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1 Introduction

In 1927 van der Waerden published a celebrated theorem, which states that
if the positive integers are partitioned into finitely many classes, then at
least one of these classes contains arbitrarily long arithmetic progressions.
This is one of the fundamental results of Ramsey theory, and it has been
strengthened in many different directions. A more precise statement of the
theorem is as follows.

Theorem 1.1. Let k and r be positive integers. Then there exists a
positive integer M = Mk, r) such that, however the set {1,2,..., M} is
partitioned into r subsets, at least one of the subsets contains an arithmetic
progression of length k.

It is natural to wonder how quickly the least such M grows as a function
of k and r, but this has turned out to be a surprisingly difficult question.
The original proof of van der Waerden bounds M above by an Ackermann-
type function in k, even when r = 2, and it was a major advance when
Shelah, in 1987, gave the first primitive recursive upper bound (with a
beautifully transparent proof). His bound can be described as follows. De-
fine a tower function T inductively by letting 7(1) = 2 and T'(k) = 27+~
for k > 1. Then define a function W by W (1) = 2 and W (k) = T(W(k—1))
for k > 1. Shelah obtained a bound of the form M (k,2) < W(Ck) (with C
an absolute constant). Although this was a huge improvement on the pre-
vious bound, it still left an enormous gap, as the best known lower bound
was, and still is, exponential in k.

A strengthening of a completely different kind was conjectured by Erdds
and Turdn in 1936. They realised that it ought to be possible to find
arithmetic progressions of length k in any sufficiently dense set of integers,
which would show that the colouring in van der Waerden’s theorem was,
in a sense, a distraction. The translation-invariance of the notion of an
arithmetic progression rules out simple counterexamples to this stronger
statement. (One can contrast this situation with a theorem of Schur which
states that in any finite colouring of N there are solutions of the equation
x+y = z with x,y and z all of the same colour. However, the set of all odd
integers has density 1/2 and contains no solutions.) The conjecture was
proved by Szemerédi in 1974. Szemerédi’s theorem, which we now state
precisely, is one of the milestones of combinatorics.

Theorem 1.2. Let k be a positive integer and let 6 > 0. There exists a
positive integer N = N (k, ) such that every subset of the set {1,2,...,N}
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of size at least 6N contains an arithmetic progression of length k.

It is very simple to see that this result strengthens van der Waerden’s
theorem, and that M (k,r) can be chosen to be N(k,r~1).

A second proof of Szemerédi’s theorem was given by Furstenberg in
1977, using ergodic theory, which provides an extremely useful conceptual
framework for discussing the result. This proof was also a major break-
through, partly because of the difficulty of Szemerédi’s original proof, and
partly because Furstenberg’s techniques have since been extended to prove
many natural generalizations of the theorem which do not seem to follow
from Szemerédi’s approach. These include a density version of the Hales-
Jewett theorem [FK] and a “polynomial Szemerédi theorem” [BL].

Why then, if there are already two proofs of Szemerédi’s theorem, should
one wish to find a third? There are several related reasons.

First of all, it is likely that Erdés and Turan, when they made their
original conjecture, hoped that it would turn out to be the “real” theorem
underlying van der Waerden’s theorem, and perhaps for that reason have
an easier proof. If they did, then their hope has not been fulfilled, as all
known proofs are long and complicated. Szemerédi’s original paper runs to
47 pages, full of intricate combinatorial arguments, and it takes a few sec-
onds even to check that the diagram near the beginning of the dependences
between the various lemmas really does indicate a valid proof. Fursten-
berg’s proof is considerably simpler (especially as presented in [FKO]), but
requires a certain initial investment in learning the necessary definitions
from ergodic theory, and is still significantly harder than the proof of van
der Waerden’s theorem. (On the positive side, some of the ideas of Sze-
merédi’s proof, most notably the so-called regularity lemma, have turned
out to be extremely useful in many other contexts, and, as mentioned above,
Furstenberg’s proof has been the starting point of a great deal of further
research.)

Second, Erdés and Turdan gave as the main motivation for their conjec-
ture the likelihood that in order to prove it one would be forced not to use
the sorts of arguments that led to such weak bounds for van der Waerden’s
theorem, and would therefore obtain far better estimates. However, this
hope was not fulfilled by Szemerédi’s proof because he used van der Waer-
den’s theorem in his argument. He also used the regularity lemma just
mentioned, which makes a tower-type contribution to the size of the bound
from any argument that uses it. (See [G1] for a proof that this is necessary.)
Furstenberg’s proof gives no bound, even in principle, as it uses the axiom
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of choice. Moreover, although van der Waerden’s theorem is not directly
applied, it is likely that any attempt to make the argument quantitative
would lead to rapidly growing functions for similar reasons.

