || dor+a*(2)(a*(t) —a (M) M f —da <«

YM=al=3 1YM=la|=d o |2
< (a* (1) —a,(MPEM2+(a* (O M +a* (1) (a* (t) —a, (M) M? +
+{a* (1) — a,(M))2 M2 +(a*(2))2tM } log M+
+a* )M +a* (1) (a* (1) —a,(M)) M? <
< (a*(t)—a (M) M2+ (a*(1))*tM + a*()(a* (t) —a (M)yM?+

*7\a BN
+{(a* ()~ a,(MOP M2+ (a™ (O 1M }log R+-(a™ (O * o oper <

< (@) a MM og R+ (@O (¥ 108 R o) +
+a* () (a* (1) —a, (M) M.

By Lemma 4 and Parseval’s formula, we have

+5 M
[ 1 E{ X o) dx =
—3& n=1
1-6 1—3 M
f IF*(oc)]Z[ e(noc)]dd— f [F*(a)lz[Z'e(na))docz
_ pu’
1/2 ’
= (4, _ é; -2 f (@00 35"
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Here for large M,

IIV

[M] M2
1=x,y, zéM
Xx—y+z=0

since léxé[g—], 1§Z§[7] and y=x+z satisfy the conditions 1=x,y, z=M,
x—y+z=0. Thus with respect to (85) and (92),

(96) j |F* ()2 [ > e(ncx)] do >

- aop (5 o) = e (¥ - 55) =

= oopae -5 (2 = faopae = aonyae

(91), (95) and (96) yield that

©7) ) f @) P () dx| =
> qu) ] f 6|F(oz)]2( é’l e(nac)) do|—a* (1) M2 e—exoTo8H =
(q) @ ze(na)]da'_
[ r@pir @) Seom) -
—a* () MEecwbionM = o "o )(a (M))?- M2~
wois L@ ()~ a, ()M 0g R+ (a* () (1 10g R+ rfggfi—sz

+a*(1)(a*(1)—aq(M))MZJra*(t)Mze—ﬁol/m}.

Now we are going to give an upper estimate for the right hand side of (90).
If a, b are integers such that 0=ae=b—1, 1=b=R and (g, b)=1 then let
us dencte the interval

T S
’b b MloglogR’ b MloglogR

by 1, (so that I, ;=[—6 +6]) and define the set S, in the same way as in Lemma
9. Then obviously,

[531—5]C{ U ( U Ia,b)}USR,M

2=b=R 1=a=b—1
(6, b)=1
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thus
i—90
98) [ F@P|P@)]de =
- +é
=23 = [IFOPrP@|d+ f |F(2)*|P(2)] dox =
et L

[R]

E, ;+Es.
b=21=a=bh—1
(a.b)=1

For a€l, ,, we use Lemma 14 to estimate | F(«)|, while |P(a)| can be estimated
by applying Lemma 5 with u=2, a=++§, since (15) and (16) hold by (34}, (85)

and b=R, and also (28) holds for large M by [f|=6 and (89). Applying these
lemmas, we obtain with respect to (92) that if «</, , (where 1<b=R) then

lF(“)] = (abq(t)_aq(M))M+CS(|»6|Mabq(t)+aq(t))tb =
= (a*(O)—a, (M) M +cs(|B| M +1)a*(t)th =

fiA

_ 1

M

(@a* () —a, (M) M +2c5a™(¢)tb  for |B]
(@*(®)—a, (M) M+2c,|f| Ma*(¢)tb for |B] > —

1
and (29) hold. Thus in view of (85), (88), (89) and (94),

E,, = f]F(—+/3]l IP( +ﬁ) B +
Iﬁls—-
o 1 JelGen) p(eo) 4=
Laipiss
<<m| [ @)= a, D) M2 +(a” (1))2¢2b7%} “Bo ()dﬁ+

~s|[3|s,§

+J {(a*(r) a (M) M+ B2 MR (O 2 s df =

< {(a (t)—a (JM))ZMZ-f—(a"(l‘) 21252}@( )Q(a)
...____q_ x* — 2 2 I 2{ ™ 2 sz
SO {(e” () —a, ()M _g{mé& TRk (a™ ()t

