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1 Introduction

In 1927 van der Waerden published a celebrated theorem, which states that
if the positive integers are partitioned into finitely many classes, then at
least one of these classes contains arbitrarily long arithmetic progressions.
This is one of the fundamental results of Ramsey theory, and it has been
strengthened in many different directions. A more precise statement of the
theorem is as follows.

Theorem 1.1. Let k and r be positive integers. Then there exists a
positive integer M = M(k, r) such that, however the set {1, 2, . . . ,M} is
partitioned into r subsets, at least one of the subsets contains an arithmetic
progression of length k.

It is natural to wonder how quickly the least suchM grows as a function
of k and r, but this has turned out to be a surprisingly difficult question.
The original proof of van der Waerden boundsM above by an Ackermann-
type function in k, even when r = 2, and it was a major advance when
Shelah, in 1987, gave the first primitive recursive upper bound (with a
beautifully transparent proof). His bound can be described as follows. De-
fine a tower function T inductively by letting T (1) = 2 and T (k) = 2T (k−1)

for k > 1. Then define a functionW byW (1) = 2 andW (k) = T (W (k−1))
for k > 1. Shelah obtained a bound of the form M(k, 2) � W (Ck) (with C
an absolute constant). Although this was a huge improvement on the pre-
vious bound, it still left an enormous gap, as the best known lower bound
was, and still is, exponential in k.

A strengthening of a completely different kind was conjectured by Erdős
and Turán in 1936. They realised that it ought to be possible to find
arithmetic progressions of length k in any sufficiently dense set of integers,
which would show that the colouring in van der Waerden’s theorem was,
in a sense, a distraction. The translation-invariance of the notion of an
arithmetic progression rules out simple counterexamples to this stronger
statement. (One can contrast this situation with a theorem of Schur which
states that in any finite colouring of N there are solutions of the equation
x+y = z with x, y and z all of the same colour. However, the set of all odd
integers has density 1/2 and contains no solutions.) The conjecture was
proved by Szemerédi in 1974. Szemerédi’s theorem, which we now state
precisely, is one of the milestones of combinatorics.

Theorem 1.2. Let k be a positive integer and let δ > 0. There exists a
positive integer N = N(k, δ) such that every subset of the set {1, 2, . . . , N}
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of size at least δN contains an arithmetic progression of length k.

It is very simple to see that this result strengthens van der Waerden’s
theorem, and that M(k, r) can be chosen to be N(k, r−1).

A second proof of Szemerédi’s theorem was given by Furstenberg in
1977, using ergodic theory, which provides an extremely useful conceptual
framework for discussing the result. This proof was also a major break-
through, partly because of the difficulty of Szemerédi’s original proof, and
partly because Furstenberg’s techniques have since been extended to prove
many natural generalizations of the theorem which do not seem to follow
from Szemerédi’s approach. These include a density version of the Hales-
Jewett theorem [FK] and a “polynomial Szemerédi theorem” [BL].

Why then, if there are already two proofs of Szemerédi’s theorem, should
one wish to find a third? There are several related reasons.

First of all, it is likely that Erdős and Turán, when they made their
original conjecture, hoped that it would turn out to be the “real” theorem
underlying van der Waerden’s theorem, and perhaps for that reason have
an easier proof. If they did, then their hope has not been fulfilled, as all
known proofs are long and complicated. Szemerédi’s original paper runs to
47 pages, full of intricate combinatorial arguments, and it takes a few sec-
onds even to check that the diagram near the beginning of the dependences
between the various lemmas really does indicate a valid proof. Fursten-
berg’s proof is considerably simpler (especially as presented in [FKO]), but
requires a certain initial investment in learning the necessary definitions
from ergodic theory, and is still significantly harder than the proof of van
der Waerden’s theorem. (On the positive side, some of the ideas of Sze-
merédi’s proof, most notably the so-called regularity lemma, have turned
out to be extremely useful in many other contexts, and, as mentioned above,
Furstenberg’s proof has been the starting point of a great deal of further
research.)

Second, Erdős and Turán gave as the main motivation for their conjec-
ture the likelihood that in order to prove it one would be forced not to use
the sorts of arguments that led to such weak bounds for van der Waerden’s
theorem, and would therefore obtain far better estimates. However, this
hope was not fulfilled by Szemerédi’s proof because he used van der Waer-
den’s theorem in his argument. He also used the regularity lemma just
mentioned, which makes a tower-type contribution to the size of the bound
from any argument that uses it. (See [G1] for a proof that this is necessary.)
Furstenberg’s proof gives no bound, even in principle, as it uses the axiom
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of choice. Moreover, although van der Waerden’s theorem is not directly
applied, it is likely that any attempt to make the argument quantitative
would lead to rapidly growing functions for similar reasons.

Third, there is a possibility left open by the first result in the direc-
tion of Szemerédi’s theorem, the assertion for progressions of length three,
which was proved by Roth [R1]. Roth gave a beautiful argument using
exponential-sum estimates, but his approach seemed not to generalize. In-
deed, progress was made on the problem only when Szemerédi found a dif-
ferent, more combinatorial argument for progressions of length three which
was more susceptible to generalization. However, it is highly desirable to
find an exponential-sums argument for the general case, because all the best
bounds for similar problems have come from these techniques rather than
purely combinatorial ones [Sz3], [H-B], [Bou]. (Although Roth used ideas
from Szemerédi’s proof for progressions of length four [S1] and combined
them with analytic techniques to give a second proof for that case [R2], the
argument is not really a direct generalization of his earlier proof, and relies
on van der Waerden’s theorem.)

Fourth, there are certain important conjectures related to Szemerédi’s
theorem, and the existing arguments get nowhere near to them. The most
famous is Erdős’s conjecture that every set X of positive integers such that∑

x∈X x−1 diverges contains arbitrarily long arithmetic progressions. Since
the set of primes has this property, a positive solution to the conjecture
would answer an old question in number theory using no more about the
primes than the fact that they are reasonably dense. Even if the conjec-
ture turns out to be too optimistic, there is a resemblance between Roth’s
proof and the result of van der Corput (adapting the proof of Vinogradov’s
three-primes theorem) that the primes contain infinitely many arithmetic
progressions of length three, which suggests that generalizing Roth’s proof
to longer progressions could at least lead to a number-theoretic proof that
the primes contain arbitrarily long arithmetic progressions.

In this paper, we show that Roth’s argument can be generalized, and
that this does indeed result in a significant improvement to the bounds, even
for van der Waerden’s theorem. Our main result (restated in equivalent
form later as Theorem 18.2) is the following.

Theorem 1.3. For every positive integer k there is a constant c = c(k) >
0 such that every subset of {1, 2, . . . , N} of size at least N(log logN)−c

contains an arithmetic progression of length k. Moreover, c can be taken
to be 2−2

k+9
.
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This immediately implies an estimate for N(k, δ) which is doubly expo-
nential in δ−1 and quintuply exponential in k.

There are, however, some serious difficulties in carrying out the gener-
alization, as we shall demonstrate with examples later in the paper. This
perhaps explains why the generalization has not been discovered already.
Very roughly, our strategy is to reduce the problem to what is known as
an inverse problem in additive number theory (deducing facts about the
structure of a set of numbers from properties of its set of sums or differ-
ences). We then apply a variant of a famous inverse result due to Freiman
[F1,2]. Freiman’s proof of his theorem is very complicated, though it has
recently been considerably tidied up by Bilu [Bi]. A very much simpler
proof of Freiman’s theorem was recently given by Ruzsa [Ru1,2], and to
him we owe a huge mathematical debt. His methods have inspired many
parts of this paper, including several arguments where his results are not
quoted directly.

It has to be admitted that this paper is actually longer than those of
Szemerédi and Furstenberg, and less self-contained. This is partly because
my overriding priority when writing it has been to make the basic ideas as
clear as possible, even if this adds several pages. Many results are proved
first in a special case and later in full generality. This is intended to make
it as easy as possible to read about progressions of length four and five,
which involve most of the interesting ideas but by no means all of the
technicalities. (The special case of progressions of length four was covered
in an earlier paper [G2] but it is treated here as well, and a better bound,
claimed in the earlier paper, is here proved in full.) Sections 4 and 11 are
devoted to examples showing that certain simpler arguments do not work.
They are therefore not logically necessary. However, the whole of the rest of
the paper is, in a sense, a response to those examples. Another priority has
been to make the sections as independent as possible. Where it is essential
that one section depends on another, we have tried to make it depend on a
single clearly stated result, in the hope that readers will if they wish be able
to understand the broad outline of the proof without following the details.

Despite these efforts, the quickest way to understand a proof of Sze-
merédi’s theorem is probably still to read the paper of Furstenberg, Katznel-
son and Ornstein [FKO] mentioned earlier. However, the proof in this paper
gives quantitative information, and I hope that at least some mathemati-
cians, particularly those with a background in additive number theory, will
find the approach a congenial one.
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2 Uniform Sets and Roth’s Theorem

It is not hard to prove that a random subset of the set {1, 2, . . . , N} of car-
dinality δN contains, with high probability, roughly the expected number
of arithmetic progressions of length k, that is, δk times the number of such
progressions in the whole of {1, 2, . . . , N}. A natural idea is therefore to try
to show that random sets contain the fewest progressions of length k, which
would then imply Szemerédi’s theorem. In view of many other examples
in combinatorics where random sets are extremal, this is a plausible state-
ment, but unfortunately it is false. Indeed, if random sets were the worst,
then the value of δ needed to ensure an arithmetic progression of length
three would be of order of magnitude N−2/3, whereas in fact it is known
to be at least exp(−c(logN)1/2) for some absolute constant c > 0 [Be].
(The random argument suggested above is to choose δ so that the expected
number of arithmetic progressions is less than one. Using a standard trick
in probabilistic combinatorics, we can instead ask for the expected number
to be at most δN/2 and then delete one point from each one. This slightly
better argument lifts the density significantly, but still only to cN−1/2.)

Despite this, it is tempting to try to exploit the fact that random sets
contain long arithmetic progressions. Such a proof could be organized as
follows.

(1) Define an appropriate notion of pseudorandomness.
(2) Prove that every pseudorandom subset of {1, 2, . . . , N} contains

roughly the number of arithmetic progressions of length k that you
would expect.

(3) Prove that if A ⊂ {1, 2, . . . , N} has size δN and is not pseudorandom,
then there exists an arithmetic progression P ⊂ {1, 2, . . . , N} with
length tending to infinity with N , such that |A ∩ P | � (δ + ε)|P |, for
some ε > 0 that depends on δ (and k) only.

If these three steps can be carried out, then a simple iteration proves Sze-
merédi’s theorem. As we shall see, this is exactly the scheme of Roth’s
proof for progressions of length three.

First, we must introduce some notation. Throughout the paper we shall
be considering subsets of ZN rather than subsets of {1, 2, . . . , N}. It will be
convenient (although not essential) to take N to be a prime number. We
shall write ω for the number exp(2πi/N). Given a function f : ZN → C

and r ∈ ZN we set
f̂(r) =

∑
s∈ZN

f(s)ω−rs .
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The function f̂ is the discrete Fourier transform of f . (In most papers in an-
alytic number theory, the above exponential sum is written

∑N
s=1 e(−rs/N),

or possibly
∑N

s=1 eN (−rs).) Let us write f ∗ g for the function
f ∗ g(s) =

∑
t∈ZN

f(t)g(t− s) .

(This is not standard notation, but we shall have no use for the convolution∑
f(t)g(s − t) in this paper, so it is very convenient.) From now on, all

sums will be over ZN unless it is specified otherwise. We shall use the
following basic identities over and over again in the paper.

(f ∗ g)∧(r) = f̂(r)ĝ(r) , (1)∑
r

f̂(r)ĝ(r) = N
∑
s

f(s)g(s) , (2)

∑
r

|f̂(r)|2 = N
∑
s

|f(s)|2 , (3)

f(s) = N−1
∑
r

f̂(r)ωrs . (4)

Of these, the first tells us that convolutions transform to pointwise prod-
ucts, the second and third are Parseval’s identities and the last is the in-
version formula. To check them directly, note that

(f ∗ g)(r) =
∑
s

(f ∗ g)(s)ω−rs

=
∑
s,t

f(t)g(t− s)ω−rtωr(t−s)

=
∑
t,u

f(t)ω−rtg(u)ω−ru

= f̂(r)ĝ(r) ,
which proves (1). We may deduce (2), since∑

r

f̂(r)ĝ(r) =
∑
r

∑
s

f ∗ g(s)ω−rs = Nf ∗ g(0) = N
∑
s

f(s)g(s) ,

where for the second equality we used the fact that
∑

s ω
−rs is N if r = 0

and zero otherwise. Identity (3) is a special case of (2). Noting that the
function r 
→ ω−rs is the Fourier transform of the characteristic function of
the singleton {s}, we can deduce (4) from (2) as well (though it is perhaps
more natural just to expand the right-hand side and give a direct proof).

There is one further identity, sufficiently important to be worth stating
as a lemma.
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Lemma 2.1. Let f and g be functions from ZN to C. Then∑
r

|f̂(r)|2|ĝ(r)|2 = N
∑
t

∣∣∣∑
s

f(s)g(s− t)
∣∣∣2 . (5)

Proof. By identities (1) and (2),∑
r

|f̂(r)|2|ĝ(r)|2 =
∑
r

∣∣(f ∗ g)∧(r)
∣∣2

= N
∑
t

∣∣f ∗ g(t)
∣∣2

= N
∑
t,s,u

f(s)g(s− t)f(u)g(u− t)

= N
∑
t

∣∣∣∑
s

f(s)g(s− t)
∣∣∣2

as required. ✷

Setting f = g and expanding the right-hand side of (5), one obtains an-
other identity which shows that sums of fourth powers of Fourier coefficients
have an interesting interpretation.∑

r

|f̂(r)|4 = N
∑

a−b=c−d

f(a)f(b)f(c)f(d) . (6)

It is of course easy to check this identity directly.
Nearly all the functions in this paper will take values with modulus at

most one. In such a case, one can think of Lemma 2.1 as saying that if
f has a large inner product with a large number of rotations of g, then f
and g must have large Fourier coefficients in common, where large means
of size proportional to N . We shall be particularly interested in the Fourier
coefficients of characteristic functions of sets A ⊂ ZN of cardinality δN ,
which we shall denote by the same letter as the set itself. Notice that
identity (6), when applied to (the characteristic function of) a set A, tells
us that the sum

∑
r |Â(r)|4 isN times the number of quadruples (a, b, c, d) ∈

A4 such that a− b = c− d.
For technical reasons it is also useful to consider functions of mean zero.

Given a set A of cardinality δN , let us define the balanced function of A to
be fA : ZN → [−1, 1] where

fA(s) =

{
1− δ s ∈ A

−δ s /∈ A .

This is the characteristic function of A minus the constant function δ1.
Note that

∑
s∈ZN

fA(s) = f̂A(0) = 0 and that f̂A(r) = Â(r) for r �= 0.
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We are now in a position to define a useful notion of pseudorandomness.
The next lemma (which is not new) gives several equivalent definitions
involving constants ci. When we say that one property involving ci implies
another involving cj , we mean that if the first holds, then so does the
second for a constant cj that tends to zero as ci tends to zero. (Thus, if
one moves from one property to another and then back again, one does not
necessarily recover the original constant.) From the point of view of the
eventual bounds obtained, it is important that the dependence is no worse
than a fixed power. This is always true below.

In this paper we shall use the letter D to denote the closed unit disc in
C (unless it obviously means something else).

Lemma 2.2. Let f be a function from ZN to D. The following are equiva-
lent.

(i)
∑

k

∣∣∑
s f(s)f(s− k)

∣∣2 � c1N
3.

(ii)
∑

a−b=c−d f(a)f(b)f(c)f(d) � c1N
3.

(iii)
∑

r |f̂(r)|4 � c1N
4.

(iv) maxr |f̂(r)| � c2N .
(v)

∑
k

∣∣∑
s f(s)g(s− k)

∣∣2 � c3N
2 ‖g‖22 for every function g : ZN → C.

Proof. The equivalence of (i) and (ii) comes from expanding the left-hand
side of (i), and the equivalence of (i) and (iii) follows from identity (6)
above. It is obvious that (iii) implies (iv) if c2 � c

1/4
1 . Since∑

r

|f̂(r)|4 � max
r

|f̂(r)|2
∑
r

|f̂(r)|2 � N2max
r

|f̂(r)|2 ,

we find that (iv) implies (iii) if c1 � c22. It is obvious that (v) implies (i) if
c1 � c3. By Lemma 2.1, the left-hand side of (v) is

N−1
∑
r

|f̂(r)|2|ĝ(r)|2 � N−1
(∑

r

|f̂(r)|4
)1/2(∑

r

|ĝ(r)|4
)1/2

by the Cauchy-Schwarz inequality. Using the additional inequality(∑
r

|ĝ(r)|4
)1/2

�
∑
r

|ĝ(r)|2 ,

we see that (iii) implies (v) if c3 � c
1/2
1 . ✷

A function f : ZN → D satisfying condition (i) above, with c1 = α, will
be called α-uniform. If f is the balanced function fA of some set A ⊂ ZN ,
then we shall also say that A is α-uniform. If A ⊂ ZN is an α-uniform set
of cardinality δN , and f is its balanced function, then∑

r

|Â(r)|4 = |A|4 +
∑
r

|f̂(r)|4 � |A|4 + αN4 .
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We noted earlier that
∑

r |Â(r)|4 is N times the number of quadruples
(a, b, c, d) ∈ A4 such that a − b = c − d. If A were a random set of size
δN , then we would expect about δ4N3 = N−1|A|4 such quadruples (which
from the above is clearly a lower bound). Therefore, the number α is
measuring how close A is to being random in this particular sense. Notice
that quadruples (a, b, c, d) with a− b = c− d are the same as quadruples of
the form (x, x+ s, x+ t, x+ s+ t).

We remark that our definition of an α-uniform set coincides with the
definition of quasirandom subsets of ZN , due to Chung and Graham. They
prove that several formulations of the definition (including those of this
paper) are equivalent. They do not mention the connection with Roth’s
theorem, which we shall now explain. We need a very standard lemma,
which we prove in slightly greater generality than is immediately necessary,
so that it can be used again later. Let us define the diameter of a subset
X ⊂ ZN to be the smallest integer s such that X ⊂ {n, n + 1, . . . , n + s}
for some n ∈ ZN .

Lemma 2.3. Let r, s and N be positive integers with r, s � N and rs � N ,
and let φ : {0, 1, . . . , r−1} → ZN be linear (i.e., of the form φ(x) = ax+b).
Then the set {0, 1, . . . , r−1} can be partitioned into arithmetic progressions
P1, . . . , PM such that for each j the diameter of φ(Pj) is at most s and the
length of Pj lies between (rs/4N)1/2 and (rs/N)1/2.

Proof. Let t = 
(rN/4s)1/2�. Of the numbers φ(0), φ(1), . . . , φ(t), at least
two must be within N/t. Therefore, by the linearity of φ, we can find
a non-zero u � t such that |φ(u) − φ(0)| � N/t. Split {0, 1, . . . , r − 1}
into congruence classes mod u. Each congruence class is an arithmetic
progression of cardinality either �r/u� or 
r/u�. If P is any set of at most
st/N consecutive elements of a congruence class, then diamφ(P ) � s. It is
easy to check first that st/N � r/3t � (1/2)�r/u�, next that this implies
that the congruence classes can be partitioned into sets Pj of consecutive
elements with every Pj of cardinality between 
st/2N� and �st/N�, and
finally that this proves the lemma. ✷

Corollary 2.4. Let f be a function from the set {0, 1, . . . , r − 1} to the
closed unit disc in C, let φ : ZN → ZN be linear and let α > 0. If∣∣∣r−1∑

x=0

f(x)ω−φ(s)
∣∣∣ � αr ,

then there is a partition of {0, 1, . . . , r−1} into m � (8πr/α)1/2 arithmetic
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progressions P1, . . . , Pm such that
m∑
j=1

∣∣∣∑
x∈Pj

f(x)
∣∣∣ � (α/2)r

and such that the lengths of the Pj all lie between (αr/π)
1
2 /4 and (αr/π)

1
2 /2.

Proof. Let s � αN/4π and let m = (16πr/α)1/2. By Lemma 2.3 we can
find a partition of {0, 1, . . . , r − 1} into arithmetic progressions P1, . . . , Pm

such that the diameter of φ(Pj) is at most s for every j and the length of
each Pj lies between r/m and 2r/m. By the triangle inequality,

m∑
j=1

∣∣∣∑
x∈Pj

f(x)ω−φ(x)
∣∣∣ � αr .

Let xj ∈ Pj . The estimate on the diameter of φ(Pj) implies that
|ω−φ(x) − ω−φ(xj)| is at most α/2 for every x ∈ Pj . Therefore

m∑
j=1

∣∣∣∑
x∈Pj

f(x)
∣∣∣ = m∑

j=1

∣∣∣∑
x∈Pj

f(x)ω−φ(xj)
∣∣∣

�
m∑
j=1

∣∣∣∑
x∈Pj

f(x)ω−φ(x)
∣∣∣− m∑

j=1

(α/2)|Pj |

� αr/2
as claimed. ✷

Corollary 2.5. Let A ⊂ ZN and suppose that |Â(r)| � αN for some
r �= 0. Then there exists an arithmetic progression P ⊂ {0, 1, . . . , N − 1}
of length at least (α3N/128π)1/2 such that |A ∩ P | � (δ + α/8)|P |.

Proof. Define φ(x) = rx and let f be the balanced function of A (regarded
as a function on {0, 1, . . . , N−1}). By Corollary 2.4 we can partition the set
{0, 1, . . . , N −1} into m � (16πN/α)1/2 arithmetic progressions P1, . . . , Pm

of lengths between N/m and 2N/m such that
m∑
j=1

∣∣∣∑
x∈Pj

f(x)
∣∣∣ � αN/2 .

Since
∑

x∈Pj
f(x) is real for all j, and since

∑m
j=1

∑
x∈Pj

f(x) = 0, if we
define J to be the set of j with

∑
x∈Pj

f(x) � 0, we have∑
j∈J

∑
x∈Pj

f(x) � αN/4 .
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Therefore, we can find j such that
∑

x∈Pj
f(x)�αN/4m. But |Pj |�2N/m,

so
∑

x∈Pj
f(x) � α|Pj |/8, which implies that |A ∩ Pj | � (δ + α/8)|Pj |. ✷

We can now give Roth’s proof of his theorem on arithmetic progressions
of length three.

Theorem 2.6. Let δ > 0, let N � exp exp(Cδ−1) (where C is an absolute
constant) and let A ⊂ {1, 2, . . . , N} be a set of size at least δN . Then A
contains an arithmetic progression of length three.

Proof. Since we are passing to smaller progressions and iterating, we cannot
simply assume that N is prime, so we shall begin by dealing with this
small technicality. Let N0 be a positive integer and let A0 be a subset of
{1, 2, . . . , N0} of size at least δ0N0.

By Bertrand’s postulate (which is elementary – it would be a pity to
use the full strength of the prime number theorem in a proof of Roth’s
theorem) there is a prime p between N0/3 and 2N0/3. Write q for N0 − p.
If |A0 ∩ {1, 2, . . . , p}| � δ0(1− δ0/160)p, then we know that∣∣A0 ∩ {p+ 1, . . . , N0}

∣∣ � δ0
(
N0 − (1− δ0/160)p

)
= δ0(q + δ0p/160)

� δ0(1 + δ0/320)q .
Let us call this situation case 0.

If case 0 does not hold, then let N be the prime p obtained above, let
A = A0 ∩{1, . . . , N} and let δ = δ0(1− δ0/160). Let B = A∩ [N/3, 2N/3).
If |B| � δN/5, then either A∩ [0, N/3) or A∩ [2N/3, N) has cardinality at
least 2δN/5 = (6δ/5)(N/3). This situation we shall call case 1.

Next, let α = δ2/10 and suppose that |Â(r)| > αN for some non-zero r.
In this case, by Corollary 2.5 there is an arithmetic progression P of car-
dinality at least (α3N/128π)1/2 such that |A ∩ P | � (δ + δ2/80)|P |. This
situation will be case 2.

If case 2 does not hold, then |Â(r)| � αN for every non-zero r, which
says that A satisfies condition (iv) of Lemma 2.2. The number of triples
(x, y, z) ∈ A×B2 such that x+ z = 2y is then

N−1
∑
x∈A

∑
y∈B

∑
z∈B

∑
r

ωr(2y−x−z) = N−1
∑
r

Â(r)B̂(−2r)B̂(r)

� N−1|A||B|2 −N−1max
r �=0

|Â(r)|
(∑
r �=0

|B̂(−2r)|2
)1/2(∑

r �=0
|B̂(r)|2

)1/2
� δ|B|2 − α|B|N .

If in addition case 1 does not hold, then this quantity is minimized when
|B| = δN/5, and the minimum value is δ3N2/50, implying the existence of
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at least this number of triples (x, y, z) ∈ A×B2 in arithmetic progression
mod N . Since B lives in the middle third, these are genuine progressions in
{1, 2, . . . , N}, and since there are only N degenerate progressions (i.e., with
difference zero) we can conclude that A contains an arithmetic progression
of length three as long as N � 50δ−3. This we shall call case 3.

To summarize, if case 3 holds and N � 50δ−3, then A contains an
arithmetic progression of length three. In case 2, we can find a sub-
progression P of {1, . . . , N} of cardinality at least (α3N/128π)1/2 such
that |A ∩ P | � δ(1 + δ/80)|P |. Since {1, . . . , N} is a subprogression of
{1, . . . , N0}, A = A0∩{1, . . . , N} and one can easily check that δ(1+δ/80) �
δ0(1 + δ0/320), we may conclude that in case 2 there is a subprogres-
sion P of {1, . . . , N0} of cardinality at least (α3N0/384π)1/2 such that
|A0 ∩ P | � δ0(1 + δ0/320)|P |. As for cases 0 and 1, it is easy to see
that the same conclusion also holds, and indeed a much stronger one as P
has a length which is linear in N0.

This gives us the basis for an iteration argument. If A0 does not contain
an arithmetic progression of length three, then we drop down to a progres-
sion P where the density of A is larger, and repeat. If the density at step
m of the iteration is δm, then at each subsequent iteration the density in-
creases by at least δ2m/320. It follows that the density reaches 2δm after at
most 320δ−1m further steps. It follows that the total number of steps cannot
be more than 320(δ−1+(2δ)−1+(4δ)−1+ . . . ) = 640δ−1. At each step, the
size of the progression in which A lives is around the square root of what it
was at the previous step. The result now follows from a simple calculation
(left to the reader). ✷

3 Higher-degree Uniformity

There seems to be no obvious way of using α-uniformity to obtain progres-
sions of length greater than three. (Of course, the truth of Szemerédi’s
theorem makes it hard to formalize this statement, but in the next section
we show that α-uniformity does not give strong information about the num-
ber of arithmetic progressions of length k if k > 3.) The aim of this section
is to define a notion of pseudo-randomness which is more suitable for the
purpose. The next definition is once again presented as a series of approxi-
mately equivalent statements. In order to simplify the presentation for the
case of progressions of length four, we shall prove two lemmas, even though
the second implies the first. Given a function f : ZN → ZN , we shall define,
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for any k, the difference function∆(f ; k) by ∆(f ; k)(s) = f(s)f(s− k). The
reason for the terminology is that if, as will often be the case, f(s) = ωφ(s)

for some function φ : ZN → ZN , then ∆(f ; k)(s) = ωφ(k)−φ(s−k).
Now let us define iterated difference functions in two different ways as

follows. The first is inductive, setting ∆(f ; a1, . . . , ad)(s) to be
∆(∆(f ; a1, . . . , ad−1); ad)(s). The second makes explicit the result of the
inductive process. Let C stand for the map from C

N to C
N which takes a

function to its pointwise complex conjugate. Given a function f : ZN → C,
we define

∆(f ; a1, . . . , ad)(s) =
∏

ε1,...,εd

(Cε1+···+εdf)
(
s−

d∑
i=1

aiεi

)
where the product is over all sequences ε1, . . . , εd with εi ∈ {0, 1}. When
d = 3, for example, this definition becomes

∆(f ; a, b, c)(s) = f(s)f(s− a)f(s− b)f(s− c)

× f(s− a− b)f(s− a− c)f(s− b− c)f(s− a− b− c) .

We now define a function f from ZN to the closed unit disc D ⊂ C to
be α-uniform of degree d if∑

a1,...,ad

∣∣∣∑
s

∆(f ; a1, . . . , ad)(s)
∣∣∣2 � αNd+2 .

When d equals two or three, we say that f is quadratically or cubically
α-uniform respectively. As with the definition of α-uniformity (which is
the same as α-uniformity of degree one) this definition has several useful
reformulations.

Lemma 3.1. Let f be a function from ZN to D. The following are equiva-
lent.

(i) f is c1-uniform of degree d.
(ii)

∑
s

∑
a1,...,ad+1

∆(f ; a1, . . . , ad+1)(s) � c1N
d+2.

(iii) There is a function α : Zd−1
N →[0, 1] such that

∑
a1,...,ad−1

α(a1,...,ad−1)
� c1N

d−1 and ∆(f ; a1, . . . , ad−1) is α(a1, . . . , ad−1)-uniform for every
(a1, . . . , ad−1).

(iv) There is a function α : ZN → [0, 1] such that
∑

r α(r) = c1N and
∆(f ; r) is α(r)-uniform of degree d− 1 for every r.

(v)
∑

a1,...,ad−1

∑
r

∣∣∆(f ; a1, . . . , ad−1)∧(r)∣∣4 � c1N
d+3.

(vi) For all but c2Nd−1 choices of (a1,...,ad−1) the function∆(f ; a1,...,ad−1)
is c2-uniform.
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(vii) There are at most c3N
d−1 values of (a1, . . . , ad−1) for which there

exists some r ∈ ZN with
∣∣∆(f ; a1, . . . , ad−1)∧(r)∣∣ � c3N .

Proof. The equivalence of (i) and (ii) is easy, as the left-hand sides of
the relevant expressions are equal. It is also obvious that (ii) and (iii) are
equivalent. A very simple inductive argument shows that (ii) is equivalent
to (iv). The equivalence of (i) and (v) follows, as in the proof of the
equivalence of (i) and (iii) in Lemma 2.1, by expanding the left-hand side
of (v). Alternatively, it can be deduced from Lemma 2.1 by applying that
equivalence to each function ∆(f ; a1, . . . , ad−1) and adding.

Averaging arguments show that (iii) implies (vi) as long as c1 � c22, and
that (vi) implies (iii) as long as c1 � 2c2. Finally, the equivalence of (i) and
(ii) in Lemma 2.1 shows that in this lemma (vi) implies (vii) if c3 � c

1/4
2

and (vii) implies (vi) if c2 � c3. ✷

Notice that properties (i) and (ii) above make sense even when d = 0.
Therefore, we shall define a function f : ZN → D to be α-uniform of degree
zero if

∣∣∑
s f(s)

∣∣2 � αN2. Property (iv) now makes sense when d = 1.
This definition will allow us to begin an inductive argument at an earlier
and thus easier place.

The next result is the main one of this section. Although it will not be
applied directly, it easily implies the results that are needed for later.

Theorem 3.2. Let k � 2 and let f1, . . . , fk be functions from ZN to D
such that fk is α-uniform of degree k − 2. Then∣∣∣∑

r

∑
s

f1(s)f2(s− r) . . . fk(s− (k − 1)r)
∣∣∣ � α1/2

k−1
N2 .

Proof. When k = 2, we know that∣∣∣∑
r

∑
s

f1(s)f2(s− r)
∣∣∣ = ∣∣∣(∑

s

f1(s)
)(∑

t

f2(t)
)∣∣∣ � α1/2N2 ,

since
∣∣∑

s f1(s)
∣∣ � N and

∣∣∑
t f2(t)

∣∣ � α1/2N .

When k > 2, assume the result for k − 1, let fk be α-uniform of degree
k− 2 and let α : ZN → [0, 1] be a function with the property that ∆(fk; r)
is α(r)-uniform of degree k − 3 for every r ∈ ZN . Then
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∣∣∣∑
r

∑
s

f1(s) . . . fk
(
s− (k − 1)r

)∣∣∣2

� N
∑
s

∣∣∣∑
r

f1(s)f2(s− r) . . . fk
(
s− (k − 1)r

)∣∣∣2

� N
∑
s

∣∣∣∑
r

f2(s− r)f3(s− 2r) . . . fk
(
s− (k − 1)r

)∣∣∣2
= N

∑
s

∑
r

∑
t

f2(s− r)f2(s− t) . . . fk
(
s− (k − 1)r

)
fk
(
s− (k − 1)t

)
= N

∑
s

∑
r

∑
u

f2(s)f2(s−u) . . . fk
(
s−(k−2)r

)
fk
(
s−(k−2)r−(k−1)u

)
= N

∑
s

∑
r

∑
u

∆(f2;u)(s)∆(f3; 2u)(s−r) . . .∆
(
fk; (k−1)u

)(
s−(k−2)r

)
.

Since ∆(fk; (k − 1)u) is α((k− 1)u)-uniform of degree k − 3, our inductive
hypothesis implies that this is at most N

∑
u α((k−1)u)1/2

k−2
N2, and since∑

u α((k − 1)u) � αN , this is at most α1/2
k−2

N4, which proves the result
for k. ✷

The interest in Theorem 3.2 is of course that the expression on the left-
hand side can be used to count arithmetic progressions. Let us now define
a set A ⊂ ZN to be α-uniform of degree d if its balanced function is. (This
definition makes sense when d = 0, but only because it applies to all sets.)
The next result implies that a set A which is α-uniform of degree d − 2
for some small α contains about the number of arithmetic progressions of
length d that a random set of the same cardinality would have, where this
means arithmetic progressions mod N . We shall then show how to obtain
genuine progressions, which turns out to be a minor technicality, similar to
the corresponding technicality in the proof of Roth’s theorem.

Corollary 3.3. Let A1, . . . , Ak be subsets of ZN , such that Ai has cardi-
nality δiN for every i, and is α2

i−1
-uniform of degree i− 2 for every i � 3.

Then ∣∣∣∑
r

∣∣(A1 + r) ∩ · · · ∩ (Ak + kr)
∣∣− δ1 . . . δkN

2
∣∣∣ � 2kαN2 .

Proof. For each i, let fi be the balanced function of Ai. Then∣∣(A1 + r) ∩ · · · ∩ (Ak + kr)
∣∣ =∑

s

(
δ1 + f1(s− r)

)
. . .

(
δk + fk(s− kr)

)
,

so we can rewrite |(A1 + r) ∩ · · · ∩ (Ak + kr)| − δ1 . . . δkN as∑
B⊂[k],B �=∅

∏
i/∈B

δi
∑
s

∏
i∈B

fi(s− ir) .
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Now if j = maxB, then
∑

r

∑
s

∏
i∈B fi(s− ir) is at most α2

j−1/2j−1
N2, by

Theorem 3.2. It follows that∣∣∣∑
r

∣∣(A1 + r) ∩ · · · ∩ (Ak + kr)
∣∣− δ1 . . . δkN

2
∣∣∣ �

∑
B⊂[k],B �=∅

∏
i/∈B

δi.αN
2

= αN2
( k∏
i=1

(1 + δi)− 1
)
,

which is at most 2kαN2, as required. ✷

We now prove two simple technical lemmas.

Lemma 3.4. Let d � 1 and let f : ZN → D be α-uniform of degree d.
Then f is α1/2-uniform of degree d− 1.

Proof. Our assumption is that

∑
a1,...,ad

∣∣∣∑
s

∆(f ; a1, . . . , ad)(s)
∣∣∣2 � αNd+2 .

By the Cauchy-Schwarz inequality, this implies that∣∣∣ ∑
a1,...,ad

∑
s

∆(f ; a1, . . . , ad)(s)
∣∣∣ � α1/2Nd+1 ,

which, by the equivalence of properties (i) and (ii) in Lemma 3.1, proves
the lemma. ✷

Lemma 3.5. Let A be an α-uniform subset of ZN of cardinality δN , and
let P be an interval of the form {a+1, . . . , a+M}, where M = βN . Then∣∣|A ∩ P | − βδN

∣∣ � α1/4N .

Proof. First, we can easily estimate the Fourier coefficients of the set P .
Indeed,

|P̂ (r)| =
∣∣∣∣

M∑
s=1

ω−r(a+s)
∣∣∣∣

=
∣∣(1− ωrM )/(1− ωr)

∣∣ � N/2r .

(We also know that it is at most M , but will not need to use this fact.)
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This estimate implies that
∑

r �=0 |P̂ (r)|4/3 � N4/3. Therefore,∣∣|A ∩ P | − βδN
∣∣ = N−1

∣∣∣∑
r �=0

Â(r)P̂ (r)
∣∣∣

� N−1
(∑
r �=0

|Â(r)|4
)1/4(∑

r �=0
|P̂ (r)|4/3

)3/4

�
(∑
r �=0

|Â(r)|4
)1/4

� α1/4N ,

using property (iv) of Lemma 3.1. ✷

Corollary 3.6. Let A ⊂ ZN be α-uniform of degree k − 2 and have
cardinality δN . If α � (δ/2)k2

k
and N � 32k2δ−k, then A contains an

arithmetic progression of length k.

Proof. Let A1 = A2 = A ∩ [(k − 2)N/(2k − 3), (k − 1)N/(2k − 3)], and let
A3 = · · · = Ak = A. By Lemma 3.4 A is α1/2

k−3
-uniform (of degree one),

so by Lemma 3.5 the sets A1 and A2 both have cardinality at least δN/4k
since, by the first inequality we have assumed, we know that α1/2

k−1 � δ/4k.
Therefore, by Corollary 3.3, A contains at least

((
δk

16k2

)
−2kα1/2k−1)

N2

arithmetic progressions modulo N with the first two terms belonging to
the interval [(k − 2)N/(2k − 3), (k − 1)N/(2k − 3)]. The only way such
a progression can fail to be genuine is if the common difference is zero,
and there are at most δN such degenerate progressions. Thus the corol-
lary is proved, since the two inequalities we have assumed imply that
(δk/16k2)− 2kα1/2k−1 � δk/32k2 and δkN2/32k2 > δN . ✷

Remark. Notice that the proof of Corollary 3.6 did not use Fourier
coefficients. This shows that in the proof of Theorem 2.6, the Fourier
analysis was not really needed for the analysis of case 3. However, it was
used in a more essential way for case 2.