Third, there is a possibility left open by the first result in the direc-
tion of Szemerédi’s theorem, the assertion for progressions of length three,
which was proved by Roth [R1]. Roth gave a beautiful argument using
exponential-sum estimates, but his approach seemed not to generalize. In-
deed, progress was made on the problem only when Szemerédi found a dif-
ferent, more combinatorial argument for progressions of length three which
was more susceptible to generalization. However, it is highly desirable to
find an exponential-sums argument for the general case, because all the best
bounds for similar problems have come from these techniques rather than
purely combinatorial ones [Sz3], [H-B], [Bou]. (Although Roth used ideas
from Szemerédi’s proof for progressions of length four [S1] and combined
them with analytic techniques to give a second proof for that case [R2], the
argument is not really a direct generalization of his earlier proof, and relies
on van der Waerden’s theorem.)

Fourth, there are certain important conjectures related to Szemerédi’s
theorem, and the existing arguments get nowhere near to them. The most
famous is Erdds’s conjecture that every set X of positive integers such that
Y orex 2~ ! diverges contains arbitrarily long arithmetic progressions. Since
the set of primes has this property, a positive solution to the conjecture
would answer an old question in number theory using no more about the
primes than the fact that they are reasonably dense. Even if the conjec-
ture turns out to be too optimistic, there is a resemblance between Roth’s
proof and the result of van der Corput (adapting the proof of Vinogradov’s
three-primes theorem) that the primes contain infinitely many arithmetic
progressions of length three, which suggests that generalizing Roth’s proof
to longer progressions could at least lead to a number-theoretic proof that
the primes contain arbitrarily long arithmetic progressions.

In this paper, we show that Roth’s argument can be generalized, and
that this does indeed result in a significant improvement to the bounds, even
for van der Waerden’s theorem. Our main result (restated in equivalent
form later as Theorem 18.2) is the following.

Theorem 1.3. For every positive integer k there is a constant ¢ = c(k) >
0 such that every subset of {1,2,...,N} of size at least N (loglog N)=¢
contains an arithmetic progression of length k. Moreover, ¢ can be taken
to be 272,
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This immediately implies an estimate for N (k, §) which is doubly expo-
nential in 6~ and quintuply exponential in k.

There are, however, some serious difficulties in carrying out the gener-
alization, as we shall demonstrate with examples later in the paper. This
perhaps explains why the generalization has not been discovered already.
Very roughly, our strategy is to reduce the problem to what is known as
an inverse problem in additive number theory (deducing facts about the
structure of a set of numbers from properties of its set of sums or differ-
ences). We then apply a variant of a famous inverse result due to Freiman
[F1,2]. Freiman’s proof of his theorem is very complicated, though it has
recently been considerably tidied up by Bilu [Bi]. A very much simpler
proof of Freiman’s theorem was recently given by Ruzsa [Rul,2], and to
him we owe a huge mathematical debt. His methods have inspired many
parts of this paper, including several arguments where his results are not
quoted directly.

It has to be admitted that this paper is actually longer than those of
Szemerédi and Furstenberg, and less self-contained. This is partly because
my overriding priority when writing it has been to make the basic ideas as
clear as possible, even if this adds several pages. Many results are proved
first in a special case and later in full generality. This is intended to make
it as easy as possible to read about progressions of length four and five,
which involve most of the interesting ideas but by no means all of the
technicalities. (The special case of progressions of length four was covered
in an earlier paper [G2] but it is treated here as well, and a better bound,
claimed in the earlier paper, is here proved in full.) Sections 4 and 11 are
devoted to examples showing that certain simpler arguments do not work.
They are therefore not logically necessary. However, the whole of the rest of
the paper is, in a sense, a response to those examples. Another priority has
been to make the sections as independent as possible. Where it is essential
that one section depends on another, we have tried to make it depend on a
single clearly stated result, in the hope that readers will if they wish be able
to understand the broad outline of the proof without following the details.

