Journal Title: Finite and Infinite Sets, edited by

Hanjal, Lovasz, Sos. ALSo called "sixth hungarian combinatorial conference"

Volume: Issue:

Month/Year: 1983 Pages: 231-246

Article Author: Deuber, Promel, Rothchild,

Voigt

Article Title: A restricted version of Hales-

jewitt's theorem

Imprint:

Call #: Place a Request to Obtain QA248 .F5

Location:

Item #:

CUSTOMER HAS REQUESTED:

Mail to Address

William Gasarch (00000350541) College Park, MD 20742

31430022807640 31430022807632

COLLOQUIA MATHEMATICA SOCIETATIS JÁNOS BOLYAI 37. FINITE AND INFINITE SETS, EGER (HUNGARY), 1981.

A RESTRICTED VERSION OF HALES—JEWETT'S THEOREM

W. DEUBER - H.J. PRÖMEL - B.L. ROTHSCHILD - B. VOIGT

1.

A well known theorem of van der Waerden states that for every pair δ , k of positive integers there exists a positive integer n with the property that for every partition of $\{1,\ldots,n\}$ into δ many classes there exists a k-term arithmetic progression contained in one class. Thus in order to obtain a k-term arithmetic progression within one class of the partition a much richer structure (viz an n-term progression) is partitioned. Erdős [1] conjectured that for every pair δ , k of positive integers there exists a set A of positive integers which contains no (k+1)-term progression and still has the property that for every partition of A into δ many classes at least one of the classes contains a k-term progression. That such a restricted version of van der Waerdens theorem is valid was shown independently by Spencer [8] with the aid of Hales — Jewett's theorem [4] and Nešetřil — Rödl [6] by a direct construction. In this paper we shall give a restricted version of Hales — Jewett's theorem for partitioning 0 parameter sets.

Let A be a finite alphabet. A^n is the set of words of length n over A. A^n may also be viewed as an n-dimensional cube over A. A k-dimensional subcube C of A^n has a parametric representation of the following type

$$C = \{(a_0, \ldots, \lambda_0, \ldots, \lambda_1, \ldots, \lambda_{k-1}, \ldots, a_{n-1}) \mid \lambda_i \in A, \ i < k\}.$$

This representation is given by the word

$$f = (a_0, \ldots, \lambda_0, \ldots, \lambda_1, \ldots, \lambda_{k-1}, \ldots, a_{n-1}).$$

This suggests the following definition:

Definition 2.1. Let A be a finite alphabet and n, k be nonnegative integers. The set $[A] \binom{n}{k}$ of k-parameter words of length n over A is the set of all mappings $f: n \to A \cup \{\lambda_i \mid i < k\}$ where $A \cap \{\lambda_i \mid i < k\} = \phi$ satisfying

- 2.1.1. For every j < k there exists i < n such that $f(i) = \lambda_i$.
- 2.1.2. $\min f^{-1}(\lambda_i) < \min f^{-1}(\lambda_i)$ whenever i < j < k.
- 2.1.1 guarantees that k-parameters really occur in f and 2.1.2 gives a natural ordering of the first occurrences of the parameters. With these conditions we obtain a bijection between the k-parameter words of length n over A and the k-dimensional subcubes of A^n . Next we define the composition of parameter words.

Definition 2.2. Let $f \in [A] \binom{n}{m}$ and $g \in [A] \binom{m}{k}$. The k-parameter word $f \cdot g \in [A] \binom{n}{k}$ is defined by

$$f \cdot g(i) = \begin{cases} f(i) & \text{if } f(i) \in A \\ g(j) & \text{if } f(i) = \lambda_j. \end{cases}$$

In geometric terms $f \cdot g$ is the k-dimensional subcube of the m-dimensional subcube f which has parametric representation g in A^m .

Theorem (Hales – Jewett [4]). Let A be a finite alphabet. For every pair m, δ of positive integers there exists a positive integer n such that for every coloring Δ : $[A] {n \choose 0} \rightarrow \delta$ of the points of the n-dimensional cube over A there exists a monochromatic $f \in [A] {n \choose m}$, i.e. the coloring Δ_f : $[A] {m \choose 0} \rightarrow \delta$ defined by $\Delta_f(g) = \Delta(f \cdot g)$ is constant.

