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COLLOQUIA MATHEMATICA SOCIETATIS JANOS BOLYAI
37. FINITE AND INFINITE SETS, EGER (HUNGARY), 1981.

A RESTRICTED VERSION OF HALES—JEWETT'S THEOREM

W. DEUBER — H.J. PROMEL — B.L. ROTHSCHILD — B. VOIGT

1.

A well known theorem of van der Waerden states that for every pair
8, k of positive integers there exists a positive integer n with the property
that for every partition of {1,...,n} into & many classes there exists a
k-term arithmetic progression contained in one class. Thus in order to
obtain a k-term arithmetic progression within one class of the partition a
much richer structure (viz an n-term progression) is partitioned. Erdés
[1] conjectured that for every pair 8, k of positive integers there exists a
set A of positive integers which contains no (k + 1)-term progression and
still has the property that for every partition of 4. into & many classes
at least one of the classes contains a k-term progression. That such a
restricted version of van der Waerdens theorem is valid was shown inde-
pendently by Spencer [8] with the aid of Hales — Jewett’s the-
orem [4] and Nesetril — Rodl [6] by a direct construction. In this
paper we shall give a restricted version of Hales — Jewett’s theorem for

partitioning O parameter sets.

- 231 -



2.

Let A be a finite alphabet. A" is the set of words of length n over
A. A" may also be viewed as an n-dimensional cube over 4. A k-dimen-
‘sional subcube C of A" hasa parametric representation of the following

type
C={(a0,...,)\0,...,)\1,...,)xk_l,...,an_l)lkiEEA, i<k}
This representation is given by the word
f= (aO,...,RO,...,7\1,...,)\k_l,...,an_l).
This suggests the following definition:
Definition 2.1. Let 4 be a finite alphabet and n, k be nonnegative
integers. The set [A] (Z) of k-parameter words of length n over A is

the set of all mappings f: n—»> A U {\,1i<k} where 4N Ni<k}=9
satisfying

2.1.1. Forevery j<k thereexists i<n suchthat f{i) = 7\]..
2.1.2. min f~ 1(7\1.) <min f~ 1(7\].) whenever i<j< k.

2.1.1 guarantees that k-parameters really occur in S and 2.1.2 gives
a natural ordering of the first occurrences of the parameters. With these
conditions we obtain a bijection between the k-parameter words of length
n over A and the k-dimensional subcubes of 4". Next we define the

composition of parameter words.
Definition 2.2. Let f€ [A] [":1) and g€ [A](':}. The k-parameter
word f- g€ [A] (Z) is defined by
D) if flhed
i) it D=1,

In geometric terms f-: g is the k-dimensional subcube of the m-dimen-
sional subcube f which has parametric representation g in A™.

f-g(z'):{
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Theorem (Hales — Jewett [4]). Let A be a finite alphabet.
For every pair m,§ of positive integers there exists a positive integer n

such that for every coloring A: [A] (8) ~ & of the points of the n-dimen-
sional cube over A there exists a monochromatic f€ [A] (r’:z) , ie. the

coloring A [A](r(;z) ~ 8 defined by A,(g)= A(f - g) is constant.

3.

Here we prove a restricted version of Hales—Jewett’s theorem: For
positive integers &, m there exists a positive integer n and a subset S

of [A] (8) such that S does not contain an (m + 1)-dimensional sub-

. n . _ m+ 1
cube, i.e. for every f€ [A](m+ 1) there exists g€ [A]( 0 ) such
that f- g€ S, and still for every coloring of the points of S there exists
a monochromatic m-dimensional subcube in S.

Notation 3.1. Let s.c_[A](g) and k<n.
78 ={rea(})if-1a(5) s s)=

n k
={re [A](k) |f-g€S forevery g€ [A](O)}.
F,(S) is the set of all k-dimensional subcubes of A" which are con-
tained in S. In particular # 0 S =3S.
We are ready to state the main theorem.

Main theorem. Let A be a finite alphabet and 8, m be positive

integers. Then there exists a positive integer n and S < [A] (8) such that

() #, . l(S) = ¢, ie. S does not contain (m+ 1)»dimensional sub-

cubes.

(B) For every coloring A: S~ 6 of the points of S with 8§ many colors
there exists f€ # (S) such that the coloring Af: [A] (g’) -+ & de-

fined by Af(g) = A(f - g) is constant.