Despite these efforts, the quickest way to understand a proof of Sze-
merédi’s theorem is probably still to read the paper of Furstenberg, Katznel-
son and Ornstein [FKO] mentioned earlier. However, the proof in this paper
gives quantitative information, and I hope that at least some mathemati-
cians, particularly those with a background in additive number theory, will
find the approach a congenial one.
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2 Uniform Sets and Roth’s Theorem

It is not hard to prove that a random subset of the set {1,2,..., N} of car-
dinality 6 N contains, with high probability, roughly the expected number
of arithmetic progressions of length k, that is, 6% times the number of such
progressions in the whole of {1,2,..., N}. A natural idea is therefore to try
to show that random sets contain the fewest progressions of length k, which
would then imply Szemerédi’s theorem. In view of many other examples
in combinatorics where random sets are extremal, this is a plausible state-
ment, but unfortunately it is false. Indeed, if random sets were the worst,
then the value of  needed to ensure an arithmetic progression of length
three would be of order of magnitude N~2/3, whereas in fact it is known
to be at least exp(—c(log N)¥/?) for some absolute constant ¢ > 0 [Be].
(The random argument suggested above is to choose ¢ so that the expected
number of arithmetic progressions is less than one. Using a standard trick
in probabilistic combinatorics, we can instead ask for the expected number
to be at most §/N/2 and then delete one point from each one. This slightly
better argument lifts the density significantly, but still only to ¢N~1/2))

Despite this, it is tempting to try to exploit the fact that random sets
contain long arithmetic progressions. Such a proof could be organized as
follows.

(1) Define an appropriate notion of pseudorandomness.

(2) Prove that every pseudorandom subset of {1,2,...,N} contains
roughly the number of arithmetic progressions of length k£ that you
would expect.

(3) Prove that if A C {1,2,..., N} has size 6N and is not pseudorandom,
then there exists an arithmetic progression P C {1,2,..., N} with
length tending to infinity with N, such that |AN P| > (6 + ¢€)|P|, for
some € > 0 that depends on 6 (and k) only.

If these three steps can be carried out, then a simple iteration proves Sze-
merédi’s theorem. As we shall see, this is exactly the scheme of Roth’s
proof for progressions of length three.

First, we must introduce some notation. Throughout the paper we shall
be considering subsets of Zy rather than subsets of {1,2,..., N}. It will be
convenient (although not essential) to take N to be a prime number. We
shall write w for the number exp(27i/N). Given a function f : Zy — C

and r € Zy we set .
fr)y=" flew™.

SELN
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The function f is the discrete Fourier transform of f. (In most papers in an-
alytic number theory, the above exponential sum is written Zévzl e(—rs/N),
or possibly Zivzl eN(— s). ) Let us write f * g for the function

Zf t—s

tELN
(This is not standard notation, but we shall have no use for the convolution
> f(t)g(s — t) in this paper, so it is very convenient.) From now on, all
sums will be over Zy unless it is specified otherwise. We shall use the
following basic identities over and over again in the paper.

(f * g)A( ) = f(?")W, (1)

Zf NZf (2)
Z|f :NZIf (3)
121’ (4)

Of these, the first tells us that convolutlons transform to pointwise prod-
ucts, the second and third are Parseval’s identities and the last is the in-
version formula. To check them directly, note that

(fg)(r) = (frg)(s)w™"
SWlrEr R
— Z f —rtW
= f(T‘)Q(T) ;

which proves (1) We may deduce (2 ) since
Zf §(r) ZZf*g = N/ #g(0 NZf

where for the second equahty we used the fact that ) w™ is Nif r =0
and zero otherwise. Identity (3) is a special case of (2). Noting that the
function r — w™"¢ is the Fourier transform of the characteristic function of
the singleton {s}, we can deduce (4) from (2) as well (though it is perhaps
more natural just to expand the right-hand side and give a direct proof).

There is one further identity, sufficiently important to be worth stating
as a lemma.
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LEMMA 2.1. Let f and g be functions from Zy to C. Then

2P = NZ\Zf el (5)
Proof. By identltles (1 ) and ( )

er )19

Z}f*g
:NZ|f*gt
—NZf g(s — ) f(u)g(u—t)

t,s,u

—NZ‘Zf s—t‘

as required. O

Setting f = g and expanding the right-hand side of (5), one obtains an-
other identity which shows that sums of fourth powers of Fourier coefficients
have an interesting interpretation.

YUEE=N Y f@f0) (). (6)
r a—b=c—d
It is of course easy to check this identity directly.

Nearly all the functions in this paper will take values with modulus at
most one. In such a case, one can think of Lemma 2.1 as saying that if
f has a large inner product with a large number of rotations of g, then f
and ¢ must have large Fourier coefficients in common, where large means
of size proportional to N. We shall be particularly interested in the Fourier
coefficients of characteristic functions of sets A C Zy of cardinality § N,
which we shall denote by the same letter as the set itself. Notice that
identity (6), when applied to (the characteristic function of) a set A, tells
us that the sum 37, |A(r)[* is N times the number of quadruples (a, b, ¢, d) €
A% such that a — b= ¢ — d.