In order to prove Szemerédi’s theorem, it is now enough to prove that
if A ⊂ ZN is a set of size δN which is not (δ/2)k2

k
-uniform of degree d− 2,

then there is an arithmetic progression P ⊂ ZN of length tending to infinity
with N , such that |A ∩ P | � (δ + ε)|P |, where ε > 0 depends on δ and d
only. Thus, we wish to deduce a structural property of A from information
about its differences. We do not quite have an inverse problem, as usually
defined, of additive number theory, but it is certainly in the same spirit,
and we shall relate it to a well-known inverse problem, Freiman’s theorem,
later in the paper. For the rest of this section we shall give a combinatorial
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characterization of α-uniform sets of degree d. The result will not be needed
for Szemerédi’s theorem but gives a little more insight into what is being
proved. Also, Lemma 3.7 below will be used near the end of the paper.

Let A be a subset of ZN and let d � 0. By a d-dimensional cube in A
we shall mean a function φ : {0, 1}d → A of the form

φ : (ε1, . . . , εd) 
→ a0 + ε1a1 + · · ·+ εdad ,

where a0, a1, . . . , ad all belong to ZN . We shall say that such a cube is
contained in A, even though it is strictly speaking contained in A{0,1}d .

Let A ⊂ ZN have cardinality δN . Then A obviously contains exactly
δN cubes of dimension zero and δ2N2 cubes of dimension one. As remarked
after Lemma 2.2, the number of two-dimensional cubes in A can be writ-
ten as N−1∑

r |Â(r)|4, so A is α-uniform if and only if there are at most
(δ4 + α)N3 of them. We shall now show that A contains at least δ2

d
Nd+1

cubes of dimension d, and that equality is nearly attained if A is α-uniform
of degree d − 1 for some small α. The remarks we have just made prove
this result for d = 1. Notice that equality is also nearly attained (with high
probability) if A is a random set of cardinality δN . This is why we regard
higher-degree uniformity as a form of pseudorandomness.

Lemma 3.7. Let A be a subset of ZN of cardinality δN and let d � 0.
Then A contains at least δ2

d
Nd+1 cubes of dimension d.

Proof. We know the result for d = 0 or 1 so let d > 1 and assume that the
result is known for d − 1. The number of d-dimensional cubes in A is the
sum over all r of the number of (d− 1)-dimensional cubes in A ∩ (A+ r).
Write δ(r)N for the cardinality of A ∩ (A + r). Then by induction the
number of d-dimensional cubes in A is at least

∑
r δ(r)

2d−1
Nd. Since the

average value of δ(r) is exactly δ2, this is at least δ2
d
Nd+1 as required. ✷

The next lemma is little more than the Cauchy-Schwarz inequality and
some notation. It will be convenient to use abbreviations such as x for
(x1, . . . , xk) and x.y for

∑k
i=1 xiyi. If ε ∈ {0, 1}k then we shall write |ε| for∑k

i=1 εi. Once again, C is the operation of complex conjugation.

Lemma 3.8. For every ε ∈ {0, 1}k let fε be a function from ZN to D. Then∣∣∣ ∑
x∈Zd

N

∑
s

∏
ε∈{0,1}d

C |ε|fε(s−ε.x)
∣∣∣ �

∏
ε∈{0,1}d

∣∣∣ ∑
x∈Zd

N

∑
s

∏
η∈{0,1}d

C |η|fε(s−η.x)
∣∣∣ 1
2d .
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Proof.∣∣∣ ∑
x∈Zd

N

∑
s

∏
ε∈{0,1}d

C |ε|fε(s− ε.x)
∣∣∣

=
∣∣∣ ∑
x∈Z

d−1
N

(∑
s

∏
ε∈{0,1}d−1

C |ε|fε,0(s− ε.x)
)(∑

t

∏
ε∈{0,1}d−1

C |ε|fε,1(t− ε.x)
)∣∣∣

�
( ∑
x∈Z

d−1
N

∣∣∣∑
s

∏
ε∈{0,1}d−1

C |ε|fε,0(s−ε.x)
∣∣∣2) 1

2

·
( ∑
x∈Zd

N

∣∣∣∑
s

∏
ε∈{0,1}d−1

C |ε|fε,1(s−ε.x)
∣∣∣2) 1

2
.

Let us write Pd(ε) and Qd(ε) for the sequences (ε1, . . . , εd−1, 0) and
(ε1, . . . , εd−1, 1). Then∑
x∈Z

d−1
N

∣∣∣∑
s

∏
ε∈{0,1}d−1

C |ε|fε,0(s− ε.x)
∣∣∣2 = ∑

x∈Z
d
N

∑
s

∏
ε∈{0,1}d

C |ε|fPd(ε)(s− ε.x)

and similarly for the second bracket with Qd, so the two parts are square
roots of expressions of the form we started with, except that the function fε
no longer depends on εd. Repeating this argument for the other coordinates,
we obtain the result. ✷

If we regard Lemma 3.8 as a modification of the Cauchy-Schwarz in-
equality, then the next lemma is the corresponding modification of Min-
kowski’s inequality.

Lemma 3.9. Given any function f : ZN → C and any d � 2, define ‖f‖d
by the formula

‖f‖d =
∣∣∣ ∑
x∈Zd

N

∑
s

∏
ε∈{0,1}d

C |ε|f(s− ε.x)
∣∣∣1/2d .

Then ‖f + g‖d � ‖f‖d + ‖g‖d for any pair of functions f, g : ZN → C. In
other words, ‖.‖d is a norm.

Proof. If we expand ‖f + g‖2d , we obtain the sum∑
x∈Zd

N

∑
s

∏
ε∈{0,1}d

C |ε|(f + g)(s− ε.x) .

If we expand the product we obtain 22
d
terms of the form∏

ε∈{0,1}d C
|ε|fε(s−ε.x), where each function fε is either f or g. For each

one of these terms, if we take the sum over x1, . . . , xd and s and apply
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Lemma 3.8, we have an upper estimate of ‖f‖kd ‖g‖
l
d, where k and l are the

number of times that fε equals f and g respectively. From this it follows
that

‖f + g‖2
d �

2d∑
k=0

(
2d

k

)
‖f‖kd ‖g‖

2d−k
d = (‖f‖d + ‖g‖d)2

d
,

which proves the lemma. ✷

It is now very easy to show that equality is almost attained in Lemma
3.7 for sets that are sufficiently uniform.

Lemma 3.10. Let A be α-uniform of degree d − 1. Then A contains at
most (δ + α1/2

d
)2

d
Nd+1 cubes of dimension d.

Proof. Write A = δ + f , where |A| = δN and f is the balanced function
of A. Then ‖A‖d � ‖δ‖d + ‖f‖d. It is easy to see that ‖A‖2

d

d is the
number of d-dimensional cubes in A and that ‖δ‖2dd = δ2

d
Nd+1. Moreover,

the statement that A is α-uniform of degree d − 1 is equivalent to the
statement that ‖f‖2dd � αNd+1. Therefore, Lemma 3.9 tells us that A

contains at most (δ + α1/2
d
)2

d
Nd+1 cubes of dimension d. ✷

Remark. In a sense, the normed spaces just defined encapsulate all
the information we need about the arithmetical properties of the functions
we consider. In their definitions they bear some resemblance to Sobolev
spaces. Although I cannot think of any potential applications, I still feel
that it would be interesting to investigate them further.

4 Two Motivating Examples

We now know that Szemerédi’s theorem would follow from an adequate
understanding of higher-degree uniformity. A natural question to ask is
whether degree-one uniformity implies higher-degree uniformity (for which
it would be enough to show that it implied quadratic uniformity). To make
the question precise, if A has density δ and is α-uniform, does it follow that
A is quadratically β-uniform, for some β which, for fixed δ, tends to zero
as α tends to zero? If so, then the same result for higher-degree uniformity
can be deduced, and Szemerédi’s theorem follows easily, by the method
of §2.

The first result of this section is a simple counterexample showing that
uniformity does not imply quadratic uniformity. Let A be the set {s ∈ ZN :
|s2| � N/10}. If s ∈ A ∩ (A+ k), then |s2| � N/10 and |(s− k)2| � N/10
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as well, which implies that |2sk − k2| � N/5, or equivalently that s lies
inside the set (2k)−1{s : |s − k/2| � N/5}. It follows that A ∩ (A + k) is
not uniform for any k �= 0.

It is possible, but not completely straightforward, to show that A itself
is uniform. Rather than go into the details, we prove a closely related fact
which is in some ways more natural. Let f(s) = ωs2 . We shall show that f
is a very uniform function, while ∆(f ; k) fails badly to be uniform for any
k �= 0. For the uniformity of f , notice that

|f̂(r)| =
∣∣∣∑

s

ωs2−rs
∣∣∣ = ∣∣∣∑

s

ω(s−r/2)2
∣∣∣ = ∣∣∣∑

s

ωs2
∣∣∣

for every r. Therefore, |f̂(r)| = N1/2 for every r ∈ ZN , so f is as uniform
as a function into the unit circle can possibly be. On the other hand,
∆(f ; k)(s) = ω2ks−k2

, so that

∆(f ; k)∧(r) =

{
N r=2k
0 otherwise ,

which shows that ∆(f ; k) is, for k �= 0, as non-uniform as possible.
More generally, if φ : ZN→ZN is a quadratic polynomial and f(s)=ωφ(s),

then f is highly uniform, but there is some λ ∈ ZN such that, for every k,

∆(f ; k)∧(r) =

{
N r = λk

0 otherwise .

This suggests an attractive conjecture, which could perhaps replace the
false idea that if A is uniform then so are almost all A∩ (A+k). Perhaps if
there are many values of k for which A ∩ (A+ k) fails to be uniform, then
there must be a quadratic function φ : ZN → ZN such that

∣∣∑
s∈A ω−φ(s)

∣∣
is large. We shall see in the next section that such “quadratic bias” would
actually imply the existence of a long arithmetic progression Pj such that
|A ∩ Pj |/|Pj | was significantly larger than |A|/N . This would give a proof
of Szemerédi’s theorem for progressions of length four, and one can see
how the above ideas might be generalized to higher-degree polynomials
and longer arithmetic progressions.

The second example of this section shows that such conjectures are still
too optimistic. As with the first example, we shall consider functions that
are more general than characteristic functions of subsets of ZN . However,
this should be enough to convince the reader not to try to prove the con-
jectures.

Let r be about
√
N and for 0 � a, b < r/2 define φ(ar+b) to be a2+b2.
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Now define

f(s) =

{
ωφ(s) s = ar + b for some 0 � a, b < r/2
0 otherwise .

The function f is not quadratic, but it resembles a quadratic form in
two variables (with the numbers 1 and r behaving like a basis of a two-
dimensional space).

Suppose s = ar+ b and k = cr+ d are two numbers in ZN , where all of
a, b, a− c and b− d lie in the interval [0, r/2). Then

f(s)f(s− k) = ω2ac−c2+2bd−d2
= ωφk(ar+b) ,

where φk depends linearly on the pair (a, b). The property that will interest
us about φk is that, at least when c and d are not too close to r/2, there
are several pairs (a, b) such that the condition on (a, b, c, d) applies, and
therefore several quadruples

(
(ai, bi)

)4
i=1 such that

(a1, b1) + (a2, b2) = (a3, b3) + (a4, b4)
and

φk(a1r + b1) + φk(a2r + b2) = φk(a3r + b3) + φk(a4r + b4) .
Here, “several” means a number proportional to N3, which is the maximum
it could be.

Let B be the set of all s = ar + b for which a, b, c and d satisfy the
conditions above. (Of course, B depends on k.) Then∑

q

∣∣∣∑
s∈B

ωφk(s)−qs
∣∣∣4

= N
∑

{ωφk(s)+φk(t)−φk(u)−φk(v) : s, t, u, v ∈ B, s+ t = u+ v} .
Now the set B has been chosen so that if s, t, u, v ∈ B and s + t = u + v,
then φk(s)+φk(t) = φk(u)+φk(v). Therefore, the right-hand side above is
N times the number of quadruples (s, t, u, v) ∈ B4 such that s+ t = u+ v.
It is not hard to check that if c and d are smaller than r/4, say, then B
has cardinality proportional to N3, and therefore that the right-hand side
above is proportional to N4. Lemma 2.1 now tells us that φk has a large
Fourier coefficient. Thus, at the very least, we have shown that, for many
values of k, ∆(f ; k) fails to be uniform.

If we could find a genuinely quadratic function φ(s) = as2+ bs+ c such
that

∣∣∑
s f(s)ω

−φ(s)
∣∣2 was proportional to N2, then, expanding, we would

have ∑
s,k

f(s)f(s− k)ω−φ(s)+φ(s−k) =
∑
s,k

f(s)f(s− k)ω−2ask−bk
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proportional to N2, which would imply that the number of k for which
∆(f ; k)∼(2ak) was proportional to N was proportional to N . A direct
calculation (left to the interested reader) shows that such a phenomenon
does not occur. That is, there is no value of λ such that ∆(f ; k)∧(λk) is
large for many values of k.

There are of course many examples like the second one above. One can
define functions that resemble d-dimensional quadratic forms, and provided
that d is small the same sort of behaviour occurs. Thus, we must accept that
the ideas of this paper so far do not lead directly to a proof of Szemerédi’s
theorem, and begin to come to terms with these “multi-dimensional” exam-
ples. It is for this purpose that our major tool, an adaptation of Freiman’s
theorem, is used, as will be explained later in the paper.

Returning to the first example of this section, it should be noted that
the set A = {s ∈ ZN : |s2| � N/10} also serves to show that a uniform
set need not have roughly the same number of arithmetic progressions of
length four as a random set. Indeed, it is not hard to show that if x, x+ d
and x+2d all lie in A, then it is a little ‘too likely’ that x+3d will also lie
in A, which shows that A contains ‘too many’ progressions of length four.

Until recently, I was confident that a modificiation of this example could
be constructed with too few progressions of length four. However, I have
recently changed my mind, after a conversation with Gil Kalai in which he
challenged me actually to produce such a modification. In fact, there are
convincing heuristic arguments in support of the following conjecture, even
though at first it seems very implausible.

Conjecture 4.1. Let A ⊂ ZN be a set of size δN . Then, if A is α-
uniform, the number of quadruples (x, x+d, x+2d, x+3d) in A4 is at least
(δ4 − β)N2, where β tends to zero as α tends to zero.

In other words, uniform sets always contain at least the expected number
of progressions of length four.

It can be shown that quadratically uniform sets sometimes contain sig-
nificantly fewer progressions of length five than random sets of the same
cardinality. However, the example depends in an essential way on 5 being
odd, and the following extension of Conjecture 4.1 appears to be true as
well.

Conjecture 4.2. Let A ⊂ ZN be a set of size δN and let k be an even
number. Then, if A is α-uniform of degree k − 1, the number of sequences
(x, x+d, ..., x+(k+1)d) belonging to Ak+2 is at least (δk+2−β)N2, where
β tends to zero as α tends to zero.
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5 Consequences of Weyl’s Inequality

In this section we shall generalize Lemma 2.2 and Corollary 2.3 from linear
functions to general polynomials. Most of the results of the section are
well known. Since the proofs are short, we shall give many of them in
full, to keep the paper as self-contained as possible. The main exception
is Weyl’s inequality itself: there seems little point in reproducing the proof
when it is well explained in many places. Once we have generalized these
two results, we will have shown that for the proof of Szemerédi’s theorem
it is enough to prove that a set which fails to be uniform of degree d
exhibits “polynomial bias”, rather than “linear bias” as we showed in the
case d = 1. We shall not try to define the notion of bias precisely. If a set A
has balanced function f and there is a polynomial φ : ZN → ZN of degree
d such that

∣∣∑
s f(s)ω

−φ(s)
∣∣ is large, then A exhibits polynomial bias in

the required sense. However, the second example in the previous section
showed that this is too much to ask for, so a precise definition would have
to be somewhat weaker.

First, we give some simple estimates for certain Fourier coefficients. We
shall write [−M,M) for the set {−M,−(M − 1), . . . ,M − 1}.
Lemma 5.1. Let I ⊂ ZN be the interval [−M,M). Then |Î(r)| �
min{2M,N/2|r|}.
Proof. This is a simple direct calculation. The upper bound of 2M is trivial.
To obtain the bound of N/2|r|, note that for θ in the range [−π, π] one has

|1− eiθ| � 2|θ|/π .

Applying this estimate with θ = 2πr/N gives

|Î(r)| =
∣∣∣∣

M−1∑
s=−M

ωrs

∣∣∣∣ =
∣∣∣∣ω−rM − ωrM

1− ωr

∣∣∣∣ � 2
|1− ωr| � N

2|r| ,

as was wanted. ✷

Given an integer r ∈ ZN , we shall use the notation |r| to stand for
the modulus of the unique representative of r that lies in the interval
[−N/2, N/2) (i.e., the distance from r to zero).

Lemma 5.2. Let A be a subset of ZN of cardinality t, let M be an even
integer and suppose that A ∩ [−M,M) = ∅. Then there exists r with
0 < |r| � N2M−2 such that |Â(r)| � tM/2N .

Proof. Let I = [−M/2,M/2). Then A ∩ (I − I) = ∅. It follows that
〈A, I ∗ I〉 = 0, which is the same as saying that

∑
sA(s)I ∗ I(s) = 0.
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By identities (1) and (2) of §2 (transforms of convolutions and Parseval’s
identity) it follows that

∑
r Â(r)|Î(r)|2 = 0. Since Î(0) =M and Â(0) = t,

it follows that ∑
r �=0

|Â(r)||Î(r)|2 � tM2 .

By Lemma 5.1, we know, for each r, that |Î(r)| � min{M,N/2|r|}. It
follows that∑

r �=0
|Â(r)||Î(r)|2 � max

0<|r|�N2M−2
|Â(r)|

∑
r

|Î(r)|2 + t
∑

|r|�N2M−2

N2/4|r|2

� MN max
0<|r|�N2M−2

|Â(r)|+ (3/4)tN2(N2M−2)−1

=MN max
0<|r|�N2M−2

|Â(r)|+ (3/4)tM2 .

Therefore, there exists r with |r| � N2M−2 and |Â(r)| � M2t/4MN =
tM/4N , which proves the lemma. ✷

Remark. A more obvious approach to proving the above result would be
to use I instead of I ∗ I. That is, one would consider the sum

∑
r Â(r)Î(r).

It turns out, however, that the estimates that one obtains are not strong
enough. The trick of using I ∗ I instead is basically the familiar device of
replacing the Dirichlet kernel by the Féjer kernel.

The next lemma is a special case of Weyl’s inequality. (To obtain the
inequality in its full generality, replace sk below by an arbitrary monic
polynomial of degree k. The proof is unaffected.) We shall make a fairly
standard deduction from it, so it seems appropriate to use standard nota-
tion as well. Thus, e(x) means exp(2πix).

Lemma 5.3. Let a and q be integers with (a, q) = 1. Let α be a real
number such that

∣∣α− a/q
∣∣ � q−2. Then, for all ε > 0,∣∣∣∣

t∑
s=1

e(αsk)
∣∣∣∣ � Cεt

1+ε(q−1 + t−1 + qt−k)1/2
k−1

.

Moreover, if t � 22
32k2

, then the above inequality is valid with ε = 1/k2k+1

and Cε = 1000. ✷

The above estimate for Cε is important because we wish to use the
inequality to obtain explicit bounds. Unfortunately, I have not managed
to find in the literature any presentation of Weyl’s inequality that bothers
to estimate Cε. If one follows the proof given by Vaughan [V] and keeps
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track of everything that is swallowed up by the tε, one can replace the Cεt
ε

in the right-hand side of the inequality by

500(2t)8k/2
k−1 log log t(log t)1/2

k−1
.

It is from this that we deduced the final part of the lemma. Note that,
although Cε became an absolute constant, we paid for it with the assump-
tion that t was sufficiently large. Since we are stating this estimate rather
than giving a detailed proof, the reader may be reassured to know that for
what follows it would not matter if t was required to be far larger – quadru-
ply exponential in k, say. Moreover, Weyl’s inequality does not give the
best known estimate for the exponential sum in question. It is used here
because its proof is reasonably simple, which makes checking the estimate
above relatively straightforward.

The next lemma is very standard, and is due to Dirichlet.

Lemma 5.4. Let α be a real number. For every integer u � 1 there exist
integers a and q with (a, q) = 1, 1 � q � u and

∣∣α− a/q
∣∣ � 1/qu. ✷

The next lemma is also due to Weyl. Since it is again hard to find in
the literature in the quantitative form we need, we give a complete proof.

Lemma 5.5. Let k � 2, let t � 22
32k2

, let N � t and and let a ∈ ZN . Then
there exists p � t such that |pka| � t−1/k2

k+1
N .

Proof. Let A = {a, 2ka, 3ka, . . . , tka}. By Lemma 5.2, if the result is false
then there exists r such that 0 < |r| � t1/k2

k
and |Â(r)| � 1

2 t
1−1/k2k+1

.
Setting α = −ar/N , we have

Â(r) =
∑
u∈A

ω−ru =
t∑

s=1

ω−rska =
t∑

s=1

e(αsk) .

Lemma 5.4 gives us integers b and q with (b, q) = 1, 1 � q � t and∣∣α− b/q
∣∣ � 1/qt. By Lemma 5.3 we know that

|Â(r)| � 1000t1+1/k2
k+1
(q−1 + t−1 + t1−k)1/2

k−1
.

By the lower bound for |Â(r)|, we may deduce that
2000t1/k2

k
(q−1 + t−1 + q1−k)1/2

k−1 � 1
which implies, after a small calculation (using the assumption that t �
22

32k2

), that q � 2t1/2k.
We may now argue directly. We know that

∣∣α−b/q
∣∣ � 1/qt. Multiplying

both sides by (rq)kN/r we find that
| − a(rq)k − b(rq)k−1N | � (|r|q)k−1N/t � t−1/2N ,
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so we can set p = rq (contradicting the initial assumption that the result
was false). ✷

Corollary 5.6. Let φ : ZN → ZN be any polynomial of degree k, let
K = (k! )22(k+1)

2
and let r be an integer exceeding 22

40k2

. Then for every
m � r1−1/K the set {0, 1, 2, . . . , r − 1} can be partitioned into arithmetic
progressions P1, . . . , Pm such that the diameter of φ(Pj) is at most r−1/KN
for every j and the lengths of any two Pj differ by at most 1.

Proof. The case k = 1 follows immediately from Lemma 2.2. Given k > 1,
let us write φ(x) = axk + ψ1(x), in such a way that ψ1 is a polynomial
of degree k − 1. By Lemma 5.5 we can find p � r1/2 such that |apk| �
r−1/k2

k+2
N . Then for any s we have

φ(x+ sp) = a(x+ sp)k + ψ1(x+ sp)

= sk(apk) + ψ2(x, p) ,
where ψ2 is, for any fixed x, a polynomial of degree at most k − 1 in p.

For any u, the diameter of the set {sk(apk) : 0 � s < u} is at most
uk|apk| � ukr−1/k2

k+2
N . Therefore, for any u � r1/4, we can partition the

set {0, 1, . . . , r − 1} into arithmetic progressions of the form
Qj =

{
xj , xj + p, . . . , xj + (uj − 1)p

}
,

such that, for every j, u− 1 � uj � u and there exists a polynomial φj of
degree at most k − 1 such that, for any subset P ⊂ Qj ,

diam(φ(P )) � ukr−1/k2
k+1

N + diam(φj(P )) .

Let us choose u = r1/k
22k+2

, with the result that ukr−1/k2
k+1

= r−1/k2
k+2
.

It is easy to check that u � 22
40(k−1)2

. Therefore, by induction, if v � u1/L,
where L = ((k− 1)! )22k2

, then every Qj can be partitioned into arithmetic
progressions Pjt of length v − 1 or v in such a way that diam(φj(Pjt)) �
u−1/LN for every t. It is not hard to check that this, with our choice of u
above, gives us the inductive hypothesis for k. ✷

Corollary 5.7. Let φ : ZN → ZN be a polynomial of degree k, let K =
(k!)22(k+1)

2
, let α>0 and let r be an integer exceedingmax{2240k

2

,(4π/α)K}.
Then, for any m � r1−1/K , there is a partition of the set {0, 1, . . . , r − 1}
into arithmetic progressions P1, . . . , Pm such that the sizes of the Pj differ
by at most one, and if f : ZN → D is any function such that∣∣∣∣

r−1∑
s=0

f(s)ω−φ(s)
∣∣∣∣ � αr ,
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then m∑
j=1

∣∣∣∑
s∈Pj

f(s)
∣∣∣ � (α/2)r .

Proof. By Corollary 5.6 we can choose P1, . . . , Pm such that diam(φ(Pj)) �
Nr−1/K for every j. By the second lower bound for r, this is at most
αN/4π. Exactly as in the proof of Corollary 2.3, this implies the result. ✷

Corollary 5.8. Let A ⊂ ZN be a set of cardinality δN with balanced
function f . Suppose that we can find disjoint arithmetic progressions
P1, . . . , PM such that A ⊂

⋃
i Pi, and polynomials φ1, . . . , φM of degree

at most k such that
M∑
i=1

∣∣∣∑
s∈Pi

f(s)ω−φi(s)
∣∣∣ � αN .

Suppose also that |Pi| � 2|Pj | for all i, j. Then there is an arithmetic
progression Q of cardinality at least (N/M)1/K/8 such that |A ∩ Q| �
(δ + α/8)|Q|.
Proof. We know that no Pi has cardinality more than 2N/M . By Corollary
5.7, if m � C(2N/M)1−1/K , each Pi can be partitioned into arithmetic
progressions Pi1, . . . , Pim such that

m∑
j=1

∣∣∣ ∑
s∈Pij

f(s)
∣∣∣ � 1

2

∣∣∣∑
s∈Pi

f(s)ω−φi(s)
∣∣∣ .

Summing over i, we find that
M∑
i=1

m∑
j=1

∣∣∣ ∑
s∈Pij

f(s)
∣∣∣ � αN .

Since A is contained in the union of the Pij we also know that
M∑
i=1

m∑
j=1

∑
s∈Pij

f(s) = 0 .

Let Fij =
∑

s∈Pij
f(s) and let J be the set of (i, j) such that Fij � 0. Then

the inequalities above imply that
∑
(i,j)∈J Fij � αN/4, so we can find Pij

with
∑

s∈Pij
f(s) � αN/4Mm. Since |Pij | � 4N/Mm, this shows that

|A ∩ Pij| � (δ + α/16)|Pij |. ✷

We have now finished one of the key stages in the proof. As promised in
the introduction to this section, if we want to generalize Roth’s argument,
we may now look for “polynomial bias”, rather than the “linear bias” which
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arises there, since polynomial bias implies linear bias on small subprogres-
sions.

We continue the section with three results that generalize Lemma 5.5
and Corollary 5.6 to statements dealing with several polynomials at once.
These generalizations will not be needed for progressions of length four,
but they are very important for progressions of length six or more, and the
next lemma is needed for progressions of length five (in the case k = 2).
Our methods of proof are extremely crude, and it is quite likely that much
better bounds are known. However, we have not been able to find them and
the poor bounds here do not greatly affect the estimate we shall eventually
obtain for Szemerédi’s theorem.

Lemma 5.9. Let φ1, . . . , φq be polynomials from ZN to ZN of degree at

most k, let K = (k!)22(k+1)
2

and let r be an integer exceeding 22
40k2

Kq−1
.

Then for every m � r1−1/2K
q

the set {0, 1, 2, . . . , r − 1} can be partitioned
into arithmetic progressions P1, . . . , Pm such that the diameter of φi(Pj) is
at most r−1/K

q
N for every i and every j, and the lengths of any two Pj

differ by at most 1.

Proof. First we prove by induction that for every p � q we can partition
the set {0, 1, . . . , r − 1} into arithmetic progressions P1, . . . , Pm of size at
least r1/K

p
such that diamφi(Pj) is at most r−1/K

p
N for every i � p and

j � m. When p = 1 this follows immediately from Corollary 5.6. If we
know it for p − 1, let Q1, . . . , Ql be the arithmetic progressions obtained.
The size of each Qi is at least r1/K

p−1 � 22
40k2

, so by Corollary 5.6 each Qi

can be partitioned into further arithmetic progressions Pj of cardinality at
least (r1/K

p−1
)1/K = r1/K

p
, such that, for every j, the diameter of φq(Pj)

is at most (r−1/K
p−1
)1/KN = r−1/K

p
N . This is clearly enough to give us

the statement for p.
In particular, we have the statement when p = q. To obtain the lemma,

notice that if k2 � m, then an arithmetic progression of length m can be
partitioned into subprogressions each of which has length k or k + 1. ✷

We are now going to prove a similar result for multilinear functions,
which in this context means functions of the form

µ(x1, . . . , xk) =
∑
A⊂[k]

cA
∏
j∈A

xj .

Define a box in Z
k
N of common difference d to be a product P=Q1×. . .×Qk,

where each Qi is an arithmetic progression in ZN (even when ZN is
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embedded into Z) of common difference d. The width of P is defined to be
min |Qi|.

Lemma 5.10. Let k � 2, let K = k22k+3, let m � 2K
2k232k

2+1
, let P be

a box in Z
k
N of width at least m and let µ be a k-linear function from P

to ZN . Then P can be partitioned into boxes P1, . . . , PM , such that each Pj

has width at least mK−2k

and the diameter of µ(Pj) is at most 2m−K−2k

N
for every j.

Proof. As noted above, µ can be written as a sum of terms of the form
cA

∏
j∈A xj . Take any total ordering on the subsets of [k] which extends the

partial ordering by inclusion, and define the height of µ to be the largest
position in this ordering of a set A such that the coefficient cA is non-zero.
We shall prove the result by induction on the height. The precise inductive
hypothesis is that if µ has height at most p, then any box Q of width
t � 2K

p232k
2+1

can be partitioned into boxes Qj of width at least tK
−p
such

that for every j the diameter of µ(Qj) is at most (1 + 2−kp)t−K−p
N .

First, if the height is zero or one, then µ is constant and the result
is trivial. Now let Q be a box of width t and common difference d0, let
µ : Q → ZN be a k-linear function of height p and suppose that the result
is true for all multilinear functions of height less than p. Let A be the pth

set in the ordering on the subsets of [k], and let cA be the corresponding
coefficient of µ.

By Lemma 5.5, we can find r � t1/2, such that, setting d = rd0, we
have the inequality |cAd|A|| � t−1/k2

k+2
N . Now, for any (x1, . . . , xk) ∈ Q

we can define a function ν by
ν(b1, . . . , bk) = µ(x1 + db1, . . . , xk + dbk)

and write it in the form
ν(b1, . . . , bk) =

∑
B⊂[k]

c′Bd
|B|

∏
j∈B

bj .

It is not hard to see that, because µ has height p, so does ν, and also that
c′A = cA, whatever the choice of (x1, . . . , xk). Therefore, we can write

ν(b1, . . . , bk) = cAd
|A|

∏
j∈A

bj + ν′(b1, . . . , bk) ,

where ν′ has height at most p − 1. If max{b1, . . . , bk} � m1/k
22k+3

, then
our estimate for cAd|A| implies that

∣∣cAd|A|∏
j∈A bj

∣∣ � t−1/k2
k+3

N .
Now we are almost finished. Since r � t1/2, there is no problem in parti-

tioning Q into boxes of common difference d and width t1/k
22k+3

= t1/K . In
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each such box, we have shown that µ can be written as a sum ν1+ν2 of mul-
tilinear functions such that ν1 is bounded above in size by t−1/k2

k+3
N and ν2

has height at most p−1 (with the functions ν1 and ν2 depending on the box).
By induction, each such box can be further partitioned into boxes of width
at least t1/K

p
such that ν2 has diameter at most (1 + (p− 1)2−k)t−K−p

N .
Since

t−1/k2
k+2

N +
(
1 + 2−k(p− 1)

)
t−K−p

N � (1 + 2−kp)t−K−p
N ,

we have proved the inductive hypothesis for p and hence the whole lemma. ✷

It is now not hard to deduce a multiple version of the above lemma.

Corollary 5.11. Let k � 2, let K = k22k+3, let P be a box in Z
k
N of

width at least m � 2K
2kq232k

2+1
and let µ1, . . . , µq be k-linear functions

from P to ZN . Then P can be partitioned into boxes P1, . . . , PM , such
that each Pj has width at least mK−2kq

and the diameter of µi(Pj) is at

most 2m−K−2kq
N for every i and j.

Proof. We can apply Lemma 5.10 q times, obtaining a sequence of finer
and finer partitions into boxes, such that for each refinement another of
the µi satisfies the conclusion of that lemma. The width of the boxes at
the final stage of this process is at least the number obtained by raising m
to the power K−2k q times, which is mK−2kq

. The worst estimate for the
diameter comes at the last refinement, and gives 2m−K−2kq

N . ✷

To end this section, we now give four simple lemmas, all of which are
closely related to results that have already appeared in this paper (such as
Lemma 2.3, Lemma 2.4 and Corollary 2.5). It will be convenient to have
them stated explicitly.

Lemma 5.12. Let Q ⊂ ZN be a mod-N arithmetic progression of size m.
Then Q can be partitioned into 4m1/2 proper arithmetic progressions.

Proof. Let Q = {a, a+d, . . . , a+(m−1)d}. By the pigeonhole principle we
can find distinct integers l1 and l2 lying in the interval [0,m1/2] such that
|l1d − l2d| � m−1/2N and hence l lying in the interval (0,m1/2) such that
|ld| � m−1/2N . We can partition Q into l mod-N arithmetic progressions
R1, . . . , Rl each of which has common difference ld and length at least m1/2.
Each Ri can be partitioned into mod-N arithmetic progressions Sj of com-
mon difference ld and length between m1/2 and m. Of these there can be
at most 2m1/2. Finally, each Sj can be split into at most two parts, each
of which is a proper arithmetic progression. ✷
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Lemma 5.13. Let Q1, . . . , QM be mod-N arithmetic progressions that form
a partition of ZN . There is a refinement of this partition consisting of at
most 4

√
NM proper arithmetic progressions.

Proof. Let Qi have cardinality mi. By Lemma 18.1, one can partition Qi

into at most 4m1/2i proper arithmetic progressions. Sincem1+ . . .+mM=N ,
the Cauchy-Schwarz inequality tells us that 4(m1/21 + . . .+m1/2M )�4

√
MN . ✷

Lemma 5.14. Let φ : ZN → ZN be a polynomial of degree k and let
K = (k!)22k

2
. Let f : ZN → [−1, 1] and let Q1, . . . , QM be arithmetic

progressions such that
M∑
i=1

∣∣∣∑
s∈Qi

f(s)ω−φ(s)
∣∣∣ � αN .

There is a refinement of Q1, . . . , QM consisting of arithmetic progressions
R1, . . . , RL such that L � CM1/KN1−1/K and

L∑
j=1

∣∣∣∑
s∈Rj

f(s)
∣∣∣ � (α/2)N .

Proof. Let mi be the cardinality of Qi and let αi be defined by the equation∣∣∣∑
s∈Qi

f(s)ω−φ(s)
∣∣∣ = αi|Qi| .

Our assumption is that
∑M

i=1 αi|Qi| � αN . By Corollary 5.7, each Qi can
be partitioned into at most Cm

1−1/K
i subprogressions Qi1, . . . , QiMi such

that
Mi∑
j=1

∣∣∣ ∑
s∈Qij

f(s)
∣∣∣ � (αi/2)|Qi| ,

so, summing over i, we have the inequality
M∑
i=1

Mi∑
j=1

∣∣∣ ∑
s∈Qij

f(s)
∣∣∣ � (α/2)N .

The number of sets we have used is at most C
∑M

i=1m
1−1/K
i . Since

∑M
i=1mi

= N , this is at most CM1/KN1−1/K , by Hölder’s inequality. ✷

Lemma 5.15. Let f : ZN → [−1, 1], suppose that
∑

s f(s) = 0 and let
P1, . . . , PM be sets partitioning ZN such that

M∑
j=1

∣∣∣∑
s∈Pj

f(s)
∣∣∣ � αN .
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Then there exists j such that
∑

s∈Pj
f(s) � α|Pj |/4 and |Pj | � αN/4M .

Proof. For each j let aj = max
{
0,
∑

s∈Pj
f(s)

}
. The hypotheses about the

function f imply that
∑M

j=1 aj � αN/2. However,∑{
aj : aj < α|Qj |/4

}
< αN/4

and ∑{
aj : |Qj | < αN/4m

}
< αN/4

(as aj � |Qj |) so there must be other values of j contributing to
∑M

j=1 aj .
This proves the lemma. ✷

6 Somewhat Additive Functions

We saw in §4 that it is possible for a set A to have small Fourier coefficients,
but for A∩ (A+ k) to have at least one non-trivial large Fourier coefficient
for every k. Moreover, the obvious conjecture concerning such sets, that
they correlate with some function of the kind ωq(s) where q is a quadratic
polynomial, is false. The aim of the next three sections is to show that such
a set A must nevertheless exhibit quadratic bias of some sort. We will then
be able to use the results of the last section to find linear bias, which will
complete the proof for progressions of length four. The generalization to
longer progressions will use similar ideas, but involves one extra important
difficulty.

Notice that what we are trying to prove is very natural. If we replace
A by a function on ZN of the form f(s) = ωφ(s), where φ : ZN → ZN ,
then we are trying to prove that if, for many k, the function φk(s) =
φ(s) − φ(s − k) has some sort of linearity property, resulting in a large
Fourier coefficient for the difference function ∆(f ; k) = ωφ(s)−φ(s−k), then φ
itself must in some way be quadratic. Many arguments in additive number
theory (in particular Weyl’s inequality) use the fact that taking difference
functions reduces the degree of, and hence simplifies, a polynomial. We
are trying to do something like the reverse process, “integrating” rather
than “differentiating” and showing that the degree goes up by one. This is
another sense in which we are engaged in an inverse problem.