J IBldst <=

A—/I,élﬁl§é

m{(d (f) KEG(M) ﬁ{z“—(ﬁ t) l‘bﬁ
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+{a™(1)—a (M) M2 log M3+ M2(a™(1))*12b%8%} <

2~
q { * 2 AL * 2424H2 R
< ——tHa*(t)—a, (M))2M?log R+{a”(¢))2t2b [—]}
e (b)e(g) (@ (O)=a, (M) g R+(a" (1)) foglog R
hence
9 5 5 E S s g {( (t)—a,(M))*M?log R+
oy K T ————a" () —a, (N 2log R-
©9) b 1=imo-1 0 vShisass-1 0(5)0(g) ‘ €
(a,b)=1 (a,b)=1
Hawpee (ioglog R) }<<
q £ 3 . 2 2 : x 242 R5 }
< e {(a (1)—a,(M))2 M*Rlog R+(a™ (1))t Tozlog REJ"
Finally, to estimate Es, we use Lemma 9 and Parseval’s formula:
(100) = [ F@FP@Id= sup |P@)| [ [F@)tde<
Sg, *ESr, mr Sr,mt
qM loglogR
« —— F(@)Pda =
ol R f I
gM loglog R 7 loglog R
= —————q (MM = Z_ ME—=—"
»g R (M) 0@ © R

(with respect to (92)).
(90), (97), (98), (99) and (100) yield that

1

10 3@ N M e

e ){(a (t)—a, (M) M*2log R+

+(a* (1)) [tMlog R+12 ]+a*(i)(a*([)~aq(M))M2+

R2
(loglog R)®.
+a*(t)M2e—clg}/m~’} <&

" 2 * g R5
{(a*(t)—aq(M))‘M2R10g Re-(a™m)e® m} -

9
<
o)
. , loglog R
. ——() a“ ()M — 5
or in equivalent form, '

(a,(M)) < (ci’:‘(t)—aq(ﬁéi))2 Rlog R+

+a"(N(a” () —a, (M) +(a" (1))’ [_ log R +MZ R@i;—-TP)

Tog M \
+a(1) [e-vloV!ogfn+ lcili%g_RJ
(with respect to (92)) which completes the proof of Lemma 15.
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5. In this section, we will complete the proof of our theorem by showing that
Lemma 15 implies (12).

C will denote a large enough (but fixed) constant and x will be an arbitrary
integer which is sufficiently large in terms of C.

Let us write

_ [i loglog x ]
" 16 logloglog x

and define the positive integer N by

(1o1) [(Joglog x)°1*|N

and

(102) \ N = x <= N+{(loglog x)°)%,
so that '

X
N= [W] [(log log x)°]%.
For x—+o ,
(103)

hence

1 loglog x
6 logloglog x’

log [(log log x)°1? = Zlog [(log log x)°] ~

‘ 1 loglogx B
~ 5Zlogloglogx ~ S'Emlogloglogx =

= %log logx
thus for large x,

(104) [(loglog x)*}? < eloglos= = Jog x.
(102) and (104) imply that for large x,
(105) x = N> x—logx.
Let us define the positive integers 1y, #, ..., Iz_1, Iz in the following way:
for k=0,1, ..., 7, let

o N
* 7 [doglog x)’1E %’

so that 7;,=N. (In fact, these numbers are positive integers by (101).) Furthermore,
(104) and (105) imply that for large x,
N

[Goglog xy 2 ~

>x—logx= X (>V;)
logx log x

(106) x=N=ty=t 1>..> =)=
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For u=3, let us define the function f(u) by

loguloglogu
T e

S
and for £=0,1,...,Z-1, let

Ry = (f(O)M*(f (k+ CY)~tloglog (f (k+ C))

Finally, we define the positive integers gy, g1, ..., §z_1, gz by the following
backward recursion:

Let g,=1. If g;,9z_1, ..., 9+, have been defined (where 0=k=Z-1)
then let g, denote a positive integer for which

(107) G+1lG%
and
9k
(108) 1= =R,
Jr+1

hold and a, () is maximal; i.c. using the notations of Lemma 15 (with #,, ¢,
and R, in place of ¢, g and R, respectively), let us define g; by (107), (108) and

(109) aqk(tk) = a*(t) = I;Kblg).l({k abqk.,.](tk)'

We are going to show by straight induction that if C is large enough and x
is sufficiently large in terms of C then for £=0,1,...,Z

f(k+C)
VA(O

For k=0, (110) can be written in the form g, (t,)=1 but this holds trivially
by Lemma 12 (independently of C).