For technical reasons it is also useful to consider functions of mean zero.
Given a set A of cardinality 6V, let us define the balanced function of A to
be fa:ZN — [~1,1] where

=50 15

This is the characteristic f}lnction of A minusA the conAstant function 1.
Note that > 5 fa(s) = fa(0) = 0 and that fa(r) = A(r) for r # 0.
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We are now in a position to define a useful notion of pseudorandomness.
The next lemma (which is not new) gives several equivalent definitions
involving constants ¢;. When we say that one property involving ¢; implies
another involving c¢;, we mean that if the first holds, then so does the
second for a constant ¢; that tends to zero as ¢; tends to zero. (Thus, if
one moves from one property to another and then back again, one does not
necessarily recover the original constant.) From the point of view of the
eventual bounds obtained, it is important that the dependence is no worse
than a fixed power. This is always true below.

In this paper we shall use the letter D to denote the closed unit disc in
C (unless it obviously means something else).

LEMMA 2.2. Let f be a function from Zy to D. The following are equiva-
lent.

(i) X4l f()F(s — k) [P < et N3,
(i) S peea F(@FO)F(0)f(d) < 1N,

(iii) Y, 1f(r) < cL N2,
(iv) max, |f(r)] < coN.

(v) Zk‘Zs f(s)g(s—k) ‘2 < e3N?||g|)3 for every function g : Zy — C.
Proof. The equivalence of (i) and (ii) comes from expanding the left-hand
side of (i), and the equivalence of (i) and (iii) follows from identity (6)
above. It is obvious that (iii) implies (iv) if ca > ci/ *. Since

er )I* < max| f(r \2er )I> < N?max|f(r)],

we find that (iv) implies (iii) if ¢; > 3. It is obvious that (v) implies (i) if
¢1 > c3. By Lemma 2.1, the left-hand side of (v) is

N WORaR <N (o) (S o)

by the Cauchy—Schwarz inequality. Usmg the addltlonal inequality

(X lat) " < S latr) .
T T
we see that (iii) implies (v) if c3 > 01/2. O
A function f : Zx — D satisfying condition (i) above, with ¢; = a, will
be called a-uniform. If f is the balanced function f4 of some set A C Zy,
then we shall also say that A is a-uniform. If A C Zy is an a-uniform set
of cardinality 6V, and f is its balanced function, then

ZIA )|t = |A|4+Z!f ()" < JA[* +aN*®.
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We noted carlier that 3 |A(r)|* is N times the number of quadruples
(a,b,c,d) € A* such that a — b = ¢ — d. If A were a random set of size
6N, then we would expect about §*N3 = N~!|A[* such quadruples (which
from the above is clearly a lower bound). Therefore, the number « is
measuring how close A is to being random in this particular sense. Notice
that quadruples (a, b, ¢,d) with a —b = ¢ — d are the same as quadruples of
the form (z,z + s,z +t,x + s+ t).

We remark that our definition of an a-uniform set coincides with the
definition of quasirandom subsets of Zy, due to Chung and Graham. They
prove that several formulations of the definition (including those of this
paper) are equivalent. They do not mention the connection with Roth’s
theorem, which we shall now explain. We need a very standard lemma,
which we prove in slightly greater generality than is immediately necessary,
so that it can be used again later. Let us define the diameter of a subset
X C Zy to be the smallest integer s such that X C {n,n+1,...,n+ s}
for some n € Zy.

LEMMA 2.3. Let r,s and N be positive integers with r;s < N andrs > N,
and let ¢ : {0,1,...,7—1} — Zy be linear (i.e., of the form ¢(x) = ax+b).
Then the set {0, 1,...,r—1} can be partitioned into arithmetic progressions
Py, ..., Py osuch that for each j the diameter of ¢(P;) is at most s and the
length of P; lies between (rs/4N)'/? and (rs/N)'/2.