This section contains a simple but crucial observation, which greatly
restricts the possibilities for the Fourier coefficients of A∩ (A+ k) that are
large. Let A be a set which is not quadratically α-uniform and let f be the
balanced function of A. Then there are at least αN values of k such that
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we can find r for which∣∣∣∑
s

f(s)f(s− k)ω−rs
∣∣∣ � αN .

Letting B be the set of k for which such an r exists, we can find a function
φ : B → ZN such that∑

k∈B

∣∣∣∑
s

f(s)f(s− k)ω−φ(k)s
∣∣∣2 � α3N3 .

We shall show that the function φ has a weak-seeming property which we
shall call γ-additivity, for a certain constant γ > 0 to be defined later.
Using a variant of Freiman’s theorem proved in the next section, we shall
show that this property gives surprisingly precise information about φ.

Proposition 6.1. Let α > 0, let f : ZN → D, let B ⊂ ZN and let
φ : B → ZN be a function such that∑

k∈B

∣∣∆(f ; k)∧(φ(k))∣∣2 � αN3 .

Then there are at least α4N3 quadruples (a, b, c, d) ∈ B4 such that a+ b =
c+ d and φ(a) + φ(b) = φ(c) + φ(d).

Proof. Expanding the left-hand side of the inequality we are assuming gives
us the inequality∑

k∈B

∑
s,t

f(s)f(s− k)f(t)f(t− k)ω−φ(k)(s−t) � αN3 .

If we now introduce the variable u = s− t we can rewrite this as∑
k∈B

∑
s,u

f(s)f(s− k)f(s− u)f(s− k − u)ω−φ(k)u � αN3 .

Since |f(x)| � 1 for every x, it follows that∑
u

∑
s

∣∣∣∑
k∈B

f(s− k)f(s− k − u)ω−φ(k)u
∣∣∣ � αN3 ,

which implies that∑
u

∑
s

∣∣∣∑
k∈B

f(s− k)f(s− k − u)ω−φ(k)u
∣∣∣2 � α2N4 .

For each u and x let fu(x) = f(−x)f(−x− u) and let gu(x) = B(x)ωφ(x)u.
The above inequality can be rewritten∑

u

∑
s

∣∣∣∑
k

fu(k − s)gu(k)
∣∣∣2 � α2N4 .
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By Lemma 2.1, we can rewrite it again as∑
u

∑
r

|f̂u(r)|2|ĝu(r)|2 � α2N5 .

Since
∑

r |f̂(r)|4 � N4, the Cauchy-Schwarz inequality now implies that∑
u

(∑
r

|ĝu(r)|4
)1/2

� α2N3 .

Applying the Cauchy-Schwarz inequality again, we can deduce that∑
u,r

|ĝu(r)|4 =
∑
u,r

∣∣∣∑
k∈B

ωφ(s)u−rs
∣∣∣4 � α4N5 .

Expanding the left-hand side of this inequality we find that∑
u,r

∑
a,b,c,d∈B

ωu(φ(a)+φ(b)−φ(c)−φ(d))ω−r(a+b−c−d) � α4N5 .

But now the left-hand side is exactly N2 times the number of quadruples
(a, b, c, d) ∈ B4 for which a+ b = c+ d and φ(a)+φ(b) = φ(c)+φ(d). This
proves the proposition. ✷

If G is an Abelian group and a, b, c, d are elements of G such that
a+ b = c+ d, we shall say that (a, b, c, d) is an additive quadruple. Given
a subset B ⊂ ZN and a function φ : B → ZN , let us say that a quadruple
(a, b, c, d) ∈ B4 is φ-additive if it is additive and in addition φ(a) + φ(b) =
φ(c)+φ(d). Let us say also that φ is γ-additive if there are at least γN3 φ-
additive quadruples. It is an easy exercise to show that if γ = 1 thenB must
be the whole of ZN and φ : ZN → ZN must be of the form φ(x) = λx+ µ,
i.e., linear. Notice that the property of γ-additivity appeared, undefined,
in §4 during the discussion of the function φk. Let us now give a simple
but useful reformulation of the concept of γ-additivity.

Lemma 6.2. Let γ > 0, let B ⊂ ZN , let φ : B → ZN be a γ-additive
function and let Γ ⊂ Z

2
N be the graph of φ. Then Γ contains at least γN3

additive quadruples (in the group Z
2
N ). ✷

As we have just remarked, a 1-additive function must be a linear. We
finish this section with an important (and, in the light of the second ex-
ample of §4, natural) example of a γ-additive function which cannot be
approximated by a linear function even though γ is reasonably large. Let
x1, . . . , xd ∈ ZN and r1, . . . , rd ∈ N be such that all the numbers

∑d
i=1 aixi

with 0 � ai < ri are distinct. Let y1, . . . , yd ∈ ZN be arbitrary, and define

φ

( d∑
i=1

aixi

)
=

d∑
i=1

aiyi .
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Let φ(s) be arbitrary for the other values of s. Then a simple calculation
shows that the number of additive quadruples is at least (2/3)dr31 . . . r

3
d. If

r1 . . . rd = βN , then φ is (2/3)dβ3-additive.
The function φ resembles a linear map between vector spaces, and the

number d can be thought of as the dimension of the domain of the φ. In the
next two sections we shall show that all γ-additive functions have, at least
in part, something like the above form, with d not too large and r1 . . . rd
an appreciable fraction of N (both depending, of course, on γ).

7 Variations on a Theorem of Freiman

Let A be a subset of Z of cardinalitym. It is easy to see that A+A = {x+y :
x, y ∈ A} has cardinality between 2m − 1 and m(m + 1)/2. Suppose that
|A+A| � Cm for some constant C. What information does this give about
the set A? This problem is called an inverse problem of additive number
theory, since it involves deducing the structure of A from the behaviour
of A + A – in contrast to a direct problem where properties of A give
information about A+A.

It is clear that A+A will be small when A is a subset of an arithmetic
progression of length not much greater than m. After a moment’s thought,
one realises that there are other examples. For instance, one can take a
“progression of progressions” such as {aM + b : 0 � a < h, 0 � b < k}
where M � k and hk = m. This example can then be generalized to a
large subset of a “d-dimensional” arithmetic progression, provided that d
is reasonably small. A beautiful and famous result of Freiman asserts that
these simple examples exhaust all possibilities. A precise statement of the
theorem is as follows.

Theorem 7.1.. Let C be a constant. There exist constants d0 and K
depending only on C such that whenever A is a subset of Z with |A| = m
and |A+ A| � Cm, there exist d � d0, an integer x0 and positive integers
x1, . . . , xd and k1, . . . , kd such that k1k2 . . . kd � Km and

A ⊂
{
x0 +

d∑
i=1

aixi : 0 � ai < ki (i = 1, 2, . . . , d)
}
.

The same is true if |A−A| � Cm.

It is an easy exercise to deduce from Theorem 7.1 the same result for
subsets of Z

n, where x0, x1, . . . , xd are now points in Z
n. We shall in fact be

interested in the case n = 2, since we shall be applying Freiman’s theorem
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to a graph coming from Proposition 6.1 and Lemma 6.2.
The number k1k2 . . . kd is called the size of the d-dimensional arithmetic

progression. Note that this is not necessarily the same as the cardinality
of the set since there may be numbers (or more generally points of Z

D)
which can be written in more than one way as x0+

∑d
i=1 aixi. When every

such representation is unique, we shall call the set a proper d-dimensional
arithmetic progression. (This terminology is all standard.)

Freiman’s original proof of Theorem 7.1 was long and very difficult to
understand. Although a simplified version of his argument now exists [Bi],
an extremely important breakthrough came a few years ago with a new
and much easier proof by Ruzsa, which also provided a reasonable bound.
This improved bound is very important for the purposes of our bound for
Szemerédi’s theorem. Full details of Ruzsa’s proof can be found in [Ru1,2,3]
or in a book by Nathanson [N], which also contains all necessary background
material.

We shall in fact need a modification of Freiman’s theorem, in which
the hypothesis and the conclusion are weakened. In its qualitative form,
the modification is a result of Balog and Szemerédi. However, they use
Szemerédi’s uniformity lemma, which for us is too expensive. Our argument
will avoid the use of the uniformity lemma and thereby produce a much
better bound than the bound of Balog and Szemerédi. It will be convenient
(though not essential) to consider the version of Freiman’s theorem where
A−A, rather than A+ A is assumed to be small. Our weaker hypothesis
concerns another parameter associated with a set A, which has several
descriptions, and which appeared at the end of the previous section in
connection with the graph of the function φ. It is

‖A ∗A‖22 =
∑
k∈Z

∣∣A ∩ (A+ k)
∣∣2 = ∣∣{(a, b, c, d) ∈ A4 : a− b = c− d}

∣∣ .
(Freiman calls this invariant M ′ in his book [F2 p. 41].) It is a straightfor-
ward exercise to show that

‖A ∗A‖22 � m2 + 2
(
12 + · · ·+ (m− 1)2

)
with equality if and only if A is an arithmetic progression of length m. The
Balog-Szemerédi theorem is the following result.

Theorem 7.2. Let A be a subset of Z
D of cardinality m and suppose that

‖A ∗A‖22 � c0m
3. Then there are constants c, K and d0 depending only on

c0 and an arithmetic progression P of dimension d � d0 and size at most
Km such that |A ∩ P | � cm.



Vol. 11, 2001 A NEW PROOF OF SZEMERÉDI’S THEOREM 503

This result states that if ‖A ∗A‖22 is, to within a constant, as big as
possible, then A has a proportional subset satisfying the conclusion of
Freiman’s theorem. Notice that, qualitatively at least, the conclusion of
Theorem 7.2 cannot be strengthened, since if A has a proportional sub-
set B with ‖B ∗B‖22 large, then ‖A ∗A‖22 is large whatever A \ B is.
To see that the new hypothesis is weaker, notice that if |A − A| � Cm,
then A ∩ (A + k) is empty except for at most Cm values of k, while∑

k∈Z
|A ∩ (A + k)| = m2. It follows from the Cauchy-Schwarz inequal-

ity that
∑

k∈Z
|A ∩ (A+ k)|2 � m3/C.

The most obvious approach to deducing Theorem 7.2 from Theorem 7.1
is to show that a set satisfying the hypothesis of Theorem 7.2 has a large
subset satisfying the hypothesis of Theorem 7.1. This is exactly what Balog
and Szemerédi did and we shall do as well.

Proposition 7.3. Let A be a subset of Z
n of cardinality m such that

‖A ∗A‖22 � c0m
3. Then there are constants c and C depending only on c0

and a subset A′′ ⊂ A of cardinality at least cm such that |A′′ −A′′| � Cm.
Moreover, c and C can be taken as 2−20c120 and 238c−240 respectively.

We shall need the following lemma for the proof.

Lemma 7.4. Let V be a set of size m, let δ > 0 and let A1, . . . , An be
subsets of V such that

∑n
x=1

∑n
y=1 |Ax ∩ Ay| � δ2mn2. Then there is a

subset K ⊂ [n] of cardinality at least 2−1/2δ5n such that for at least 90%
of the pairs (x, y) ∈ K2 the intersection Ax ∩ Ay has cardinality at least
δ2m/2. In particular, the result holds if |Ax| � δm for every x.

Proof. For every j � m let Bj = {i : j ∈ Ai} and let Ej = B2j . Choose five
numbers j1, . . . , j5 � m at random (uniformly and independently), and let
X = Ej1 ∩ · · · ∩ Ej5 . The probability pxy that a given pair (x, y) ∈ [n]2

belongs to Ejr is m−1|Ax ∩ Ay|, so the probability that it belongs to X
is p5xy. By our assumption we have that

∑n
x,y=1 pxy � δ2n2, which implies

(by Hölder’s inequality) that
∑n

x,y=1 p
5
xy � δ10n2. In other words, the

expected size of X is at least δ10n2.
Let Y be the set of pairs (x, y) ∈ X such that |Ax ∩ Ay| < δ2m/2, or

equivalently pxy < δ2/2. Because of the bound on pxy, the probability that
(x, y) ∈ Y is at most (δ2/2)5, so the expected size of Y is at most δ10n2/32.

It follows that the expectation of |X|−16|Y | is at least δ10n2/2. Hence,
there exist j1, . . . , j5 such that |X| � 16|Y | and |X| � δ10n2/2. It follows
that the set K = Bj1 ∩ · · · ∩Bj5 satisfies the conclusion of the lemma. ✷
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Proof of Proposition 7.3. The function f(x) = A ∗A(x) (from Z
n to Z) is

non-negative and satisfies ‖f‖∞ � m, ‖f‖22 � c0m
3 and ‖f‖1 = m2. This

implies that f(x) � c0m/2 for at least c0m/2 values of x, since otherwise
we could write f = g + h with g and h disjointly supported, g supported
on fewer than c0m/2 points and ‖h‖∞ � c0m/2, which would tell us that

‖f‖22 � ‖g‖22 + ‖h‖∞ ‖h‖1 < (c0m/2)m2 + (c0m/2).m2 = c0m
3 .

Let us call a value of x for which f(x) � c0m/2 a popular difference and let
us define a graph G with vertex set A by joining a to b if b− a (and hence
a − b) is a popular difference. The average degree in G is at least c20m/4,
so there must be at least c20m/8 vertices of degree at least c20m/8. Let
δ = c20/8, let a1, . . . , an be vertices of degree at least c

2
0m/8, with n � δm,

and let A1, . . . , An be the neighbourhoods of the vertices a1, . . . , an. By
Lemma 7.4 we can find a subset A′ ⊂ {a1, . . . , an} of cardinality at least
δ5n/

√
2 such that at least 90% of the intersections Ai ∩Aj with ai, aj ∈ A′

are of size at least δ2m/2. Set α = δ6/
√
2 so that |A′| � αm.

Now define a graph H with vertex set A′, joining ai to aj if and only
if |Ai ∩ Aj | � δ2m/2. The average degree of the vertices in H is at least
(9/10)|A′|, so at least |A′|/2 vertices have degree at least 4|A′|/5. Define
A′′ to be the set of all such vertices.

We claim now that A′′ has a small difference set. To see this, consider
any two elements ai, aj ∈ A′′. Since the degrees of ai and aj are at least
(4/5)|A′| in H, there are at least (3/5)|A′| points ak ∈ A′ joined to both
ai and aj . For every such k we have |Ai ∩ Ak| and |Aj ∩ Ak| both of size
at least δ2m/2. If b ∈ Ai ∩ Ak, then both ai − b and ak − b are popular
differences. It follows that there are at least c20m

2/4 ways of writing ai−ak
as (p− q)− (r − s), where p, q, r, s ∈ A, p− q = ai − b and r − s = ak − b.
Summing over all b ∈ Ai∩Ak, we find that there are at least δ2c20m

3/8 ways
of writing ai−ak as (p− q)− (r− s) with p, q, r, s ∈ A. The same is true of
aj − ak. Finally, summing over all k such that ak is joined in H to both ai
and aj , we find that there are at least (3/5)|A′|δ4c40m6/64 � αδ4c40m

7/120
ways of writing ai − aj in the form (p− q)− (r − s)−

(
(t− u)− (v − w)

)
with p, q, . . . , w ∈ A.

Since there are at most m8 elements in A8, the number of differences
of elements of A′′ is at most 120m/αδ4c40 � 238m/c240 . Note also that
the cardinality of A′′ is at least (1/2)αm � c120 m/220. The proposition is
proved. ✷

It is possible to apply Theorem 7.2 as it stands in order to prove Sze-
merédi’s theorem for progressions of length four (and quite possibly in
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general). Instead, we shall combine Proposition 7.3 with a weaker version
of Freiman’s theorem that gives less information about the structure of a
set A with small difference set. There are three advantages in doing this.
The first is that with our weaker version we can get a much better bound.
The second is that using the weaker version is cleaner, particularly when
we come to the general case. The third is that the weaker version is easier
to prove than Freiman’s theorem itself, as it avoids certain arguments from
the geometry of numbers.

We shall not be concerned in this paper with arbitrary sets A such
that |A − A| � C|A|, but rather with graphs of functions from subsets
of ZN to ZN . We now prove a result for such functions. An important
concept introduced by Freiman is that of a Freiman homomorphism (as
it is now called). Let A and B be two subsets of Abelian groups. A
function φ : A → B is a Freiman homomorphism of order k if, whenever
a1, . . . , a2k ∈ A and

a1 + · · ·+ ak = ak+1 + · · ·+ a2k ,

we have also

φ(a1) + · · ·+ φ(ak) = φ(ak+1) + · · ·+ φ(a2k) .

Equivalently, φ induces a well-defined function from kA to kB, where kA
denotes the sum of k copies of the set A. When k = 2 one speaks simply of
a Freiman homomorphism. Note that a Freiman homomorphism of order
2k also induces a well-defined function from kA − kA to kB − kB. If φ
has an inverse which is also a Freiman homomorphism of order k, then φ is
said to be a Freiman isomorphism of order k. The next lemma shows that
a function φ : B ⊂ ZN → ZN for which the graph has a small difference
set can be restricted to a large subset of B on which it is a Freiman homo-
morphism of order k. This lemma plays the role in our proof that Theorem
2 of [Ru1] did in Ruzsa’s proof, and the proof is in a very similar spirit.
Indeed, the whole scheme of our proof in the rest of this section is based
on his ideas.

Lemma 7.5. Let B ⊂ ZN and let φ : B → ZN be a function with graph Γ.
Suppose that |Γ−Γ| � C|Γ|. Then there is a subset B′ ⊂ B of size at least
|B|/8kC4k such that the restriction of φ to C is a Freiman homomorphism
of order k.

Proof. First, a theorem of Ruzsa [Ru2] (deduced from a result of Plünnecke
[P] for which Ruzsa discovered a simpler proof) implies that |4kΓ− 4kΓ| �
C4k|Γ|. If for some x we could find more than C4k distinct values of y such
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that (x, y) ∈ 2kΓ− 2kΓ, then for every (z,w) ∈ 2kΓ− 2kΓ there would be
more than C4k distinct values of u such that (z − x, u) ∈ 4kΓ − 4kΓ. But
the number of z such that (z,w) ∈ 2kΓ − 2kΓ for some w is certainly at
least |Γ|, so this would contradict the upper bound for |4kΓ− 4kΓ|.

Therefore, there are in particular at most C4k distinct values of y such
that (0, y)∈2kΓ−2kΓ. If (x, y), (x, y′) ∈ kΓ−kΓ then (0, y−y′) ∈ 2kΓ−2kΓ.
Hence, there is a set K of size at most C4k such that, writing Kx for the
set {y : (x, y) ∈ kΓ− kΓ}, we have Kx −Kx ⊂ K for every x.

Now let 0 � M < N/2 be even. For every w ∈ ZN , there are exactly
2M non-zero values of d such that

w ∈
{
−Md,−(M − 1)d, . . . ,−2d,−d} ∪ {d, 2d, . . . ,Md

}
,

since the equation ad = w has a unique solution whenever a �= 0. Therefore,
the number of values of d for which K ∩ {dy : −M � y � M} �= {0} is at
most 2MC4k.

Let d be such that if we define P to be {dy : −M � y � M} then
K ∩ P = {0}. Let P ′ = {dy : −M/2 � y � M/2}, let L � M/2k and let
Q = {dy : 0 � y � L}. Define Γa to be the set {(x, y) ∈ Γ : y ∈ a+Q}.

We claim that Γa is the graph of a homomorphism of order k. If not,
then we can find (x1, y1), . . . , (x2k, y2k) and (x′1, y

′
1), . . . , (x

′
2k, y

′
2k) ∈ Γa such

that
x1 + · · ·+ xk − xk+1 − · · · − x2k = x′1 + · · ·+ x′k − x′k+1 − · · · − x′2k ,

but
y1 + · · ·+ yk − yk+1 − · · · − y2k �= y′1 + · · ·+ y′k − y′k+1 − · · · − y′2k ,

and hence x, y, y′ such that y �= y′ and (x, y), (x, y′) ∈ kΓa−kΓa. However,
kΓa − kΓa is the set of all points of the form

(x1 + · · ·+ xk − xk+1 − · · · − x2k, y1 + · · ·+ yk − yk+1 − · · · − y2k)
such that (xi, yi) ∈ Γ and yi ∈ a + Q for every i. This is a subset of
{(x, y) ∈ kΓ − kΓ : y ∈ P ′} = {(x, y) : y ∈ Kx ∩ P ′}. It follows that
(Kx −Kx) ∩ (P ′ − P ′) is non-empty and hence that K ∩ P is non-empty,
which is a contradiction.

Therefore, as long as 2MC4k < N − 1, we can find a value of d such
that Γa is the graph of a homomorphism for every a. The average size of
Γa is (L+ 1)|Γ|/N , so if we choose M to be at least N/4C4k and L to be
at least (M/2k)− 1, as we may, then we can find a such that the size of Γa

is at least |Γ|/8kC4k. ✷

Let us now collect what we have done so far into a single result, spe-
cialized to the case k = 8.
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Corollary 7.6. Let B0 ⊂ ZN have cardinality αN , and let φ : B0 → ZN

have γ(αN)3 additive quadruples. Then there is a subset B ⊂ B0 of car-
dinality at least 2−1882γ1164αN such that the restriction of φ to B is a
homomorphism of order 8.

Proof. By Proposition 7.3 we can find a subset B1 ⊂ B0 of cardinality at
least 2−20γ12αN such that, letting Γ be the graph of φ restricted to B1, we
have |Γ−Γ| � 258γ−36|Γ|. Let C = 258γ−36. By Lemma 7.5 we can restrict
φ to a subset B ⊂ B1 of cardinality at least |B1|/64C32 � 2−1882γ1164αN
such that it becomes a homomorphism of order 8. ✷

The next lemma is a variant of an argument of Bogolyubov [B]. The
original argument was used by Ruzsa in his proof of Freiman’s theorem.
Given a subset K ⊂ ZN and δ > 0, let us define the Bohr neighbourhood
B(K, δ) to be the set of all d ∈ ZN such that |sd| � δN for every s ∈ K. An
elementary fact about Bohr neighbourhoods is contained in the next lemma,
which is another well-known application of Dirichlet’s “box” principle.

Lemma 7.7. Let K be a subset of ZN and let δ > 0. Then the cardinality
of the Bohr neighbourhood B(K, δ) is at least (δ/2)|K|N . In particular, if
δ > (N/2)−1/|K| then B(K, δ) contains a non-zero element.

Proof. Let the elements of K be r1, . . . , rk, and let φ be the mapping from
ZN to Zk

N defined by φ : x 
→ (r1x, . . . , rkx). Let m = 
δ−1� and for
1 � j � m let Ij = {x ∈ ZN : (j − 1)N/m � x < jN/m}. There are
exactly mk possible products of k of the intervals Ij , so one of them, Q
say, must contain φ(x) for at least m−kN values of x ∈ ZN . Let C be
the set of x such that φ(x) ∈ Q. Then it is easy to see that C − C ⊂ B.
Clearly also |C − C| � |C|. The lemma now follows from the observation
that m−1 � δ/2. ✷

Another useful remark about Bohr neighbourhoods is that
B(K, δ1) + B(K, δ2) ⊂ B(K, δ1 + δ2). Further facts about them will be
proved in §10.

Lemma 7.8. Let A ⊂ ZN be a set of size αN and let φ : A → ZN be a
Freiman homomorphism of order 8. Let K = {r ∈ ZN : |Â(r)| � α3/2N/4}.
Then K has cardinality at most 16α−2, and there is a homomorphism
ψ : B(K,α/32π)→ ZN such that φ(x)−φ(y) = ψ(x−y) whenever x, y ∈ A
and x− y ∈ B(K,α/32π).

Proof. Let g be the function A ∗ A ∗ A ∗ A. Then ĝ(r) = |Â(r)|4 and
g(r) = N−1∑

r |Â(r)|4ωrx for every r ∈ ZN . Let λ = α3/2/4 so that
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K = {r : |Â(r)| � λN}. Since ‖Â‖2 = αN2, we have λ2N2|K| � αN2 and
hence |K| � αλ−2 = 16α−2 as stated. We also know that∑

r/∈K
|Â(r)|4 < λ2N2

∑
r/∈K

|Â(r)|2 � αλ2N4 .

Therefore, if we define h(x) to be N−1∑
r∈K |Â(r)|4ωrx, we find that

|g(x)− h(x)| � αλ2N3 for every x.
Now choose d such that |rd| � αN/32π for every r ∈ K. Then, for

every x,

|h(x+ d)− h(x)| = N−1
∣∣∣∑
r∈K

|Â(r)|4(ωr(x+d) − ωrx)
∣∣∣

� N−1
∑
r∈K

|Â(r)|4|ωrd − 1|

� 2π(α/32π)α3N3 = αλ2N3 ,

where for the last inequality we used the fact that
∑

r |Â(r)|4 �
(αN)2

∑
r |Â(r)|2 = α3N4. It follows that, under the same condition on d,

we have ∣∣g(x+ d)− g(x)
∣∣ � 3αλ2N3

for every x.
Since g(0) � N−1|Â(0)|4 = α4N3 = 4αλ2N3, it follows that g(d) > 0

for every d ∈ B = B(K,α/32π), so B ⊂ 2A − 2A. Now φ induces a
homomorphism ψ0 (of order 2) on 2A − 2A, which therefore restricts to a
homomorphism ψ on B. If x, y ∈ A with x − y = d ∈ B, then ψ(d) =
φ(x) + φ(x)− φ(x)− φ(y) = φ(x)− φ(y). ✷

Remark. Notice that the same result holds, with an almost identical
proof, if φ maps A into a general Abelian group G rather than ZN .

Given that φ was already a homomorphism of order 8 in the statement
of Lemma 7.8, the reader may be excused for wondering what has been
gained in the conclusion. The answer is that B = B(K,α/32π) has so much
structure, in particular containing many long arithmetic progressions, that
much more can be said about homomorphisms defined on B than about
homomorphisms on arbitrary sets. The next corollary illustrates this.

Corollary 7.9. Let A and K be as in Lemma 7.8 and let m be a positive
integer. For every d ∈ B(K,α/32πm) there exists c such that φ(x)−φ(y) =
c(x− y) whenever x− y belongs to the set {jd : −m � j � m}.
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Proof. This follows from Lemma 7.8 together with the observations that
{jd : −m � j � m} ⊂ B(K,α/32π), that the restriction of any homomor-
phism to {jd : −m � j � m} is linear and that ψ(0) = 0. ✷

We now give a useful definition which arises naturally out of the state-
ment of Lemma 7.8. Let A,B ⊂ ZN and let φ : A → ZN . We shall say that
φ is a B-homomorphism if there is a homomorphism ψ : B → ZN such that,
whenever x, y ∈ A and x− y = z with z ∈ B, we have φ(x)− φ(y) = ψ(z).
In other words, φ induces a homomorphism on (A−A) ∩B.

The last two results of this section are once again simply a putting
together of earlier results.

Corollary 7.10.. Let N be sufficiently large, let B0 ⊂ ZN have cardinal-
ity αN and let φ : B0 → ZN have γ(αN)3 additive quadruples. Then there
exist a mod-N arithmetic progression P of length at least N2−3770γ2328α2

,
a subset H ⊂ P of cardinality at least 2−1849γ1164α|P | and constants
λ, µ ∈ ZN such that φ(s) = λs+ µ for every s ∈ H.

Proof. Corollary 7.6 says that there is a subset B ⊂ B0 of cardinality
at least βN , where β = 2−1882γ1164α, such that the restriction of φ to
B is a Freiman homomorphism of order 8. To this pair (B,φ) we ap-
ply Corollary 7.9. Let K be the set of size at most 16β−2 coming from
Corollary 7.8. By Lemma 7.7, the Bohr neighbourhood B(K,β/32πm)
has a non-zero element if β/32πm > (N/2)−β2/16. Assume that m is
chosen so that this inequality is satisfied and let d be a non-zero ele-
ment of B(K,β/32πm). Let P0 be the mod-N arithmetic progression
(d, 2d, . . . ,md). By an easy averaging argument, there exists k ∈ ZN such
that |(P0 + k) ∩ B| � βm. Choose such a k and let P = P0 + k and
H = P ∩ B. Since x − y ∈ {jd : −m � j � m} whenever x, y ∈ P , Corol-
lary 7.9 gives us a constant c ∈ ZN such that φ(x) − φ(y) = c(x − y) for
every x, y ∈ H. It remains only to check that if N is sufficiently large then
there exists an integer m � N2−3770γ2328α2

such that β/32m > (N/2)−β2/16.
This is a calculation left to the reader, but we state here for later reference
that N can be taken to be (2γ−1α−1)2

4000γ−2328α−2
. ✷

The final result will be used when q = 1 in the proofs of Lemmas 13.7
and 13.9 and for general q in the proof of Lemma 16.3. Unlike our previous
results, it applies to subsets of arithmetic progressions rather than subsets
of ZN .

Corollary 7.11. Let R be an arithmetic progression in Z, for 1 � i � q let
Ai ⊂ R be a set of cardinality at least α|R| and for each i let φi : Ai → ZN
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be a homomorphism of order 8. As long as m � |R|2−14α2q−1
it is possible to

partition R into arithmetic progressions S1, . . . , SM , all of size m or m+ 1
and all with the same common difference, such that the restriction of any
φi to any Ai ∩ Sj is linear.

Proof. LetR = {a, a+h, . . . , a+(l−1)h}. We can embedR 8-isomorphically
into Zp for a prime p < 16l using the map ι : a+ jh 
→ j. Let A′

i = ιAi and
let φ′

i = φiι
−1. (In other words, let us regard each Ai as a subset of Zp.)

We know that |A′
i| � αp/16 for every i. We shall now apply Lemma 7.8,

with α replaced by α/16, to A′
i ⊂ Zp and φ′

i, which maps A
′
i to ZN (see the

remark following Lemma 7.8).
Let L = {1}∪{r ∈ Zp : |Â′

i(r)| � α3/2p/256 for some i}. By Lemma 7.8
we know that |L| � 212α−2q+1 and that for each i there is a homomorphism
ψi : B(L,α/512π) → ZN such that φ′

i(x) − φ′
i(y) = ψ(x − y) whenever

x − y ∈ B(L,α/512π). By Lemma 7.7, B(L,α/512πm2) contains a non-
zero element d. Because 1 ∈ L, we know that |d| � αp/512πm2, which
implies that Zp can be partitioned into (genuine) arithmetic progressions
each of which has common difference d and length at least m2. We can
then partition these progressions into further subprogressions of lengthm or
m+1. As in the proof of Corollary 7.9, for each i there exists ci such that if
S is one of these subprogressions and x, y ∈ S, then φ′

i(x)−φ′
i(y) = ci(x−y).

The corollary follows on using ι−1 to transfer us back to R, Ai and φi. ✷

8 Progressions of Length Four

We have now shown that if A ∩ (A + k)∼(φ(k)) is large for many values
of k then φ resembles a linear function. If φ is linear, then the rest of the
argument is simple. Indeed, suppose that φ(k) = 2ck for every k, for some
constant c ∈ ZN . Then inequality (6.1) becomes∑

k

∑
s,u

A(s)A(s− k)A(s− u)A(s− k − u)ω−2cku � α3N3 .

Using the identity
2ku = s2 − (s− k)2 − (s− u)2 + (s− k − u)2 ,

we can deduce that∑
r

∑
a,b,c,d

A(a)A(b)A(c)A(d)ω−r(a−b−c+d)ω−c(a2−b2−c2+d2) � α3N4 ,

or in other words that∑
r

∣∣∣∑
s

A(s)ω−cs2ω−rs
∣∣∣4 � α3N4 .
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By the implication of (iii) from (iv) in Lemma 2.2, this tells us that for
some value of r we have the lower bound∣∣∣∑

s

A(s)ω−cs2ω−rs
∣∣∣ � α3/2N ,

or in other words that A exhibits quadratic bias of a particularly strong
kind. The aim of this section is to give a similar argument that shows
the existence of quadratic bias under the weaker assumption that φ has a
reasonably large linear part, such as is guaranteed by Corollary 7.10.

Let us remind ourselves why this is needed. We are examining sets
A ⊂ ZN that fail to be quadratically α-uniform. Let A be such a set and
let f be the balanced function of A. Then there is a subset B ⊂ ZN of cardi-
nality at least αN , and a function φ : B → ZN such that |∆(f ; k)∧(φ(k))| �
αN for every k ∈ B. By Proposition 6.1 we know that B contains at least
α12N3 additive quadruples for the function φ. Corollary 7.10 then implies
that φ can be restricted to a large arithmetic progression P where it often
agrees with a linear function s 
→ as+ b. This provides the motivation for
the next proposition.

Proposition 8.1. Let A ⊂ ZN have balanced function f . Let P be an
arithmetic progression (in ZN ) of cardinality T . Suppose that there exist
λ and µ such that

∑
k∈P |∆(f ; k)∧(λk + µ)|2 � βN2T . Then there exist

quadratic polynomials ψ0, ψ1, . . . , ψN−1 such that∑
s

∣∣∣ ∑
z∈P+s

f(z)ω−ψs(z)
∣∣∣ � βNT/

√
2 .

Proof. Expanding the assumption we are given, we obtain the inequality∑
k∈P

∑
s,t

f(s)f(s− k)f(t)f(t− k)ω−(λk+µ)(s−t) � βN2T .

Substituting u = s− t, we deduce that∑
k∈P

∑
s,u

f(s)f(s− k)f(s− u)f(s− k − u)ω−(λk+µ)u � βN2T .

Let P = {x + d, x + 2d, . . . , x + Td}. Then we can rewrite the above
inequality as

T∑
i=1

∑
s,u

f(s)f(s−x−id)f(s−u)f(s−x−id−u)ω−(λx+λid+µ)u � βN2T . (∗)

Since there are exactly T ways of writing u = y + jd with y ∈ ZN and
1 � j � T , we can rewrite the left-hand side above as
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1
T

∑
s

T∑
i=1

∑
y

T∑
j=1

f(s)f(s− x− id)f(s− y − jd)

· f(s− x− id− y − jd)ω−(λx+λid+µ)(y+jd) .

Let us define γ(s, y) by the equation∣∣∣∣
T∑

i=1

T∑
j=1

f(s−x−id)f(s−y−jd)f(s−x−id−y−jd)ω−(λx+µ+λid)(y+jd)
∣∣∣∣

= γ(s, y)T 2 .

Since |f(s)| � 1, (∗) tells us that the average value of γ(s, y) is at least β.
In general, suppose we have real functions f1, f2 and f3 such that∣∣∣∣

T∑
i=1

T∑
j=1

f1(i)f2(j)f3(i+ j)ω−(ai+bj−2cij)
∣∣∣∣ � cT 2 .

Since 2cij = c((i+ j)2 − i2 − j2), we can rewrite this as∣∣∣∣
T∑

i=1

T∑
j=1

f1(i)ω−(ai+ci2)f2(i)ω−(bj+cj2)f3(i+ j)ωc(i+j)2
∣∣∣∣ � cT 2

and then replace the left-hand side by

1
N

∣∣∣∣∑
r

T∑
i=1

T∑
j=1

2T∑
k=1

f1(i)ω−(ai+ci2)f2(j)ω−(bj+cj2)f3(k)ωck2
ω−r(i+j−k)

∣∣∣∣ .
If we now set g1(r) =

T∑
i=1

f1(i)ω−(ai+ci2)ω−ri, g2(r) =
T∑

j=1
f2(j)ω−(bj+cj2)ω−rj

and g3(r) =
∑2T

k=1 f3(k)ω
−ck2

ω−rk, then we have∣∣∣∑
r

g1(r)g2(r)g3(r)
∣∣∣ � cT 2N ,

which implies, by the Cauchy-Schwarz inequality, that ‖g1‖∞ ‖g2‖2 ‖g3‖2 �
cT 2N . Since ‖g2‖22 � NT and ‖g3‖22 � 2NT (by identity (3) of §2), this
tells us that |g1(r)| � cT/

√
2 for some r. In particular, there exists a

quadratic polynomial ψ such that
∣∣∑T

i=1 f1(i)ω
−ψ(i)

∣∣ � cT/
√
2.

Let us apply this general fact to the functions f1(i) = f(x − s − id),
f2(j) = f(s− y− jd) and f3(k) = f(s−x− y−kd). It gives us a quadratic
polynomial ψs,y such that∣∣∣∣

T∑
i=1

f(s− x− id)ω−ψs,y(i)
∣∣∣∣ � γ(s, y)T/

√
2 .
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Let γ(s) be the average of γ(s, y), and choose ψs to be one of the ψs,y in
such a way that ∣∣∣∣

T∑
i=1

f(s− x− id)ω−ψs(i)
∣∣∣∣ � γ(s)T/

√
2 .

If we now sum over s, we have the required statement (after a small change
to the definition of the ψs). ✷

Theorem 8.2. There is an absolute constant C with the following property.
Let A be a subset of ZN with cardinality δN . If N � exp exp

(
(1/δ)C

)
, then

A contains an arithmetic progression of length four.

Proof. Our assumption certainly implies that N � 32k2δ−k. Suppose
now that the result is false. Then Corollary 3.6 implies that A is not α-
quadratically uniform, where α = (δ/2)64. By Lemma 3.1 (in particular
the implication of (i) from (v)) there is a set B ⊂ ZN of cardinality at least
αN/2 together with a function φ : B → ZN , such that |∆(f ; k)∧(φ(k))| �
αN/2 for every k ∈ B. In particular,∑

k∈B

∣∣∆(f ; k)∧(φ(k))∣∣2 � (α/2)3N3 .

Hence, by Proposition 6.1, B contains at least (α/2)12N3 φ-additive quadru-
ples.

By Corollary 7.10, we can find a mod-N arithmetic progression P of
size at least N2−32000α30000

and constants λ, µ ∈ ZN such that∑
k∈P

∣∣∆(f ; k)∧(λk + µ)
∣∣2 � 2−16000α15000|P |N2 .