- 233 -



Notation 3.2. A convenient abbreviation for (a) and B) is
”S_l4_) (m)6 ’,. '

The crucial part of the proof of the main theorem consists in showing
its validity for m = 1. This case is stated in

Lemma 3.3. Let A be a finite alphabet and § be a positive integer.
There exists a positive integer n and a subset S of [A](g]’ such that
54 (1),.

The main theorem follows from this lemma by concatenation of

various sets S.

Definition 3.4. Let fe€[A] (’6’) and g€ [A](g). The concatena-
tion fe g€ [A] (mg ") s defined by

J() for i<m

fegl)= {

gi—m) for m<i<m+n.
Thus fe g is the usual concatenation of words.

Next we derive the Main theorem from Lemma 3.3. Proceed by
induction on m. m=1 is settled by the lemma. For m + 1 consider

n
Sy & [A]( (;’) with §, 4, (m),, which exists by induction hypothesis.
Lemma 3.3 guarantees the existence of a positive integer n, and S, c
n
E[A]( 01) with §; —4—>(1)6,, where 8’ =870,
Claim. S, o8, %> (m+ 1), where Sy5 ={gahlges,,
hes; }.
We have to check conditions («) and (B) of the Main theorem:
n, +n
For(a): Let fe(41( ° 1),
(@) fem(? ')
n
In case minf~ 1()\m )<n,, consider f*e€ [A]( f | ) defined
m
by
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£2) = {f(i) ‘for i<ny, and fi)+ ) S

0 for i<rz0 and f(i)=)\m+1.

Since f*¢& ﬁmH(SO): ¢ there exists g€ [A](mg l) such that
f*-g¢ S,- Therefore f¢ F s 28p 8 8)).

In case minf~!'(\ )>n, consider f*e€[4] (”21) defined by

[+ n,) if fli+ n,) € A4
f*() = Ao if f(i+n0)€{)\0,...,)\m}
7\1 if f(_'i+n0)=)\m+1.

Again since f*¢ F ,(S;)=¢, there exists ge [A](é) such that
f*+8€S8, and therefore f& # _ ,(S,®S)).
For (B): Let A: S, ® §; > 8 be a coloring. Consider first the

coloring A;: S ~8'°°' defined by A,(§)= Ags Elge S,). By choice
of S1 there exists h € F 1(S1) such that Al is constant on A. Consider

next A,: S, > 38 defined by Ay(n) = A(n e ha), where a€ [A]((l))

may be chosen arbitrarily. By choice of S, there existsa g€ # m o)
such that AO is constant on g. Thus A is constant on g® he

€ F, .05, 2S5,y where
g(i) for i< Ry
g3 h(i) =\ for i> ynO and A(i —ng) = N,
h(z’~n0) for i> n, and h(i—-no)e’A.l

Proof of Lemma 3.3. Proceed by induction on |A4]. For |A|=1
the lemma is obvious. For |A|=2, eg. A=1{0,1}, choose n= 6 and

consider the following set S < [{0, 1}]( ’5):
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©.....0 1),
s=] @01 1),
a..... 11y,

Obviously S does not contain a 2-dimensional subcube because each
element of S has the property that all entries after the first occurrence

of the letter 1 are 1, ie. no 0 occurs. Thus for every fe [{0, l}](g]

we have that f(1,0)¢ S. Furthermore, any two elements of S form a
1-dimensional subcube. As [SI=n+1=8+1 the pigeon hole principle
guarantees the existence of two elements of § having the same color for

any coloring A: S- §.

The general step may be done by a somewhat tricky iteration of the
ideas just mentioned. Consider the alphabet 4 = {0, .. . ,t—1,t}. By
induction hypothesis applied to A*={o,..., ¢t~ 1}, for every 6*

*
there exists »n and SQ[A](S) satisfying § 4 ( 1), +. This guarantees
the existence of positive integers Mos--->Ms_; and sets S, C

C 4 *](r(z;. ) (1< &) satisfying
S; 4= (1,
where 8, = 6° and 8;p1 = 501 D ISXSi 1 XX 8, for i<6—1.
Let n=n,+ .. .+ ns_,- In order to define §¢C [A](g)- consider

the following scheme:

A*X ... X A* U
A*X ... X A*X {1} U
T= A*X ... X{t}X{f} U
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Let
S=(F(S)e...0 F(S,_ )T
which is defined as follows
S={p(@y)e...of; @ _)If,€ #,(S), q,€ A*, i<8}U

U {fy(a,) e . ..®f8_2(a5__2)®f8_1(t)lfie F,(S,),
a,€A* i<é8lu

Uify(ag)e...of,_s(a,_3)of,_,(Def, (DIf,€ #,),
a; €A%, i<8tu

Uif(De .. of,_(DIf,€ #,(S), i<5)

A typical element of S consists of & blocks, where the i-th block is
obtained by substituting a letter from A into [,EF 1(S;). Moreover
if the i-th block is obtained by substituting the letter ¢ then in all fol-
lowing blocks the letter ¢ is substituted. As the parameter words f; €
n,
€ #,(5) c [A]( l’) are defined on the smaller alphabet A4* and do not
contain the letter ¢, the only way that the letter ¢ occurs in an element
of § is by substitution of ¢ for the parameter in a parameter word f;.

In order to show that § 2 (1), we check conditions (a), (B).
For (a): In order to show that # ,(8) = ¢ assume that there exists

he F,(S). Decompose 4 into its blocks, i.e. A = ho ® h1 ®...8h, 1
where the length of the block h; is n, (i< 9).

Fact 1. No block is a 2-parameter word. For otherwise it would be
a 2-parameter word over the alphabet A*, contradicting the choice of S;.

Fact 2. No block contains simultaneously a parameter and the letter
t. For otherwise such a block is a 2-parameter word over the alphabet
A* in which ¢ acts as a parameter, contradicting the choice of S;.

Fact 3. Facts 1, 2 imply that h(t,a)& S for all a€ A*. For
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otherwise min h“lO\O) < min h‘l()\l) implies that h(¢,4) contains a
block without letter ¢ following blocks containing ¢. This contradicts
the definition of § via the scheme 7.

These facts show that # ,(8) = ¢.

For (B): Let A: S~ § be a coloring. Consider first the coloring
A, S, 55, = 5'55 2% x 81
defined by
B 1@ =M e...oq, ,00)lgeS8, i<s- 1),

where for convenience A(g0 ®...885 ,®g) shall be 0 if
8p®---28 _,®g does not belong to S.

By choice of Ss_, there exists fs_|EF 1S5 _ ;) monochromatic
for A, _ 1- Consider next the coloring

Ay _p: Sy_,>8,_,=8255-3% XSl
defined by
As‘z(g)z(A(g°®"'®g6—3®g®fa_1(0‘))lg,.esi
for i<§—-2 and ac A).
By choice of £y
A(g0®"'®gs_3®g®f5_1(a))=

=Algye...08,_z0g9f, . (B)

for all o, € A*. Thus the only relevant distinction whether o€ 4* or
a =t contributes a factor 2 in the exponent of the number of colors
of A;_ ,- By choice of Ss_, there exists Js_, € F.(85_5)
monochromatic for A;_,. Proceed iteratively and consider for i=
=1,...,6

_ _ iS5 XX S,
Bs 0 Ss_y> 8, ;=8

defined by
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As5_ ;@ =(Ag ». P8 1895 4 (). .
"'®f8—i+j(aj)®f6~i+j+l(t)®""®f:S~l(t))l
gOESO,...,ga_l._1 GSG_I._I, oy ...a].EA*,, 0<j<i).

Observe again that in the definition of A; _; the particular choice of the
letters « is not relevant, i.e. for a ... a, B, .. B] EA*

A(<§'0®°"®5>’zs~z'—1®f>'®fs—i+1(0‘1)®""
'®f6—i+j(°‘j)®fs—i+j+1(t)®"'®fs—1(’))=
=M e.. o8, , egsf, . (@B)e...
--®ﬁs_,~+,(ﬁj)®f5_i+j+1(t)@---@fs_l(t))-
By choice of Ss_; find fs_;€ #,(Ss_;) monochromatic for a;_
Finally consider the d-parameter word
f=f0®...®f8_1€91(S0)®...® F (85 _ ).

The induced coloring Af acts constantly on the rows of scheme T. Thus
the 6+ 1 many rows are colored with 6 colors. Two of them have
the same color, thus defining a 1-parameter word which is monochromatic

for A.u

4.