3.

Here we prove a restricted version of Hales-Jewett's theorem: For positive integers δ , m there exists a positive integer n and a subset S of $[A]\binom{n}{0}$ such that S does not contain an (m+1)-dimensional subcube, i.e. for every $f \in [A]\binom{n}{m+1}$ there exists $g \in [A]\binom{m+1}{0}$ such that $f \cdot g \notin S$, and still for every coloring of the points of S there exists a monochromatic m-dimensional subcube in S.

Notation 3.1. Let $S \subseteq [A] {n \choose 0}$ and k < n.

$$\mathcal{F}_k(S) := \left\{ f \in [A] \binom{n}{k} \mid f \cdot [A] \binom{k}{0} \subseteq S \right\} =$$

$$= \left\{ f \in [A] \binom{n}{k} \mid f \cdot g \in S \text{ for every } g \in [A] \binom{k}{0} \right\}.$$

 $\mathscr{F}_k(S)$ is the set of all k-dimensional subcubes of A^n which are contained in S. In particular $\mathscr{F}_0(S) = S$.

We are ready to state the main theorem.

Main theorem. Let A be a finite alphabet and δ , m be positive integers. Then there exists a positive integer n and $S \subseteq [A] \binom{n}{0}$ such that

- (a) $\mathscr{F}_{m+1}(S) = \phi$, i.e. S does not contain (m+1)-dimensional subcubes.
- (β) For every coloring Δ : $S \to \delta$ of the points of S with δ many colors there exists $f \in \mathscr{F}_m(S)$ such that the coloring Δ_f : $[A]\binom{m}{0} \to \delta$ defined by $\Delta_f(g) = \Delta(f \cdot g)$ is constant.

Notation 3.2. A convenient abbreviation for (α) and (β) is "S \xrightarrow{A} $(m)_{\delta}$ ".

The crucial part of the proof of the main theorem consists in showing its validity for m = 1. This case is stated in

Lemma 3.3. Let A be a finite alphabet and δ be a positive integer. There exists a positive integer n and a subset S of $[A] {n \choose 0}$ such that $S \xrightarrow{A} (1)_{\delta}$.

The main theorem follows from this lemma by concatenation of various sets S.

Definition 3.4. Let $f \in [A] {m \choose 0}$ and $g \in [A] {n \choose 0}$. The concatenation $f \otimes g \in [A] {m+n \choose 0}$ is defined by

$$f \otimes g(i) = \begin{cases} f(i) & \text{for } i < m \\ g(i-m) & \text{for } m \le i < m+n. \end{cases}$$

Thus $f \otimes g$ is the usual concatenation of words.

Next we derive the Main theorem from Lemma 3.3. Proceed by induction on m. m=1 is settled by the lemma. For m+1 consider $S_0 \subseteq [A] \binom{n_0}{0}$ with $S_0 \xrightarrow{A} (m)_{\delta}$, which exists by induction hypothesis. Lemma 3.3 guarantees the existence of a positive integer n_1 and $S_1 \subseteq [A] \binom{n_1}{0}$ with $S_1 \xrightarrow{A} (1)_{\delta'}$, where $\delta' = \delta^{|S_0|}$.

Claim. $S_0 \otimes S_1 \xrightarrow{A} (m+1)_{\delta}$ where $S_0 \otimes S_1 = \{g \otimes h \mid g \in S_0, h \in S_1 \}.$

We have to check conditions (α) and (β) of the Main theorem:

For
$$(\alpha)$$
: Let $f \in [A] \left(\frac{n_0 + n_1}{m + 2} \right)$.

In case $\min f^{-1}(\lambda_m) < n_0$, consider $f^* \in [A] {n_0 \choose m+1}$ defined by

$$f^*(i) = \begin{cases} f(i) & \text{for} \quad i < n_0 \text{ and } f(i) \neq \lambda_{m+1} \\ \lambda_0 & \text{for} \quad i < n_0 \text{ and } f(i) = \lambda_{m+1}. \end{cases}$$

Since $f^* \notin \mathscr{F}_{m+1}(S_0) = \phi$ there exists $g \in [A] {m+1 \choose 0}$ such that $f^* \cdot g \notin S_0$. Therefore $f \notin \mathscr{F}_{m+2}(S_0 \otimes S_1)$.