Therefore, by Proposition 8.1, we have quadratic polynomials ψ0, ψ1,...,ψN−1
such that ∑

s

∣∣∣ ∑
z∈P+s

f(z)ω−ψs(z)
∣∣∣ � βN |P |/

√
2

where β = 2−16000α15000.
By a simple averaging argument we can find a partition of ZN into mod-

N arithmetic progressions P1, . . . , PM of length |P | or |P | + 1 and also a
sequence ψ1, . . . , ψM (after renaming) of quadratic polynomials such that

M∑
j=1

∣∣∣∑
z∈Pj

f(z)ω−ψj(z)
∣∣∣ � βN/2 .

(Each Pj is either a translate of P or a translate of P extended by one point.
Because of the small extensions we have changed

√
2 to 2.) By Lemma 5.13
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we can refine this partition and produce a partition into genuine arithmetic
progressions Q1, . . . , QL, which automatically satisfy an inequality of the
form

M∑
j=1

∣∣∣∑
z∈Qj

f(z)ω−ψj(z)
∣∣∣ � βN/2 .

Once again, we have renamed the functions ψj . Lemma 5.13 allows us to
take L � N1−2−32002α30000

. Next, Lemma 5.14 gives us a further refinement
of Q1, . . . , QL into arithmetic progressions R1, . . . , RH such that

H∑
i=1

∣∣∣∑
s∈Ri

f(s)
∣∣∣ � βN/4

and H is at most N1−2−32010α30000
Finally, Lemma 5.15 gives us an arith-

metic progression R of cardinality at least βN2−32010α30000
such that∑

s∈R f(s) � β|R|/16. This implies that the cardinality of A ∩ R is at
least |R|(δ + 2−16004α15000). Recalling that α = (δ/2)64, we find that the
density of A has gone up from δ in ZN to at least δ(1 + (δ/2)980000) inside
the arithmetic progression R.

We now iterate this argument. The iteration can be performed at most
(δ/2)−1000000 times, and at each step the value of N is raised to a power
which exceeds (δ/2)2000000. It is not hard to check that N will always
remain sufficiently large for the argument to work, as long as the initial
value of N is at least exp exp(δ−C), where C can be taken to be 2000000. ✷

An alternative formulation of the condition on N and δ is that δ should
be at least (log logN)−c for some absolute constant c > 0. We have the
following immediate corollary.

Corollary 8.3. There is an absolute constant c > 0 with the following
property. If the set {1, 2, . . . , N} is coloured with at most (log logN)c

colours, then there is a monochromatic arithmetic progression of length
four. ✷

9 Obtaining Approximate Homomorphisms

The results of this section and the next can be combined to give an alterna-
tive proof of Corollary 7.9. The approach is longer, and the bound worse,
but it does not make use of Plünnecke’s inequality, so the comparison is
less unfavourable than it seems. Our reason for giving it is that later in
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the paper we shall come across functions that are almost Freiman homo-
morphisms, but not quite, and we have not found a quick way of turning
them into genuine homomorphisms without losing important information
about their Fourier coefficients. Instead, therefore, we have been forced
to examine these approximate homomorphisms and produce a version of
Corollary 7.9 for them directly. It is quite possible that there is an ar-
gument for obtaining genuine homomorphisms in the later contexts. This
would result in a significant simplification of the paper.

The later applications all need results that are more complicated than
those proved in this section (see §12 and §15). Therefore, this section is
another one which is not strictly necessary. However, the reader may find
it useful to see the method of proof at work in a simpler case. Recall that
we showed in Corollary 7.6 that if B ⊂ ZN and φ : B → ZN is a somewhat
additive function, then φ has a restriction to a large subset of B which is
an isomorphism of order eight. In this section we shall give an alternative
approach which yields what we shall call an approximate isomorphism.
Because the isomorphism is approximate rather than exact, it is harder to
apply Bogolyubov-type techniques to it, and that will be the task of the
next section.

Let B ⊂ ZN . We shall call a function φ : B → ZN a γ-homomorphism
of order k if, of the sequences (x1, . . . , x2k) ∈ B2k such that

x1 + · · ·+ xk = xk+1 + · · ·+ x2k ,

the proportion that also satisfy
φ(x1) + · · ·+ φ(xk) = φ(xk+1) + · · ·+ φ(x2k)

is at least γ. If γ is close to 1, then we shall say that φ is an approximate
homomorphism of order k.

Lemma 9.1. Let a1, . . . , an be non-negative real numbers. Then
n∑

i=1

a4i �
( n∑

i=1

a2i

)6/7( n∑
i=1

a16i

)1/7
.

Proof. The result follows from Hölder’s inequality if one writes a4i =
a
12/7
i a

16/7
i and takes p = 7/6, q = 7. ✷

Lemma 9.2. Let B ⊂ ZN and let φ : B → ZN be γ-additive. Then there
are at least γ7N15 sequences a1, . . . , a16 such that

a1 + · · ·+ a8 = a9 + · · ·+ a16

and
φ(a1) + · · ·+ φ(a8) = φ(a9) + · · ·+ φ(a16) .
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Proof. Given u ∈ ZN , define fu(a) to be ωuφ(a) if a ∈ B, and zero otherwise.
Then

∑
a |fu(a)|2 = |B| � N , so

∑
u,r |f̂u(r)|2 � N3.

Next, we look at fourth powers. We have∑
u,r

|f̂u(r)|4 =
∑
u,r

∣∣∣∑
a

ωuφ(a)−ra
∣∣∣4 ,

which is exactly N2 times the number of additive quadruples (a1, a2, a3, a4),
and thus, by hypothesis, at least γN5.

Finally, we look at sixteenth powers. A similar argument shows that∑
u,r |f̂u(r)|16 counts N2 times the number of sequences (a1, . . . , a16) such

that
a1 + · · ·+ a8 = a9 + · · ·+ a16

and
φ(a1) + · · ·+ φ(a8) = φ(a9) + · · ·+ φ(a16) .

Lemma 9.1 implies that∑
u,r

|f̂u(r)|16 � (γN5.N−18/7)7 = γ7N17 .

Hence, the number of sequences with the desired properties is, as stated,
at least γ7N15. ✷

Lemma 9.3. Let η > 0, let B ⊂ ZN be a set of size βN and let φ : B → ZN

be a function with at least αβ15N15 sequences a1, . . . , a16 such that

a1 + · · ·+ a8 = a9 + · · ·+ a16 (1)

and
φ(a1) + · · ·+ φ(a8) = φ(a9) + · · ·+ φ(a16) . (2)

Then, as long as N is sufficiently large (in terms of α, β and η), there is a
subset B′ ⊂ B with at least (αη/4)2

19
β15N15 sequences (a1, . . . , a16) satis-

fying condition (1), such that the proportion of them that satisfy condition
(2) as well is at least 1− η. In other words, B′ is reasonably large and the
restriction of φ to B′ is a (1− η)-homomorphism of order eight.

Proof. The basic idea is that if we let M be a suitable fraction of N and
P be the interval [−M,M ] ⊂ ZN , and if we choose r and s randomly,
then the set of all x ∈ A such that rx+ sφ(x) belongs to P tends to have a
larger proportion of sequences satisfying condition (2) than A itself. This is
because the events that we choose ai for i = 1, 2, . . . , 16 are better correlated
if (a1, . . . , a16) satisfies condition (2) than if it does not. Repeating the
process, one can make the proportion as close as one likes to 1. Note that
this is a natural approach to try, given the proof of Lemma 7.5.
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The calculations are, however, enormously simplified if one uses Riesz
products (that is, products of the form 2−k

∏k
i=1(1 + cos θi)) and a small

modification of the above idea. Choose r1, . . . , rk, s1, . . . , sk uniformly and
independently at random from ZN . Once the choice is fixed, let a point
x ∈ B go into B′ with probability

2−k
k∏

i=1

(
1 + cos 2πN

(
rix+ siφ(x)

))
,

and let these probabilities be independent.
It must be stressed that this independence occurs only after we have

conditioned on the choice of r1, . . . , rk, s1, . . . , sk. The whole point of the
proof is that in total there is a dependence which favours sequences satisfy-
ing condition (2). To see that this is true, let a1, . . . , a16 be sixteen points
in ZN . The probability that they are all chosen is

N−2k
∑

r1,...,rk

∑
s1,...,sk

2−16k
k∏

i=1

16∏
j=1

(
1 + cos 2πN

(
riaj + siφ(aj)

))
which equals

N−2k2−16k
(∑

r,s

16∏
j=1

(
1 + cos 2πN

(
raj + sφ(aj)

)))k

,

which we shall rewrite as

N−2k2−16k
(
2−16

∑
r,s

16∏
j=1

(
1 + 1 + ωraj+sφ(aj) + ω−(raj+sφ(aj))

))k

.

The product over j is a sum of 416 terms, each of which is of the form
16∏
j=1

ωεj(raj+sφ(aj)) = ωr
∑

j εjaj+s
∑

j εjφ(aj) ,

where ε1, . . . , ε16 all belong to the set {−1, 0, 1}. Such a term contributes
zero to the sum over r and s, unless

∑16
j=1 εjaj =

∑16
j=1 εjφ(aj) = 0, in

which case it contributes N2.
Let us now consider sequences (a1, . . . , a16) ∈ Z

16
N satisfying condition

(1). The set of such sequences is a fifteen-dimensional subspace of the
vector space Z

16
N . Given (ε1, . . . , ε16) ∈ {−1, 0, 1}16, the set of sequences

(a1, . . . , a16) in this subspace satisfying the additional condition that ε1a1+
· · · + ε16a16 = 0 is a fourteen-dimensional subspace of Z

16
N and hence has

cardinality N14, except if (ε1, . . . , ε16) is a multiple of (1, . . . , 1,−1, . . . ,−1)
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(eight 1s followed by eight −1s). Let us call a sequence (a1, . . . , a16) satis-
fying condition (1) degenerate if it also satisfies a genuinely distinct linear
condition with coefficients in {−1, 0, 1}, and otherwise non-degenerate. The
number of degenerate sequences is clearly at most 316N14. Let us call a
non-degenerate sequence good if it satisfies condition (2) and bad other-
wise. (It is part of the definition of non-degeneracy that both good and
bad sequences satisfy condition (1).)

Our arguments above show that a bad sequence is chosen with prob-
ability 2−16k, since the only terms that contribute are the 216 terms with
εj = 0 for every j. A good sequence, on the other hand, is chosen with
probability 2−16k

(
2−16(216+2)

)k = 2−16k(1+2−15)k, because there are two
further terms making a contribution, namely those with ε1 = · · · = ε8 =
−ε9 = · · · = −ε16 = ±1. Let X and Y be the numbers of good and bad
sequences chosen. Then the expected value of X is, from our hypothesis,
at least (1 + 2−15)k2−16kαβ15N15, and the expected value of Y is at most
2−16kβ15N15. Using the fact that 22

−15 � 1 + 2−15, we can deduce that if
22

−15k � 2/αη, then
ηEX − EY � η(2/αη)2−16kαβ15N15 − 2−16kβ15N15 = 2−16kβ15N15 .

Now 22
−15k � (2/αη) if and only if 2−16k � (αη/2)2

19
. Let k be an integer

such that
2(αη/4)2

19 � 2−16k � (αη/2)2
19
.

If N is large enough that (αη/4)2
19
β15N � 316, then the values for the

above expectations and the upper estimate for the number of degenerate
configurations imply that there exists a set B′ such that ηX � Y and
X � (αη/4)2

19
β15N15, as was claimed. ✷

Lemmas 9.2 and 9.3 combined show that a somewhat additive function
can be restricted to an approximate homomorphism of order eight.

Corollary 9.4. Let B ⊂ ZN have size βN , let φ : B → ZN be γβ3-
additive and let η > 0. There is a subset B′ ⊂ B containing at least
(γ7β6η/4)2

19
β15N15 sequences (a1, . . . , a16) with a1+· · ·+a8 = a9+· · ·+a16,

such that the restriction of φ to B′ is a (1−η)-homomorphism of order eight.

Proof. Lemma 9.2 allows us to take α=(γβ3)7β−15=γ7β6 in Lemma 9.3. ✷

10 Properties of Approximate Homomorphisms

Let A ⊂ ZN be a set of size αN and let φ : A → ZN be a (1 − ε)-
homomorphism. Since A contains at least α4N3 additive quadruples, it
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also contains at least (1 − ε)α4N3 φ-additive quadruples. Corollary 7.6
allows us to pass to a large subset A′ of A such that the restriction of φ
to A′ is a Freiman homomorphism of order 8. Lemma 7.8 then provides
a large Bohr neighbourhood B such that the restriction of φ to A′ is a
B-homomorphism.

Later in the paper approximate homomorphisms will arise in a context
where we wish to restrict them to exact B-homomorphisms, but are unable
to use the above argument. This may seem surprising, as the argument
is perfectly valid: the reason it is inadequate is that the Bohr neighbour-
hood B that it gives is defined in terms of the set A′, so by using it we
lose information about the large Fourier coefficients of A. This will matter
later, because then we shall have a collection of sets Ah and approximate
homomorphisms φh indexed by a set H ⊂ Z

k
N . The large Fourier coeffi-

cients associated with each set Ah will be related, and we shall exploit this.
Therefore, in this section our aim is to obtain a theorem similar to Lemma
7.8, but the Bohr neighbourhood will be defined in terms of the Fourier
coefficients of the original set A rather than those of the subset A′.

This seems to make the proof harder, although it is based on similar
ideas, and in particular uses Bogolyubov’s method. Most of the proofs in
this section are simple averaging arguments. However, there are so many of
them that when put together they are not particularly simple. It is likely
that there is a shorter proof of the main result, but we have been unable
to find one.

To complicate matters further, it is necessary to consider objects that
are slightly more general than functions from ZN to ZN , to allow for mul-
tisets that occur naturally in later sections. By a multifunction from ZN to
ZN , we shall mean a function from a set X to ZN , together with a partition
X =

⋃
r∈ZN

Xr. Equivalently, it is simply a pair of functions from X to
ZN , and indeed it will be useful to write r(x) for the function that takes
x ∈ X to the unique r such that x ∈ Xr. We shall call a set X together
with such a partition (or function) a domain, and if φ : X → ZN , we shall
call X the domain of φ.

Given a domain X = (X, r), we shall define X−X to be the set X×X
together with the function (x, y) 
→ r(y)−r(x), or equivalently the partition
X ×X =

⋃
d Yd, where Yd is the set of pairs (x, y) such that x ∈ Xr and

y ∈ Xr+d for some r. More generally, by kX − lX we mean the set Xk+l

with the function

(x1, . . . , xk+l) 
→ r(x1) + · · ·+ r(xk)− r(xk+1)− · · · − r(xk+l) .
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A function φ : X → ZN will be called a (1− η)-homomorphism of order k
if, out of the 2k-tuples (x1, . . . , x2k) ∈ X2k such that

r(x1) + · · ·+ r(xk) = r(xk+1) + · · ·+ r(x2k) ,

the proportion such that

φ(x1) + · · ·+ φ(xk) = φ(xk+1) + · · ·+ φ(x2k)

is at least 1− η. Note that this definition is not vacuous when k = 1.
We shall define an additive quadruple to be a quadruple (a, b, c, d) ∈ X4

such that r(a)− r(b) = r(c)− r(d) and we shall say that it is φ-additive if
in addition φ(a) − φ(b) = φ(c) − φ(d). Then a (1 − η)-homomorphism of
order two is a function φ such that the proportion of additive quadruples
that are φ-additive is at least 1− η, just as when X = ZN .

We shall now investigate the extent to which these more general ap-
proximate homomorphisms resemble exact ones. The arguments are more
complicated than one might expect, and the reason for the complication is
the existence of examples of the following kind. Let A and B be subsets of
ZN , with A = {a, a+r, . . . , a+(M−1)r} and B = {b, b+s, . . . , b+(M−1)s},
where M = αN for some small α > 0. If there are no small linear rela-
tions between r and s (i.e., pairs u, v of small elements of ZN such that
ru+ sv = 0) then the intersection of A and B will have cardinality roughly
α2N . Moreover, almost all the additive quadruples in A∪B will lie entirely
in A or entirely in B. (These facts are easy to check.) Hence, if we define a
function φ to be linear on A and also linear, but with a different gradient,
on B \A, then φ will be a (1−η)-homomorphism for some small η (depend-
ing on α). In fact, φ will even be a (1 − η)-homomorphism of high order
(for a larger η, but still small). Most of the effort of this section is devoted
to showing how to “pick out” A or B in an example such as the above, in
order to obtain a well-defined and well-behaved difference function for the
restriction of φ.

Let X =
⋃

r Xr be a domain, let B be a set and let L be a non-negative
real number. We shall say that X is (B,L)-invariant if, given any r ∈ ZN

and any d ∈ B, the sizes of Xr+d and Xr differ by at most L. If L is small
(compared, for example, with the average size of the Xr) we shall say that
X is almost B-invariant.

We shall now prove several lemmas under the same set of hypotheses.
To save repetition later, we state the hypotheses once and for all here.
Let X = (X, r) be a domain such that X has cardinality αMN and Xr

has cardinality at most M for every r. Let σ > 0 be a parameter to be
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chosen later and let B ⊂ ZN be some set such that B = −B and X is
(B,σM)-invariant. Let φ : X → ZN be a (1− η)-homomorphism.

For every (x, y) ∈ X2 let us define q(x, y) to be the number of pairs
(z,w) ∈ X2 such that r(w)− r(z) = r(y)− r(x). Let b(x, y) be the number
of pairs (u, v) ∈ X2 such that r(u)− r(x) = r(v)− r(y) ∈ B. One can also
write these as

q(x, y) =
∑
d

|Xr(x)+d||Xr(y)+d|

and
b(x, y) =

∑
d∈B

|Xr(x)+d||Xr(y)+d| .

We shall also let e(x, y) be the number of pairs (u, v) such that r(u)−r(x) =
r(v)− r(y) ∈ B and φ(u)− φ(x) �= φ(v)− φ(y).

In words, q(x, y) is the number of additive quadruples starting with
(x, y), b(x, y) is the number of such quadruples (x, y, z, w) such that
(r(z), r(w)) is (r(x), r(y)) translated by some d ∈ B and e(x, y) (the error)
is the number of those special additive quadruples that fail to be φ-additive.
Finally, let ε(x, y) be the proportionate error, i.e., e(x, y)/b(x, y).

Our first lemma collects together some simple facts about the function q.

Lemma 10.1. q(x, y) � αM2N for every x, y,
∑

y∈X q(x, y) � α2M3N2 for
every x and

∑
x,y∈X q(x, y) � α4M4N3.

Proof. For the first estimate we wish to count the number of pairs (z,w)
such that (x, y, z, w) is an additive quadruple. There are at most |X| =
αMN ways of choosing z. Once z is chosen, r(w) is determined so there
are at most M choices for w. The second estimate follows immediately.

As for the third, notice that the left-hand side is equal to∑
r−s=t−u |Xr||Xs||Xt||Xu|. By §2 identity (6) applied to the function

f(s) = |Xs|, this is at least N−1|X|4, which is the estimate claimed. ✷

One can think of the numbers q(x, y) as defining a weighted graph,
where the weight of the edge (x, y) measures the popularity of the difference
r(y) − r(x) in X. Roughly speaking, our aim will be to show that φ is
well behaved on “components” of this weighted graph – that is, highly
connected subsets which are not highly connected to the rest of the graph.
In the example discussed earlier of two “unrelated” arithmetic progressions
A and B, the components can be taken as A and B \A, since q(x, y) tends
to be large if x and y both belong to A or both belong to B, and small
otherwise. The pairs (x, y) that contribute a significant error e(x, y) tend
to be those for which x and y belong to different sets, and therefore for
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which the weight q(x, y) is small. Our next lemma shows that this is true
in general. That is, most of the error occurs, if at all, on edges with small
weight.

Lemma 10.2. If σ � ηα2, then
∑

x,y∈X ε(x, y)q(x, y) � 15η
∑

x,y∈X q(x, y).

Proof. Let X ′ ⊂ X be the union of all Xr of size at least 5ηα2M . We
begin by estimating

∑
x,y∈X′ ε(x, y)q(x, y). Let x ∈ Xr and y ∈ Xs and let

Xr ∪Xs ⊂ X ′. Then b(x, y) =
∑

d∈B |Xr+d||Xs+d|. Let L = ηα2M . Since
X is (B,L)-invariant, we can deduce from this expression for b(x, y) that

|B|
(
|Xr| − L

)(
|Xs| − L

)
� b(x, y) � |B|

(
|Xr|+ L

)(
|Xs|+ L

)
.

Furthermore, if u and v are such that r(u)− r = r(v)− s ∈ B, the (B,L)-
invariance also implies that

|B|
(
|Xr| − 2L

)(
|Xs| − 2L

)
� b(u, v) � |B|

(
|Xr|+ 2L

)(
|Xs|+ 2L

)
.

Since both |Xr| and |Xs| are at least 5ηα2M = 5L, the above estimates
imply that b(u, v)/b(x, y) < 4.

Now let S be the set of all sextuples (x, y, z, w, u, v) ∈ X6 with x, y ∈ X ′

satisfying the following conditions:

r(w)− r(z) = r(y)− r(x) (1)
r(u)− r(x) = r(v)− r(y) ∈ B (2)
r(w)− r(z) = r(v)− r(u) (3)
φ(u)− φ(x) �= φ(v)− φ(y) . (4)

Of course, (1) and (2) imply (3), and (2) and (3) imply (1).) Then∑
(x,y,z,w,u,v)∈S

b(x, y)−1 =
∑

x,y∈X′

b(x, y)−1q(x, y)e(x, y) =
∑

x,y∈X′

ε(x, y)q(x, y) .

Condition (4) implies that either φ(x)−φ(y) �= φ(z)−φ(w) or φ(u)−φ(v) �=
φ(z)− φ(w). Therefore, we can write S = E ∪ F , where

E =
{
(x, y, z, w, u, v) ∈ S : φ(x)− φ(y) �= φ(z)− φ(w)

}
and

F =
{
(x, y, z, w, u, v) ∈ S : φ(u)− φ(v) �= φ(z)− φ(w)

}
.

We now estimate the sum over S by splitting it into E and F .
For any fixed quadruple (x, y, z, w) satisfying condition (1), the number

of pairs (u, v) such that (x, y, z, w, u, v) satisfies condition (2) is exactly
b(x, y). It follows that

∑
{b(x, y)−1 : (x, y, z, w, u, v) ∈ E} is at most the

number of additive quadruples (x, y, z, w) with x, y ∈ X ′ that fail to be
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φ-additive, which is by hypothesis at most η times the total number of
additive quadruples. That is,∑{

b(x, y)−1 : (x, y, z, w, u, v) ∈ E
}

� η
∑

x,y∈X
q(x, y) .

Since B = −B, for every quadruple (z,w, u, v) satisfying condition (3)
the number of pairs (x, y) satisfying condition (2) is b(u, v). For each such
pair, we have shown that b(u, v) < 4b(x, y), so the sum of b(x, y)−1 over
all of them is less than 4. Therefore,

∑
{b(x, y)−1 : (x, y, z, w, u, v) ∈ F} is

less than 4 times the number of additive quadruples (z,w, u, v) that fail to
be φ-additive. So this time we have∑{

b(x, y)−1 : (x, y, z, w, u, v) ∈ F
}
< 4η

∑
x,y∈X

q(x, y) .

Putting the two estimates together, we find that∑
x,y∈X′

ε(x, y)q(x, y) � 5η
∑

x,y∈X
q(x, y) .

We must also count the additive quadruples (x, y, z, w) such that either
x /∈ X ′ or y /∈ X ′, which means that either |Xr(x)| or |Xr(y)| is less than
5ηα2M . There are easily seen to be at most 2(5ηα2MN)(αMN)(αMN)M
= 10ηα4M4N4 of them. Since there are at least α4M4N3 additive quadru-
ples, this number is at most 10η

∑
x,y∈X q(x, y). This estimate, together

with the earlier one, proves the lemma. ✷

We are aiming to find a large subset of X where the error ε(x, y) is
almost always small. The above lemma suggests that we can achieve this
by choosing a subset of a “component” of the weighted graph given by q.
Roughly speaking, we do this by picking a random point x ∈ X and taking
the set of all y in a neighbourhood of x (in an appropriate weighted sense).
Such a set will be a union of sets |Xr|. For technical reasons it will be very
convenient to have all the Xr that we choose of approximately the same
size, and to have other properties of a similar kind. These properties will
be obtained by somewhat messy averaging arguments.

To make these ideas more precise, let us define some more functions
and prove another lemma. For every x ∈ X, let R(x) = |Xr(x)|, let Q(x) =∑

y∈X q(x, y) and let E(x) =
∑

y∈X ε(x, y)q(x, y).

Lemma 10.3. There exists x ∈ X such that R(x) � α2M/2, Q(x) �
α3M3N2/4 and E(x) � 60ηQ(x).
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Proof. Lemma 10.1 tells us that
∑

x∈X Q(x) � α4M4N3 and that Q(x) �
α2M3N2 for every x. Let X ′ be the set of x ∈ X such that R(x) � α2M/2.
Clearly, |X \X ′| � α2MN/2, so∑
x∈X′

Q(x) � α4M4N3−(α2MN/2)(α2M3N2) = α4M4N3/2 � 1
2

∑
x∈X

Q(x) .

Let us now choose x ∈ X ′ uniformly at random. The expected value
of Q(x) is at least |X|−1α4M4N3/2 = α3M3N2/2. By Lemma 10.2 the
expectation of E(x) is at most 15η times the expectation of Q(x) over X,
which is at most 30η times the expectation of Q(x) over X ′. It follows that
the expectation of Q(x) − (1/60η)E(x) over X ′ is at least α3M3N2/4, so
we can find x ∈ X ′ such that Q(x) � α3M3N2/4 and E(x) � 60ηQ(x).
This proves the lemma. ✷

Let us now fix an x satisfying the conclusion of Lemma 10.3 and write
q(y) for q(x, y), ε(y) for ε(x, y) and S for Q(x).

Lemma 10.4. If r(z)− r(y) ∈ B, then |q(z)− q(y)| � σαM2N .

Proof. Let r(z)− r(y) = d ∈ B. Then

q(y) =
∑

t−s=r(y)−r(x)

|Xs||Xt|

and
q(z) =

∑
t−s=r(y)−r(x)

|Xs||Xt+d| .

From the (B,σM)-invariance of X we deduce that

|q(z)− q(y)| �
∑

t−s=r(y)−r(x)

|Xs|
∣∣|Xt+d| − |Xt|

∣∣
� σM

∑
s

|Xs| = σαM2N ,

as stated. ✷

For the next lemma, we use the notationW +d to stand for all elements
x ∈ X such that there exists w ∈ W with r(x) = r(w) + d.

Lemma 10.5. There exists a subset W ⊂ X with the following properties.
(i) W is a union of sets of the form Xr.
(ii) The function q varies by a factor of at most two on W .
(iii) For at least (1−5η1/2)|W | of the points y ∈ W we have ε(y) � 300η1/2.
(iv) W has cardinality at least ρ2α2MN/16.
(v) The function R varies by a factor of at most two on W , and is always

at least α2M/16.
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(vi) |W ∩ (W + d)| � (1− η)|W | for every d ∈ B.

Proof. By Lemmas 10.1 and 10.3 we know that q(y) � αM2N for ev-
ery y, that S =

∑
y∈X q(y) � α3M3N2/4 and that

∑
y∈X ε(y)q(y) �

60η
∑

y∈X q(y) = 60ηS. Let X ′ be the set of all y ∈ X such that R(y) �
α2M/8 and let S′ =

∑
y∈X′ q(y). Then∑

y∈X\X′

q(y) � (α2MN/8)(αM2N) = α3M3N2/8 ,

from which it follows that S′ � S/2.
We now choose λ and µ independently and uniformly from the interval

[−ρ, 1 + ρ] and make the following definitions.

Wλ,µ =
{
y : (λ− ρ)αM2N � q(y) � (λ+ ρ)αM2N

}
∩
{
y : (µ− ρ)M � R(y) � (µ+ ρ)M

}
;

Vλ,µ =
{
y : (λ− ρ)αM2N � q(y) � (λ− ρ+ σ)αM2N

}
∩
{
y : (λ+ ρ− σ)αM2N � q(y) � (λ+ ρ)αM2N

}
∩
{
y : (µ− ρ)M � R(y) � (µ− ρ+ σ)M

}
∩
{
y : (µ+ ρ− σ)M � R(y) � (µ+ ρ)M

}
.

We also set Sλ,µ =
∑

y∈X′∩Wλ,µ
q(y) and Eλ,µ =

∑
y∈Wλ,µ

ε(y)q(y). We
shall now use an averaging argument to find λ and µ such that Sλ,µ is
large, while Eλ,µ, and also the sizes of Wλ,µ and Vλ,µ, are small.

To do this, we simply calculate or estimate the expectations of all the
quantities concerned. Since any fixed y ∈ X has a probability of

( 2ρ
1+2ρ

)2 of
belonging to Wλ,µ we find that the expectation of Sλ,µ is

( 2ρ
1+2ρ

)2
S′, which

we know is at least 2ρ2

(1+2ρ)2S. We also find that the expectation of Eλ,µ is

at most
( 2ρ
1+2ρ

)260ηS and the expected size of Wλ,µ is
( 2ρ
1+2ρ

)2
αMN . The

probability of any given y ∈ X belonging to Vλ,µ is at most
( 4σ
1+2ρ

)
, which

implies that the expected size of Vλ,µ is at most
( 4σ
1+2ρ

)
αMN .

By linearity of expectation, we may deduce that

E

(
Sλ,µ − Eλ,µ

720η
−− S|Wλ,µ|

12αMN
− ρ2S|Vλ,µ|
12σ(1 + 2ρ)αMN

)
� ρ2

(1 + 2ρ)2
S � ρ2S

4
.

Therefore there exist λ and µ such that Sλ,µ � ρ2S/4, Eλ,µ � 720ηSλ,µ,
|Wλ,µ| � 12αMNSλ,µ/S and |Vλ,µ| � 12σρ−2(1 + 2ρ)αMNSλ,µ/S. Our
aim is now to prove that W =Wλ,µ has the desired properties.

Property (i) follows immediately from the definition of Wλ,µ. To prove
(ii), notice that the average value of q(y) overWλ,µ is at Sλ,µ/|Wλ,µ|, which
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is at least S/12αMN � α2M2N/64. It follows that λ + ρ � α/48, and
hence that λ− ρ � (λ+ ρ)/2 (as ρ � α/192).

The upper estimate for Eλ,µ tells us that
∑

y∈W ε(y)q(y) �
720η

∑
y∈W q(y). Since the function q varies over W by a factor of at

most two, we obtain (iii), since otherwise we would have
∑

y∈W ε(y)q(y) >
1500η|W |miny∈W q(w), a contradiction.

Since Sλ,µ � ρ2S/4 � ρ2α3M3N2/16 and q(y) � αM2N for every
y ∈ X, the cardinality of W must be at least ρ2α2MN/16, which is
property (iv).

Because Sλ,µ is non-zero, there exists y ∈ W such that R(y) � α2M/8,
from which it follows that µ+ ρ � α2/8 and therefore, as ρ � α2/32, that
µ− ρ � (µ+ ρ)/2 and µ− ρ � α2/16. This gives us (v).

Let us now set V = Vλ,µ and choose y ∈ W \ V . If d ∈ B then by the
(B,σM)-invariance of X and our lower bound for µ, we have |Xr(y)−d| �
|Xr(y)| − σM � (µ − ρ)M > 0. Choosing any z ∈ Xr(y)−d, we then know
that |q(z) − q(y)| � σαM2N , by Lemma 10.4, from which it follows that
(λ− ρ)αM2N � q(z) � (λ+ ρ)αM2N . The (B,σM)-invariance of X also
gives us that |R(z)−R(y)| � σM , and from this it follows that (µ−ρ)M �
R(z) � (µ+ ρ)M . We have therefore shown that if y ∈ W \ V , d ∈ B and
z ∈ Xr(y)−d, then z ∈ W . Moreover, such a z exists, so y ∈ W + d.

All this shows that W \V ⊂ W ∩ (W +d). We have shown that the car-
dinality of W is at least ρ2α2MN/16, while the cardinality of V is at most
12σρ−2(1+2ρ)αMNSλ,µ/S, which is certainly at most 24σρ−2αMN . Since
σ � ηρ4α/384, we find that |V | � η|W | and therefore obtain property (vi). ✷

Before we state the next lemma, it will be very useful to introduce the
following shorthand notation. Given any finite set U and any proposition
P (u) involving the elements u of U , we shall say that for (1−ε)-almost every
u ∈ U , P (u) if the set {u ∈ U : P (u)} has cardinality at least (1 − ε)|U |.
We shall further abbreviate this by writing ((1− ε) a.e. u ∈ U) P (u).

Lemma 10.6. If σ � ηρα2/16 then there exist a subset B′ of B of cardi-
nality at least (1 − 10η1/5)|B| and a function ψ : B′ → ZN such that, for
every d ∈ B′,(
(1−10η1/5) a.e. w∈W

) (
(1−10η1/5) a.e. z∈Xr(w)+d

)
φ(z)−φ(w)=ψ(d) .

Proof. Let us define W ′ to be the set of all w ∈ W ∩ (W − d) such that
ε(w) � 300η4/5 We know from Lemma 10.5 (iii) and (vi) (and the fact that
B = −B) that W ′ has cardinality at least (1− 6η1/5)|W |.

Given d ∈ B and w ∈ W ′, let us say that d is good for w if for
(1− 35η2/5)-almost every pair (y, z) ∈ Xr(x)+d×Xr(w)+d we have φ(y)−φ(x)
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= φ(z)−φ(w). Notice that |Xr(x)+d| � |Xr(x)|/2 by Lemma 10.3 and
(B,σM)-invariance, and |Xr(w)+d| � |Xr(w)|/2 by Lemma 10.5 (iv). There-
fore, the number of d ∈ B that fail to be good for (x,w) is at most 35η2/5|B|,
because otherwise we would have

e(x,w) � 1225η4/5|B|min
d∈B

|Xr(x)+d||Xr(w)+d|

� 306η4/5
∑
d∈B

|Xr(x)+d||Xr(w)+d|

= 306η4/5b(x,w) ,

which would imply that ε(w) � 306η4/5, contradicting the assumption that
w ∈ W ′.

So far we have shown that

(∀w ∈ W ′)
(
(1− 35η2/5) a.e. d ∈ B

)
d is good for w . (∗)

It follows that(
(1− 9η1/5) a.e. d ∈ B

)(
(1− 4η1/5) a.e. w ∈ W ′) d is good for w ,

since otherwise there would be at least 36η2/5 pairs (d,w) ∈ B ×W ′ such
that d is not good for w, which contradicts (∗).

Let B′ be the set of all d ∈ B such that d is good for (1 − 6η1/5)-
almost every w ∈ W ′. We have shown that B′ has cardinality at least
(1− 9η1/5)|B|, as is required in the statement of the lemma. We turn now
to the definition of the function ψ.

If d is good for w, then another simple averaging argument shows that(
(1− 6η1/5) a.e. y ∈ Xr(x)+d

)(
(1− 6η1/5) a.e. z ∈ Xr(w)+d

)
φ(y)− φ(x) = φ(z)− φ(w) .

Let Yr(x)+d be the set of such y, and for each y ∈ Yr(x)+d, let Zy be the set
of z ∈ Xr(w)+d such that φ(y)−φ(x) = φ(z)−φ(w). Since 1−6η1/5 > 1/2,
any two of the sets Zy overlap. It is also clear that φ is constant on any
set Zy. Therefore, it is constant on Yr(x)+d as well, taking a value a, say.
This argument also implies that we can find a set Yr(w)+d ⊂ Xr(w)+d of size
at least (1 − 6η1/5)|Xr(w)+d| on which φ is constant, since we may choose
Yr(w)+d = Zy for some y ∈ Yr(x)+d. Let this constant value be b. Then
a− φ(x) = b− φ(w), and this common value we shall call ψ(d). Because φ
is constant on Yr(x)+d which has size at least half that of Xr(x)+d, the value
of ψ(d) is well-defined (i.e., does not depend on w).

We have shown that, if d is good for w, then φ(z)− φ(w) = b− φ(w) =
ψ(d) whenever z belongs to a set Yr(w)+d of cardinality at least
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(1− 6η1/5)|Xr(w)+d|. Therefore, for every d ∈ B′,(
(1−4η1/5) a.e. w∈W ′) ((1−6η1/5) a.e. w′∈Xr(w)+d

)
φ(w′)−φ(w) = ψ(d) .

This, together with the fact that |W ′| � (1− 6η1/5)|W |, proves the lemma.
(Of course, we have proved a slightly better result, but it is convenient to
set all the errors equal to the worst one of 10η1/5.) ✷

Later, the following small modification of Lemma 10.6 will be useful.

Lemma 10.7. Let ψ : B′ → ZN be the function constructed in Lemma 10.6
and let θ = 10η1/5. Then for (1− θ1/2)-almost every w ∈ W ,(
(1− θ1/2) a.e. d ∈ B′) (

(1− θ) a.e. w′ ∈ Xr(w)+d

)
φ(w′)− φ(w) = ψ(d) .

Proof. This is another simple averaging argument. Let us write P (w, d) for
the statement(

(1− θ) a.e. w′ ∈ Xr(w)+d

)
φ(w′)− φ(w) = ψ(d) .

Lemma 10.6 states that

(∀d ∈ B)
(
(1− θ) a.e. w ∈ W

)
P (w, d) . (∗)

If what we wish to prove is false, then there are at least θ|W ||B′| pairs
(w, d) ∈ W ×B′ such that not P (w, d). This contradicts (∗). ✷

Our next main task will be to prove that ψ is a homomorphism on B′.
Before we do this, we prove a technical lemma which will allow us to con-
dense what would otherwise be a very tedious argument. Roughly speaking,
it tells us that we can “shift” statements by some d ∈ B, introducing only
a small error.