Now let us suppose that (110) holds for some positive integer k, satisfying
0=k=Z-1. We have to show that this implies that also

(110) 4, (1) =

Jk+14+0)
a f, = —
qk+1( k+1) f(C)
holds.
Let us assume indirectly that
fk+1+C)
(111) aqk+1(tk+1) = f(C) .

We are going to deduce a contradiction from this indirect assumption by using
Lemma 15. For this purpose, we need some estimates for the function f () and
the parameters Z and R,.

Obviously, for large u, the function f(u) is decreasing and

(112) Tim f(u) =0
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. ¥
Furthermore, if #— +2 and 7»1 then

(113) f(w) ~f() [for U - + oo, 3;-* 1).
For u— +-s,

(114) log(f(w) ™ ~ logu? =2logu (for u —+20)
and

(115) loglog (f(u))~* ~ loglogu (for u —+ o).

By Lagrange’s mean value theorem, for u=3, there exists a real number v such
that '
f@)—fu+1)=—f'(v) and u=v=u+l.

Thus for u— 4+, we obtain with respect to (113) that

—loglogv—1+2(logv) (loglogv)
U3

(116)  f@—fu+) =-f'@}=

(103) implies that
(117) logZ ~ logloglog x
and
loglog Z ~ loglogloglog x
(for x—+4<=). Thus with respect to (103) and (113), we have
logZloglogZ

(118) fZ+C)~f(2Z) = v

36 (logloglog x)® (log log log log x) \
(log log x)? CT
Finally, if C is large enough and k=0, 1, ..., Z—1 then with respect to (115),
(119) R = (F(O)2(f(k+C))*loglog (f (k+C)) ™t <
(k+C)
1/2
=(f(©) log (k+C)loglog (k+C)

— 1/2 (k+c)2
= 2O g eey

2loglog(k+C) =

and

(120) Ry = (O (k-+ C) 7 loglog (k +C) =

(k+C)y?

1
=z VO Geweror
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Furthermore, by (112) and since f (1) is decreasing for large 4, we have also
< (f(k+C))loglog(f(k+C))*
R, = (fk+ O 2(f(k+C))loglog (f(k+C))™ =
= (f(k+C))~loglog (f(k+C))™

for large enough C. Hence, in view of (112), (114) and (115), we obtain for large
Cand k=0,1,...,Z—1 that

and

(121) %10g(k+C) <'log R, < 3log(k+C)
and
(122) %log log (k+C) < loglog R, < 2loglog(k+C).

We are ready to show that if C is large enough and x is sufficiently large (in
terms of C) then Lemma 15 can be applied with 7, t, 11, ¢,+1 and R, in place of
t,M,q and R. In fact, (83) holds obviously by the definition of the numbers
tos By ... 7. Also, R=3 holds trivially for large C by (121). Furthermore,

Z-1 g Z—1 z-—
Geer=9z [I —~—= 1] é_]_lf

j=k+1 Gj+1 j=k+1 q i+l

thus to prove that both (84) and (85) hold, it suffices to show that

—1

Il R;=logt1(=log M)

j=0
or in equivalent form, ’
zZ—
(123) Z’ R; =loglogt,,y.
By (106),
(124) loglog f,., > loglog ¥'x > —gflog log x

for large x. On the other hand, by (103), (117) and (121), we have

Z—1

Z—1
(125 > logR; <3 3 log(j+C) < 3Zlog(Z+C) <
=9 j=0

1 loglogx

< 4ZlOgZ< S'E‘m

logloglogx = —Z—log log x

for large C and x. (124) and (125) yield (123). Thus in fact, Lemma 15 can be applied;
we obtain that (86) holds. To deduce a contradiction from (86), we have to estimate
a,(M) and a*(t)—a,(M).
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Using the notations of Lemma 15, (110) and (111) can be rewritten in the form

sy = Jk+C)
and
fk+14+0C)

By (74) in Lemma 13, r=t,/t,,,=M implies that
(128) 0=a,, (t)—a,, () = a,(t)—a,(M) = a*(t)—a,(M).