In case $\min f^{-1}(\lambda_m) \ge n_0$ consider $f^* \in [A] {n_1 \choose 2}$ defined by

$$f^*(i) = \begin{cases} f(i+n_0) & \text{if} \quad f(i+n_0) \in A \\ \lambda_0 & \text{if} \quad f(i+n_0) \in \{\lambda_0, \dots, \lambda_m\} \\ \lambda_1 & \text{if} \quad f(i+n_0) = \lambda_{m+1}. \end{cases}$$

Again since $f^* \notin \mathscr{F}_2(S_1) = \phi$, there exists $g \in [A] \binom{2}{0}$ such that $f^* \cdot g \notin S_1$ and therefore $f \notin \mathscr{F}_{m+2}(S_0 \otimes S_1)$.

For (β) : Let $\Delta \colon S_0 \otimes S_1 \to \delta$ be a coloring. Consider first the coloring $\Delta_1 \colon S_1 \to \delta^{|S_0|}$ defined by $\Delta_1(\xi) = \Delta(g \otimes \xi | g \in S_0)$. By choice of S_1 there exists $h \in \mathscr{F}_1(S_1)$ such that Δ_1 is constant on h. Consider next $\Delta_0 \colon S_0 \to \delta$ defined by $\Delta_0(\eta) = \Delta(\eta \otimes ha)$, where $a \in [A] \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ may be chosen arbitrarily. By choice of S_0 there exists a $g \in \mathscr{F}_m(S_0)$ such that Δ_0 is constant on g. Thus Δ is constant on $g \otimes h \in \mathscr{F}_{m+1}(S_0 \otimes S_1)$ where

$$g \stackrel{\approx}{\circ} h(i) = \begin{cases} g(i) & \text{for} \quad i < n_0 \\ \lambda_m & \text{for} \quad i \ge n_0 \quad \text{and} \quad h(i - n_0) = \lambda_0 \\ h(i - n_0) & \text{for} \quad i \ge n_0 \quad \text{and} \quad h(i - n_0) \in A. \blacksquare \end{cases}$$

Proof of Lemma 3.3. Proceed by induction on |A|. For |A| = 1 the lemma is obvious. For |A| = 2, e.g. $A = \{0, 1\}$, choose $n = \delta$ and consider the following set $S \subseteq [\{0, 1\}] \binom{n}{0}$:

$$S := \left\{ \begin{array}{l} (0 \dots 0), \\ (0 \dots 0 1), \\ (0 \dots 0 1 1), \\ \vdots \\ \vdots \\ (1 \dots 1 1), \end{array} \right\}$$

Obviously S does not contain a 2-dimensional subcube because each element of S has the property that all entries after the first occurrence of the letter 1 are 1, i.e. no 0 occurs. Thus for every $f \in [\{0, 1\}] \binom{n}{2}$ we have that $f(1, 0) \notin S$. Furthermore, any two elements of S form a 1-dimensional subcube. As $|S| = n + 1 = \delta + 1$ the pigeon hole principle guarantees the existence of two elements of S having the same color for any coloring $\Delta: S \to \delta$.

The general step may be done by a somewhat tricky iteration of the ideas just mentioned. Consider the alphabet $A = \{0, \ldots, t-1, t\}$. By induction hypothesis applied to $A^* = \{0, \ldots, t-1\}$, for every δ^* there exists n and $S \subseteq [A] \binom{n}{0}$ satisfying $S \xrightarrow{A^*} (1)_{\delta^*}$. This guarantees the existence of positive integers $n_0, \ldots, n_{\delta-1}$ and sets $S_i \subseteq [A^*] \binom{n_i}{0}$ $(i < \delta)$ satisfying

$$S_i \xrightarrow{A^*} (1)_{\delta_i}$$

where $\delta_0 = \delta^{\delta}$ and $\delta_{i+1} = \delta^{(\delta-1-i) \circ |S_i \times S_{i-1} \times ... \times S_0|}$ for $i < \delta - 1$.