Lemma 10.8. Let d ∈ B, let θ > 0 and let P be a property of elements of
W such that P (w) for (1− θ) a.e. w ∈ W . Then(

(1− θ1/2 − η) a.e. w ∈ W
) (
(1− 2θ1/2) a.e. w′ ∈ Xr(w)+d

)
P (w′) .

Proof. Let ∆ be the set of pairs (w,w′) ∈ W 2 such that r(w′) − r(w) = d
and not P (w′). Because P (w′) for (1− θ) a.e. w ∈ W , the cardinality of ∆
is at most θ|W |maxw∈W R(w).

Now Lemma 10.5 (vi) and the symmetry of B imply that at most η|W |
elements of W fail to belong to W ∩ (W − d). Therefore, if the lemma is
false, then there are more than θ1/2|W | elements w ∈ W ∩ (W − d) such
that not P (w′) for at least 2θ1/2|Xr(w)+d| elements of Xr(w)+d. Therefore,
the cardinality of ∆ is greater than 2θ|W |minw∈W R(w). By Lemma 10.5
(v), this is a contradiction, so the lemma is proved. ✷



Vol. 11, 2001 A NEW PROOF OF SZEMERÉDI’S THEOREM 529

Lemma 10.9. Let θ = 10η1/5 and assume that 6θ1/2 < 1. Then the function
ψ : B′ → ZN constructed in Lemma 10.6 is a Freiman homomorphism.

Proof. Suppose that d1, d2, d3, d4 ∈ B′ are such that d1 + d2 = d3 + d4.
Lemma 10.6 tells us that(

(1−θ) a.e. w∈W
) (
(1−θ) a.e. w′∈Xr(w)+d1

)
φ(w′)−φ(w)=ψ(d1) (1)

and(
(1−θ) a.e. w∈W

)(
(1−θ) a.e. w′′∈Xr(w)+d1

)
φ(w′)−φ(w)=ψ(d2) . (2)

Applying Lemma 10.8 to (2), with d = d1, we deduce that for(
(1− 2θ1/2) a.e. w ∈ W

)(
(1− 2θ1/2) a.e. w′ ∈ Xr(w)+d1

)
(
(1− θ) a.e. w′′ ∈ Xr(w′)+d2

)
we have

φ(w′′)− φ(w′) = ψ(d2) . (3)

Noting that r(w′) + d2 is the same as r(w) + d1 + d2 when w′ ∈ Xr(w)+d1 ,
we can deduce from (1) and (3) that for(

(1− 3θ1/2) a.e. w ∈ W
)(
(1− 3θ1/2) a.e. w′ ∈ Xr(w)+d1

)
(
(1− θ) a.e. w′′ ∈ Xr(w)+d1+d2

)
we have

φ(w′)− φ(w) = ψ(d1) and φ(w′′)− φ(w′) = ψ(d2) . (4)

Because 1− 3θ1/2 > 0, it follows from (4) that in particular(
(1− 3θ1/2) a.e. w ∈ W

)(
(1− θ) a.e. w′′ ∈ Xr(w)+d1+d2

)
φ(w′′)− φ(w) = ψ(d1) + ψ(d2) .

(5)

An identical argument shows that(
(1− 3θ1/2) a.e. w ∈ W

) (
(1− θ) a.e. w′′ ∈ Xr(w)+d3+d4

)
φ(w′′)− φ(w) = ψ(d3) + ψ(d4) .

(6)

Since 1 − 6θ1/2 > 0 and d1 + d2 = d3 + d4, (5) and (6) imply that
ψ(d1) + ψ(d2) = ψ(d3) + ψ(d4), as required. ✷

We shall now specialize to the case where B is a Bohr neighbourhood.
(For the definition and elementary facts, see §7.) First, we need some more
easy results about such sets.

Lemma 10.10. Let K be a set of size k, let B=B(K, δ) and let d∈B(K, ζ).
Then |B ∩ (B + d)| � (1− 2k+1δ−kkζ)|B|.



530 W.T. GOWERS GAFA

Proof. If x ∈ B \ (B + d), then for some r ∈ K we must have

(δ − ζ)N � |rd| � δN ,

as otherwise x would belong to B(K, δ − ζ), which would imply that
x− d ∈ B. It follows that the cardinality of B \ (B + d) is at most 2kζN .
Since B has cardinality at least (δ/2)kN , the result follows. ✷

Corollary 10.11. Let K be a set of size k, let B = B(K, δ), let B′ ⊂ B
be a set of size at least (7/8)|B|, let ζ = 2−(k+4)δkk and let C = B(K, ζ).
Then C ⊂ B′ − B′ and any homomorphism ψ from B′ to ZN induces a
homomorphism ψ1 from C to ZN .

Proof. If d ∈ C, then |B ∩ (B + d)| � (7/8)|B|, by Lemma 10.10 and our
choice of ζ. This implies that |B′ ∩ (B′ + d)| � (5/8)|B| and in particular
that d ∈ B′ −B′.

It follows that ψ induces a function ψ1 on C. The content of the corol-
lary is that ψ1 is itself a homomorphism. To prove this, let d1, d2, d3, d4 ∈ C
with d1 + d2 = d3 + d4. By what we have just proved, we know that
B ∩ (B + d1) and (B + d1) ∩ (B + d1 + d2) both have cardinality at least
(7/8)|B|. Therefore, B ∩ (B + d1) ∩ (B + d1 + d2) has cardinality at least
(3/4)|B|. We also know that B∩ (B+d3) has cardinality at least (7/8)|B|,
so B ∩ (B+ d1)∩ (B+ d1+ d2)∩ (B+ d3) has cardinality at least (5/8)|B|.
This implies that B′ ∩ (B′ + d1) ∩ (B′ + d1 + d2) ∩ (B′ + d3) has cardi-
nality at least (1/8)|B|. It follows that we can find x ∈ B′ such that
x − d1, x − d3 and x − d1 − d2 = x − d3 − d4 all belong to B′. Hence,
ψ1(d1) + ψ1(d2) = ψ1(d3) + ψ1(d4) as was needed. ✷

Armed with these facts about Bohr neighbourhoods, let us return to
the set W , now with the assumption that B = B(K, δ) is a Bohr neigh-
bourhood. Let W1 be the set of all w ∈ W such that(
(1− θ1/2) a.e. d ∈ B′)((1− θ) a.e. z ∈ Xr(w)+d

)
φ(z)− φ(w) = ψ(d) .

If θ1/2 � 1/8 (as we shall assume), then Lemma 10.7 implies that W1 has
cardinality at least 7|W |/8.

Lemma 10.12. Assume that θ1/2 � 1/8. Let B = B(K, δ) and let B′ and
ψ be given by Lemma 10.6. Let C and ψ1 be as in Corollary 10.11 and let
w1, w2 ∈ W1 with r(w1)− r(w2) = c ∈ C. Then φ(w1)− φ(w2) = ψ1(c).

Proof. By the definition of W1 and the assumption that θ1/2 � 1/8, we
have the statements

(7/8 a.e. d ∈ B′)
(
(1− θ) a.e. z ∈ Xr(w1)+d

)
φ(z)− φ(w1) = ψ(d) (1)
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and

(7/8 a.e. d ∈ B′)
(
(1− θ) a.e. z ∈ Xr(w2)+d

)
φ(z)− φ(w2) = ψ(d) . (2)

Because r(w1)−r(w2) ∈ C, we know from the proof of Corollary 10.11 that∣∣B′ ∩ (B′ − r(w1) + r(w2))
∣∣ � (5/8)|B′| . (3)

(2) and (3) imply that

(1/2 a.e. d ∈ B′)
(
(1− θ) a.e. z ∈ Xd+r(w1)

)
φ(z)− φ(w2) = ψ

(
d+ r(w1)− r(w2)

)
.

(4)

From (1) and (4) it follows that for 3/8-almost every d ∈ B′, for (1 − θ)-
almost every z ∈ Xr(w1)+d we have both

φ(z)− φ(w1) = ψ(d) and φ(z)− φ(w2) = ψ
(
d+ r(w1)− r(w2)

)
.

In particular, there exist d and z such that both equations hold, which
implies that

φ(w2)− φ(w1) = ψ(d+ r(w1)− r(w2))− ψ(d) = ψ(d+ c)− ψ(c) = ψ(c) .

We are now in a position to prove a new version of Lemma 7.7 in which
the hypotheses are weaker. Before stating it, let us consider the constraints
on the various parameters that have been introduced in this section. First
of all, the strongest condition that we have placed on η is that θ1/2 < 1/6,
where θ = 10η1/5 (see Lemma 10.9). It can be checked that this condition is
satisfied when η = 2−43. We set ρ = min{α/192, α2/32} and σ = ηρ4α/384.
If α � 1/6, then ρ = α2/32 and all the results of the section are satisfied
(for our chosen value of η) if σ = 2−72α9.

Theorem 10.13. Let η = 2−43 and let X = X0∪· · ·∪XN−1 be the domain
of a (1 − η)-homomorphism φ of order eight. Suppose that |Xi| � M for
each i and that |X| = αMN . Let g(s) be the size of Xs for every s, let λ =
2−37α11/2 and define K to be {r ∈ ZN : |ĝ(r)| � λM}. Then |K| � 274α−10.
Let k = 274α−10, let ε = α−4λ4/π and let ζ = 2−155kα18kk � 2−(k+4)εkk.
If C = B(K, ζ), then there is a homomorphism ψ1 : C → ZN together with
a subset Y ⊂ X of size at least α3|X|/1000 such that, whenever y, z ∈ Y
and r(y)− r(z) ∈ C, we have φ(y)− φ(z) = ψ1(r(y)− r(z)).

Proof. Let B = B(K, ε) and let L = α3M4N3. We know that |2X − 2X| =
(αMN)4 and that |(2X − 2X)s| � α3M4N3 = L for every s. Now we shall
show that 2X − 2X is (B,σL)-invariant.

If we write h(s) = |(2X − 2X)s|, then ĥ(r) = |ĝ(r)|4. We know also
that |ĝ(r)| � αMN for every r. Since ‖ĝ‖2 = N ‖g‖2 � αM2N2, we find
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that |K| � λ−2α = 274α−10, as in the proof of Lemma 7.7. We also have
the obvious inequality∑

r/∈K
|ĝ(r)|4 � λ2M2N2 ‖ĝ‖2 � αλ2M4N4 .

Now h(s) = N−1∑
r ĥ(r)ω

rs, so

h(s)− h(t) = N−1
∑
r

|ĝ(r)|4(ωrs − ωrt)

= N−1
∑
r∈K

|ĝ(r)|4ωrt(ωr(s−t)−1)+N−1
∑
r/∈K

|ĝ(r)|4ωrt(ωr(s−t)−1).

From the inequality above, the sum over r /∈ K is at most 2αλ2M4N3 (after
the multiplication by N−1). As for the other part, if we make the additional
assumption that s − t ∈ B, then |ωr(s−t) − 1| � 2πε for each r ∈ K, so
the sum is at most N−12πε|Kλ|(αMN)4 � 2πελ−2α5M4N3 = 2αλ2M4N3.
The (B,σL)-invariance of 2X − 2X follows.

We know that φ induces a (1 − η)-homomorphism φ′′ (of order two)
on 2X − 2X. Therefore, we can find a set W of cardinality at least
ρα2LN/16 = α7M4N4/512 with the properties claimed in Lemma 10.5.
Corollary 10.11, Lemma 10.12 and the definition in between then give us
a set W1 of cardinality at least α7M4N4/1000 = α3|2X − 2X|/1000 and
a homomorphism ψ1 : W1 → ZN such that, whenever w1, w2 ∈ W1 and
r(w1)− r(w2) ∈ C, we have φ′′(w1)− φ′′(w2) = ψ1(w1 − w2).

Now choose (x2, x3, x4) ∈ X3 uniformly at random. The expected num-
ber of y ∈ X such that (y, x2, x3, x4) ∈ W is at least α3|X|/1000, so let us
fix (x2, x3, x4) such that the set Y of all y such that (y, x2, x3, x4) ∈ W has
cardinality at least α3|X|/1000. If y, z ∈ Y and r(y)− r(z) = c ∈ C, then
r(y, x2, x3, x4)− r(z, x2, x3, x4) = c, so

φ(y)− φ(z) = φ′′(y, x2, x3, x4)− φ′′(z, x2, x3, x4) = ψ(y − z) .

This proves the theorem. ✷

Corollary 10.14. Let K be as in Theorem 10.13, let Y be the set ob-
tained there and let m be a positive integer. For every d ∈ B(K, ζ/m)
there exists c such that φ(x)−φ(y) = c(r(x)−r(y)) whenever x, y ∈ Y and
r(x)− r(y) belongs to the set {jd : −m � j � m}.

Proof. As with Corollary 7.8 this follows from the observations that {jd :
−m � j � m} ⊂ B(K, ζ), that the restriction of any homomorphism to
{jd : −m � j � m} is linear and that ψ1(0) = 0. ✷
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11 The Problem of Longer Progressions

This section is a brief introduction to the rest of the paper and the dif-
ficulties that must be overcome before the proof can be extended from
progressions of length four to progressions of arbitrary length. As with
the other known proofs of Szemerédi’s theorem, the new difficulties that
arise with progressions of length greater than four are considerable. In our
case, it is because we must extend Freiman’s theorem (or, to be more ac-
curate, our weaker version of Freiman’s theorem) from “linear” functions
to “multilinear” ones.

To see this, consider the case of progressions of length five. The main
result of §3 suggests that we should go up a degree, and look at sets that
fail to be uniform of degree three, or, as we shall say, cubically uniform.
(Sets such as {x ∈ ZN : |x3| � N/10000} show that this is necessary as well
as sufficient.) If A is such a set and f is the balanced function of A, then
∆(f ; k, l) has a large Fourier coefficient for many values of k, l. In other
words, we can find a large subset B ⊂ Z

2
N and a function φ : B → ZN such

that ∆(f ; k, l) has a large Fourier coefficient at φ(k, l). By the main result
of §6, for some reasonably large γ > 0 the function φ is γ-additive in both
variables, and this is true for the restriction of φ to any large subset of B.
That is, for many x we can fix x and φ(x, y) will be somewhat additive
in y, and vice versa.

The object of the next few sections will be to look at such “somewhat
bi-additive” functions, and show that there is a large subset C ⊂ B such
that the restriction of φ to C resembles a multidimensional bilinear func-
tion, rather as a somewhat additive function has a restriction resembling
a multidimensional linear one. This involves showing that the multidimen-
sional linearity of φ in x somehow “interacts” with the multidimensional
linearity in y, which turns out to be harder than one might think, as we
shall now explain.

First, it is important that the additivity property should hold for re-
strictions of φ. For example, let λ be an arbitrary function from ZN to ZN ,
and define

φ(x, y) =

{
λ(x)y 0 � x � y < N

xλ(y) 0 � y < x < N .

There are certainly many additive quadruples in each variable, but if λ does
not have special additivity properties, then the quadruples with x fixed do
not mix with those with y fixed and there is nothing more to say about φ,
and in particular no restriction of φ that looks bilinear.
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Let us informally call a function quasilinear if it resembles a low-dimen-
sional linear function (see, for example, the function defined at the end
of §6). A more serious complication arises even if we know for every x that
φ(x, y) is quasilinear in y for every x and vice versa. It is tempting to
suppose that one might be able to find a large subset B′ ⊂ B, and numbers
x0, x1, . . . , xd, r1, . . . , rd, y0, y1, . . . , yd, s1, . . . , sd and (cij)di,j=0 such that
the restriction of φ to B′ was of the form

φ

(
x0 +

d∑
i=1

aixi, y0 +
d∑

i=1

bjyj

)
=

d∑
i,j=0

cijaibj

for 0 � xi < ri and 0 � yj < sj .
However, this would imply that one could find a small “common basis”

for all the functions y 
→ φ(x, y) (and similarly the other way round) and
a simple example shows that such a statement is too strong. Indeed, let ψ
be a non-trivial (i.e., non-linear) quasilinear function from ZN to ZN . (For
definiteness one could let ψ(z) = z (mod m) for some m near

√
N .) Define

φ(x, y) to be ψ(xy). The natural bases for the functions y 
→ ψ(xy) are all
completely different, and there is no small basis that can be used for all (or
even a large proportion) of them. We shall not prove this here.

However, just as what we really used when proving Szemerédi’s theorem
for progressions of length four was Corollary 7.10, which told us that the
function φ had a small (but not too small) linear restriction, the statement
we actually need for progressions of length five is that one can find reason-
ably long arithmetic progressions (we obtain a power of N) P and Q with
the same common difference and a bilinear function ψ : P ×Q → ZN such
that ψ agrees with φ for a significant proportion of the points (x, y) ∈ P×Q.
If we wish to prove Szemerédi’s theorem for progressions of length k, we
need the obvious generalization of this to (k− 3)-linear functions. In prov-
ing these statements, we shall obtain some insight into the form of a typical
“quasimultilinear” function, but we avoid having to describe them precisely.
It would be interesting to obtain a precise description, so this is an area
where there is still work to be done.

It seems, then, that there is something objective about the problem
which makes the difficulty increase sharply as the size of the desired pro-
gression goes from two to three to four to five, and then remain roughly
constant from that point onwards. Three is the first non-trivial case, four
involves quadratic functions rather than just linear ones and five involves
bilinearity in the large Fourier coefficients rather than just linearity, but
that is the last time that some parameter, which one has hardly noticed



Vol. 11, 2001 A NEW PROOF OF SZEMERÉDI’S THEOREM 535

because it equals one, suddenly and annoyingly changes to two.

12 Strengthening a Bihomomorphism

Although the proof of Szemerédi’s theorem for progressions of length five
is not significantly easier than it is for the result in general, the notation is
cleaner and one or two complications can be avoided. Therefore, we shall
treat this case separately. Let us take a non-cubically uniform function
f : ZN → D and begin the longish process of finding bilinear behaviour in
any function φ for which ∆(f ; k, l)∧(φ(k, l)) is often large.

In order to motivate some of the lemmas that follow, let us consider
what the natural two-variable analogue of a Freiman homomorphism ought
to be. That is, given a subset A ⊂ Z

2
N , we ask what property of a func-

tion φ : A → ZN relates to that of being a homomorphism in the way that
bilinearity relates to linearity. In the last section, we discussed an anal-
ogous problem for quasilinear functions rather than homomorphisms, and
saw that it was not easy to give a satisfactory definition. Giving a good
definition of a “bihomomorphism” is not all that easy either.

The most obvious definition is that φ(x, y) should be a homomorphism
in y for any fixed x, and vice versa. This property can indeed be shown
to hold for the functions φ that will concern us. However, to see that it is
natural to ask for more, consider the set A = A1 ∪A2, where A1 is the set
of all (x, y) such that 0 < x < N/2 and 0 < y < N/2, while A2 is the set of
all (x, y) such that N/2 < x < N and N/2 < y < N . Define a function φ
by letting φ(x, y) be xy if (x, y) ∈ A1 and 2xy if (x, y) ∈ A2. This function
has the following undesirable property. Suppose we define a new function
ψ by setting

ψ(x, d) = φ(x, y + d)− φ(x, y)

whenever y can be found such that both (x, y) and (x, y + d) belong to
A. This is a well-defined function and for fixed x it is an isomorphism
in d. However, it can be checked very easily that for fixed d it is not an
isomorphism in x. This suggests that a stronger property will probably be
useful, and the suggestion turns out to be correct.

To simplify the discussion, let us introduce some terminology. A vertical
parallelogram is a quadruple of points in Z

2
N of the form ((x, y), (x, y + h),

(x + w, y′), (x + w, y′ + h)). We shall call w and h respectively the width
and height of the parallelogram. If P is the above parallelogram, then we
shall denote these by w(P ) and h(P ). If φ is a function from A ⊂ Z

2
N to
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ZN and all the points of P lie in A, then we set

φ(P ) = φ(x, y)− φ(x, y + h)− φ(x+ w, y′) + φ(x+ w, y′ + h) .

Ideally, we would like to find, given suitable conditions on φ, a large set
such that, for any vertical parallelogram P lying in the set, φ(P ) depends
only on the width and height of P . This may be possible, and has the
potential to simplify this paper considerably, but we have not managed to
find an argument for or against it. Instead, we shall obtain a set where
φ(P ) is nearly independent of everything except for the width and height.

Our first main task will be to find many pairs P1, P2 of vertical parallel-
ograms of the same width and height, such that φ(P1) = φ(P2). For this,
we shall need a slight generalization of Proposition 6.1, proved in exactly
the same way.

Proposition 12.1. For each k ∈ ZN , let λk � 0. Let f1, . . . , fp be
functions from ZN to D and let φ1, . . . , φp be functions from ZN to ZN

such that ∑
k

λk

p∏
i=1

|∆(fi; k)∧(φi(k))|2 � αN2p+1 .

Call a quadruple (a, b, c, d) ∈ Z
4
N simultaneously additive if a − b = c − d

and φi(a)−φi(b) = φi(c)−φi(d) for every i � p. Then the sum of λaλbλcλd

over all simultaneously additive quadruples (a, b, c, d) is at least α4N3.

Proof. Expanding the given inequality yields that∑
k

λk

∑
s1,...,sp

∑
t1,...,tp

p∏
i=1

fi(si)fi(si − k)fi(ti)fi(ti−k)ω−φi(k)(si−ti) � αN2p+1.

Substituting ui = si − ti then gives∑
k

λk

∑
s1,...,sp

∑
u1,...,up

p∏
i=1

fi(si)fi(si − k)fi(si − ui)fi(si − k − ui)ω−φi(k)ui

� αN2p+1.

Since |fi(x)| � 1 for every x and i, this implies that∑
s1,...,sp

∑
u1,...,up

∣∣∣∑
k

λk

p∏
i=1

fi(si − k)f(si − k − ui)ω−φi(k)ui

∣∣∣ � αN2p+1

and hence, by the Cauchy-Schwarz inequality, that∑
s1,...,sp

∑
u1,...,up

∣∣∣∑
k

λk

p∏
i=1

fi(si − k)f(si − k − ui)ω−φi(k)ui

∣∣∣2 � α2N2p+2 .
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Let us introduce a new variable s and write vi = s− si. Then, multiplying
both sides by N (in different ways) we obtain∑
s

∑
u1,...,up

∑
v1,...,vp

∣∣∣∑
k

λk

p∏
i=1

fi(s−vi−k)fi(s−vi−k−ui)ω−φi(k)ui

∣∣∣2�α2N2p+3.

We now apply Lemma 2.1 to the functions

au,v(k) =
p∏

i=1

fi(−vi − k)fi(−vi − k − ui)

and

bu,v(k) = λk

p∏
i=1

ωφi(k)ui ,

which tells us that∑
u,v

∑
r

|âu,v(r)|2|b̂u,v(r)|2 � α2N2p+4 .

By the Cauchy-Schwarz inequality it follows that(∑
u,v

∑
r

|âu,v(r)|4
)(∑

u,v

∑
r

|b̂u,v(r)|4
)

� α4N4p+8 .

Now
∑

r |âu,v(r)|4 is, for every u, v, at most N4 (e.g. by §2 (6)) so∑
u,v

∑
r |âu,v(r)|4 � N2p+4. Since b̂u,v(r) =

∑
k λk

∏p
i=1 ω

φi(k)ui−rk, which
does not depend on v = (v1, . . . , vk), it follows that∑

u1,...,up

∑
r

∣∣∣∑
k

λk

p∏
i=1

ωφi(k)ui−rk
∣∣∣4 � α4Np+4 .

But the left-hand side above is easily seen to be Np+1 times the sum of
λaλbλcλd over all simultaneously additive quadruples (a, b, c, d). The result
is proved. ✷

We shall now apply the above result to find many good pairs of parallel-
ograms. Note that the number of pairs (P1, P2) of vertical parallelograms
with the same width and height is N8.

Lemma 12.2. Let γ, η > 0, let f : ZN → D and let B ⊂ ZN be a set of
cardinality βN2 such that |∆(f ; k, l)∧(φ(k, l))| � γN for every (k, l) ∈ B.
Then there are at least β16γ48N8 pairs (P1, P2) of vertical parallelograms
such that P1 and P2 have the same width and height and such that φ(P1) =
φ(P2).

Proof. The average size of a vertical cross-section of B (that is, a set of
the form Bx = {y ∈ ZN : (x, y) ∈ B}) is βN . Hence, by Lemma 6.1
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and Hölder’s inequality, the average number of additive quadruples in a
vertical cross-section of B is at least (βγ2)4N3. We shall call a pair of
points

(
(x, y), (x, y + h)

)
a vertical edge of height h. Given such a pair,

define q
(
(x, y), (x, y + h)

)
to be the number of y′ ∈ ZN such that

φ(x, y + h)− φ(x, y) = φ(x, y′ + h)− φ(x, y′) ,

where equality is deemed not to hold unless φ is defined at all four points.
Letting ζ = (βγ2)4, we have that the average value of q(e) over all vertical
edges e is at least ζN .

For each h, let ζ(h) be the average of q(e) over vertical edges e of
height h. We can find y such that, setting λx = N−1q

(
(x, y), (x, y + h)

)
,

we have
∑

x λx � ζ(h)N . Since λx is zero unless both (x, y) and (x, y + h)
lie in B, this tells us that∑

x

λx

∣∣∆(f ;x, y + h)∧(φ(x, y + h))
∣∣2∣∣∆(f ;x, y)∧(φ(x, y))∣∣2 � ζ(h)γ4N5 .

Hence, by Proposition 12.1, the sum of λaλbλcλd over all quadruples
(a, b, c, d) such that a − b = c − d, φ(a, y) − φ(b, y) − φ(c, y) + φ(d, y) and
φ(a, y + h)− φ(b, y + h)− φ(c, y + h) + φ(d, y + h) is at least (ζ(h)γ4)4N3.
Each such quadruple gives rise to a set of N4λaλbλcλd pairs of parallelo-
grams with the desired properties, and all these sets are disjoint. Summing
over all h and using the fact that the average value of ζ(h) is ζ, we obtain
from Hölder’s inequality that the total number of pairs of parallelograms
with the given properties is at least ζ4γ16N8, which proves the result. ✷

We shall in fact need many arrangements of eight parallelograms
(P1, . . . , P8), all of the same height, such that

w(P1)− w(P2)− w(P3) + w(P4) = w(P5)− w(P6)− w(P7) + w(P8)

and

φ(P1)− φ(P2)− φ(P3)− φ(P4) = φ(P5)− φ(P6)− φ(P7) + φ(P8) .

(It is not particularly natural to divide the resulting 32 points into paral-
lelograms – we do this merely to provide a link to the discussion so far.) It
turns out that this follows automatically from Lemma 12.2. First we need
a result similar to Lemma 9.2.

Lemma 12.3. Let B ⊂ Z2N and let φ : B → ZN . Suppose that there
are θN8 pairs of parallelograms (P1, P2) in B such that h(P1) = h(P2),
w(P1) = w(P2) and φ(P1) = φ(P2). Then there are at least θ7N32 sequences
(x1, . . . , x16, y1, . . . , y16, h) such that

x1 + · · ·+ x8 = x9 + · · ·+ x16
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and
φh(x1, y1) + · · ·+ φh(x8, y8) = φh(x9, y9) + · · ·+ φh(x16, y16) ,

where φh(x, y) stands for φ(x, y + h)− φ(x, y).

Proof. Given u ∈ ZN , define gu(x, y) to be ωuφ(x,y) if (x, y) ∈ B, and zero
otherwise. Let fu,h(x) =

∑
y gu(x, y + h)gu(x, y). Adopting the convention

that ω raised to an undefined power is zero, we can write
fu,h(x) =

∑
y

ωu(φ(x,y+h)−φ(x,y)) .

Clearly, |fu,h(x)|�N for every u, h, x, from which it follows that
∑

x |fu,h(x)|2
� N3 for every u, h and therefore that

∑
u,r |f̂u,h(r)|2 � N5 for every h.

Next, we look at fourth powers. We have∑
u,r

|f̂u,h(r)|4 =
∑
u,r

∣∣∣∑
x,y

ωu(φ(x,y+h)−φ(x,y))−rx
∣∣∣4

which works out asN2 times the number of octuples (x1,x2,x3,x4,y1,y2,y3,y4)
such that x1− x2 = x3− x4 (so that the sum over r is N rather than zero)
and

φh(x1, y1)− φh(x2, y2) = φh(x3, y3)− φh(x4, y4),
where we take the equality to be false unless both sides are defined. In
other words,

∑
u,r |f̂u,h(r)|4 is N2 times the number of parallelogram pairs

of height h with the same width and same value of φ.
Finally, we look at sixteenth powers. It is not hard to check that∑

u,r |f̂u,h(r)|16 counts N2 times the number of sequences (x1, . . . , x16,
y1, . . . , y16) such that

x1 + · · ·+ x8 = x9 + · · ·+ x16

and
φh(x1, y1) + · · ·+ φh(x8, y8) = φh(x9, y9) + · · ·+ φh(x16, y16) .

From our assumption and the above arguments, we know that∑
u,r,h |f̂u,h(r)|2 � N6 and

∑
u,r,h |f̂u,h(r)|4 � θN10. It follows from Lem-

ma 9.1 that
∑

u,r,h |f̂u,h(r)|16 � (θN10/N36/7)7 = θ7N34. Hence, the num-
ber of sequences with the desired properties is at least θ7N32, as stated. ✷

Next, we combine Lemmas 12.2 and 12.3 in the obvious way.

Lemma 12.4. Let β, γ > 0, let f : ZN → D, let B ⊂ Z
2
N be a set of

cardinality βN2 and let φ : B → ZN . Suppose that |∆(f ; k, l)∧(φ(k, l))| �
γN for every (k, l) ∈ B. Then there are at least β112γ336N32 sequences
(x1, . . . , x16, y1, . . . , y16, h) such that

x1 + · · ·+ x8 = x9 + · · ·+ x16
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and

φh(x1, y1) + · · ·+ φh(x8, y8) = φh(x9, y9) + · · ·+ φh(x16, y16) .

Proof. Lemma 12.2 allows us to take θ = β16γ48 in Lemma 12.3. ✷

Let us define a d-arrangement of height h to be a sequence of points(
(x1, y1), (x1, y1+h), (x2, y2), (x2, y2+h), . . . , (x2d, y2d), (x2d, y2d+h)

)
such

that x1 + · · ·+ xd = xd+1 + · · ·+ x2d. Given a set B ⊂ Z
2
N and a function

φ : B → ZN we shall say that φ respects such a d-arrangement if

φh(x1, y1) + · · ·+ φh(xd, yd) = φh(xd+1, yd+1) + · · ·+ φh(x2d, y2d) .

Of course, for this to happen, all the points of the d-arrangement must lie
in the set B, so that φh is defined where it needs to be. Our interest will
be principally in 8-arrangements.

Lemma 12.4 gives us, under certain hypotheses on B and φ, a large
collection of 8-arrangements in the set B that are respected by φ. Indeed,
since the total number of 8-arrangements cannot possibly exceed β15N32

if |B| = βN2, it shows that the proportion of 8-arrangements respected
by φ is greater than zero (and independent of N). In the rest of this
section, we shall show how to choose a large subset B′ ⊂ B such that
φ respects almost all of the 8-arrangements in B′. As in §9, when we
restricted to an approximate homomorphism of order eight, this is done
by a random selection with suitable dependences, with Riesz products to
define the probabilities.

Lemma 12.5. Let η > 0, let B ⊂ Z2N be a set of size βN2 and let φ :
B → ZN be a function that respects at least αβ15N32 8-arrangements.
If N is sufficiently large (depending on β and η) then there is a subset
B′ ⊂ B containing at least (αη/4)2

36
β15N32 8-arrangements, such that the

proportion of 8-arrangements respected by φ is at least 1− η.

Proof. Choose r1, . . . , rk, s1, . . . , sk, t1, . . . , tk ∈ ZN uniformly and inde-
pendently at random from ZN . Having made the choice, let each point
(x, y) ∈ B be in B′ with probability

p(x, y) = 2−k
k∏

i=1

(
1 + cos 2πN (riy + sixy + tiφ(x, y))

)
,

and let these choices be independent. Note once again that this indepen-
dence exists only after we condition on the choice of r1, . . . , rk, s1, . . . , sk,
t1, . . . , tk: it is very important that in total there is a dependence. Now
consider a sequence of points (a1, b1), . . . , (a32, b32). The probability that
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they are all chosen is

N−3k
∑

r1,...,rk

∑
s1,...,sk

∑
t1,...,tk

2−32k
k∏

i=1

32∏
j=1

(
1+ cos 2πN (ribj + siajbj + tiφ(aj , bj))

)
which equals

N−3k2−32k
(∑
r,s,t

2−32
32∏
j=1

(
1+1+ωrbj+sajbj+tφ(aj ,bj)+ω−(rbj+sajbj+tφ(aj ,bj))

))k
.

When the product over j is expanded, each term is of the form

ωr
∑

εjbj+s
∑

εjajbj+t
∑

εjφ(aj ,bj) ,

where ε1, . . . , ε32 belong to the set {−1, 0, 1}. Each such term, when summed
over r, s and t, gives zero, unless

32∑
j=1

εjbj =
32∑
j=1

εjajbj =
32∑
j=1

εjφ(aj, bj) = 0 ,

in which case it gives N3.
Now let us suppose that our sequence of points (ai, bi) forms an 8-

arrangement. Then we can write a2i−1 = a2i = xi and b2i−1 = b2i − h = yi
for some (x1, . . . , x16, y1, . . . , y16, h) such that x1+ · · ·+x8 = x9+ · · ·+x16.
If ε1 = 1 and ε2 �= −1 and the corresponding term does not make a zero
contribution, then ε1b1+ ε2b2 is either y1 or 2y1+ h and this must be zero.
The number of choices of (x1, . . . , x16, y1, . . . , y16, h) for which this is true
and x1+· · ·+x8 = x9+· · ·+x16 is at most N31 in each case. Repeating this
argument for each ε2i−1 shows that the number of 8-arrangements making
a non-zero contribution to a term where we do not have ε2j−1+ ε2j = 0 for
every i is at most 32N31.

If ε2j−1 + ε2j = 0 for every j, then
32∑
j=1

εjajbj = h(ε2x1 + ε4x2 + · · ·+ ε32x16) .

The number of 8-arrangements of height 0 is obviously at most N31. Let
(ε2, ε4, . . . , ε32) be a sequence which is not a multiple of the sequence
(1, . . . , 1,−1, . . . ,−1) (where 1 and −1 each occur eight times). The num-
ber of 8-arrangements such that ε2x1 + ε4x2 + · · · + ε32x16 = 0 is at most
N31 because we are imposing two independent linear conditions on the se-
quence (x1, . . . , x16, y1, . . . , y16, h) (in the vector space Z

33
N ). Hence, with

the exception of at most (33 + 316)N31 of them, an 8-arrangement makes
a non-zero contribution to the sum only for sequences ε1, . . . , ε32 such that
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ε2j−1 + ε2j = 0 for every j, and ε2 = ε4 = · · · = ε16 = −ε18 = · · · = −ε32.
Moreover, the contribution will be zero unless

∑32
j=1 εjφ(aj , bj) = 0. (This

last statement follows from considering the sum over t.)
Our argument has shown that, ignoring at most (65 + 316)N31 degen-

erate cases, given an 8-arrangement in B, the probability that it lies in B′

is 2−32k
(
2−32(232 + 2)

)k if φ respects the 8-arrangement, but only 2−32k if
it does not. Hence, our hypotheses imply that the expected number X of
8-arrangements respected by φ is at least 2−32k(1+2−31)kαβ15N32, and the
expected number Y of bad but non-degenerate 8-arrangements is at most
2−32kβ15N32. Using the fact that 22

−31 � 1 + 2−31, we can deduce that if
22

−31k � 2/αη, then
ηEX − EY � αη(2/αη)2−32kβ15N32 − 2−32kβ15N32 = 2−32kβ15N32 .

Now 22
−31k � (2/αη) if and only if 2−32k � (αη/2)2

36
. Let k be an integer

such that
2(αη/4)2

36 � 2−64k � (αη/2)2
36
.

If N is large enough that (αη/4)2
36
β15N � 65+316, then the values for the

above expectations and the upper estimate for the number of degenerate
8-arrangements imply that there exists a set B′ such that ηX � Y and
X � (αη/4)2

36
β15N32, as was claimed. ✷

If we combine Lemmas 12.4 and 12.5 we obtain the main result of this
section.

Lemma 12.6. Let β, γ, η > 0. Let f : ZN → D, let B ⊂ Z
2
N be

a set of cardinality at least βN2 and let φ : B → ZN be such that
|∆(f ; k, l)∧(φ(k, l))| � γN for every (k, l) ∈ B. Then there is a subset
B′ ⊂ B containing at least 2−2

37
β2

43
γ2

45
η2

36
N32 8-arrangements, such that

the proportion of them respected by φ is at least 1− η.

Proof. By Lemma 12.4 there are at least β112γ336N32 8-arrangements re-
spected by φ. This allows us to take α = β97γ336 in Lemma 12.5. It is
not hard to check that (β97γ336η/4)2

36
β15 � 2−2

37
β2

43
γ2

45
η2

36
N32, so the

lemma is proved. ✷

13 Finding a Bilinear Piece

We shall now use the results of the previous two sections to prove that if
A ⊂ ZN is a set with balanced function f , B is a large subset of A and
φ : B → ZN has the property that ∆(f ;x, y)∧(φ(x, y)) is large for every
(x, y) ∈ B, then φ exhibits a small (but not too small) amount of bilinearity,
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in the following sense: there are arithmetic progressions P,Q ⊂ ZN of size
a power of N and with the same common difference, and a large subset C
of B ∩ (P ×Q) such that the restriction of φ to C is bilinear. This is the
key to extending our proof from progressions of length four to progressions
of length five.

What we prove in this section is sufficient for finding progressions of
length five, but not as strong as the corresponding case of the inductive
hypothesis we shall need when generalizing the argument. Then it becomes
necessary to show that almost all of the graph of φ is contained in a small
number of bilinear pieces, which is not a huge extra difficulty but it makes
the argument look more complicated. Another way in which the argument
of this section is slightly simpler than the argument for the general case (in
§16) is that we can use Lemma 7.10 to allow us to assume that φ(x, y) is
a homomorphism of order 8 in y for every fixed x and vice versa (see the
proof of Theorem 13.10 for this).