Proof. Let t = [(rN/4s)'/?]. Of the numbers ¢(0), ¢(1),...,¢(t), at least
two must be within N/¢t. Therefore, by the linearity of ¢, we can find
a non-zero u < t such that |¢(u) — ¢(0)] < N/t. Split {0,1,...,r — 1}
into congruence classes mod u. FEach congruence class is an arithmetic
progression of cardinality either |r/u| or [r/u]. If P is any set of at most
st/N consecutive elements of a congruence class, then diam ¢(P) < s. It is
easy to check first that st/N < r/3t < (1/2)|r/u], next that this implies
that the congruence classes can be partitioned into sets P; of consecutive
elements with every P; of cardinality between [st/2N] and |st/N |, and
finally that this proves the lemma. O

COROLLARY 2.4. Let f be a function from the set {0,1,...,7 — 1} to the
closed unit disc in C, let ¢ : Zy — Zy be linear and let o > 0. If

then there is a partition of {0,1,...,r — 1} into m < (8r/a)/? arithmetic
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progressions Py, ..., P, such that
SIS r@)] = @/
j:]. JJEP]'
and such that the lengths of the P; all lie between (our /) 2 /4 and (ar /) 2 /2.

Proof. Let s < aN/4w and let m = (167r/a)'/?. By Lemma 2.3 we can
find a partition of {0,1,...,r — 1} into arithmetic progressions P,..., Py,
such that the diameter of ¢(P;) is at most s for every j and the length of
each P; lies between r/m and 2r/m. By the triangle inequality,

Z‘ Z F(2)w™ @
j=1 zcP;

Let z; € P;. The estimate on the diameter of ¢(P;) implies that
W@ — @) is at most /2 for every x € Pj. Therefore

SIS s = S| 3 Aot

> ar.

7j=1 CEGP]' 7j=1 (EEP]‘
>3 Ha@)e @] = S (a/2)1p|
j=1 zeP; j=1
> ar/2
as claimed. o

COROLLARY 2.5. Let A C Zy and suppose that |A(r)| > aN for some
r # 0. Then there exists an arithmetic progression P C {0,1,...,N — 1}
of length at least (a3N/128m)'/? such that |AN P| > (6 + a/8)|P|.

Proof. Define ¢(x) = rx and let f be the balanced function of A (regarded
as a function on {0, 1, ..., N—1}). By Corollary 2.4 we can partition the set
{0,1,..., N —1} into m < (16w N/a)'/? arithmetic progressions Py, ..., Py
of lengths between N/m and 2N/m such that

i‘ S f(g;)( > aN/2.
j=1 zEP;

Since erPj f(z) is real for all j, and since 3 7", Zmer f(z) =0, if we
define J to be the set of j with erPj f(z) > 0, we have

Z Z f(x) > aN/4.

jGJ Z‘GPJ‘
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Therefore, we can find j such that Zmer f(x)=>aN/4m. But |P;|<2N/m,
50 3 gep, f(x) 2 alPj|/8, which implies that [ANP;| > (6 +a/8)|P]. o

We can now give Roth’s proof of his theorem on arithmetic progressions
of length three.

Theorem 2.6. Let § > 0, let N > expexp(C6~') (where C is an absolute
constant) and let A C {1,2,...,N} be a set of size at least éN. Then A
contains an arithmetic progression of length three.

Proof. Since we are passing to smaller progressions and iterating, we cannot
simply assume that N is prime, so we shall begin by dealing with this
small technicality. Let Ny be a positive integer and let Ag be a subset of
{1,2,..., Ny} of size at least 69Ny.

By Bertrand’s postulate (which is elementary — it would be a pity to
use the full strength of the prime number theorem in a proof of Roth’s
theorem) there is a prime p between Ny/3 and 2Ny/3. Write ¢ for Ny — p.
If |[AgN{1,2,...,p} < bo(1 — 69/160)p, then we know that

‘A() N {p +1,... ,Ng}‘ = 60(N0 - (1 - (5()/160)])) = 50((] + 50]7/160)

= (50(1 + 50/320)(1 .
Let us call this situation case 0.

If case 0 does not hold, then let N be the prime p obtained above, let
A=AoNn{l,...,N} and let § = 6p(1 — 609/160). Let B = AN[N/3,2N/3).
If |B] < 6N/5, then either AN[0,N/3) or AN[2N/3, N) has cardinality at
least 26N/5 = (66/5)(N/3). This situation we shall call case 1.

Next, let @ = 62/10 and suppose that [A(r)| > aN for some non-zero r.
In this case, by Corollary 2.5 there is an arithmetic progression P of car-
dinality at least (a®N/1287)'/? such that |A N P| > (6 + 6§2/80)|P|. This
situation will be case 2.