Let $n = n_0 + \ldots + n_{\delta - 1}$. In order to define $S \subseteq [A] {n \choose 0}$ consider the following scheme:

Let

$$S = (\mathcal{F}_1(S_0) \otimes \ldots \otimes \mathcal{F}_1(S_{\delta-1})) \cdot T$$

which is defined as follows

$$\begin{split} S &= \{f_0(a_0) \otimes \ldots \otimes f_{\delta-1}(a_{\delta-1}) \,|\, f_i \in \mathscr{F}_1(S_i), \ a_i \in A^*, \ i < \delta\} \,\cup \\ &\cup \{f_0(a_0) \otimes \ldots \otimes f_{\delta-2}(a_{\delta-2}) \otimes f_{\delta-1}(t) \,|\, f_i \in \mathscr{F}_1(S_i), \\ &\quad a_i \in A^*, \ i < \delta\} \,\cup \\ &\cup \{f_0(a_0) \otimes \ldots \otimes f_{\delta-3}(a_{\delta-3}) \otimes f_{\delta-2}(t) \otimes f_{\delta-1}(t) \,|\, f_i \in \mathscr{F}_1(S_i), \\ &\quad a_i \in A^*, \ i < \delta\} \,\cup \\ &\vdots \\ &\cup \{f_0(t) \otimes \ldots \otimes f_{\delta-1}(t) \,|\, f_i \in \mathscr{F}_1(S_i), \ i < \delta\}. \end{split}$$

A typical element of S consists of δ blocks, where the i-th block is obtained by substituting a letter from A into $f_i \in \mathscr{F}_1(S_i)$. Moreover if the i-th block is obtained by substituting the letter t then in all following blocks the letter t is substituted. As the parameter words $f_i \in \mathscr{F}_1(S_i) \subseteq [A] \binom{n_i}{1}$ are defined on the smaller alphabet A^* and do not contain the letter t, the only way that the letter t occurs in an element of S is by substitution of t for the parameter in a parameter word f_i . In order to show that $S \xrightarrow{A} (1)_{\delta}$ we check conditions (α) , (β) .

- For (α) : In order to show that $\mathscr{F}_2(S) = \phi$ assume that there exists $h \in \mathscr{F}_2(S)$. Decompose h into its blocks, i.e. $h = h_0 \otimes h_1 \otimes \ldots \otimes h_{\delta 1}$, where the length of the block h_i is n_i $(i < \delta)$.
- Fact 1. No block is a 2-parameter word. For otherwise it would be a 2-parameter word over the alphabet A^* , contradicting the choice of S_i .
- Fact 2. No block contains simultaneously a parameter and the letter t. For otherwise such a block is a 2-parameter word over the alphabet A^* in which t acts as a parameter, contradicting the choice of S_i .
 - Fact 3. Facts 1, 2 imply that $h(t,a) \notin S$ for all $a \in A^*$. For

otherwise $\min h^{-1}(\lambda_0) < \min h^{-1}(\lambda_1)$ implies that h(t,a) contains a block without letter t following blocks containing t. This contradicts the definition of S via the scheme T.

These facts show that $\mathscr{F}_2(S) = \phi$.

For (β) : Let $\Delta: S \to \delta$ be a coloring. Consider first the coloring

$$\Delta_{\delta-1}: S_{\delta-1} \to \delta_{\delta-1} = \delta^{+S_{\delta-2} \times ... \times S_0}$$

defined by

$$\Delta_{\delta-1}(g) = (\Delta(g_0 \otimes \ldots \otimes g_{\delta-2} \otimes g) \mid g_i \in S_i, i < \delta-1),$$

where for convenience $\Delta(g_0 \otimes \ldots \otimes g_{\delta-2} \otimes g)$ shall be 0 if $g_0 \otimes \ldots \otimes g_{\delta-2} \otimes g$ does not belong to S.

By choice of $S_{\delta-1}$ there exists $f_{\delta-1} \in \mathscr{F}_1(S_{\delta-1})$ monochromatic for $\Delta_{\delta-1}$. Consider next the coloring

$$\Delta_{\delta-2}: S_{\delta-2} \to \delta_{\delta-2} = \delta^{2+S_{\delta-3} \times ... \times S_0}$$

defined by

$$\Delta_{\delta-2}(g) = (\Delta(g_0 \otimes \ldots \otimes g_{\delta-3} \otimes g \otimes f_{\delta-1}(\alpha)) \mid g_i \in S_i$$

for $i < \delta - 2$ and $\alpha \in A$).