The next lemma is another generalization of Proposition 6.1 with an
almost identical proof. To recover the earlier proposition for the function
f : ZN → D, apply this coming lemma to the function g(x, y) = f(x+ y).

Lemma 13.1. Let f : Z2N → D be a function into the closed unit disc. For
any h, define

fh(x) =
∑
y

f(x, y + h)f(x, y) .

Let B ⊂ ZN and let σ : B → ZN be a function such that∑
h∈B

∣∣f̂h(σ(h))∣∣2 � αN5 .

Then there are at least α4N3 quadruples (a, b, c, d) ∈ B4 such that a+ b =
c+ d and σ(a) + σ(b) = σ(c) + σ(d).

Proof. Expanding what the hypothesis says, we find that∑
h∈B

|f̂h(σ(h))|2 =
∑
h∈B

∑
x,x′

fh(x)fh(x′)ω−(x−x′)σ(h)

=
∑
h∈B

∑
x,u

fh(x+ u)fh(x)ω−uσ(h)

=
∑
h∈B

∑
x,u

∑
y,y′

f(x+ u, y′ + h)f(x+ u, y′)f(x, y + h)f(x, y)ω−uσ(h)

is at least αN5. It follows that∑
x,u

∑
y,y′

∣∣∣∑
h∈B

f(x+ u, y′ + h)f(x, y + h)ω−uσ(h)
∣∣∣ � αN5
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which implies that∑
x,u

∑
y,y′

∣∣∣∑
h∈B

f(x+ u, y′ + h)f(x, y + h)ω−uσ(h)
∣∣∣2 � α2N6 .

For each triple t = (u, x,w), let at(h) = f(x+ u,w+ h)f(x, h) and bt(h) =
B(h)ωuσ(h). Then we may rewrite the above inequality as∑

t

∑
y

∣∣∣∑
h

at(h+ y)bt(h)
∣∣∣2 � α2N6 .

As in the proof of Proposition 12.1, we may apply Lemma 2.1 and the
Cauchy-Schwarz inequality to deduce that(∑

t

∑
r

|ât(r)|4
)(∑

t

∑
r

|b̂t(r)|
)4

� α4N14 .

Since
∑

r |ât(r)|4 � N4 for every t and b̂t(r) =
∑

h∈B ωuσ(h)−rh for every t
and r, we then find that

N2
∑
u

∑
r

∣∣∣∑
h∈B

ωuσ(h)−rh
∣∣∣4 � α4N7 .

But the left-hand side is exactly N4 times the number of quadruples
(a, b, c, d) that we wish to find. ✷

In fact, we shall need the above lemma only in the special case of 01-
valued functions. The next corollary is a restatement of the lemma in the
language of §10.
Corollary 13.2. Let A ⊂ Z

2
N . For any h ∈ ZN , define a domain

Xh = Xh,0 ∪ Xh,1 ∪ · · · ∪ Xh,N−1 by letting Xh,x be the set of all pairs
((x, y), (x, y+h)), for which both (x, y) and (x, y+h) belong to A. Let fh(x)
be the cardinality of Xh,x. Let B ⊂ ZN and let σ : B → ZN be any function
such that

∑
h∈B |f̂h(σ(h))|2 � αN5. Then there are at least α4N3 quadru-

ples (a, b, c, d) ∈ B4 such that a+ b = c+ d and σ(a) + σ(b) = σ(c) + σ(d).

Proof. This follows immediately from Lemma 13.1 applied to the charac-
teristic function of A. ✷

Corollary 13.3. Let A ⊂ Z
2
N , and for h ∈ ZN let Xh and fh be as

in Corollary 13.2. Let θ > 0. Then there exist Freiman homomorphisms
σ1, . . . , σq of order eight, defined on subsets B1, . . . , Bq of ZN , and a set
G ⊂ ZN of cardinality at least (1 − θ)N , such that whenever h ∈ G and
|f̂h(r)| � θN2 there exists i � q such that r = σi(h). The sets Bi have
cardinality at least 2−1882θ10477N and q � 21882θ−10479.
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Proof. Suppose that B ⊂ ZN is a set of size θN and that σ : B → ZN is
a function with the property that |f̂h(σ(h))| � θN2 for every h ∈ B. Then∑

h∈B |f̂h(σ(h))|2 � θ3N5. Hence, by Corollary 13.2, B contains at least
θ12N3 σ-additive quadruples. It follows from Corollary 7.6 (with α = θ and
γ = θ9) that there is a subset C of B of cardinality at least 2−1882θ10477N
such that the restriction of σ to C is a Freiman homomorphism of order
eight.

Now let Γ0 be the set of all pairs (h, r) such that |f̂h(r)| � θN2. If
the projection of Γ to the h-axis has size less than θN , then we are done.
Otherwise, we can choose B and σ satisfying the hypotheses of the previous
paragraph and hence can find B1 ⊂ B of cardinality at least 2−1882θ10477N
such that the restriction of σ to B1 is a homomorphism of order eight. Let
σ1 be this restriction and let Γ1 = Γ \ {(h, σ1(h)) : h ∈ B1}.

If the projection of Γ1 to the h-axis has cardinality less than θN , we
are done. Otherwise, the above argument can be repeated. Continue
the repetitions until it is no longer possible and we are then done. Now∑

h,r |f̂h(r)|2 = N
∑

h,s fh(s)
2 which is clearly at most N5, so Γ0 has car-

dinality at most θ−2N . It follows that q � 21882θ−10479 as stated. ✷

We shall now prove several lemmas under the same set of hypotheses, so
it is convenient to state the hypotheses first and not keep repeating them.
LetA be a subset of Z2N of cardinality αN

2 and let φ : A → ZN be a function
with the following two properties. First, φ(x, y) is, for every fixed x, a
homomorphism of order 8 in y and for every fixed y a homomorphism of
order 8 in x. Second, the proportion of all 8-arrangements in A respected
by φ is at least 1 − η, where η = 2−44. (This second property states that
A satisfies the conclusion of Lemma 12.6.) For each h ∈ ZN , let us write
C(h) for the number of 8-arrangements in A of height h and G(h) for the
number of these 8-arrangements respected by φ. The domains Xh and the
functions fh are as defined in Corollary 13.2.

Lemma 13.4. Let θ > 0, θ1 = 2−1882θ10477, q = 21882θ−10479 and m =
�(θ1/64π)Nθ2

1/16q�. Then there exist an arithmetic progression P of length
m0 ∈ {m− 1,m} and a subset H ⊂ P such that∑{

C(h) : h ∈ H,G(h) � (1− 2η)C(h)
}

� α32N31m0/8 ,

and there exist constants a1, . . . , aq and b1, . . . , bq such that, whenever h ∈
H and r ∈ ZN have the property that |f̂h(r)| � θN , we have r = aih + bi
for some i � q.
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Proof. LetG be the set and σ1, . . . , σq the Freiman homomorphisms of order
8 given by Corollary 13.3. For each i � q the homomorphism σi is defined
on a set Bi of size at least θ1N , so by Corollary 7.9 there exist a set Ki of
size at most 16θ−21 and some ci ∈ ZN such that if m is a positive integer,
d belongs to the Bohr neighbourhood B(Ki, θ1/32πm) and x, y ∈ Bi with
x− y = jd for some j with |j| � m, then σi(x)− σi(y) = ci(x− y).

By Lemma 7.7 and the definition ofm we can find a non-zero d belonging
to the Bohr neighbourhood

q⋂
i=1

B(Ki, θ1/32πm) = B
(⋃

Ki, θ1/32πm
)
.

Let d0 be such a value of d, and partition ZN into arithmetic progressions
P1, . . . , PM such that each Pj has common difference d0 and the lengths of
the Pj are all equal tom−1 orm. By the way d0 was chosen, the restriction
of any σi to any Pj (or more correctly to Bi ∩ Pj) is linear.

Our arithmetic progression P will be one of the progressions Pj , chosen
by an averaging argument. By our second assumption on φ, we know that∑

h

G(h) � (1− η)
∑
h

C(h) ,

which implies that∑{
C(h) : G(h) � (1− 2η)C(h)

}
� 1
2

∑
h

C(h) .

This estimate says that at least half of the 8-arrangements in A have a
height h for which the function φh is a (1 − 2η)-homomorphism of order
8. We also know that

∑
h/∈GC(h) � θN32. Since the total number of

8-arrangements in A is
∑

hC(h) � α32N32, we can deduce that∑{
C(h) : h ∈ G,G(h) � (1− 2η)C(h)

}
� 1
4

∑
h

C(h) .

By averaging and the above estimate, we can choose some j such that∑{
C(h) : G(h) � (1− 2η)C(h), h ∈ Pj ∩G

}
� α32N31(m− 1)/4

� α32N31m0/8 .
Let us set P = Pj and H = Pj ∩G. We know that each σi, when restricted
to P , is linear. Therefore, we can find the constants a1, . . . , aq and b1, . . . , bq
required by the lemma. ✷

This fact, that the set of large Fourier coefficients for each f̂h “varies lin-
early” in h, is the key to the whole argument. Our version of Bogolyubov’s
argument in §10 tells us that 2Xh − 2Xh is approximately d-invariant if



Vol. 11, 2001 A NEW PROOF OF SZEMERÉDI’S THEOREM 547

(aih+ bi)d is small for 1 � i � q. Our next aim is to find a further parti-
tion of P into arithmetic progressions in each of which we can choose the
same value of d with this property. The linearity of aih + bi allows us to
do so. It is to show this that we shall need the multiple recurrence result,
Lemma 5.9.

Lemma 13.5. There exists an arithmetic progression Q ⊂ P of size m1 �
m
1/212q
0 /2 and common difference d, such that |(aih+bi)d| � m

−1/211q
0 N for

every i � q. Moreover, Q can be chosen so that there are at least α32m1/20
values of h ∈ Q∩H for which C(h) � α32N31/16 and G(h) � (1−2η)C(h).

Proof. For each i, let τi be the quadratic polynomial aih2/4 + bih/2. The
result is very simple if m0 < 22

12q
, as then the only restriction on m1 is that

it should be at least 1. Otherwise,m0 satisfies the lower bound on r required
in Lemma 5.9 when k = 2 (and therefore K = 211). That lemma therefore
tells us that P can be partitioned into arithmetic progressions Q1, . . . , QL

of sizes differing by one and at least m1/2
12q

0 such that, for every i and j, the
diameter of τi(Qj) is at most m

−1/211q
0 N . By averaging, we can find one of

these progressions, which we shall call Q′, such that |Q′| = m1 � cm
1/212q
0

and ∑{
C(h) : h ∈ Q′ ∩H,G(h) � (1− 2η)C(h)

}
� α32N31m1/8 .

Let the common difference of Q′ be d. Choose any h ∈ Q′ which is not an
end point. Then τi(h+ d)− τi(h− d) = (aih+ bi)d, so the estimate on the
diameter of τi(Q′) implies that |(aih+ bi)d| � m

−1/211q
0 N for every i. Now

let Q be Q′ without the two end points.
By another averaging argument, there are at least α32m1/16 values of

h ∈ Q′ ∩H such that C(h) � α32N31/16 and G(h) � (1 − 2η)C(h). This
certainly implies the slightly worse estimate for Q. ✷

It is vital for our later purposes that the common difference d of Q
should be the same as the d for which the numbers (aih+bi)d are all small.
It was to achieve this that we needed to use quadratic recurrence and not
just linear recurrence.

Let us define I to be the set of all h ∈ Q∩H such that C(h) � α32N15/16
and G(h) � (1 − 2η)C(h). Notice that if h ∈ I then φh is a (1 − 2η)-
homomorphism of order 8 on the domain Xh. Lemma 13.5 asserts that
I has cardinality at least α32m1/20. For the next lemma, recall that a
typical element of the domain Xh, which was defined in the statement of
Corollary 13.2, is a pair v = ((x, y), (x, y + h)) and that r(v) is defined to
be x.
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Lemma 13.6. Let k = 2114α−320, ζ = 2−228kα576k and q = 22
20
α−221 . Then

there is an arithmetic progression R ⊂ ZN of size m2 � (ζ/2)N1/213q and
common difference d such that for every h ∈ I there is a subset Yh ⊂ Xh of
size at least 2−26α128N2 such that the restriction of φh to {v ∈ Yh : r(v) ∈
R} is linear. Moreover, R can be chosen such that∑

h∈I

∣∣{v ∈ Yh : r(v) ∈ R}
∣∣ � 2−26α128m2N |I| � 2−31α160m1m2N .

Proof. We know that |Xh,r| � N for every r. The lower bound on C(h)
for each h ∈ I implies that |Xh| =

∑
r |Xh,r| � α32N2/16. We are about

to apply Corollary 10.14, which uses the hypotheses of Theorem 10.13,
to the domain Xh. We may do so if we replace α in the statements of
Theorem 10.13 and Corollary 10.14 by α32/16. (Note that η was defined
in this section to be 2−44, so for h ∈ I the (1 − 2η)-homomorphism φh is
a (1 − η)-homomorphism in the sense of Theorem 10.13.) This allows us
to take λ = 2−59α176, k = 2114α−320 and ζ = 2−228kα576k. Corollary 10.14
then states that if Kh = {r ∈ ZN : |f̂h(r)| � λN}, then there exists a set
Yh ⊂ Xh of cardinality at least (α32/16)3|Xh|/1000 � 2−26α128N2 with the
following property: for every positive integer m and every d in the Bohr
neighbourhood B(Kh, ζ/m), there exists ch ∈ ZN such that φh(v)−φh(w) =
ch(r(v)− r(w)) whenever v,w ∈ Yh and r(v)− r(w) ∈ {jd : −m � j � m}.

Now, Lemmas 13.4 and 13.5 combined, with θ set equal to λ, tell us
that the common difference d of the arithmetic progression Q satisfies the
property that |rd| � m

−1/211q
0 N whenever |f̂h(r)| � θN , where q may be

taken to be the number in the statement of this lemma. In other words, we
are told that this d belongs to all the Bohr neighbourhoods B(Kh, ζ/m),
provided that the inequality m−1/211q

0 � ζ/m holds, where m0 is as given in
the statement of Lemma 13.4. It is not hard to check thatm = (ζ/2)N1/213q

satisfies the inequality. (In fact, we could replace 13 by 12, but it is conve-
nient later for m2 to be significantly less than m1.)

Since m < N1/2, we can partition ZN into arithmetic progressions
R1, . . . , RL of common difference d and lengths m or m + 1. For every
Ri and for every h ∈ I the restriction of φh to {v ∈ Yh : r(v) ∈ Ri} is
linear. Since |Yh| � 2−26α128N2 for every h ∈ I, we know that

∑
h∈I |Yh| �

2−26α128N2|I|. An averaging argument therefore gives us one of the Ri,
which we shall call R, such that∑

h∈I

∣∣{v ∈ Yh : r(v) ∈ R}
∣∣ � 2−26α128|I|m2N � 2−31α160m1m2N

where m2 equals either m or m+ 1. This proves the lemma. ✷
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Lemma 13.7. There exist y ∈ ZN , an arithmetic progression S ⊂ R of size
m3 � m2

−66α256

2 and a set B ⊂ S × (I + y) of size at least 2−26α128m3|I| �
2−31α160m1m3 such that, for every h ∈ I, the restriction of φ(x, y + h) to
B is linear in x.

Proof. Choose y ∈ ZN uniformly at random. The expected number of
pairs x, h such that x ∈ R, h ∈ I and ((x, y), (x, y + h)) ∈ Yh is at
least 2−26α128m2|I|, so let us fix a value of y such that there are at least
this many. The number of x ∈ R such that (x, y) ∈ A is then at least
2−26α128m2. One of our main assumptions is that φ is a homomorphism of
order 8 for each fixed y. Hence, by Corollary 7.11, applied to the single set
{x ∈ R : (x, y) ∈ A} we can find a partition of R into arithmetic progres-
sions S1, . . . , SM all of length at least m2

−66α256

2 such that the restriction
of x 
→ φ(y, x) to any Sj is linear (where defined). By averaging, we can
choose some Sj , which we shall call S, such that the number of pairs x, h
with x ∈ S, h ∈ I and ((x, y), (x, y + h)) ∈ Yh is at least 2−26α128m3|I|,
where m3 is the size of S.

Let B ⊂ S × (I + y) be the set of all points (x, y + h) such that h ∈ I
and ((x, y), (x, y+h)) ∈ Yh. We have shown that B has cardinality at least
2−26α128m3|I| � 2−31α160m1m3 and found constants c and ch (h ∈ I), such
that, for any x1, x2 ∈ S and any h ∈ I,

φ(x1, y)− φ(x2, y) = c(x1 − x2)

and

φ(x1, y + h)− φ(x1, y)− φ(x2, y + h) + φ(x2, y) = ch(x1 − x2) .

It follows that, for every h ∈ I,

φ(x1, y + h)− φ(x2, y + h) = (ch − c)(x1 − x2) ,

which tells us that the restrictions of φ to the rows of B are all linear. ✷

We have now effectively reduced the dimension of our problem by one,
as the next two lemmas will demonstrate. For each h ∈ H, let a(h) and
c(h) be the unique constants such that φ(x, y+h) = a(h)+ c(h)x for every
x with (x, y + h) ∈ B.

Lemma 13.8. Assume that m3 � 284α−416. Then there is a subset J ⊂ I
such that the map h 
→ (a(h), c(h)) is a homomorphism of order 8 on J
and the set C of (x, y + h) ∈ B such that h ∈ J has cardinality at least
2−84α416m1m3.

Proof. We know that B has size at least 2−31α160m1m3 =
2−31α160m1m3|S||Q + y|. We also know (from our main assumption) that
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φ(x, y + h) is a homomorphism of order 8 in h for every fixed x. Suppose
that x1, x2 and h(1), . . . , h(16) are such that (xi, y + h(j)) ∈ B for every
i, j. Because φ(x, y + h) is a homomorphism of order 8 in h, easy linear
algebra shows that

ah(1) + · · ·+ ah(8) = ah(9) + · · ·+ ah(16)

and
ch(1) + · · ·+ ch(8) = ch(9) + · · ·+ ch(16) .

For any pair (x1, x2) ∈ S2 let J(x1, x2) be the set of all h ∈ I such
that (x1, y + h) and (x2, y + h) are in B, and let C(x1, x2) be the set of all
(x, y + h) ∈ B such that h ∈ J(x1, x2). We shall choose J to be one of the
J(x1, x2) and for that we need the corresponding set C(x1, x2) to be large,
which (needless to say) we do by averaging.

Notice first that
∑

x1,x2
|C(x1, x2)| counts all quadruples (x1, x2, x3, h) ∈

S3 × I such that (xi, y + h) ∈ B for i = 1, 2, 3. Therefore, letting Dh =
{x ∈ S : (x, y + h) ∈ B}, we can write this sum as

∑
h∈I |Dh|3. Since∑

h∈I |Dh| = |B|, this is at least |I|−2|B|3, which our earlier estimates
tell us is at least 2−83α416m1m33. The contribution to the sum from sets
C(x1, x2) such that x1 = x2 is certainly no more than m1m

2
3, which, by our

assumed lower bound for m3, is at most half the total. Therefore, there
exist x1 �= x2 such that C(x1, x2) has cardinality at least 2−84α416m1m3.

We have shown that the map h 
→ (ah, ch) is a homomorphism of order
8 from J = J(x1, x2) to Z

2
N , so we may set J = J(x1, x2) and the lemma is

proved. ✷

At this point let us recall that the arithmetic progression S is a subset
of R, which has the same common difference d as Q. Moreover, we fixed our
numbers so that R would be considerably smaller than Q. It follows that
S is a subset of a translate of Q and, writing d1 for the common difference
of S, that d1 is a multiple of d. Recall also that the cardinalities of S and
Q are m3 and m1 respectively and that J is a subset of Q.

Lemma 13.9. There exists an arithmetic progression U ⊂ Q of common
difference d2, which is a multiple of d1, and size m4 � m2

−182α832

3 such that
the set D of all (x, y + h) ∈ C such that h ∈ U ∩ J has cardinality at
least 2−84α416m3m4 = 2−84α416|S||U + y| and the restriction of φ to D is
bilinear.

Proof. Let us partition Q into maximal subprogressions T1, . . . , TM of com-
mon difference d1. By the remarks immediately preceding the statement
of this lemma, each Ti has cardinality at least m3. By averaging, we can
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choose T = Tj such that the set of all (x, y + h) ∈ C with h ∈ J ∩ T has
cardinality at least 2−84α416m3|T |. Applying Corollary 7.11 to the homo-
morphism h 
→ (a(h), c(h)) restricted to J∩T , with α replaced by 2−84α416,
we obtain a partition of T into arithmetic progressions U1, . . . , UL of size
at least |T |2−182α832

such that the restriction of the map h 
→ (a(h), c(h)) to
any Ui is linear. By averaging again we may choose U = Ui of cardinality
m4 such that the setD defined in the statement has the required size. Then
because the coefficients a(h) and c(h) vary linearly in h when h ∈ U ∩ J ,
the restriction of φ to D is bilinear. ✷

Corollary 13.10. There exist arithmetic progressions V and W with the
same common difference and same cardinality m5 � m

1/2
4 −1, and a subset

E ⊂ V ×W of size at least 2−86α416|V ||W |, such that the restriction of φ
to E is bilinear.

Proof. We already have a comparable statement for S × (U + y). The
common difference of S is d1 and the common difference of U + y is d2,
which is a multiple of d1. All we do now is apply one further averaging
argument to pass to subprogressions of the same size and same common
difference.

Since U is a subset of a translate of S, a maximal subprogression of S
with common difference d2 has cardinality at leastm4−1. It is therefore not
hard to show that S×(U+y) can be partitioned into sets of the form V ×W ,
where V andW are arithmetic progressions with common difference d2 and
size m or m + 1, where m � m

1/2
4 − 1. By an averaging argument we can

choose one of these sets V ×W such that D ∩ (V ×W ) � 2−84α416|V ||W |.
The slightly worse bound in the lemma comes from the fact that we may
wish to remove end-points from V and W to make them the same size. ✷

Let us now show that we can achieve the hypotheses that we have been
assuming in the last few lemmas.

Lemma 13.11. Let f : ZN → D be a function which fails to be cubically
α-uniform. Then there exists a set A ⊂ Z

2
N of size at least (α/2)2

66
N2 and

a function φ : A → ZN such that, for every fixed x, φ(x, y) is a Freiman
homomorphism of order 8 in y, for every fixed y it is a homomorphism of
order 8 in x, the proportion of all 8-arrangements in A respected by φ is at
least 1− 2−73 and |∆(f ; k, l)∧(φ(k, l))| � αN/2 for every (k, l) ∈ A.

Proof. By Lemma 3.1 (the easy implication of (ii) from (vi)) there is a
set A0 ⊂ Z

2
N of size at least αN2/2 and a function φ : A0 → ZN such
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that |∆(f ; k, l)∧(φ(k, l))| � αN/2 for every (k, l) ∈ A0. For each k, let
A0,k be the cross-section {l : (k, l) ∈ A0}, let |A0,k| = αkN and define
φk : A0,k → ZN by φk(l) = φ(k, l).

Fixing k and applying Proposition 6.1 to the functions ∆(f ; k) : ZN →
D and φk : A0,k → ZN , we find that there are at least α4kN

3 φk-additive
quadruples in A0,k. Applying Corollary 7.6 with B0 = A0,k, φ = φk and
α = γ = αk, we obtain a subset A1,k ⊂ A0,k of size at least 2−1882α1165k N
such that the restriction of φk to A1,k is a Freiman homomorphism of order
8. Since the average of αk is at least α/2, the union of the sets A1,k is a
set A1 of cardinality ζN2, where ζ � 2−1882(α/2)1165 = 2−3047α1165. The
restriction of φ(k, l) to A1 is a homomorphism of order 8 in l for any fixed k.

Repeating this argument for the second variable, we can pass to a further
subset A2 ⊂ A1 of cardinality at least 2−3047ζ1165N2 � (α/2)2

22
N2 such

that the restriction of φ to A2 is a homomorphism of order 8 in each variable
separately. Let β = (α/2)2

22
.

We now apply Lemma 12.6 with B = A2, γ = α/2 and η = 2−44. This
yields a set A with at least

2−2
37
β2

43
γ2

45
η2

36
N32 � (α/2)2

66
N32

8-arrangements, such that the proportion respected by φ is at least 1−2−44.
Since the cardinality of such a set must be at least (α/2)2

66
N2, the lemma

is proved. ✷

We are now ready for the main result of this section.

Theorem 13.12. Let f be a function from ZN to the closed unit disc.
If f is not cubically α-uniform then there exist arithmetic progressions P

and Q of size at least N (1/2)(1/α)2
70

and with the same common difference,
a subset B ⊂ P ×Q of size at least (α/2)2

76 |P ||Q| and a bilinear function
φ : P ×Q → ZN , such that ∆(f ; k, l)∧(φ(k, l)) � αN/2 for every (k, l) ∈ B.

Proof. By Lemma 13.11 we can find a set A ⊂ Z
2
N of size at least (α/2)

266N2

and a function φ : A → ZN such that, for every fixed x, φ(x, y) is a Freiman
homomorphism of order 8 in y, for every fixed y it is a homomorphism of
order 8 in x, the proportion of all 8-arrangements in A respected by φ is at
least 1− 2−44 and |∆(f ; k, l)∧(φ(k, l))| � αN/2 for every (k, l) ∈ A. Apart
from the last condition, these are the hypotheses stated just before Lemma
13.4, except that α has been replaced by (α/2)2

66
. The results numbered

13.4 to 13.10 all hold under this set of hypotheses, so the theorem follows
from Corollary 13.10 and a back-of-envelope estimate for m5 when α is
replaced by (α/2)2

66
. ✷
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Notice the relationship between the above theorem and Freiman’s the-
orem. The hypotheses are somewhat different, but all we have used is that
there are many 8-arrangements respected by φ, which is a fairly natural
generalization of the hypotheses of the Balog-Szemerédi theorem to graphs
of functions in two variables. The conclusion of the theorem is in some
ways much weaker, since we find only a very small set with good structure.
On the other hand, the structure obtained is stronger, as we have gone
up from linearity to bilinearity. It is very likely that a development of the
argument above could be used to give a complete description of functions
φ : Z

2
N → ZN that respect many 8-arrangements. This would deserve to

be called a bilinear Freiman (or Balog-Szemerédi) theorem. Theorem 13.12
one could perhaps call a weak bilinear Freiman theorem.

The next three sections will generalize the above theorem from non-
cubically uniform functions to functions that fail to be uniform of degree k,
producing an appropriate (k − 1)-linear piece. The generalization is long,
but does not involve any significant new ideas. The reader who wishes to
follow a proof of Szemerédi’s theorem for progressions of length five can go
straight to §17.

14 Obtaining Many Respected Arrangements

This section and the next consist of relatively routine generalizations of the
results of §12 to functions of k variables. The reason we are presenting them
separately is that the argument for two variables is notationally simpler and
therefore easier to understand, while containing all the essential ideas.

We begin with a result which, in both its statement and its proof, is
very similar to Proposition 12.1, but which seems to be hard to unify with
that result. Recall that if f : Z

2
N → C, then fh(y) is defined as

∑
x f(x+

h, y)f(x, y).

Proposition 14.1. For each h ∈ ZN let λh � 0. Let f (1), . . . , f (p) be
functions from Z2N to the closed unit disc D and let σ1, . . . , σp be functions
from ZN to ZN such that

∑
h

λh

p∏
i=1

∣∣f̂ (i)h (σi(h))
∣∣2 � αN4p+1 .

Then the sum of λaλbλcλd over all quadruples (a, b, c, d) such that a+ b =
c+ d and σi(a) + σi(b) = σi(c) + σi(d) for every i is at least α4N3.
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Proof. In the argument to follow, we shall often abbreviate (x1, . . . , xp) by
x, and similarly for other sequences of length p. The left-hand side of the
inequality we are assuming is, when written out in full,

∑
h

λh

∑
x,w,y,z

p∏
i=1

f (i)(xi + h, yi)f (i)(xi, yi)f (i)(wi + h, zi)

· f (i)(wi, zi)ω−σi(h)(yi−zi) .

Substituting ui = yi − zi, this becomes

∑
h

λh

∑
x,w,u,z

p∏
i=1

f (i)(xi + h, zi + ui)f (i)(xi, zi + ui)f (i)(wi + h, zi)

· f (i)(wi, zi)ω−σi(h)ui .

Since this exceeds αN4p+1 and |f (i)(x, y)| � 1 for every i, x, y we may
deduce that∑

x,w,u,z

∣∣∣∑
h

λh

p∏
i=1

f (i)(xi + h, zi + ui)f (i)(wi + h, zi)ω−uiσi(h)
∣∣∣ � αN4p+1

and hence, by the Cauchy-Schwarz inequality, that∑
x,w,u,z

∣∣∣∑
h

λh

p∏
i=1

f (i)(xi + h, zi + ui)f (i)(wi + h, zi)ω−uiσi(h)
∣∣∣2 � α2N4p+2 .

We now introduce a variable s and write xi = s+x′i and wi = s+w′
i. From

the above, we can deduce that

∑
s

∑
x′,w′,u,z

∣∣∣∑
h

λh

p∏
i=1

f (i)(s+x′i+h, zi+ui)f (i)(s+ w′
i + h, zi)ω−uiσi(h)

∣∣∣2
� α2N4p+3 .

Applying Lemma 2.1 and the Cauchy-Schwarz inequality in the usual way
(see for example the proof of Proposition 12.1) we deduce that∑

r

∑
x′,w′,u,z

∣∣∣∑
h

λh

p∏
i=1

ωσi(h)ui−rh
∣∣∣4 � α4N4p+4 .

Since the left-hand side above is N4p+1 times the sum of λaλbλcλd over all
quadruples (a, b, c, d) such that a+b = c+d and σi(a)+σi(b) = σi(c)+σi(d)
for every i, the result is proved. ✷

In the next section, we shall need to deal with functions defined on
sets B ⊂ Z

k
N which will be k-dimensional generalizations of the somewhat



Vol. 11, 2001 A NEW PROOF OF SZEMERÉDI’S THEOREM 555

additive functions that appeared in §6. They arise in two different ways, but
in both cases they have a property which we shall call the product property.
To define this, suppose that B is a subset of Z

k
N and that φ : B → ZN .

Given any j � k and any y ∈ Z
k
N , define B(y, j) to be the set of all x ∈ B

such that xi = yi whenever i �= j. This is the one-dimensional cross-section
of B that goes through y in the j-direction. Now define C(y, j) to be the set
of all x ∈ ZN such that (y1, . . . , yj−1, x, yj+1, . . . , yk) ∈ B(y, j), and define
a function φy,j : C(y, j)→ ZN by

φy,j(x) = φ(y1, . . . , yj−1, x, yj+1, . . . , yk) .
This is the restriction of φ to B(y, j), but for convenience regarded as a
function defined on a subset of ZN . Let us define a j-restriction of φ to
be any function of the form φy,j for some y ∈ Z

k
N . We shall say that φ

has the product property with parameter γ if, whenever j � k, ψ1, . . . , ψp

are j-restrictions of φ, E is a subset of ZN on which all the ψi are defined
and θ : E → R+, the sum of θ(a)θ(b)θ(c)θ(d) over all additive quadruples
(a, b, c, d) that are ψi-additive for every i is at least γ8pN−1(∑

x θ(x)
)4.

Lemma 14.2. Let f : ZN → D, let B ⊂ Z
k
N and let φ : B → ZN be

such that |∆(f ; r1, . . . , rk)∼(φ(r1, . . . , rk))| � γN for every (r1, . . . , rk) ∈ B.
Then φ has the product property with parameter γ.

Proof. Let y1, . . . , yp be elements of Z
k−1
N and let E be the set of all r ∈

ZN such that (yi, r) ∈ B for every i. Then if we are given a function
θ : E → R+, we can set θ(k) = 0 for k /∈ E and apply Proposition 12.1 to
the functions fi = ∆(f ; yi). Since ∆(fi; r) = ∆(f ; (yi, r)) these functions
satisfy the hypothesis of Lemma 12.1 with α = γ2p

∑
k θ(k)N

−1 and σi(r) =
φ(yi, r). The conclusion of the lemma then gives us exactly what we want,
at least for k-restrictions. By symmetry, the result is true for the other
j-restrictions as well, and φ has the product property with parameter γ. ✷

The second case in which we wish to deduce the product property is
similar to the first, but we shall use Proposition 14.1 instead of Proposition
12.1. Given a function f : Z

k+1
N → C and h = (h1, . . . , hk) ∈ Z

k
N , define a

function fh : ZN → C by

fh(y) =
∑
x∈Zk

N

∏
ε∈{0,1}k

C |ε|+kf(x1 + ε1h1, . . . , xk + εkhk, y) ,

where once again C stands for complex conjugation and |ε| =
∑

εi. For
example when k = 1 we have fh(y) =

∑
x f(x+h, y)f(x, y), as before. (We

have taken C |ε|+k rather than the simpler C |ε| in the definition merely to
make it consistent with the earlier one.)
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Lemma 14.3. Let f : Z
k+1
N → D, let B ⊂ Z

k
N and let φ : B → ZN be such

that |f̂z(φ(z))| � γNk+1 for every z ∈ B. Then φ has the product property
with parameter γ.

Proof. For any y = (y1, . . . , yk−1) ∈ Z
k−1
N we can define a function gy :

Z
2
N → D by the formula

gy(a, b) =
∑

u∈Z
k−1
N

∏
ε∈{0,1}k−1

C |ε|+k−1f(u1 + ε1y1, . . . , uk−1 + εk−1yk−1, a, b) .

It is then easy to check that for any h ∈ ZN we have (gy)h = f(y,h).
The proof is now more or less the same as that of Lemma 14.2. Let

y1, . . . , yp be elements of Z
k−1
N (note that yi is now a vector rather than a

coefficient of y) and let E be the set of all h ∈ ZN such that (yi, h) ∈ B
for every i. Given a function θ : E → R+, set θ(k) = 0 for k /∈ E and
this time apply Proposition 14.1 to the functions g(i) = N−(k−1)gyi . We
certainly have g(i) : Z

2
N → D. Since g

(i)
h = N−(k−1)fyi,h, we find that

ĝ
(i)
h (r) = N−(k−1)f̂yi,h(r), which is at least γN

2 if h ∈ E and r = φ(yi, h).
Therefore, the functions g(i) satisfy the hypothesis of Proposition 14.1 with
α = γ2p

∑
k θ(k)N

−1 and σi(h) = φ(yi, h). The conclusion of the lemma
then gives us exactly what we want for k-restrictions. Once again the result
for j-restrictions follows by symmetry. ✷

Now we shall define, in two stages, an appropriate generalization of a
parallelogram. Let B be a subset of Z

k
N . By a cube in B with sidelengths

(h1, . . . , hk) we shall mean a function κ from {0, 1}k to B of the form
κ : (ε1, . . . , εk) 
→ (r1 + ε1h1, . . . , rk + εkhk) .

We shall sometimes denote this cube [r1, . . . , rk;h1, . . . , hk]. For k � 2 it
will later be convenient to think of Z

k+1
N as a product Zk

N × ZN . Given
a subset B ⊂ Z

k+1
N , we shall mean by a cross-section of B a set of the

form Br = {(r1, . . . , rk, rk+1) ∈ B : rk+1 = r}. A cube in Br will sim-
ply mean a function from {0, 1}k to Br of the form ε 
→ (κ(ε), r), where
κ is a cube in Z

k
N . We shall sometimes denote this cube by (κ, r). Two

cubes (not necessarily in the same cross-section) will be called congru-
ent if they have the same sidelengths (h1, . . . , hk). By a parallelepiped
in B we shall mean an ordered pair of congruent cubes, both lying in
cross-sections of B. A parallelepiped pair will mean an ordered quadruple(
(κ1, r1), (κ2, r2), (κ3, r3), (κ4, r4)

)
, where κ1, κ2, κ3, κ4 are congruent and

(r1, r2, r3, r4) is an additive quadruple.
In order to prove facts about parallelepiped pairs, it will be convenient

to make two further definitions. If B ⊂ Z
k
N , then by a configuration in
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B we shall mean, roughly speaking, a product Q1 × · · · × Qk of additive
quadruples. This is not quite an accurate description as additive quadruples
are defined as ordered sets. The order matters here as well, and a precise
definition is that a configuration in B is a function λ : {0, 1}k×{0, 1}k → B
of the form

λ : (ε, η) 
→ (r1 + ε1g1 + η1h1, r2 + ε2g2 + η2h2, . . . , rk + εkgk + ηkhk) .

We shall sometimes denote this configuration by [r1, . . . , rk; g1, . . . , gk;
h1, . . . , hk].

If we choose j and fix every εi and ηi for i �= j, then we define a
restriction of λ which gives an additive quadruple in the j-direction. If
φ is a function from B to ZN such that all the 4k−1 additive quadruples
that arise in this way are φ-additive, then we shall say that φ respects the
configuration λ.

Given B ⊂ Z
k
N , a function φ : B → ZN and a cube κ in B, we define

φ(κ) =
∑

ε∈{0,1}k
(−1)|ε|φ(κ(ε)) .

(Here, as elsewhere, |ε| denotes
∑k

i=1 εi.) Just to illustrate this definition,
we note that

φ[x, y; a, b] = φ(x+ a, y + b)− φ(x+ a, y)− φ(x, y + b) + φ(x, y) .

Define a cube pair in B to be an ordered pair (κ1, κ2) of congruent cubes.
(The difference between this and a parallelepiped is that the cubes are
full-dimensional.) We shall say that φ respects this pair if φ(κ1) = φ(κ2).

Lemma 14.4. Let B ⊂ Z
k
N be a set of size βNk, let φ : B → ZN and

suppose that φ has the product property with parameter γ. Then φ respects
at least β4

k
γ2k.4

k
N3k configurations in B.

Proof. When k = 1, a configuration is an additive quadruple and φ respects
it if and only if it is φ-additive. Therefore, Proposition 6.1 gives us the
result.