An immediate corollary of Hales—Jewett’s theorem is a partition
theorem for affine points:

Theorem 4.1 [3). Let F beq finite field and let &, m be positive
integers. Then there exists q positive integer n such that for every coloring
of the affine points in the n-dimensional affine space over F with &-many
colors, ie. for every coloring A: F" - §, there exists a monochromatic

m-dimensional affine subspace.

Luckily enough the configuration S which has been constructed in
the proof of the Main theorem also yields the following restricted version
of the above theorem, viz.
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Theorem 4.2. Let F be a finite field and let 6, m be positive
integers. Then there exist q positive integer n and a set S C Fn of affine
points such that

() S does not contain an (m + 1)-dimensional affine space,

(B) For every coloring of the points of § with & many colors there
exists an affine m-dimensional monochromatic subspace which is con-
tained in S.

Proof. Again the crucial case 1S m=1, which may be proved as fol-
lows: Let F={0,1, ... , t} be the finite field, where 0 is the zero ele-

ment of F. Let SCF” = [F] (8) be the set constructed in the proof
of Lemma 3.3.

We claim that S has_the desired properties. As in particular each
f€ [F] ( :1) represents an m-dimensional affine subspace of F” (compare
e.8. [5]) property (8) follows immediately. In order to show (&) we have

to be more careful because there exist certain m-dimensional affine sub-

spaces which are not represented by any fe€ [F] ( ’ZZ)

As S is defined recursively we may think of members of S being
arranged in blocks of blocks of . .. of blocks. There are ¢ “levels” of
blocks. The blocks of the first level are always of the form

0...0a...a 1...1,
where a € F.

The following diagram depicts the structure of S for GF (4), where
the small numbers indicate the levels of the corresponding blocks:

2 2

---------

Let L={c+ax|ac F} be an affine line and assume that [ is

contained in S.
- 240 -



We examine the implications of the assumption "L € S§” on the
vectors ¢ and x. In particular we look at the structure of ¢ and x in
the blocks of level 1.

Claim. Let B be a block of level 1. Then the parts of ¢ and x
belonging to this block B — which will be denoted by EB, resp. J?B —
are of the form ,

cg=0...00b...51.. . 1]

Xp=0...0x...x 0...0,

where b, x € F.

Proof of claim. Let B be any block of level 1 and assume that
Xy is not the zero vector. Let cg=c ... ¢, and x, = Xpox,.

1. Assume that x;#0 and cl.=0, where i< j, then X; = X;.

For otherwise consider ¢ + ( xi])_c' and find a block of level 1 with an
i

entry 1 preceding an entry different from 1, again contradicting the
structure of blocks of level 1.

2. Assume that x; # 0, ¢;=0 and c].¢0 for some j> i, then

- C.. _
x; = 0. For otherwise consider ¢ — ( ;L)x and find a block of level |

with a non-zero entry preceding a zero entry, again a contradiction.

3. Assume that ¢;=0 and ¢ # 0, ¢ # 1 for some i</, then
x; = 0. For otherwise 1. and 2. imply that

¢g=0...00...04...a1... 1,

where a+# 0,1 and

Xp=0...0x...x0...00...0
Consider ¢ + (;1))? and find a block of level 1 with an entry 1 pre-
ceding an entry different from 1, a contradiction.

Now the claim may be proved as follows: let i be the minimal index
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such that x;#0 and let o€ F be such that for d= ¢+ ax, where
dy=d, ...d,, it follows that d,= 0. By 1., 2. and 3. above then dg
and x, have the following structure:

dg=0...00...01...1
5c-3=0...0x...x 0...0,
but then ¢=d — ax and thus
cg=0...0b...01...1
)?B:O...Ox...x 0...0,

where b = — ax gives the desired result.s

Let P={c+ox+ByiaBeF} bea configuration of points which
is contained in S. We show that x and y are linearly dependent, thus
S does not contain a 2-dimensional affine subspace.

As an immediate corollary from the claim one obtains that for every
block B of level 1 the vectors cg,Xxg and ¥z have the following
structure:

=0...0b6...01...1
xB=O...Ox...x 0...0

Yyg=0...0y...y 0...0.