By choice of $f_{\delta-1}$:

$$\Delta(g_0 \otimes \ldots \otimes g_{\delta-3} \otimes g \otimes f_{\delta-1}(\alpha)) =$$

$$= \Delta(g_0 \otimes \ldots \otimes g_{\delta-3} \otimes g \otimes f_{\delta-1}(\beta))$$

for all $\alpha, \beta \in A^*$. Thus the only relevant distinction whether $\alpha \in A^*$ or $\alpha = t$ contributes a factor 2 in the exponent of the number of colors of $\Delta_{\delta-2}$. By choice of $S_{\delta-2}$ there exists $f_{\delta-2} \in \mathscr{F}_1(S_{\delta-2})$ monochromatic for $\Delta_{\delta-2}$. Proceed iteratively and consider for $i=1,\ldots,\delta$

$$\Delta_{\delta-i}: S_{\delta-i} \to \delta_{\delta-i} = \delta^{i|S_{\delta-i-1} \times ... \times S_0|}$$

defined by

$$\Delta_{\delta-i}(g) = (\Delta(g_0 \otimes \ldots \otimes g_{\delta-i-1} \otimes g \otimes f_{\delta-i+1}(\alpha_1) \otimes \ldots \\ \ldots \otimes f_{\delta-i+j}(\alpha_j) \otimes f_{\delta-i+j+1}(t) \otimes \ldots \otimes f_{\delta-1}(t))|$$

$$g_0 \in S_0, \ldots, g_{\delta-i-1} \in S_{\delta-i-1}, \ \alpha_1 \ldots \alpha_j \in A^*, \ 0 \leq j < i).$$

Observe again that in the definition of $\Delta_{\delta-1}$ the particular choice of the letters α is not relevant, i.e. for $\alpha_1 \ldots \alpha_j, \beta_1 \ldots \beta_j \in A^*$

$$\Delta(g_0 \otimes \ldots \otimes g_{\delta-i-1} \otimes g \otimes f_{\delta-i+1}(\alpha_1) \otimes \ldots$$

$$\ldots \otimes f_{\delta-i+j}(\alpha_j) \otimes f_{\delta-i+j+1}(t) \otimes \ldots \otimes f_{\delta-1}(t)) =$$

$$= \Delta(g_0 \otimes \ldots \otimes g_{\delta-i-1} \otimes g \otimes f_{\delta-i+1}(\beta_1) \otimes \ldots$$

$$\ldots \otimes f_{\delta-i+j}(\beta_j) \otimes f_{\delta-i+j+1}(t) \oplus \ldots \oplus f_{\delta-1}(t)).$$

By choice of $S_{\delta-i}$ find $f_{\delta-i} \in \mathscr{F}_1(S_{\delta-i})$ monochromatic for $\Delta_{\delta-i}$.

Finally consider the δ-parameter word

$$f = f_0 \otimes \ldots \otimes f_{\delta-1} \in \mathscr{F}_1(S_0) \otimes \ldots \otimes \mathscr{F}_1(S_{\delta-1}).$$

The induced coloring Δ_f acts constantly on the rows of scheme T. Thus the $\delta+1$ many rows are colored with δ colors. Two of them have the same color, thus defining a 1-parameter word which is monochromatic for Δ .

4.

An immediate corollary of Hales—Jewett's theorem is a partition theorem for affine points:

Theorem 4.1 [3]. Let F be a finite field and let δ , m be positive integers. Then there exists a positive integer n such that for every coloring of the affine points in the n-dimensional affine space over F with δ -many colors, i.e. for every coloring Δ : $F^n \to \delta$, there exists a monochromatic m-dimensional affine subspace.

Luckily enough the configuration S which has been constructed in the proof of the Main theorem also yields the following restricted version of the above theorem, viz.