Now suppose that k > 1 and that the result is true for k − 1. Let
B ⊂ Z

k
N be a set of cardinality βNk and for each r let Br be the cross-

section {(x1, . . . , xk) ∈ B : xk = r}. Write β(r)Nk−1 for the cardinality
of Br.

By our inductive hypothesis, Br contains at least β(r)4
k−1

γ2(k−1).4k−1
N3(k−1)

configurations respected by φ. By Jensen’s inequality, the average of this
quantity over r is at least β4

k−1
γ2(k−1).4

k−1
N3(k−1). Therefore, if a random

configuration λ is chosen in Z
k−1
N , then the average number of values of r for
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which φ respects the configuration (λ, r) (by which we mean the function
from {0, 1}k−1 to Br defined by ε 
→ (λ(ε), r)) is at least β4

k−1
γ2(k−1).4

k−1
N .

Let E(λ) be the set of such r and let η(λ)N be the size of E(λ).
We now fix λ and apply the product property to the 4k−1 functions

x 
→ φ(λ(ε1, ε2), x), which are all defined on the set E = E(λ). Taking θ
to be identically 1, we obtain from the product property that there are at
least γ8.4

k−1
η(λ)4N3 quadruples a+ b = c+ d such that for every (ε1, ε2) ∈

{0, 1}k−1 × {0, 1}k−1 we have
φ(λ(ε1, ε2), a) + φ(λ(ε1, ε2), b) = φ(λ(ε1, ε2), c) + φ(λ(ε1, ε2), d) .

But, by the definition of E, each such quadruple gives us a configura-
tion in B which is respected by φ. Since the average of η(λ) is at least
β4

k−1
γ2(k−1).4

k−1
, Jensen’s inequality implies that the number of configu-

rations in B that are respected by φ is at least γ8.4
k−1

β4
k
γ2(k−1).4

k
N3k =

β4
k
γ2k.4

k
N3k, which proves the result. ✷

Corollary 14.5. Let B ⊂ Z
k
N be a set of size βNk, let φ : B → ZN

and suppose that φ has the product property with parameter γ. Then φ
respects at least β4

k
γ2k.4

k
N3k cube pairs in B.

Proof. Let λ = [r1, . . . , rk; g1, . . . , gk;h1, . . . , hk] be a configuration in B
which is respected by φ. We shall show that the cube pair(

[r1, . . . , rk;h1, . . . , hk], [r1 + g1, . . . , rk + gk;h1, . . . , hk])

is also respected by φ. Since distinct configurations give distinct cube pairs
in this way, we will have proved the corollary. For every j between 0 and k
let us define κj to be the cube

[r1 + g1, . . . , rj + gj , rj+1, . . . , rk;h1, . . . , hk] .

Because φ respects the configuration λ, we know that for all choices of ηj
for j �= i, the additive quadruple

(r1 + g1 + η1h1, . . . , rj−1 + gj−1 + ηj−1, rj + εjgj + ηjhj , rj+1 + ηj+1hj+1,

. . . , rk + ηkhk) ,

where εi and ηi take the values 0 or 1, is φ-additive. This implies that
φ(κj−1) = φ(κj), and the argument works for every j between 1 and k.
Therefore, φ(κ0) = φ(κk), which is the required result. ✷

Corollary 14.6. Let B ⊂ Z
k+1
N be a set of size βNk+1, let φ : B → ZN

and suppose that φ has the product property with parameter γ. Then φ
respects at least β4

k+1
γk.4k+1

N5k+3 parallelepiped pairs in B.
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Proof. The proof of this result is similar to that of Lemma 14.4. For each
r ∈ ZN let β(r)Nk be the size of the cross-section Br of B. By Corollary
14.5, φ respects at least β(r)4

k
γ2k.4

k
N3k cube pairs in Br. The average of

this number over r is at least β4
k
γ2k.4

k
N3k. Therefore, if we choose r at

random and choose a cube κ in Z
k
N at random, the expected number of

cubes κ′ in Z
k
N for which

(
(κ, r), (κ′, r)

)
is a cube pair in Br respected by

φ is at least β4
k
γ2k.4

k
Nk.

Now let κ be some fixed cube in Zk
N and for each r let θ(r) be the

number of cubes κ′ in Zk
N for which

(
(κ, r), (κ′, r)

)
is a cube pair in Br

respected by φ. Let θ be the average of the θ(r). By the product property,
the sum of θ(a)θ(b)θ(c)θ(d) over all additive quadruples (a, b, c, d) such that

φ(κ(ε), a) + φ(κ(ε), b) = φ(κ(ε), c) + φ(κ(ε), d)

for every ε ∈ {0, 1}k is at least θ4γ8.2kN4k+3. But this sum counts the
number of parallelepiped pairs

(
(κ′i, ri)

)4
i=1 in B such that, for each i, (κi, ri)

lies in Bri and (κ
′
i, ri) is congruent to it. It is certainly a lower bound for the

number of parallelepiped pairs such that each of the four cubes is congruent
to κ.

If we now choose randomly, for every h = (h1, . . . , hk), some cube
κ(h) with sidelengths (h1, . . . , hk) and apply the above argument, we shall
obtain, on average, at least (β4

k
γ2k.4

k
)4γ8.2

k
N5k+3 distinct parallelepiped

pairs, since the average of θ (which still depends on κ) is at least β4
k
γ2k.4

k
.

This proves the corollary (where, just for the sake of neatness, we have
stated a weaker bound). ✷

Let B ⊂ Z
k+1
N . By a d-arrangement in B we shall mean a sequence

C1, . . . , C2d of congruent cubes, where Cj lies in the cross-section Brj , and

r1 + · · ·+ rd = rd+1 + · · ·+ r2d .

Thus, a parallelepiped pair is simply a 2-arrangement, and when k = 1 we
recover the definition of d-arrangement given in §12. It is also convenient to
think of a d-arrangement as a function ρ : {0, 1}k × {1, 2, . . . , 2d} → Z

k+1
N

of the form

ρ : (ε1, . . . , εk, j) 
→ (yj1 + ε1h1, . . . , y
j
k + εkhk, rj) .

Here, r1, . . . , r2d are as above and each of the constituent cubes of the d-
arrangement has sidelengths (h1, . . . , hk) but is otherwise arbitrary. It is
easy to see that the number of d-arrangements in Z

k+1
N is N (2d+1)k+2d−1.

The next lemma is a generalization of Lemma 12.4 and has a very similar
proof.
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Lemma 14.7. Let B ⊂ Z
k+1
N and let φ : B → ZN . Suppose that φ respects

θN5k+3 parallelepiped pairs in B. Then φ respects at least θ7N17k+15 8-
arrangements in B.

Proof. Given u, x ∈ ZN and h = (h1, . . . , hk) ∈ Z
k
N , let fu,h(x) be∑

κ ω
uφ(κ,x), where the sum is over all configurations κ in Z

k
N with side-

lengths (h1, . . . , hk), and we interpret ωuφ(κ,x) as zero when φ(κ, x) is not
defined (which happens when (κ, x) does not live in Bx). Clearly |fu,h(x)|
is at most Nk for every u, x, h, which implies that

∑
x |fu,h(x)|2 � N2k+1

for every u, h, and therefore that
∑

u,r,h |f̂u,h(r)|2 � N3k+3.
We also have ∑

u,r

|f̂u,h(r)|4 =
∑
u,r

∣∣∣∑
κ,x

ωuφ(κ,x)−rx
∣∣∣4

for every h, where once again κ ranges over all cubes in Z
k
N with sidelengths

(h1, . . . , hk). This is N2 times the number of parallelepiped pairs respected
by φ for which the sidelengths of the cubes are (h1, . . . , hk). It follows from
our assumptions that ∑

u,r,h

|f̂u,h(r)|4 � θN5k+5 .

Similarly,
∑

u,r,h |f̂u,h(r)|16 is N2 times the number of 8-arrangements
respected by φ. Therefore, by Lemma 9.1, the number of 8-arrangements
is at least N−2(θN5k+5/N6(3k+3)/7)7 = θ7N17k+15 as claimed. ✷

Combining Corollary 14.6 and Lemma 14.7 we obtain the main result
of this section (which will be applied in conjunction with Lemmas 14.2
and 14.3).

Lemma 14.8. Let B ⊂ Z
k+1
N be a set of size βNk+1, let φ : B → ZN

and suppose that φ has the product property with parameter γ. Then φ
respects at least β7.4

k+1
γ7k.4

k+1
N17k+15 8-arrangements in B. ✷

15 Increasing the Density of Respected Arrangements

We shall now use an argument similar to those of §9 and §12 to pass to a
subset of B where φ respects almost all 8-arrangements. (We shall actually
prove our results for general d-arrangements and then take d to be 8 later.)
In order to do this, we shall need a brief discussion of a small number
of degenerate cases where a later argument does not work. Just for the
next lemma it will be convenient to consider sequences in {−1, 1}k rather
than {0, 1}k.
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Lemma 15.1. Let h1, . . . , hk be non-zero elements of ZN , and let η :
{−1, 1}k → {−1, 0, 1} be a function such that the sum∑

ε∈{−1,1}k
η(ε)

∏
i∈A
(yi + εihi)

is independent of y1, . . . , yk for every subset A ⊂ {1, 2, . . . , k}. Then η is a
multiple of the function ε 
→

∏
εi.

Proof. Throughout this lemma, any sum over ε will denote the sum over all ε
in the set {−1, 1}k. The functions ε 
→

∏
i∈A εi are orthogonal with respect

to the symmetric bilinear form 〈η1, η2〉 =
∑

ε η1(ε)η2(ε). (Recall that N is

prime. This bilinear form is defined on the vector space Z
{−1,1}k
N and the

functions are the Walsh basis for this space.) Therefore, it is enough to
prove that

∑
ε η(ε)

∏
i∈A εi = 0 for every proper subset A ⊂ {1, 2, . . . , k}.

This we do by induction on A (with respect to containment).
First, let A be a proper subset of {1, 2, . . . , k} and let j /∈ A. From the

assumption of the lemma, applied to the set A ∪ {j}, we know that
yj

∑
ε

η(ε)
∏
i∈A
(yi + εihi) + hj

∑
ε

η(ε)εj
∏
i∈A
(yi + εihi)

is independent of yj . Since the second part of the sum does not involve yj ,
this implies that ∑

ε

η(ε)
∏
i∈A
(yi + εihi) = 0 .

Now we give the inductive argument. When A = ∅, we have∑
ε

η(ε)
∏
i∈A

εi =
∑
ε

η(ε) =
∑
ε

η(ε)
∏
i∈A
(yi + εihi) ,

which is zero by the above inequality. For general A, we have

0 =
∑
ε

η(ε)
∏
i∈A
(yi + εihi)

=
∑
ε

η(ε)
∑
B⊂A

∏
i∈A\B

yi
∏
i∈B

εihi

=
∑
B⊂A

∏
i∈A\B

yi
∏
i∈B

hi

∑
ε

η(ε)
∏
i∈B

εi

=
∏
i∈A

hi

∑
ε

η(ε)
∏
i∈A

εi

where the last equality follows from the inductive hypothesis. Since the hi

are non-zero, the result is proved for A. ✷
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If we now make the substitution y′i = yi − hi and h′i = 2hi, and then
remove the dashes, we obtain the result for functions on {0, 1}k, which is
what we actually want.

Corollary 15.2. Let h1, . . . , hk be non-zero elements of ZN , and let
η : {0, 1}k → {−1, 0, 1} be a function such that the sum∑

ε∈{0,1}k
η(ε)

∏
i∈A
(yi + εihi)

is independent of y1, . . . , yk for every subset A ⊂ {1, 2, . . . , k}. Then η is a
multiple of the parity function π : ε 
→ (−1)

∑
εi . ✷

Define a function η0 : {0, 1}k × {1, 2, . . . , 2d} → {−1, 1} by letting
η0(ε, j) be π(ε) if 1 � j � d and −π(ε) if d + 1 � j � 2d. We shall say
that a d-arrangement ρ is degenerate if there is a function η :
{0, 1}k×{1, 2, . . . , 2d} → {−1, 0, 1} which is not a multiple of η0 but which
nevertheless has the property that∑

ε,j

η(ε, j)
∏
i∈A

ρ(ε, j)i = 0

for every subset A ⊂ {1, 2, . . . , k + 1}. (Here, ρ(ε, j)i denotes the ith co-
ordinate of ρ(ε, j).) We wish to show that there are very few degenerate
d-arrangements. Let us give a simple lemma first.

Lemma 15.3. Let µ : Z
k
N → ZN be a multilinear function which is not

constant. Then for any a the number of solutions of µ(y1, . . . , yk) = a is at
most Nk − (N − 1)k � kNk−1.

Proof. The result is trivial when k = 1, so let k > 1 and assume the result
for k − 1. There are unique multilinear functions µ1 and µ2 such that

µ(y1, . . . , yk) ≡ ykµ1(y1, . . . , yk−1) + µ2(y1, . . . , yk−1) .
If we can find two different elements r, s of ZN such that the (k− 1)-linear
restrictions µ(y1, . . . , yk−1, r) and µ(y1, . . . , yk−1, s) of µ are both constant,
then we can solve for µ1 and µ2 and show that they are both constant
as well. Since µ is non-constant, µ1 is not identically zero and there are
exactly Nk−1 solutions of the equation.

Otherwise, with the exception of at most one r, the function
µ(y1, . . . , yk−1, r) is not constant. This allows us to apply our inductive
hypothesis to conclude that the number of solutions of µ(y1, . . . , yk) = a is
at most Nk−1 + (N − 1)(Nk−1 − (N − 1)k−1) = Nk − (N − 1)k. ✷

The estimate above is sharp, since it gives the exact number of solutions
of the equation y1 . . . yk = 0.
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Lemma 15.4. The number of degenerate d-arrangements in Z
k+1
N is at most

32d.2
k
kN (2d+1)k+2d−2.

Proof. Let us fix non-zero sidelengths h1,...,hk and cross-sections r1,...,r2d
and take a general d-arrangement

ρ : (ε1, . . . , εk, j) 
→ (yj1 + ε1h1, . . . , y
j
k + εkhk, rj)

with those sidelengths.
Suppose first that η(ε, j) fails, for some j, to be a multiple of the

parity function π. Then Corollary 15.2 tells us that there exists a set
A ⊂ {1, . . . , k} such that

∑
ε η(ε, j)

∏
i∈A(yi + εihi), when considered as a

function of y1, . . . , yk, is non-constant. By Lemma 15.3, whatever the choice
of ρ(ε, t) for t �= j there are at most kNk−1 choices of (yj1, . . . , y

j
k) for which∑

ε,t η(ε, t)
∏

i∈A ρ(ε, t)i = 0. Therefore, the number of d-arrangements with
sidelengths (h1, . . . , hk) and cross-sections r1, . . . , r2d such that∑

ε,t η(ε)
∏

i∈A ρ(ε, t)i = 0 for every A ⊂ {1, 2, . . . , k} is at most
kNk−1N (2d−1)k = kN2dk−1.

If on the other hand η(ε, j) is a multiple of the parity function for every j,
then let us write η(ε, j) = ηjπ(ε) and consider the set A = {1, 2, . . . , k+1}.
We have∑

ε,t

η(ε, t)
∏
i∈A

ρ(ε, t)i =
∑
ε,t

η(ε, t)
k+1∏
i=1

ρ(ε, t)i = (−1)kh1 . . . hk

∑
j

ηjrj .

If η is not a multiple of η0, then (η1, . . . , η2d) is not a multiple of the
sequence (1, . . . , 1,−1, . . . ,−1) (d ones followed by dminus ones). Therefore
the equation

∑
j ηjrj places a further linear restriction on the sequence

(r1, . . . , r2d), meaning that the number of choices for this sequence is at
most N2d−2.

There are (strictly) fewer than 32d.2
k
functions η : {0, 1}k×{1, . . . , 2d} →

{−1, 0, 1} that are not multiples of η0. For each such function, the argu-
ments we have just given show that the proportion of d-arrangements such
that

∑
ε,t η(ε)

∏
i∈A ρ(ε, t)i = 0 for every A ⊂ {1, 2, . . . , k + 1} is at most

k/N . Finally, the proportion of d-arrangements for which at least one of
the sidelengths hi is zero is also at most k/N . The lemma is proved. ✷

Notice that, in the above proof, the only set A containing the element
k + 1 that we needed to consider was the set {1, 2, . . . , k + 1} itself. Thus,
it would be possible to get away with a weaker definition of degeneracy.
We are now ready for another random selection with dependences defined
using Riesz products.
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Lemma 15.5. Let β, η > 0, let B ⊂ Z
k+1
N be a set of size βNk+1 and

let φ : B → ZN be a function respecting at least αβ15N17k+15 8-arrange-
ments in B. Then there is a subset B′ ⊂ B containing at least
(αη/4)2

2k+4+k+3
β15N17k+15 8-arrangements, such that the proportion of

them that are respected by φ is at least 1− η.

Proof. Let r be a positive integer to be determined later. For every set
A ⊂ {1, . . . , k + 1} and every 1 � j � r choose elements tj and sA,j

uniformly and independently at random from ZN . Having made the choices
of the tj and the sA,j , let each element y ∈ B belong to B′ with probability
p(y) given by the formula

2−r
r∏

j=1

(
1 + cos

2π
N

(
tjφ(y) +

∑
A

sA,j

∏
i∈A

yi
))

and let these probabilities be independent (conditional on the choices for
the tj and sA,j).

Here, and for the rest of the proof, any sum overA ranges over all subsets
of {1, 2, . . . , k + 1}. Let us adopt the following similar conventions. Any
sum over ε will range over {0, 1}k, any sum over h will be over {1, 2, . . . , 16}
and any sum over S or Sj will be over functions from the power set of
{1, 2, . . . , k + 1} to ZN . The idea of the last convention is that a sum over
S or Sj is shorthand for a string of 2k+1 sums of the form

∑
sA
or

∑
sA,j
.

The probability that an 8-arrangement λ : {0, 1}k × {1, . . . , 16} → B
belongs to B′ is

N−(2k+1+1)r
∑

t1,...,tr

∑
S1,...,Sr

∏
ε,h

2−r
r∏

j=1

(
1+cos

2π
N

(
tjφ(λ(ε, h))+

∑
A

sA,jλ(ε, h)i
))

which equals

N−(2k+1+1)r
(∑

t

∑
S

∏
ε,h

2−r
(
1 + cos

2π
N

(
tφ(λ(ε, h)) +

∑
A

sAλ(ε, h)i
))r

.

By rewriting 1 + cos 2πN
(
tφ(λ(ε, h)) +

∑
A sAλ(ε, h)i

)
as

1
2
(1 + 1 + ωtφ(λ(ε,h))+

∑
A sAλ(ε,h)i + ω−tφ(λ(ε,h))−

∑
A sAλ(ε,h)i)

we see that the product over (ε, h) is a sum of 42
k+4

terms of the form

2−2
k+4(r+1)

∏
ε,h

ωη(ε,h)
(
tφ(λ(ε,h))+

∑
A sAλ(ε,h)i

)
which equals

2−2
k+4(r+1)ωt

∑
ε,h η(ε,h)φ(λ(ε,h))+

∑
A sA

∑
ε,h η(ε,h)

∏
i∈A λ(ε,h)i .
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A term contributes to the sum over all the sA if and only if all the sums∑
ε,h η(ε, h)

∏
i∈A λ(ε, h)i are zero, and if λ is non-degenerate, then this can

happen only when η is a multiple of η0. If λ is non-degenerate, η �= 0
and the term contributes to the sum over t, then we must have in addition
that

∑
ε,h η0(ε, h)φ(λ(ε, h)) = 0. It is not hard to see that this is precisely

the definition of φ respecting the 8-arrangement λ. The contribution of a
non-zero term to the sum over t and the sA is 2−2

k+4(r+1)N2k+1 and the
number of multiples of η0, counted with multiplicity, is 22

k+4
+ 2, since 0

can be produced in 22
k+4

ways, and ±η0 in one way each.
Therefore, if λ is non-degenerate, the sum over t and the sA is

2−2
k+4rN2k+1 if φ does not respect λ and 2−2

k+4rN2k+1(1 + 2.2−2
k+4
) if

it does. It follows that the probability that λ belongs to B′ is 2−2
k+4r if

φ does not respect λ and 2−2
k+4r(1 + 2.2−2

k+4
)r if it does. Therefore, our

hypotheses imply that the expected number X of 8-arrangements respected
by φ is at least 2−2

k+4r(1+2.2−2
k+4
)rαβ15N17k+15, and the expected num-

ber Y of non-degenerate 8-arrangements not respected by φ is at most
2−2

k+4rαβ15N17k+15. Using the fact that

1 + 2.2−2
k+4 � 22

−2k+4+1
,

we can deduce that if 22
−2k+4+1r � 2/αη, then

ηEX − EY � αη(2/αη)2−2
k+4rβ15N17k+15 − 2−2k+4rβ15N17k+15

� 2−2
k+4rβ15N17k+15 .

But 22
−2k+4+1r � 2/αη if and only if 2r � (2/αη)2

2k+4−1
if and only if

2−r � (αη/2)2
2k+4−1

if and only if

2−2
k+4r � (αη/2)2

2k+4−12k+4
= (αη/2)2

2k+4+k+3
.

Let r be an integer such that

2(αη/4)2
2k+4+k+3 � 2−2

k+4r � (αη/2)2
2k+4+k+3

.

If N is large enough that (αη/4)2
2k+4+k+3

β15N � 32
k+4

k, then Lemma 15.4
and the values of the above expectations imply that a set B′ exists such
that X � (αη/4)2

2k+4+k+3
β15N17k+15, ηX � 2Y and Y � Z, where Z is

the number of degenerate 8-arrangements. This proves the lemma. ✷

The final lemma of this section is a combination of the previous one
with Lemma 14.8 in the case η = 2−44, which is the value that will be used
in applications.
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Lemma 15.6. Let β, γ > 0. Let B ⊂ Z
k+1
N be a set of size βNk+1 and let φ :

B → ZN be a function satisfying the product property with parameter γ.
Then B has a subset B′ containing at least (βγ/2)2

2k+5

N17k+15 8-arrange-
ments such that the proportion of them that are respected by φ is at least
1− 2−44.
Proof. By Lemma 14.8, φ respects at least β7.4

k
γ7k.4

k+1
N17k+15 8-arrange-

ments, and therefore, by Lemma 15.5, B has a subset B′ containing at least(
2−46β7.4

k
γ7k.4

k+1)22k+4+k+3
N17k+15 8-arrangements, such that the propor-

tion respected by φ is at least 1− 2−44. The lemma follows from a simple
numerical check. ✷

16 Finding a Multilinear Piece

This section is, as its title suggests, a generalization of §13. As with the
last two sections, there will be no major new ideas over and above those
needed for bilinearity (and hence progressions of length five) but it is not
quite true that there is an obvious one-to-one correspondence between the
lemmas that are needed. We begin with a simple consequence of Corollary
5.11. It is the appropriate generalization of Lemma 13.5.

Lemma 16.1. Let k be an integer, let K = (k + 1)22k+4 and let m �
2K

2k+1q232(k+1)2+1
. Let P be a box in Z

k
N of width at least m, and let

µ1, . . . , µq be k-linear functions defined on P . Then P can be partitioned

into boxes P1, . . . , PM of width at least mK−2k+1q
with the following prop-

erty. For every i and j and every x ∈ Pj we have the inequality |µi(x)dj | �
2m−K−2k+1q

N , where dj is the common difference of the box Pj .

Proof. Let d be the common difference of P and let I ⊂ ZN be an arithmetic
progression (in Z) of common difference d and size at least m. Then Q =
P × I is a box in Z

k+1
N of gap d and width at least m. Define (k+1)-linear

functions νi : Q → ZN by νi(x, y) = µi(x)y. By Corollary 5.11, we can

partition Q into boxes Qj of width at least mK−2k+1q
in such a way that

the diameter of every set νi(Qj) is at most 2Ck+1m
−K−2k+1q

N . Let y be
the minimal element of I and define an equivalence relation on P by setting
x1 ∼ x2 if (x1, y) and (x2, y) lie in the same box Qj . The equivalence classes

are clearly boxes of width at least mK−2k+1q
, and the common difference dj

of one of these boxes Pj is the common difference of the box Qj′ containing
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Pj × {y}. The result now follows from the observation that, given x ∈ Pj ,∣∣µi(x)dj
∣∣ = ∣∣νi(x, y + dj)− νi(x, y)

∣∣ ,
which is at most the diameter of νi(Qj′). ✷

We are about to state a somewhat complicated inductive hypothesis
(Theorem 16.2 below) which will be used to prove the main result of this
section. First, let us extend slightly the definition of the product property
from §14. Let Γ be any subset of Z

k
N × ZN and let γ > 0. We shall

say that Γ has the product property with parameter γ if, for every subset
B ⊂ Z

k
N and every function φ : B → ZN with graph contained in Γ (in

other words, (x, φ(x)) ∈ Γ for every x ∈ B), φ has the product property
with parameter γ. We shall sometimes abbreviate this as the γ-product
property.

Before making the next definition, let us define three similar func-
tions. We let c(θ, γ, k) = (γθ)2

2k+8

, q(θ, γ, k) = 1/c(θ, γ, k) and s(θ, γ, k) =

(2/θγ)2
2k+6

. We shall now define Γ to be (γ, r)-multiply k-linear if, for
every θ > 0 and every box P of width m, there exists a subset H ⊂ P
of cardinality at least (1− θ)|P | together with a partition of P into boxes
P1, . . . , PM of width at least mc(r−1θ,γ,k)r such that for each j there are
k-linear functions µ1, . . . , µq defined on Pj , where q � q(r−1θ, γ, k)r, such
that, for every x ∈ Pj ∩ H and every y with (x, y) ∈ Γ, y = µi(x) for
some i. Loosely speaking, this says that every box P can be partitioned
into further boxes Pj such that, after a small bit of Γ has been thrown
away, for every j, Γ ∩ (Pj × ZN ) is contained in the union of the graphs
of not too many k-linear functions. If r = 1, we shall say simply that Γ is
γ-multiply k-linear. If we do not wish to specify k, then we shall say that
Γ is (γ, r)-multiply multilinear.

It is an immediate consequence of the definition that if Γ is a (γ, r)-
multiply multilinear set and Γ′ ⊂ Γ, then Γ′ is also (γ, r)-multiply multi-
linear.

The next theorem is the main inductive statement we shall need in order
to prove an appropriate generalization of Theorem 13.12 to functions that
fail to be uniform of degree k + 1. (See Corollary 16.11 below.)

Theorem 16.2. Let Γ ⊂ Z
k
N × ZN have cardinality at most γ−2Nk and

satisfy the product property with parameter γ. Then for every θ > 0 there
is a subset J of Z

k
N of size at least (1 − θ)Nk, such that Γ ∩ (J × ZN ) is

(γ, γ−2s(θ, γ, k))-multiply k-linear.
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We shall split the proof of Theorem 16.2 into a number of lemmas, most
of them easy. First, we check that the induction starts.

Lemma 16.3. Theorem 16.2 is true in the case k = 1.

Proof. Let θ > 0. Either there is a set H of size at most θN such that
Γ ⊂ H × ZN or we can find a set A of size at least θN and a function
φ : A → ZN such that (x, φ(x)) ∈ Γ for every x ∈ A. In the first case we
can simply set J = ZN \H and the result is trivial. Otherwise, we know
that φ has the product property with parameter γ, which implies that the
number of φ-additive quadruples is at least γ8θ4N3 = γ8θ(θN)3. Corollary
7.6 now gives us a subset B ⊂ A of cardinality at least 2−1882γ9312θ1165N
such that the restriction of φ to B is a homomorphism of order 8.

If we now remove from Γ all points (x, φ(x)) with x ∈ B, we obtain a
new set Γ1 to which the above argument may be applied again. Continuing,
we construct sets B1, . . . , Bq of cardinality at least 2−1882γ9312θ1165N and
homomorphisms φi : Bi → ZN of order 8, such that the graph of each
φi is contained in Γ, these graphs are disjoint and there is a set J ⊂ ZN

of size at least (1 − θ)N such that x ∈ J and (x, y) ∈ Γ implies that
y = φi(x) for some i. Moreover, the upper bound on the size of Γ implies
that q � 21882γ−9314θ−1165.

Now let P be an arithmetic progression (or a one-dimensional box). By
Corollary 7.11, with α = 2−1882γ9312θ1165 and q as above, we can partition
P into subprogressions Q1, . . . , QM , each of size at least |P |2−14α2q−1 �
|P |2−6000γ30000θ15000

such that the restriction of each φi to each Bi ∩ Qj is
linear. It is not hard to check that these numbers do indeed demonstrate
that Γ ∩ (J × ZN ) is (γ, γ−2s(θ, γ, 1))-multiply linear. ✷

We are now ready to begin the inductive argument in earnest.

Lemma 16.4. Suppose that Theorem 16.2 is true for k. Let θ > 0 and
let Γ ⊂ Z

k+1
N × ZN be a set of cardinality at most γ−2Nk+1 satisfying the

product property with parameter γ. Then either there is a set H ⊂ Z
k+1
N

of cardinality less than θNk+1 such that Γ ⊂ H ×ZN , or one can find a set
B ⊂ Z

k+1
N and a function φ : B → ZN with the following properties:

(i) the restriction of φ to any proper cross-section of B is
(γ, γ−2s(2−(k+2)θ, γ, k))-multiply multilinear;

(ii) B contains at least (θγ)2
2k+5

N17k+15 8-arrangements;
(iii) of the 8-arrangements in B, the proportion respected by φ is at least

1− 2−44.
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Proof. If the first alternative does not hold, then we can find a set A ⊂
Z
k+1
N of cardinality at least θNk+1 and a function φ : A → ZN such that
(x, φ(x)) ∈ Γ for every x ∈ A. Then φ has the γ-product property. In
fact, so does the restriction of φ to any cross-section of A of the form
AX,z = {x ∈ A : xi = zi for every i ∈ X}. (This follows directly from the
definition.) Let ζ = 2−(k+2)θ, let l � k and let AX,z be an l-dimensional
cross-section of A of cardinality βN l. By the inductive hypothesis, there
is a subset A′

X,z ⊂ AX,z of cardinality at least (β − ζ)N l such that the
restriction of φ to A′

X,z is (γ, γ
−2s(ζ, γ, l))-multiply l-linear.

For any given set X ⊂ [k+1] of size k+1− l, there are Nk+1−l different
cross-sections AX,z, which partition A. Therefore, we can find a subset
A′ ⊂ A of cardinality at least (θ− ζ)Nk+1, such that the restriction of φ to
any cross-section of A′ in direction X is (γ, γ−2s(ζ, γ, k))-multiply l-linear.
Repeating this argument for all the 2k+1 − 1 non-empty sets X ⊂ [k + 1],
we can find a subset A′′ ⊂ A of cardinality at least θNk+1/2 such that
the restriction of φ to any proper cross-section of A′′ is (γ, γ−2s(ζ, γ, k))-
multiply multilinear of the appropriate dimension.

As remarked just before the statement of the lemma, this property is
preserved if we pass to a subset of A′′. We now do precisely that, using
Lemma 15.6 to find a subset B of A′′ containing at least (θγ/2)2

2k+5

N17k+15

8-arrangements, such that the proportion of them respected by φ is at least
1− 2−44. The lemma is now proved. ✷

For any h1, . . . , hk, x, let Xh1,...,hk
(x) be the set of all cubes with side-

lengths (h1, . . . , hk) in the cross-section Bx of B. Let Xh1,...,hk
be the union

of these sets. Then Xh1,...,hk
is a domain (in the sense of §10, under the

splitting into the sets Xh1,...,hk
(x)). For the rest of this section, we shall

frequently abbreviate (h1, . . . , hk) by h, as we did in §14. If we let f be
the characteristic function of B, then it is easy to see from the definition
of the function fh (given just before Lemma 14.3) that fh(y) is the number
of cubes with sidelengths (h1, . . . , hk) = h in the cross-section By, or in
other words the cardinality of Xh(y). For each h = (h1, . . . , hk), let C(h)
be the number of 8-arrangements in B made out of cubes with sidelengths
(h1, . . . , hk). Let G(h) be the number of these that are respected by φ. Re-
call from just before Lemma 14.4 that any function φ : Zk+1

N → ZN induces
a function (which we also call φ) on Xh.

We shall write θ1 for the number (θγ/2)2
2k+5

that appeared in the last
lemma. Recall that the Bohr neighbourhood B(K, ζ) is defined to be the
set of all s ∈ ZN such that |rs| � ζN for every r ∈ K. Given a function φ
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defined on a domain (Z, r) and a subset B ⊂ ZN with B = −B, we shall say
that φ is a B-homomorphism if there is a Freiman homomorphism ψ : B →
ZN such that φ(x)−φ(y) = ψ(r(x)−r(y)) whenever r(x)−r(y) ∈ B. (This
generalizes to multifunctions the definition given just after Corollary 7.9.)
Thus, the conclusion of Theorem 10.13 is that φ restricted to Y is a C-
homomorphism.

Lemma 16.5. Let (B,φ) be a pair satisfying conditions (i), (ii) and (iii)
of Lemma 16.4 and let f be the characteristic function of B. Then there
exists a set H ⊂ Z

k
N such that

∑
h∈H C(h) � (θ1/4)N17k+15 with the

following property. For every h ∈ H there is a set Yh ⊂ Xh of cardinality
at least 2−22θ61|Xh| such that the restriction of φ to Yh is a B(Kh, ζ)-
homomorphism, where

Kh =
{
r ∈ ZN : |f̂h(r)| � 2−37(θ1/4)11/2Nk+1}

and ζ = 2−s(θ,γ,k).

Proof. We continue to write η for the number 2−44. Since φ respects a
proportion of at least 1− η of the 8-arrangements of B, of which there are
at least θ1N17k+15, we may deduce that∑

{C(h) : G(h) � (1− 2η)C(h)} � 1
2

∑
C(h) � (θ1/2)N17k+15 .

Another simple averaging argument shows that∑{
C(h) : G(h) � (1−2η)C(h), C(h) � (θ1/4)N16k+15} � (θ1/4)N17k+15 .

Let H be the set of all h ∈ Zk
N such that G(h) � (1− 2η)C(h) and C(h) �

(θ1/4)N16k+15, and note that our estimate for
∑

h∈H C(h) implies that H
has cardinality at least θ1Nk/4.

The statement that G(h) � (1− 2η)C(h) is equivalent to the statement
that the function induced by φ on Xh is a (1−2η)-homomorphism of order
eight. We know that Xh(y) has cardinality at most Nk for each y, and it is
not hard to show that if C(h) � (θ1/4)N16k+15 then the cardinality of Xh

is at least θ1Nk+1/4. Therefore, for every h ∈ H we may apply Theorem
10.13 (with α = θ1/4 and g = fh) and find a subset Yh ⊂ Xh of cardinality
at least 2−16θ31|Xh| such that the restriction of φ to Yh is a B(Kh, ζ)-
homomorphism, where ζ is determined (as a function of θ) by the equations

θ1 = (θγ/2)2
2k+5

, α = θ1/4, k0 = 274α−10 and ζ = 2−155k0α18k0k0. It can
be checked that the resulting number ζ exceeds 2−s(θ,γ,k). ✷

From the definition of a B(Kh, ζ)-homomorphism, we know in particu-
lar that, for any x ∈ ZN and any h ∈ H, the restriction of φ to Yh(x) is
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constant. Let us write φ′(h, x) for this value, when it is defined. Corol-
lary 10.14 tells us that if d ∈ B(Kh, ζ/l) then the restriction of φ′(h, .) to
any arithmetic progression with common difference d and length at most l
is linear. This fact will be used in the next lemma. We shall also adopt the
convention that if a box in Z

k+1
N is written as a Cartesian product A×B,

then A and B are boxes in Z
k
N and ZN respectively.

Let δ = 2−37(θ1/4)11/2 and define ∆ ⊂ Z
k
N×ZN to be the set of all (h, r)

such that |f̂h(r)| � δNk+1, that is, such that r ∈ Kh. Lemma 14.3 tells us
that ∆ has the product property with parameter δ. Therefore, if Theorem
16.2 is true for k, then there is a subset J ⊂ Z

k
N of size at least (1−θ1/8)Nk

such that ∆1 = ∆ ∩ (J × ZN ) is (δ, δ−2s(θ1/8, δ, k))-multiply k-linear. Let
H1 = H ∩ J , where H is the set defined in the proof of Lemma 16.5. Since∑

h/∈J C(h) � (θ1/8)N17k+15, we find that
∑

h∈H1
C(h) � (θ1/8)N17k+15.

Before we state and prove the next lemma, let us remark that the def-
inition of the set ∆ above is in a sense the moment where the induction
takes place. For any given h, there are at most δ−2 values of r such that
(h, r) ∈ ∆, so ∆ is the union of the graphs of at most δ−2 functions. We
have therefore managed once again to reduce the number of variables by
one by considering a new function which tells us where some Fourier coef-
ficients related to the domain of the old function are large. The results of
the previous two sections together with the inductive hypothesis have told
us that the new function has a lot of structure; this will now be used to tell
us about the old function, which will complete the inductive step.

Lemma 16.6. Let P = Q × I be a box in Z
k+1
N of width at least m, let

t = δ−2s(θ1/8, δ, k), let σ > 0 and let l = (ζ/2)mc(t−1σ,δ,k)t/2K2k+1q
. Then

there is a subset G ⊂ Q of size at least (1−σ)|Q| and a partition of P into
boxes Su = Tu × Ju of width at least l, such that, for every u and every
h ∈ G ∩ H1 ∩ Tu, the function from Ju to ZN defined by x 
→ φ′(h, x) is
linear.

Proof. Because ∆1 is (δ, t)-multiply k-linear, we can find a subset G ⊂ Q of
size at least (1−σ)|Q| and a partition ofQ into subboxesQj of width at least
m1 = mc(σ/t,δ,k)t such that for each j there are k-linear functions µ1, . . . , µq

from Qj to ZN , with q � q(σ/t, δ, k)t such that ∆1 ∩
(
(G ∩ Qj) × ZN

)
is

contained in the union of the graphs of the µi. This says that, for any
h ∈ G ∩ Qj , the set Kh = {r ∈ ZN : |f̂h(r)| � δNk+1} is a subset of
{µ1, . . . , µq}.