With respect to (113), (126), (127) and (128) imply for large C that
(129) a*(t) = a (M) > —;-a*(t).

Furthermore, (126) and (127) yield with respect to (113), (116) and (129) that for
large C,
fk+C) f(k+1+0) _ 3 fk+0O) B

J(©) J(€) f(€)y k+C

(130) a*(t)—a M) <

4 fk+1+C) 4 4

STEC @ krc AWM= ()

T k+C
By (118), (127) and (129), we have

Jk+1+C) _ f(Z+C)

131 a*(t) = a (M) > =
_ 35 (logloglog x)® (log log log log x)
~f(©) (loglog x)?

for large x, while in view of (106),

(132) e'“cml/m = e-CIO}/lOgtk-)-l = e—cml/@ -

— omerVTosl5 — g—enl T = g ( (logloglog x)® (log logloglog x) )

(loglog x)*
for x— 4. (131) and (132) yield that for fixed C and large x,

(133) e""mnvm <f(C)a*(t).
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Finally, by (113), (120), (122), (127) and (129), we have

loglog R - 2loglog(k+C)

(134)

R Loy St O
O ooy
= 4(f(C)) M2 f (k+C) = 4(f(O)2 f(k(z)c) _
< 5(f(O) f(kf%g < 5(f(C)2a (M) = 5(f(C))2a™(¢)
for large C.

With respect to (119, (121}, (122), (i28), (129), (130), (133) and (134), (86)
yields that

(o) <oiliae *(:)] AFOP* ey 3log (e +O)+
+a*(t)- k+C a* (1) +(a*(1))? (m-ﬂog(kﬁ-c%k
1 (k+C)? 1

+ e+ | 2(f(O)) : |t
[(log log x)°] ( log (k+C) ] [_;_ log log (k+ C)]

+a*(t)(f(C)a*(t)+5(f(C))1/2a*(t))}.

Dividing by (a*())* and with respect to (103), (112) and (117), we obtain that if
C is large enough and x is sufficiently large depending on C then

409 2
k+C (log log x)®

2(F(CHZ+CYO+eo f(C)+5es(f(C))H2 <

T < 96ey (F(CI +

2
“ (loglog 0

-3log(Z+C)+

11 Teq

21609(f(C))5/2 1 1
=30 730 " Toglog 30

(log log x)™ 30 730

28 ¢, (f(C))2 [l log log x )10
(loglogx)® \5logloglogx =

log Z +

2 8¢
W (logloglog x)+

2 28¢,(F(C))2 1 2 1.1 1
15+30+ 50 (ogloglog0® ~ 151730 %0 = 5

Thus in fact, the indirect assumption (111) leads to a contradiction which proves
that (110) holds for £=0,1, ..., Z
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Applying (110) with k=27, we obtain with respect to (118) that

(133) t,(12) = (W) = o) = LEED)
- 37 (logloglog x)®*(loglogloglog x)
(< (loglog x)* ’

provided that x is sufficiently large.
Finally, (135) vields by (75) in Lemma 13 and (105) that

74 (logloglog x)? (lqg fog loglog x)
() (loglog x)*
which completes the proof of our theorem.

6. In [6j-[9], K. F. RotH generalized the method developed in [4] and [5],
in order to investigate the solvability of systems of equations of the form

a(x) = (1—{-%) a(N) = 2a(N) <

v

=0 (1=1,2 .0,

Zau
Jj=1

where the numbers «;; are integers satisfying Z’a”—@ and w<wu,<.. 1S an
j._
arbitrary “dense’ set of positive integers.
By using that extension of Roth’s method which has been elaborated in this
paper, one may investigate also the sclvability of systems of equations of the more
general form

Sy, = S8 (=12.0p)

=
where the numbers «;; and §; are integers (agam 2’ o= 0), ty<Hy<<... 1S an

=1
arbitrary “dense” set of positive integers and the sets bM< b < ... (where k=
=1, ..., %) are fixed sets of positive integers.
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