Theorem 4.2. Let \mathbf{F} be a finite field and let δ , m be positive integers. Then there exist a positive integer n and a set $S \subseteq \mathbf{F}^n$ of affine points such that

- (a) S does not contain an (m+1)-dimensional affine space,
- (β) For every coloring of the points of S with δ many colors there exists an affine m-dimensional monochromatic subspace which is contained in S.

Proof. Again the crucial case is m = 1, which may be proved as follows: Let $\mathbf{F} = \{0, 1, ..., t\}$ be the finite field, where 0 is the zero element of \mathbf{F} . Let $S \subseteq \mathbf{F}^n = [\mathbf{F}] \binom{n}{0}$ be the set constructed in the proof of Lemma 3.3.

We claim that S has the desired properties. As in particular each $f \in [F]\binom{n}{m}$ represents an m-dimensional affine subspace of F^n (compare e.g. [5]) property (β) follows immediately. In order to show (α) we have to be more careful because there exist certain m-dimensional affine subspaces which are not represented by any $f \in [F]\binom{n}{m}$.

As S is defined recursively we may think of members of S being arranged in blocks of blocks of ... of blocks. There are t "levels" of blocks. The blocks of the first level are always of the form

$$0 \dots 0 \ a \dots a \ 1 \dots 1$$

where $a \in \mathbf{F}$.

The following diagram depicts the structure of S for GF(4), where the small numbers indicate the levels of the corresponding blocks:

Let $L = \{\overline{c} + \alpha \overline{x} \mid \alpha \in F\}$ be an affine line and assume that L is contained in S.

We examine the implications of the assumption " $L \subseteq S$ " on the vectors \overline{c} and \overline{x} . In particular we look at the structure of \overline{c} and \overline{x} in the blocks of level 1.

Claim. Let B be a block of level 1. Then the parts of \overline{c} and \overline{x} belonging to this block B — which will be denoted by \overline{c}_B , resp. \overline{x}_B — are of the form

$$\overline{c}_B = 0 \dots 0 \ b \dots b \ 1 \dots 1$$

$$\overline{x}_B = 0 \dots 0 \ x \dots x \ 0 \dots 0,$$

where $b, x \in \mathbf{F}$.

Proof of claim. Let B be any block of level 1 and assume that \bar{x}_B is not the zero vector. Let $\bar{c}_B = c_1 \dots c_n$ and $\bar{x}_B = x_1 \dots x_n$.

- 1. Assume that $x_i \neq 0$ and $c_j = 0$, where i < j, then $x_i = x_j$. For otherwise consider $\overline{c} + \left(\frac{1}{x_i}\right)\overline{x}$ and find a block of level 1 with an entry 1 preceding an entry different from 1, again contradicting the structure of blocks of level 1.
- 2. Assume that $x_i \neq 0$, $c_i = 0$ and $c_j \neq 0$ for some j > i, then $x_j = 0$. For otherwise consider $\overline{c} \left(\frac{c_j}{x_j}\right)\overline{x}$ and find a block of level 1 with a non-zero entry preceding a zero entry, again a contradiction.
- 3. Assume that $c_i = 0$ and $c_j \neq 0$, $c_j \neq 1$ for some i < j, then $x_i = 0$. For otherwise 1. and 2. imply that

$$\overline{c}_B = 0 \dots 0 \quad 0 \dots 0 \quad a \dots a \quad 1 \dots 1,$$

where $a \neq 0$, 1 and

$$\overline{x}_B = 0 \dots 0 \ x \dots x \ 0 \dots 0 \ 0 \dots 0.$$

Consider $\overline{c} + (\frac{1}{x})\overline{x}$ and find a block of level 1 with an entry 1 preceding an entry different from 1, a contradiction.

Now the claim may be proved as follows: let i be the minimal index

such that $x_i \neq 0$ and let $\alpha \in F$ be such that for $\overline{d} = \overline{c} + \alpha \overline{x}$, where $\overline{d}_B = d_1 \dots d_n$, it follows that $d_i = 0$. By 1., 2. and 3. above then \overline{d}_B and \overline{x}_B have the following structure:

$$\bar{d}_B = 0 \dots 0 \quad 0 \dots 0 \quad 1 \dots 1$$

$$\bar{x}_B = 0 \dots 0 \quad x \dots x \quad 0 \dots 0,$$

but then $\overline{c} = \overline{d} - \alpha \overline{x}$ and thus

$$\overline{c}_B = 0 \dots 0 \quad b \dots b \quad 1 \dots 1$$

$$\overline{x}_B = 0 \dots 0 \quad x \dots x \quad 0 \dots 0,$$

where $b = -\alpha x$ gives the desired result.