By Lemma 16.1, each Qj may be partitioned into subboxes Rt of width
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at leastm2 = m
1/K2k+1q

1 � l2 and common difference dt such that, given any

h ∈ Rt and any i, |µi(h)dt| � 2m−1/K2k+1q

1 � ζN/(l+1). By the conclusion
of the last paragraph, this implies that, whenever h ∈ G ∩ Rt, dt belongs
to the Bohr neighbourhood B(Kh, ζ/(l + 1)). For each t, Rt × I can be
partitioned into boxes Su = Tu × Ju of width l or l+ 1. As remarked after
the statement of Lemma 16.5, the restriction of φ′(h, .) to an arithmetic
progression with common difference d ∈ B(Kh, ζ/(l + 1)) and length at
most l+1 is linear. In other words, the function from Ju to ZN defined by
x 
→ φ′(h, x) is linear, as stated. ✷

Notice that it was vital in the above lemma that ∆1 should have good
structure and that this should give us information, via Fourier coefficients,
about the restriction of φ to the sets Yh, even though the definition of ∆1
was in terms of the Xh. It was to achieve this that we worked so hard
in §10.
Lemma 16.7. Let θ2 = 2−21θ51. Then there exist elements x1, . . . , xk of
ZN such that, for at least θ2N

k+1 choices of (h1, . . . , hk, x) with h ∈ H1,
φ′(h, x) is defined and equals∑

ε∈{0,1}k
(−1)|ε|φ(x1 + ε1h1, x2 + ε2h2, . . . , xk + εkhk, x) .

Proof. The expression given for φ′(h, x) is valid whenever Yh(x) con-
tains the cube [x1, . . . , xk;h1, . . . , hk]. Since |H1| � (θ1/8)Nk and |Xh| �
(θ1/4)Nk+1 for every h ∈ H1, we find that

∑
h∈H |Yh| � 2−21θ51N

2k+1 =
θ2N

2k+1 (by the estimate for the sizes of the sets Yh in Lemma 16.5).
Therefore, if we choose the xj randomly, the expected number of choices of
(h1, . . . , hk, x) with h ∈ H1 for which the equality holds is at least θ2Nk+1.
The lemma follows. ✷

Lemma 16.8. Suppose that Γ1, . . . ,Γr are (γ, s)-multiply (k + 1)-linear
subsets of Z

k+1
N ×ZN . Then Γ1 ∪ · · · ∪ Γr is (γ, rs)-multiply (k+ 1)-linear.

If φ1, . . . , φr are (γ, s)-multiply (k+1)-linear functions defined on a subset
B ⊂ Z

k+1
N , then φ1 + · · ·+ φr is (γ, rs)-multiply (k + 1)-linear.

Proof. Let P be a box. We can find a subset H1 ⊂ P of size at least
(1− θ/rs)|P | and a partition of P into boxes Q of width at least
mc((rs)−1θ,γ,k)s such that Γ1 restricted to any Q ∩ H1 is contained in the
union of the graphs of q((rs)−1θ, γ, k, )s multilinear functions. Now re-
peat this argument inside each Q for the set Γ2 and so on. At each of
the r stages of this process, the width of the boxes is raised to the power
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c((rs)−1θ, γ, k)s, the number of new multilinear functions introduced in-
side each box is at most q((rs)−1θ, γ, k)s and θ|P |/rs points are thrown
away. Therefore, at the end of the process we have a width of at least
mc((rs)−1θ,γ,k)rs and rq((rs)−1θ, γ, k)s multilinear functions for each set Γi.
The result about unions follows (and in fact we have overestimated the
number of multilinear functions needed). The result for sums of functions
also follows, once we notice that there are q((rs)−1θ, γ, k)rs functions of the
form µ1 + · · ·+ µr, with each µi one of the multilinear functions chosen at
the ith stage. ✷

Let us now fix a choice of x1, . . . , xk satisfying the conclusion of
Lemma 16.7 and write φε(h, x) for φ(x1 + ε1h1, . . . , xk + εkhk, x). Write
also φ1(h, x) for the function φε(h, x) when ε = (1, 1, . . . , 1). Regard
all these functions as being defined on the set B1 of (h, x) that satisfy
the conclusion of Lemma 16.7, which can be rephrased as φ1(h, x) =
φ′(h, x)−

∑
ε�=1(−1)|ε|φε(h, x) and h ∈ H1. We now show that something

like Lemma 16.6, but weaker, holds for the function φ1 as well.

Lemma 16.9. Let t = δ−2s(θ1/8, δ, k), r = (2k−1)γ−2s(2−(k+2)θ, γ, k) and
q = q(γ, σ/2r, k)r. Let P = Q× I be any box in Z

k+1
N of width at least m

and let σ > 0. Then there is a subset E ⊂ P of size at least (1− σ)|P | and
a partition of P into boxes Su = Tu×Ju with the following property. Given
u and h ∈ Tu let ψu,h be the function x 
→ φ1(h, x), where the domain is
the set of all x such that (h, x) ∈ B1∩E∩Su. Then for every u and h ∈ Tu

the graph of ψu,h is contained in the union of the graphs of at most q linear
functions. The width of each box Su is at least

l = (ζ/2Ck+1)mc(σ/2r,γ,k)rc(σ/2t,δ,k)t/2K2k+1q
.

Proof. Given any sequence ε ∈ {0, 1}k apart from (1, 1, . . . , 1), let X = {j :
εj = 0} and let Bε be the cross-section of B defined as the set of all y ∈ B
such that yj = xj for every j ∈ X. By property (i) of Lemma 16.4, the
restriction of φ to the cross-section Bε is (γ, γ−2s(2−(k+2)θ, γ, k))-multiply
multilinear. It follows easily that φε itself is (γ, γ−2s(2−(k+2)θ, γ, k))-
multiply (k + 1)-linear, since φε is obtained from the restriction of φ by
introducing variables that make no difference, namely the hi with i ∈ X.

Hence, by Lemma 16.8 and the expression for φ1 just before the state-
ment of this lemma, we can write

φ1(h, x) = φ′(h, x) + φ′′(h, x) ,

where φ′′ is (γ, r)-multiply (k+1)-linear. By the definition of (γ, r)-multiple
multilinearity, we can find a subset F ⊂ P of cardinality at least (1−σ/2)|P |
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and a partition of P into boxes Pj of width at least m1 = mc((2r)−1σ,γ,k)r

such that for every j there are (k + 1)-linear functions µ1, . . . , µq from Pj

to ZN with the property that φ′′(h, x) = µi(h, x) for some i, whenever
(h, x) ∈ B1 ∩ F ∩ Pj .

By Lemma 16.6, each of the boxes Pj = Qj×Ij gives a subsetGj ⊂ Qj of
size at least (1−σ/2)|Qj | and a further partition into boxes Sju = Tju×Jju

of width at least m2 = (ζ/2Ck+1)m
c((2t)−1σ,δ,k)t/2K2k+1q

1 such that for every
h ∈ H1 ∩Gj ∩ Tju (recall that (h, x) ∈ B1 implies that h ∈ H1, which was
defined just before the statement of Lemma 16.6), the restriction of φ′(h, x)
to B1 ∩Sju is linear in x. The lemma now follows on adding φ′ and φ′′ and
taking E to be F ∩

⋃
j(Gj × Ij). ✷

We have just shown that φ1 has a property similar to multiple multi-
linearity but much weaker because it gives us linearity only in one of the
variables. However, we also have information about the restriction of φ1 to
proper cross-sections, and this enables us to show that the linear functions
in the final variable are related to each other in a multilinear way. The
details are in the next lemma.

Lemma 16.10. The function φ1 is itself (γ, 1)-multiply (k + 1)-linear.

Proof. We begin by remarking that, since φ1 is a translation of a re-
striction of φ, property (i) of Lemma 16.4 implies that the restriction
of φ1 to any cross-section of B1 formed by fixing the final variable x is
(γ, γ−2s(2−(k+2)θ, γ, k))-multiply multilinear of the appropriate dimension.

Now let ρ > 0, let σ = ρ/4 and let P = Q × I be a box of width at
least m. Applying Lemma 16.9, we can find a subset E ⊂ P of size at least
(1 − σ)|P | and a partition of P into boxes Su = Tu × Ju of width at least
l satisfying the conclusion of that lemma. Let S = T × J be one of these
boxes, and write B1(h) for the set {(h′, x) ∈ B1 ∩ E ∩ S : h′ = h}. Each
set B1(h) can be partitioned into subsets C1(h), . . . , Cq(h) such that the
restriction of φ1 to any Ct(h) is linear. An easy averaging argument shows
that q∑

j=1

∑
h∈S

{
|Ct(h)| : |Ct(h)| � σ|J |/q

}
� (1− σ)|S| .

Hence, there is a subset D ⊂ S of size at least (1 − σ)|S| such that, for
every t, Ct(h) ∩D is either empty or of size at least σ|J |/q.

Now let r = qσ−2 and choose x1, . . . , xr randomly from J . If |Ct(h)| �
σ|J |/q, then the probability that Ct(h) does not contain two distinct points
(h, xi) and (h, xj) is at most (1−σ/q)r+r(σ/q)(1−σ/q)r−1, which is much
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smaller than σ. If we discard every set Ct(h) which does not contain such
a distinct pair, then the expected number of points discarded is at most σ
times the total number of points in the Ct(h), which is certainly at most
σ|S|. Hence, we can choose x1, . . . , xr and find a set F ⊂ S of size at least
(1 − σ)|S| such that for every h, t and every (h, x) ∈ Ct(h) ∩D ∩ F there
are xi and xj not the same with (h, xi) and (h, xj) both in Ct(h) ∩D ∩ F
as well.

For any fixed h, t, there are constants λt(h) and µt(h) such that φ1(h, x)
= λt(h)x+µt(h) for every (h, x) ∈ Ct(h). If in addition xi �= xj and (h, xi)
and (h, xj) both belong to Ct(h), then λt(h)xi + µt(h) = φ1(h, xi) and
λt(h)xj + µt(h) = φ1(h, xj). These equations imply that

λt(h) = (xi − xj)−1
(
φ1(h, xi)− φ2(h, xj)

)
,

which we shall denote by λij(h), and that

µt(h) = φ1(h, xi)− λij(h)xi ,

which we shall denote by µij(h). By Lemma 16.8 and the remark with which
we opened the proof, the functions λij and µij are all (γ,2γ−2s(2−(k+2)θ,γ,k))-
multiply multilinear, and for every (h, x) ∈ B1 ∩E ∩D ∩F we can find i, j
such that φ1(h, x) = λij(h)x+ µij(h).

It is not hard to see (using Lemma 16.8 again) that λij(h)x + µij is
a (γ, 4γ−2s(2−(k+2)θ, γ, k))-multiply multilinear function of (h, x), and, by
one further application of Lemma 16.8, the union of the graphs of all these
functions, which contains the graph of φ1 restricted to B1 ∩ E ∩D ∩ F , is
(γ, 4r2γ−2s(2−(k+2)θ, γ, k))-multiply multilinear.

Let p = 4r2γ−2s(2−(k+2)θ, γ, k). By what we have just shown, there is a
subset G ⊂ S of size at least (1−σ)|S| and a partition of S into boxes V of
width at least lc(γ,σ/p,k)

p
such that for each one the graph of φ1 restricted

to V ∩E∩D∩F ∩G is contained in the union of the graphs of q(σ/p, γ, k)p

multilinear functions.
To complete the proof of the lemma, it is necessary only to check that

q(σ/p, γ, k)p � q(ρ, γ, k + 1) and that lc(σ/p,γ,k)
p � mc(ρ,γ,k+1). This is a

back-of-envelope calculation left to the reader. ✷

Proof of Theorem 16.2. Lemma 16.10 shows that if the result is true
for k and Γ ⊂ Z

k+1
N × ZN has the product property with parameter γ,

then Γ has a (γ, 1)-multiply (k + 1)-linear subset of cardinality at least
θ2N

k+1 � Nk+1/s(θ, γ, k), if its projection has size at least θNk+1. Now
apply this result repeatedly, removing such sets from Γ until it no longer
has a projection of size at least θNk+1. Since |Γ| � γ−2Nk+1, the num-
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ber of sets removed is at most γ−2s(θ, γ, k). The result now follows from
Lemma 16.8. ✷

Corollary 16.11. If f : ZN → D fails to be α-uniform of degree k + 1

then there is a box P ⊂ Z
k
N of width at least N (α/2)2

2k+9

and a multilin-

ear function µ : P → ZN such that, for at least (α/2)2
2k+9

|P | values of
(y1, . . . , yk), we have |∆(f ; y1, . . . , yk)∧(µ(y1, . . . , yk))| � (α/2)N .

Proof. Since f is not α-uniform of degree k + 1, we find, using the
implication of (ii) from (vi) in Lemma 3.1, that there is a set B ⊂ Z

k
N

of size at least (α/2)Nk and a function φ : B → ZN such that
|∆(f ; a1, . . . , ak)∧(φ(a1, . . . , ak))| � (α/2)N for every (a1, . . . , ak) ∈ B.
Lemma 14.2 then implies that φ has the product property with param-
eter α/2. Next, Theorem 16.2 implies that B has a subset C of size at least
(α/4)Nk such that the restriction of φ to C is (α/2, r)-multiply k-linear,
where r = 4α−2s(α/4, α/2, k). Applying the definition of multiple multi-
linearity in the case where the box P is the whole of Z

k
N and θ = α/8,

we find a set H ⊂ Z
k
N of size at least (1 − α/8)Nk and partition of Z

k
N

into boxes P1, . . . , PM of width at least N c(α/8r,α/2,k)r such that for every
j the restriction of φ to C ∩ Pj ∩ H is contained in the graph of at most
q(α/8r, α/2, k)r multilinear functions. By averaging, we can find a box Pj

such that |C ∩ Pj ∩ H| � (α/8)|Pj |. By further averaging, we can find a
subset D ⊂ Pj of size at least (q(α/8r, α/2, k)r)−1(α/8)|Pj | such that the
restriction of φ to D is multilinear. A straightforward calculation shows
that this implies the corollary. ✷

17 The Main Inductive Step

We are finally ready to generalize the argument of §8, to complete a proof
of Szemerédi’s theorem for progressions of arbitrary length. It turns out
that there is a second reason for this being harder than for progressions of
length four, but fortunately it is much less serious than the difficulties we
have dealt with in the last two sections.

To see the problem, let A be a set with balanced function f which fails
to be cubically uniform. We know then that there are many pairs (k, l)
such that ∆(f ; k, l) has a large Fourier coefficient. The results of §9 show
that the large Fourier coefficient has regions where it depends bilinearly on
(k, l). As at the beginning of §8, let us imagine that we actually have the
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best possible situation: that is, that we can find c such that∑
k,l

|∆(f ; k, l)∧(6ckl)|2 � αN4 ,

so that the dependence on (k, l) of where the large Fourier coefficient ap-
pears is genuinely bilinear.

Writing out the above inequality in full and making the usual substitu-
tion, we find that∑

s

∑
k,l,m

∆(f ; k, l,m)(s)ω−6cklm � αN4 .

If we now use the identity
6klm =

∑
ε1,ε2,ε3

(s− ε1k − ε2l − ε3m)3 ,

where the sum is over the eight triples (ε1, ε2, ε3) with εi = 0 or 1, then,
writing C once again for the operation of complex conjugation, we can
deduce that∑
s

∑
k,l,m

∏
ε1,ε2,ε3

Cε1+ε2+ε3
(
f(s− ε1k− ε2l− ε3m)ω−c(s−ε1k−ε2l−ε3m)3

)
� αN4 .

Unfortunately, the standard trick that we applied in §8 (and of course many
other places in the paper) of inserting a term ω−r(a−b−c+d) simply does not
have an equivalent here. (Indeed, if it did, then the whole paper would be
far simpler.) So have we gained anything at all with the above manipula-
tions? The answer is that we have, because the above inequality tells us
precisely that the function g(s) = f(s)ω−cs3 is not quadratically α-uniform.
Therefore, by the results of §8, g has plenty of quadratic bias, which tells
us that there are many progressions P for which |

∑
s∈P f(s)ωφ(s)| is large

for some cubic polynomial φ (depending on the progression). Finally, the
results of §5 can be used to find a small progression where A is denser than
it should be.

Of course, if we have only a small piece of bilinearity to work with,
the argument above has to be modified a little, but the rough form of our
inductive hypothesis, and indeed the rest of the proof, ought by now to be
clear. Our first lemma is by no means new, but we state and briefly prove
it, for the convenience of the reader.

Lemma 17.1. Let σ be any k-linear function (over ZN ) in variables x1,...,xk.
Then there are polynomials φε (ε ∈ {0, 1}k) of degree at most k giving the
identity

φ(x1, . . . , xk) =
∑

ε∈{0,1}k
(−1)|ε|φε(s− ε.x) .
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Proof. It is enough to prove the result in the case σ(x1, . . . , xk) = x1 . . . xk.
Now sk − (s− x1)k is a polynomial in s of degree k − 1 with leading term
kx1s

k−1. It follows that sk − (s − x1)k − (s − x2)k + (s − x1 − x2)k is
a polynomial in s of degree k − 2 with leading term k(k − 1)x1x2sk−2.
Continuing, we find that

k!x1 . . . xk =
∑

ε∈{0,1}k
(−1)|ε|(s− ε.x)k

as we wanted. ✷

We now prove a proposition which is not exactly what we need later.
Rather, it is a special case, which we give in the hope that the more general
result, which is a bit complicated, will be easier to understand.

Proposition 17.2. Let f : ZN → D. Suppose that there is a k-linear
function σ : Zk

N → ZN such that∑
x∈Zk

N

∣∣∆(f ;x)∧(σ(x))∣∣2 � αNk+2 .

Then there is a polynomial φ of degree at most k such that, setting g(s) =
f(s)ω−φ(s), we have ∑

x∈Zk
N

∣∣∣∑
s

∆(g;x)(s)
∣∣∣2 � αNk+2 .

Proof. By Lemma 17.2 we may write

xk+1σ(x) =
∑

ε∈{0,1}k+1

φε(s− ε.x) .

We also have, for any x ∈ Z
k
N ,∣∣∆(f ;x)∧(σ(x))∣∣2 =∑

s

∑
y

∆(f ;x, y)(s)ω−yσ(x) .

Therefore,∑
x∈Z

k
N

∣∣∆(f ;x)∧(σ(x))∣∣2 = ∑
x∈Z

k+1
N

∑
s

∑
ε∈{0,1}k+1

C |ε|(f(s− ε.x)ω−φε(s−ε.x)) .
By Lemma 17.1, we can find some ε such that the function g(s) = f(s)ω−φε(s)

satisfies the inequality ∑
x∈Z

k+1
N

∑
s

∆(g;x)(s) � αNk+2 ,

which is equivalent to the inequality we want. ✷
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We must now deal with the fact that the results of the last two sections
did not give us a k-linear function on the whole of Z

k
N , so the above propo-

sition cannot be applied directly. We shall use another very standard and
well known lemma. It is a reflection of the fact that the set of half-spaces
in R

k has VC-dimension at most k, but the proof is elementary and we
very briefly sketch it. The next three lemmas are not essential to our main
argument, as their purpose is to improve the bound coming from a trivial
argument, when using the trivial bound would have a negligible effect on
our eventual estimates.

Lemma 17.4. The number of distinct regions defined by a set of m hyper-
planes in R

k is at most
∑k

j=0
(
m
j

)
, with equality when the hyperplanes are

in general position.

Proof. Apply induction onm, by considering how many new regions are cre-
ated when each new hyperplane is added to the arrangement. To calculate
this, use induction on k. The result is trivial when k = 1. ✷

Corollary 17.5. Given real numbers α1, . . . , αk, set α = (α1, . . . , αk)
and define a function f : {0, 1}k → Z by f(ε) = �ε.α�. If r is an integer
and the αi are allowed to vary in the interval (−r, r), then the number of
distinct such functions that can result is at most 22rk

3
.

Proof. The possible values taken by f are the integers between �−rk� and
�rk�, and the set of ε such that f(ε) � j is the set of ε such that ε.α < j+1.
Let us estimate how many distinct such sets can be obtained as α varies.
Two real numbers α and α′ give distinct sets if and only if there exists
some ε such that ε.α < j + 1 and ε.α′ � j + 1, that is, if and only if the
hyperplane {β : ε.β = j + 1} separates α from α′. There are 2k different
such hyperplanes, so the previous lemma tells us that the number of distinct
sets of the given form is at most k

(2k
k

)
� 2k

2
. The function f is determined

by the 2rk sets {ε : f(ε) � j} with �−k2/2� < j � �k2/2�, so the result
follows. ✷

Corollary 17.6. Let α0, α1, . . . , αk be real numbers, let α = (α1, . . . , αk)
and define a function f : {0, 1}k → ZM by f(ε) = �α0+α.ε� (mod M). If α0
can be arbitrary and the αi are allowed to vary in the interval (−r, r), then
the number of distinct such functions that can result is at most M.22r(k+1)

3
.

Proof. By Corollary 17.5, the number of functions that can result if the
integer part of α0 is j (modM) is at most 22r(k+1)

3
, since each such function
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can be thought of as j added to the restriction of a function on {0, 1}k+1
of the given form (and reduced mod M). The result follows. ✷

The trivial bound in Corollary 17.5 is k2
k+1
, which gives a bound of

M.(k + 1)2
k+2

in Corollary 17.6. As we commented above, this bound
would be enough for our main result.

Before stating the next proposition, we define a concept which is similar
to α-uniformity but designed for situations where we are given a multilinear
function on a small domain. Let f : ZN → D. Suppose that we can parti-
tion ZN into mod-N arithmetic progressions Q1, . . . , QM , each of length at
mostm, such that, defining Qif(s) to be f(s) when s ∈ Qi and 0 otherwise,
we have

M∑
i=1

∑
x∈Z

k+1
N

∑
s

∆(Qif ;x)(s) � αmk+2M .

We shall then say that f is α-uniform of degree k with respect to the partition
Q1, . . . , QM .

Notice that if p � km, then we can find an isomorphism γ from Qi to an
arithmetic progression of length |Qi| inside Zp such that, defining a “copy”
g of Qif inside Zp by setting g(γ(s)) = f(s) for s ∈ Qi and g(t) = 0 for t
not in the image of γ, we have∑

x∈Z
k+1
N

∑
s

∆(Qif ;x)(s) =
∑

y∈Z
k+1
p

∑
t

∆(g; y)(t) .

Hence, if ∑
x∈Z

k+1
N

∑
s

∆(Qif ;x)(s) � βmk+2 ,

we find that g is not β(m/p)k+2-uniform (in Zp) of degree k.

Proposition 17.7. Let f : ZN → D. Suppose that there is a product
P = P1×· · ·×Pk of arithmetic progressions Pi of common difference d and
odd length m � N1/2, and a k-linear function σ : P → ZN such that∑

x∈P

∣∣∆(f ;x)∧(σ(x))∣∣2 � αN2mk .

Then there exist a polynomial φ of degree at most k+1 and a partition of ZN

into mod-N arithmetic progressions Q1, . . . , QM of size at least m/3k such
that the function g(x) = f(x)ω−φ(x) is not 2−2(k+1)

3
α-uniform of degree k

with respect to the partition Q1, . . . , QM .

Proof. Without loss of generality d = 1. Let 2l+1 = m and let w be a real
number such that �l/k� − 1 < w � �l/k� and M = N/w is an integer. For
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0 � j � M − 1 define Qj to be the interval {x ∈ ZN : jw � x < (j + 1)w}.
Notice that the cardinality of Qj is always �l/k�−1 or �l/k�. Let a sequence
r = (r1, . . . , rk) be defined by Pi = {ri− l, ri− l+1, . . . , ri+ l} and let I be
the interval {−l,−l+1, . . . , l}. Then any x ∈ P can be written uniquely as
a+ r for some a ∈ Ik. Given ε ∈ {0, 1}k, we shall write fε for the function
that takes s to f(s− ε.r). Let us also write τ(a) for σ(a+ r).

Then∑
x∈P

|∆(f ;x)∧(σ(x))|2 =
∑
a∈Ik

∣∣∣∑
s

ω−sσ(a+r)
∏
ε

C |ε|f(s− ε.a− ε.r)
∣∣∣2

=
∑
a∈Ik

∣∣∣∑
s

ω−sτ(a)
∏
ε

C |ε|fε(s− ε.a)
∣∣∣2

where the products are over all ε in the set {0, 1}k.
If we now split each function fε up as

∑
j∈ZM

Qjfε, this expression
becomes ∑

a∈Ik

∣∣∣∑
s

ω−sτ(a)
∏

ε∈{0,1}k

M∑
j=1

(QjC
|ε|fε)(s− ε.a)

∣∣∣2 .
Interchanging the product over ε with the sum over j, we obtain∑

a∈Ik

∣∣∣∑
s

∑
j

ω−sτ(a)
∏

ε∈{0,1}k
(Qj(ε)C

|ε|fε)(s− ε.a)
∣∣∣2 ,

where now the sum over j stands for the sum over all functions j :
{0, 1}k → ZM . Let us estimate how many such functions can give rise
to a non-zero contribution to the entire expression.

This we can do using Corollary 17.5. If Qj(ε)fε(s − ε.a) is non-zero,
then s − ε.a ∈ Qj(ε) which implies that j(ε)w � s − ε.a < j(ε)w and
therefore that j(ε) is exactly the integer part of w−1s − ε.(w−1a). Since
−k−1 < w−1ai < k+1 for every i, Corollary 17.5 implies that the number
of functions j for which the product over ε can ever be non-zero is at most
M.22(k+1)

4
.

Let us define functions j1 and j2 (from {0, 1}k to ZM ) to be equivalent
if they are translations of each other. Corollary 17.5 with M = 1 implies
that the number of equivalence classes is at most 2k(k+1)

2
. Let us call them

J1, . . . , JL. By the Cauchy-Schwarz inequality, we can deduce from our
calculations above that

αN2mk � L
L∑

r=1

∑
a∈Ik

∣∣∣∑
s

∑
j∈Jr

ω−sτ(a)
∏
ε

(Qj(ε)C
|ε|fε)(s− ε.a)

∣∣∣2 .
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We can therefore find r such that, choosing some representative j of Jr, we
have

L−2αN2mk �
∑
a∈Ik

∣∣∣∑
s

M∑
i=1

ω−sτ(a)
∏
ε

(Qj(ε)+iC
|ε|fε)(s− ε.a)

∣∣∣2 .
Applying the Cauchy-Schwarz inequality again, this is at most

M
M∑
i=1

∑
a∈Ik

∣∣∣∑
s

ω−sτ(a)
∏
ε

(Qj(ε)+iC
|ε|fε)(s− ε.a)

∣∣∣2 .
Obviously this still exceeds L−2αN2mk if we replace the sum over a ∈ Ik
above by a sum over all of Z

k
N . Expanding the modulus squared and sub-

stituting in the usual way, the resulting inequality can be rewritten

M
M∑
i=1

∑
a∈Z

k+1
N

∑
s

ω−ρ(a)
∏

ε∈{0,1}k+1

(Qj(ε)+iC
|ε|fε)(s− ε.a) � L−2αN2mk ,

where j(ε) and fε now mean j(ε1, . . . , εk) and fε1,...,εk respectively, and ρ(a)
is defined to be ak+1τ(a1, . . . , ak). Applying Lemma 17.1, we obtain for
each ε ∈ {0, 1}k+1 a polynomial φε of degree at most k + 1 in such a way
that

ρ(a) =
∑

ε∈{0,1}k+1

(−1)|ε|φε(s− ε.a)

for every a ∈ Z
k+1
N . Using these, we can rewrite the inequality yet again,

this time as

M
M∑
i=1

∑
a∈Z

k+1
N

∑
s

∏
ε∈{0,1}k+1

(Qj(ε)+iC
|ε|fε)(s− ε.a)ω−φε(s−ε.a) � L−2αN2mk .

We shall now apply Lemma 3.8 to the functions Qj(ε)+iC
|ε|fε. By the

AM-GM inequality, the lemma implies that, for every i, the sum∑
a∈Z

k+1
N

∑
s

∏
ε∈{0,1}k+1

(Qj(ε)+iC
|ε|fε)(s− ε.a)ω−φε(s−ε.a)

is bounded above by the average over η ∈ {0, 1}k+1 of∑
a∈Z

k+1
N

∑
s

∏
ε∈{0,1}k+1

(Qj(η)+iC
|ε|fη)(s− ε.a)ω−φη(s−ε.a) .

It follows by an averaging argument that we may choose η ∈ {0, 1}k+1 such
that, setting g(s) = fη(s)ω−φη(s), we have

M
M∑
i=1

∑
a∈Z

k+1
N

∑
s

∏
ε∈{0,1}k+1

(Qj(ε)+iC
|ε|g)(s− ε.a) � L−2αN2mk ,
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and this may be rewritten
M∑
i=1

∑
a∈Z

k+1
N

∑
s

∏
ε∈{0,1}k+1

(C |ε|Qig)(s− ε.a) � L−2αM−2N2mkM ,

or
M∑
i=1

∑
a∈Z

k+1
N

∑
s

∆(Qig; a)(s) � L−2αM−2N2mkM

� 2−2(k+1)
3
αmk+2M .

This implies that the function g is not 2−2(k+1)
3
α-uniform with respect to

the partition Q1, . . . , QM .
This is not quite the statement of the proposition. To obtain it, recall

that fη(s) = f(s − η.r). Therefore, the statement about g implies that
the function f(s)ω−φη(s+η.r) is not 2−2(k+1)

3
α-uniform with respect to the

partition (Qi+η.r)mi=1. Since φη(s+η.r) is still a polynomial in s of degree
at most k + 1, the proposition is proved. ✷

18 Putting Everything Together

We are now ready for the proof of the main theorem. Indeed all we need
to do is combine our earlier results in an obvious way. We shall divide the
argument into two parts.

Theorem 18.1. Let α � 1/2 and let A ⊂ ZN be a set which fails to
be α-uniform of degree k. There exists a partition of ZN into arithmetic

progressions P1, . . . , PM of average size at least Nα22
k+10

such that
M∑
j=1

∣∣∣∑
s∈Pj

f(s)
∣∣∣ � α2

2k+10

N .

Proof. The result will be proved by induction on k. First, Corollary 16.11

gives us a box P ⊂ Z
k
N of width at least N (α/2)2

2k+8

and a multilin-

ear function µ : P → ZN such that, for at least (α/2)2
2k+8

|P | values of
(y1, . . . , yk) ∈ P , we have

|∆(f ; y1, . . . , yk)∧(µ(y1, . . . , yk))| � (α/2)N .

Let β = (α2/8)(α/2)2
2k+8

and let m be the largest odd number less than

or equal to N (α/2)2
2k+8

. Then the hypotheses for Proposition 17.7 are sat-
isfied (with α replaced by β). We can therefore find a polynomial φ of
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degree at most k and a partition of ZN into mod-N arithmetic progres-
sions Q1, . . . , QM of size l or l+1, where l � m/3k, such that the function
g(x) = f(x)ω−φ(x) is not 2−2(k+3)

3
β-uniform of degree k − 1 with respect

to the partition Q1, . . . , QM .
For each i, define a (non-negative real) number βi by the equation∑

x∈Z
k
N

∑
s

∆(Qig;x)(s) = βil
k+1 .

Since the sets Qi all have approximately the same size, the average value
of βi is at least 2−2(k+3)

3−1β. It follows that there is a set I of cardinality
at least 2−2(k+4)

3
βM such that, for every i ∈ I, βi � 2−2(k+4)

3
β. Let us

now fix some i ∈ I.
As described in the remarks before Proposition 17.7, we may associate

with Qig an “isomorphic” function hi : Zp → C which fails to be (βi/2k)-
uniform of degree k − 1. When this is done, the mod-N arithmetic pro-
gression Qi corresponds to an interval of integers in Zp. By our induc-
tive hypothesis, we can partition Zp into proper arithmetic progressions

Ri1, . . . , RiMi of average size at least p
(βi/2k)2

2k+9

in such a way that
Mi∑
j=1

∣∣∣ ∑
s∈Rij

hi(s)
∣∣∣ � (βi/2k)2

2k+9

p .

It follows that Qi can be partitioned into mod-N arithmetic progressions

Si1, . . . , SiMi of average size at least ri = (2k)
−1p(βi/2k)2

2k+9

such that
Mi∑
j=1

∣∣∣ ∑
s∈Sij

g(s)
∣∣∣ � (βi/2k)2

2k+9

|Qi| .

The mod-N progressions Sij with i ∈ I, together with those Qi for which
i /∈ I, partition ZN . From the way we chose I, the average size of a cell in

this partition is at least r = (2k)−1p(2
−(k+4)3β/2k)2

2k+9

. By Lemma 5.13 we
can find a refinement of this partition into proper arithmetic progressions
of average size at least r1/2/4. Let us call these progressions T1, . . . , TL.
Since

∑
i∈I |Qi| � 2−2(k+4)

3
βN we have the inequality

L∑
j=1

∣∣∣∑
s∈Tj

g(s)
∣∣∣ � (2−2(k+4)

3
β/2k)2

2k+9

2−2(k+4)
3
βN .

Let γ = (2−2(k+4)
3
β/2k)2

2k+9

2−2(k+4)
3
β. We may now apply Lemma 5.14

to find a refinement of T1, . . . , TL into arithmetic progressions U1, . . . , UH
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such that H � CL1/KN1−1/K and
H∑

h=1

∣∣∣∑
s∈Uh

f(s)
∣∣∣ � γN/2 .

All that remains is to check that H−1N � Nα22
k+10

and that γ/2 �
α2

2k+10

. These are easy exercises for the reader (easy because 22
k+10

is so
much bigger than 22

k+9
that estimates can be incredibly crude). ✷

For the statement of our main theorem we shall use the notation a ↑ b
for ab, with the obvious convention for bracketing, so that for example
a ↑ b ↑ c stands for a ↑ (b ↑ c).

Theorem 18.2. Let 0 < δ � 1/2, let k be a positive integer, let N �
2 ↑ 2 ↑ δ−1 ↑ 2 ↑ 2 ↑ (k + 9) and let A be a subset of the set {1, 2, . . . , N}
of size at least δN . Then A contains an arithmetic progression of length k.

Proof. It is not hard to check that N � 32k2δ−k. Therefore, Corollary 3.6
implies the result when A is (δ/2)k2

k
-uniform of degree k − 2.

Let α = (δ/2)k2
k
. If A is not α-uniform of degree k − 2 then by Theo-

rem 18.1 and Lemma 5.15 there is an arithmetic progression P of size at

least Nα22
k+8

such that |A∩P | � (δ+α2
2k+8

)|P |. We may then repeat the
argument with the new density. After at most α−22k+8

repetitions, we find
an arithmetic progression of length k, as long as N is large enough. Since
at each repetition we are raising N to a power at least as big as α2

2k+8

and
the argument works as long as N � 32k2δ−k, a sufficient condition on the
original N is that

N ↑
(
α ↑ 2 ↑ 2 ↑ (k + 8)

)
↑
(
α−1 ↑ 2 ↑ 2 ↑ (k + 8)

)
� 32k2δ−k .

It is not hard to check that this condition is satisfied when N �
2 ↑ 2 ↑ δ−1 ↑ 2 ↑ 2 ↑ (k + 9), and the theorem is proved. ✷

Notice that what matters for the bounds in the above proof is the num-
ber of times the iteration is performed. The fact that at each iteration we
raise N to a very small power makes hardly any further difference.

Corollary 18.7. Let k be a positive integer and let N �
2 ↑ 2 ↑ 2 ↑ 2 ↑ 2 ↑ (k + 9). Then however the set {1, 2, . . . , N} is coloured
with two colours, there will be a monochromatic arithmetic progression of
length k. ✷
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Ron Graham has conjectured in several places (see e.g. [GRS]) that
the function M(k, 2) is bounded above by a tower of twos of height k.
Corollary 18.7 proves this conjecture for k � 9, and indeed gives a much
stronger bound. It looks as though more would be needed to prove it for
k = 7 (for example) than merely tidying up our proof. For k � 5, the exact
values of M(k, 2) are known and satisfy the conjecture.

Concluding Remarks and Acknowledgements

The arguments of this paper leave open many interesting questions. The
most obvious one is whether the multidimensional version of Szemerédi’s
theorem follows from similar arguments. There is not even a good bound
in the case of three points in a triangle. (The precise statement is that, for
sufficiently largeN , every subset of [N ]2 of size at least δN2 contains a triple
of the form {(a, b), (a+d, b), (a, b+d)}. Very recently, Jozsef Solymosi sent
me an argument that proves this using a lemma of Ruzsa and Szemerédi,
which itself uses Szemerédi’s regularity lemma. Thus, at least a tower-
type bound can be proved for this problem.) It would of course also be
extremely interesting to have quantitative versions of the results of [BL]
and [FK] mentioned in the introduction.

Some of the ideas in this proof turn out not to be new. In particu-
lar, the content of §4, that is, the relevance of exponentials in polynomi-
als as well as the fact that they are not sufficient, was discovered in an
ergodic-theoretic context, independently and earlier by Kazhdan in recent
unpublished work. In general, there seem to be very interesting connections
between the methods of this paper and a new ergodic-theoretic approach
that is not yet complete.

A more obvious connection with the ergodic methods is that the argu-
ments of §3 closely resemble the arguments used by Furstenberg for the
case of weak-mixing measure-preserving dynamical systems. His argument
is based on the fact that a system that is weak-mixing is sufficiently random
to work, while one that is not can be decomposed in a useful way. This
appears to be analogous in some way to the idea here of passing from a
non-uniform set to a denser subset.

I am very grateful to Béla Bollobás for encouraging me to continue
working on Szemerédi’s theorem when an earlier attempt at proving it
collapsed, and to Vitali Milman for making sure that I eventually finished
this paper.
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