If case 2 does not hold, then |A(r)| < aN for every non-zero r, which
says that A satisfies condition (iv) of Lemma 2.2. The number of triples
(z,y,2) € A x B? such that = + z = 2y is then

NI DD DD Wt = Ny DA B(-2) B(r)
r€AyeEBzEB T r
> NUAYBE - N max A0 (30 1B-202) 7 (X 1)
r#0 r#0 r#0
> 6|B|> — a|B|N .
If in addition case 1 does not hold, then this quantity is minimized when
|B| = §N/5, and the minimum value is 62/N? /50, implying the existence of
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at least this number of triples (z,y,z) € A x B? in arithmetic progression
mod N. Since B lives in the middle third, these are genuine progressions in
{1,2,..., N}, and since there are only N degenerate progressions (i.e., with
difference zero) we can conclude that A contains an arithmetic progression
of length three as long as N > 506~3. This we shall call case 3.

To summarize, if case 3 holds and N > 506‘3, then A contains an
arithmetic progression of length three. In case 2, we can find a sub-
progression P of {1,...,N} of cardinality at least (a®N/1287)Y/? such
that |A N P| > 6(1 + 6§/80)|P|. Since {1,...,N} is a subprogression of
{1,...,No}, A = Apn{l,..., N} and one can easily check that 6(1+6/80) >
80(1 4 60/320), we may conclude that in case 2 there is a subprogres-
sion P of {1,...,Np} of cardinality at least (a®Ny/3847)'/2? such that
|Ag N P| = 6o(1 + 60/320)|P|. As for cases 0 and 1, it is easy to see
that the same conclusion also holds, and indeed a much stronger one as P
has a length which is linear in Nj.

This gives us the basis for an iteration argument. If Ag does not contain
an arithmetic progression of length three, then we drop down to a progres-
sion P where the density of A is larger, and repeat. If the density at step
m of the iteration is d,,, then at each subsequent iteration the density in-
creases by at least 62,/320. It follows that the density reaches 26, after at
most 3206} further steps. It follows that the total number of steps cannot
be more than 320(6~! + (26) 71 + (46) 71 +...) = 6406~ L. At each step, the
size of the progression in which A lives is around the square root of what it
was at the previous step. The result now follows from a simple calculation
(left to the reader). 0

3 Higher-degree Uniformity

There seems to be no obvious way of using a-uniformity to obtain progres-
sions of length greater than three. (Of course, the truth of Szemerédi’s
theorem makes it hard to formalize this statement, but in the next section
we show that a-uniformity does not give strong information about the num-
ber of arithmetic progressions of length £ if £ > 3.) The aim of this section
is to define a notion of pseudo-randomness which is more suitable for the
purpose. The next definition is once again presented as a series of approxi-
mately equivalent statements. In order to simplify the presentation for the
case of progressions of length four, we shall prove two lemmas, even though
the second implies the first. Given a function f : Zy — Zy, we shall define,
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for any k, the difference function A(f; k) by A(f;k)(s) = f(s)f(s — k). The
reason for the terminology is that if, as will often be the case, f(s) = w?(®)
for some function ¢ : Zy — Zy, then A(f;k)(s) = w?k)=¢(s—k),

Now let us define iterated difference functions in two different ways as
follows. The first is inductive, setting A(f;a1,...,aq)(s) to be
A(A(f;a1,...,aq-1);aq)(s). The second makes explicit the result of the
inductive process. Let C stand for the map from CV to CV which takes a
function to its pointwise complex conjugate. Given a function f : Zy — C,
we define

A(fiar,...,aq)(s) = ] (CoFeaf) (S - i%ﬂ)

€1,..,€4
where the product is over all sequences €1, ...,€e; with ¢; € {0,1}. When
d = 3, for example, this definition becomes

A(f;a,b,¢)(s) = f(s)f(s —a)f(s = b)f(s —c)
X f(s—a—=0bf(s—a—c)f(s—=b—c)f(s—a—b—2c).
We now define a function f from Zy to the closed unit disc D C C to
be a-uniform of degree d if

Z ‘ZA(fQQL...,ad)(S) 2 < aN+2

QAly.@d S

When d equals two or three, we say that f is quadratically or cubically
a-uniform respectively. As with the definition of a-uniformity (which is
the same as a-uniformity of degree one) this definition has several useful
reformulations.

LEMMA 3.1. Let f be a function from Zy to D. The following are equiva-
lent.

(i) f is ci-uniform of degree d.

(11) Zs Zal,...,ad+1 A(f? at,... 7ad+1)(8) < clNd+2'

(iii) There is a function « : Z% '—[0, 1] such that Dy ag, @a1,ad-1)
<N 1and A(f;aq,...,a4-1) is a(ai, ..., aq_1)-uniform for every
(al, . ,ad,l).