Let $P = \{\overline{c} + \alpha \overline{x} + \beta \overline{y} \mid \alpha, \beta \in \mathbf{F}\}$ be a configuration of points which is contained in S. We show that \overline{x} and \overline{y} are linearly dependent, thus S does not contain a 2-dimensional affine subspace.

As an immediate corollary from the claim one obtains that for every block B of level 1 the vectors \overline{c}_B , \overline{x}_B and \overline{y}_B have the following structure:

$$\overline{c}_B = 0 \dots 0 \quad b \dots b \quad 1 \dots 1$$

$$\overline{x}_B = 0 \dots 0 \quad x \dots x \quad 0 \dots 0$$

$$\overline{y}_B = 0 \dots 0 \quad y \dots y \quad 0 \dots 0.$$

The proof of Theorem 4.2 will be finished by showing that for every k = 1, ..., t and every block B of level k the following holds:

- (*) \bar{x}_B and \bar{y}_B are linearly dependent
- if k < t and if for some $\alpha, \alpha', \beta, \beta' \in \mathbf{F}$ both $(\overline{c} + \alpha \overline{x} + \beta \overline{y})_B$ and $(\overline{c} + \alpha' \overline{x} + \beta' \overline{y})_B$ contain at least one entry of t then all entries of t in $(\overline{c} + \alpha \overline{x} + \beta \overline{y})_B$ and $(\overline{c} + \alpha' \overline{x} + \beta' \overline{y})_B$ occur exactly at the same positions.

The assertions (*) and (**) are proved by induction on k. The case k=1 follows from the claim. So assume that (*) and (**) hold for k-1

and consider a block B of level k > 1. Suppose (*) does not hold on B. Then there must be two (k-1)-level blocks B_1 , B_2 in B on the entries of the union of which \bar{x} and \bar{y} are linearly independent.

By induction \bar{x}_{B_1} and \bar{y}_{B_1} are linearly dependent and \bar{x}_{B_2} and \bar{y}_{B_2} are linearly dependent. Let c_1, x_1, y_1 be the entries in the first position of B_1 where not both x_1, y_1 are equal to zero and let c_2, x_2, y_2 be similarly defined for B_2 . The situation is as follows:

Then $x_1y_2 \neq x_2y_1$ by choice of B_1 and B_2 and the induction assumption on B_1 , B_2 . Thus we can find α , β so that $c_1 + \alpha x_1 + \beta y_1 = t$ but $c_2 + \alpha x_2 + \beta y_2 \neq t$. From property (**) we see that $(\overline{c} + \alpha \overline{x} + \beta \overline{y})_{B_2}$ does not contain any t. This violates the conditions for S. Hence (*) holds on B.

Now let k < t. We show that (**) holds for B. Assume that it does not. By (*) we need only consider vectors of form $\overline{c} + \alpha \overline{x}$ on B. Then for some α , α' we must have $(\overline{c} + \alpha \overline{x})_B$ and $(\overline{c} + \alpha' \overline{x})_B$ with different entries of t. In particular there exists a (k-1)-level block B_1 in B such that $(\overline{c} + \alpha \overline{x})_{B_1}$ and $(\overline{c} + \alpha' \overline{x})_{B_1}$ have different entries of t. By induction on (**) then one of these blocks, say $(\overline{c} + \alpha \overline{x})_{B_1}$, contains some entries of t while $(\overline{c} + \alpha' \overline{x})_{B_1}$ does not contain any t. In particular there exists another (k-1)-level block B_2 such that $(\overline{c} + \alpha' \overline{x})_{B_2}$ contains some entries of t. By the rules for S the block B_1 precedes the block B_2 and thus also $(\overline{c} + \alpha \overline{x})_{B_2}$ contains some entries of t. Again by

induction on (**) then all entries of t in $(\bar{c} + \alpha \bar{x})_{B_2}$ and $(\bar{c} + \alpha' \bar{x})_{B_2}$ occur exactly at the same positions. This means that for a suitable α'' , the vector $\bar{c} + \alpha'' \bar{x}$ has entries of t in B_2 and entries of t-1 in B_1 . This violates the rules for S, which exclude any entry of t-1 preceding an entry of t in any block of level t-1 or smaller. Thus (**) holds. The induction is now complete and letting k=1 we see that (*) implies that $P = \{\bar{c} + \alpha \bar{x} + \beta \bar{y} \mid \alpha, \beta \in F\}$ is just a line at best and not a plane.