The proof of Theorem 4.2 will be finished by showing that for every
k=1,...,t andevery block B oflevel k the following holds:

(*) xp and y, are linearly dependent

if k<t and if for some o, o, B,B'€F both (c+ oax + 637)3
and (¢+ a'x + B'y)B contain at least one entry of ¢ then all
entries of ¢ in (¢ + ax + By)g and (c+ a'x+B'y), occur
exactly at the same positions.

(%)

The assertions (*) and (**) are proved by induction on k. The case
k=1 follows from the claim. So assume that (*) and (»+) hold for k — 1
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and consider a block B of level &> 1. Suppose () does not hold on B.
Then there must be two (k — D-level blocks B, 32 in B on the entries
of the union of which x and y are linearly independent.

By induction J?Bl and )731 are linearly dependent and )?82 and
}732 are linearly dependent. Let €15 X1,y be the entries in the first posi-

tion of B, where not both X1, ¥y are equal to zero and let €35 Xy, ¥,
be similarly defined for B,. The situation is as follows:

B

c: ¢ B, c, B,

X: xl x2

y: 2 ] ¥, ]

Then XYy #x,y, by choice of B, and B, and the induction as-
sumption on B,, B,. Thus we can find o, B so that ¢, +ox; + ﬁyl =t
but ¢, + ax, + By, # ¢. From property (»») we see that (¢ + ax + 337))!,2

does not contain any ¢ This violates the conditions for S. Hence (%)
holds on B.

Now let k< t. We show that (#+) holds for B. Assume that it does
not. By (») we need only consider vectors of form ¢+ o on B, Then
for some « a' we must have (c+ w?)B and (c+ a’)_c')B with different
entries of ¢. In particular there exists a (k — 1)-level block Bl in B such
that (c+ ooc)ﬁ,1 and (c+ oc'x)Bl have different entries of . By in-

duction on (#«) then one of these blocks, say (¢ + ax), , contains some
entries of ¢ while (c+ cz').c')Bl does not contain .zmy‘I t. In particular
there exists another (k — 1)-level block 32 such that (c+ o‘z')-c‘)B2 con-
tains some entries of f. By the rules for S the block B, precedes the

block B, and thusalso (c + oo?)B2 contains some entries of ¢. Again by
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induction on (*+) then all entries of ¢ in (c + ooc)B and (c+ « x)B

occur exactly at the same positions. This means that 1"or a suitable o” the
vector ¢+ a”x has entries of ¢ in B, and entriesof ¢ — 1 in B,. ThlS
violates the rules for S, which exclude any entry of r— 1 precedlng an
entry of ¢ in any block of level # — 1 or smaller. Thus (*+) holds. The in-
duction is now complete and letting k=1 we see that (+) implies that
P={c+ ox+ By | a BE F} is just a line at best and not a plane. 2

Now much is known about restricted versions of Gr aham and
Rothschild’s partition theorem for k-parameter words [3] with k> 0.
The only result in this direction is due to Ne$etfil and R6dl1 [7] who
announced the case of 2-parameter words over the empty alphabet:

Theorem 4.1 [7]. Let m, & be positive integers. There exist a posi-

tive integer n and a subset S of [¢](’22) not containing an (m + 1)-

dimensional subcube (i.e. for all g €[] (m’fr l] there exists an h €
€[¢>](m£L l) with g-h&S) such that for every coloring A: S— §
there exists an fe€ [¢][”:1) which is contained S and monochromatic
with respect to A.

Even for the empty alphabet the general case remains unsettled. Also
nothing is known about restricted versions of the partition theorems for

finite vector spaces [2].

Finally it could be worthwhile to note that in case of colorings of
O-parameter words (i.e. k=0) and requiring a monochromatic 1-
parameter word not only a restricted but also simultaneously a restricted
and induced version may be established, viz.

Theorem 4.3. Let A be a finite set and let 1< A be a subset of
A. Then for every positive integer & there exists a positive integer n

andaset SC [A] (8) such that

(a) S does not contain a 2-parameter word,

(B) for every coloring A: S+ & there exists a 1-parameter word
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fE[A] (’11) such that

(i) all elements f-a, acl are colored the same, and thu
particularly f-a€ S for a€l; '

(i) f-a&S for agl.

This strengthens a result of [9], where an induced version of Hales—

Jewett’s theorem has been established. Obviously the same strengthening
applies to Theorem 4.2 as well. We do not know whether in general a
restricted and simultaneously induced version of Hales—Jewett’s theorem

is valid.
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