(iv) There is a function « : Zy — [0,1] such that > a(r) = ¢t N and
A(f;r) is a(r)-uniform of degree d — 1 for every r.

(V) gy 2| A(f5 a1, Lag_1)Mr)|t < el NS,

(vi) For all but coN%~! choices of (ay,...,aq_1) the function A(f;ay,...,aq_1)
is co-uniform.
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(vii) There are at most csN%~! values of (a1,...,aq_1) for which there
exists some r € Zy with |A(f;ay,...,aq—1)"(r)| = csN.

Proof. The equivalence of (i) and (ii) is easy, as the left-hand sides of
the relevant expressions are equal. It is also obvious that (ii) and (iii) are
equivalent. A very simple inductive argument shows that (ii) is equivalent
to (iv). The equivalence of (i) and (v) follows, as in the proof of the
equivalence of (i) and (iii) in Lemma 2.1, by expanding the left-hand side
of (v). Alternatively, it can be deduced from Lemma 2.1 by applying that

equivalence to each function A(f;aq,...,aq—1) and adding.

Averaging arguments show that (iii) implies (vi) as long as ¢ < ¢, and
that (vi) implies (iii) as long as ¢; > 2¢y. Finally, the equivalence of (i) and
(ii) in Lemma 2.1 shows that in this lemma (vi) implies (vii) if c3 > 05/4
and (vii) implies (vi) if ca > 3. O

Notice that properties (i) and (ii) above make sense even when d = 0.
Therefore, we shall define a function f : Zy — D to be a-uniform of degree
zero if |3, f(s)‘2 < aN?. Property (iv) now makes sense when d = 1.
This definition will allow us to begin an inductive argument at an earlier
and thus easier place.

The next result is the main one of this section. Although it will not be
applied directly, it easily implies the results that are needed for later.

Theorem 3.2. Let k > 2 and let f1,..., fr be functions from Zy to D
such that fi is a-uniform of degree k — 2. Then

‘ZZfl(S)fz(S - 7‘) .. fk(S — (k‘ _ 1),0‘ < a1/gk—1N2 ‘

Proof. When k = 2, we know that
‘szl(S)fz(S —7)| = )(Z f1(5)> (Z ﬁ(t))’ <all?N?.

since |3, f1(s)| < N and |3, fo(t)| < a'/2N.

When k > 2, assume the result for k£ — 1, let fi be a-uniform of degree
k—2and let o : Zy — [0,1] be a function with the property that A(fg;r)
is a(r)-uniform of degree k — 3 for every r € Zy. Then




480 W.T. GOWERS GAFA

a0 gl = - 0n)f

< N;);h(é’)fz(s—r)---fk(s— (k- 1r)[]

<N YIS fals =) s(s = 20) - (s — (b= )|

= Niizt:fz(s — ) fals — ) - fus — (k= 1)r) fi(s — (k — 1))
=N Z Z Z fa(s) fa(s—u) ... fr(s=(k=2)r) fi(s—(k=2)r—(k—1)u)
—NZZZA fosu)()A(f352u) (s=7) ... A(fi; (k=1)u) (s—(k=2)r) .

Since A(fk, (k —1)u) is a((k — 1)u)-uniform of degree k — 3, our inductive
hypothesis implies that this is at most N >, a((k— 1)u)/2" * N2, and since
Youo((k—1)u) < aN, this is at most o2 N which proves the result
for k. o

The interest in Theorem 3.2 is of course that the expression on the left-
hand side can be used to count arithmetic progressions. Let us now define
a set A C Zy to be a-uniform of degree d if its balanced function is. (This
definition makes sense when d = 0, but only because it applies to all sets.)
The next result implies that a set A which is a-uniform of degree d — 2
for some small a contains about the number of arithmetic progressions of
length d that a random set of the same cardinality would have, where this
means arithmetic progressions mod N. We shall then show how to obtain
genuine progressions, which turns out to be a minor technicality, similar to
the corresponding technicality in the proof of Roth’s theorem.

COROLLARY 3.3. Let A, .. Ak be subsets of Zy, such that A; has cardi-
nality 6; N for every i, and is o~ " _uniform of degree i — 2 for every i > 3.
Then

’Z\(Al 1) Qe 0 (Ag k)] —61...6kN2‘ < 2FaN?.
Proof. For each i, let f; be the balanced function of A;. Then
[(Ar )0 N (A +Er)| =D (614 fils — 7)) ... (66 + fuls — Er))

so we can rewrite (A1 +7) NN (A + kr)| —61... 0, N as

Z HéiZHfi(s—ir).