Now much is known about restricted versions of Graham and Rothschild's partition theorem for k-parameter words [3] with k > 0. The only result in this direction is due to Nešetřil and Rödl [7] who announced the case of 2-parameter words over the empty alphabet:

Theorem 4.1 [7]. Let m, δ be positive integers. There exist a positive integer n and a subset S of $[\phi]\binom{n}{2}$ not containing an (m+1)-dimensional subcube (i.e. for all $g \in [\phi]\binom{n}{m+1}$) there exists an $h \in [\phi]\binom{m+1}{2}$ with $g \cdot h \notin S$) such that for every coloring $\Delta \colon S \to \delta$ there exists an $f \in [\phi]\binom{n}{m}$ which is contained S and monochromatic with respect to Δ .

Even for the empty alphabet the general case remains unsettled. Also nothing is known about restricted versions of the partition theorems for finite vector spaces [2].

Finally it could be worthwhile to note that in case of colorings of 0-parameter words (i.e. k=0) and requiring a monochromatic 1-parameter word not only a restricted but also simultaneously a restricted and induced version may be established, viz.

Theorem 4.3. Let A be a finite set and let $I \subseteq A$ be a subset of A. Then for every positive integer δ there exists a positive integer n and a set $S \subseteq [A] \binom{n}{0}$ such that

- (a) S does not contain a 2-parameter word,
- (b) for every coloring $\Delta: S \to \delta$ there exists a 1-parameter word

 $f \in [A] \binom{n}{1}$ such that

- (i) all elements $f \cdot a$, $a \in I$, are colored the same, and thus particularly $f \cdot a \in S$ for $a \in I$;
- (ii) $f \cdot a \notin S$ for $a \notin I$.

This strengthens a result of [9], where an induced version of Hales—Jewett's theorem has been established. Obviously the same strengthening applies to Theorem 4.2 as well. We do not know whether in general a restricted and simultaneously induced version of Hales—Jewett's theorem is valid.

REFERENCES

- [1] P. Erdős, Problems and results in combinatorial number theory, Société Mathématique de France Astérique, 24-25 (1975), 295-310.
- [2] R. Graham K. Leeb B.L. Rothschild, Ramsey's theorem for a class of categories, Advances in Math., 8 (1972), 417-433.
- [3] R. Graham B.L. Rothschild, Ramsey's theorem for n-parameter sets, Trans. Amer. Math. Soc., 159 (1971), 257-292.
- [4] A. Hales R.I. Jewett, Regularity and positional games, Trans. Amer. Math. Soc., 106 (1963), 222-229.
- [5] K. Leeb, Vorlesungen über Pascaltheorie, Erlangen, 1973.
- [6] J. Nešetřil V. Rödl, Van der Waerden theorem for sequences of integers not containing an arithmetic progression of k terms, Comment Math. Univ. Carolinae, 17.4 (1976), 675–681.
- [7] J. Nešetřil V. Rödl, Dual Ramsey type theorems, In: Proc. of 8th Winterschool on Abstract Analysis (ed. Z. Frolik), 1980.
- [8] J. Spencer, Restricted Ramsey configurations, J. Comb. Th. (A), 19 (1975), 278-286.

[9] W. Deuber - B.L. Rothschild - B. Voigt, Induced partition theorems, J. Comb. Th. (A), 32 (1982), 225-240.

W. Deuber - H.J. Prömel - B. Voigt

Fak. f. Math. Univ. Bielefeld, 4800 Bielefeld, GFR.

B.L. Rothschild

Math. Dept., UCLA, Los Angeles, CA 90024, USA.