BC[k],B£0i¢B s icB
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Now if j = max B, then Y > [l;cp fi(s —ir) is at most o PTIN? py
Theorem 3.2. It follows that

‘Z|(A1+r)m-.-m(Ak+kr){ 761...6kN2‘ < Y J[éan?
r BC[k],B#0i¢ B

k
i=1
which is at most 2FaN2, as required. O

We now prove two simple technical lemmas.

LEMMA 3.4. Let d > 1 and let f : Zy — D be a-uniform of degree d.
Then f is a/2-uniform of degree d — 1.

Proof. Our assumption is that
2
S YA aa)s)] <ant,
Al,...,aq4 S
By the Cauchy-Schwarz inequality, this implies that
S S A a(s)| < al AN
QAl,...,0q S

which, by the equivalence of properties (i) and (ii) in Lemma 3.1, proves
the lemma. O

LEMMA 3.5. Let A be an a-uniform subset of Zy of cardinality 6N, and
let P be an interval of the form {a+1,...,a+ M}, where M = GN. Then
|[ANP| - BEN| < a'/4N.

Proof. First, we can easily estimate the Fourier coefficients of the set P.

Indeed,
M

Z w—r(a—‘rs)

s=1

= |1 -w™)/(1-w")| <NJ2r.
(We also know that it is at most M, but will not need to use this fact.)

|P(r)| =
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This estimate implies that 3, g |P(r)|[*/3 < N4/3. Therefore,
|AN P|— B6N| = N*l\z A(r)P(r)
r#0

<N (DA (1P

r#0 r#0

. 1/4
<(X 1AM " <atin,
r#0
using property (iv) of Lemma 3.1. a)

3/4

COROLLARY 3.6. Let A C Zy be a-uniform of degree k — 2 and have
cardinality §N. If o < (6/2)¥2" and N > 32k26~%, then A contains an
arithmetic progression of length k.

Proof. Let Ay = Ay = An|(k—2)N/(2k —3),(k — 1)N/(2k — 3)], and let
A3 =---= A, = A. By Lemma 3.4 A is o/2""-uniform (of degree one),
so by Lemma 3.5 the sets A; and Ay both have cardinality at least 6N/4k
since, by the first inequality we have assumed, we know that al/2 ! < 6/4k.

Therefore, by Corollary 3.3, A contains at least ((%};2) — 2]‘3041/2’671)]\72
arithmetic progressions modulo N with the first two terms belonging to
the interval [(k — 2)N/(2k — 3),(k — 1)N/(2k — 3)]. The only way such
a progression can fail to be genuine is if the common difference is zero,
and there are at most /N such degenerate progressions. Thus the corol-
lary is proved, since the two inequalities we have assumed imply that

(8% /16k2) — 2kal/2"™" > 5% /32k2 and §¥N2/32k2 > 6N. o

REMARK.  Notice that the proof of Corollary 3.6 did not use Fourier
coefficients. This shows that in the proof of Theorem 2.6, the Fourier
analysis was not really needed for the analysis of case 3. However, it was
used in a more essential way for case 2.

In order to prove Szemerédi’s theorem, it is now enough to prove that
it A C Zy is a set of size N which is not (6/2)k2k—uniform of degree d — 2,
then there is an arithmetic progression P C Zy of length tending to infinity
with N, such that |[AN P| > (6 + €)|P|, where € > 0 depends on ¢ and d
only. Thus, we wish to deduce a structural property of A from information
about its differences. We do not quite have an inverse problem, as usually
defined, of additive number theory, but it is certainly in the same spirit,
and we shall relate it to a well-known inverse problem, Freiman’s theorem,
later in the paper. For the rest of this section we shall give a combinatorial
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characterization of a-uniform sets of degree d. The result will not be needed
for Szemerédi’s theorem but gives a little more insight into what is being
proved. Also, Lemma 3.7 below will be used near the end of the paper.

Let A be a subset of Zy and let d > 0. By a d-dimensional cube in A
we shall mean a function ¢ : {0,1}% — A of the form

¢ (e1,...,€q) = ag + €101 + - + €qaq,

where ag,aq,...,aq all belong to Zy. We shall say that such a cube is
contained in A, even though it is strictly speaking contained in Ao,

Let A C Zy have cardinality §N. Then A obviously contains exactly
6N cubes of dimension zero and §>N? cubes of dimension one. As remarked
after Lemma 2.2, the number of two-dimensional cubes in A can be writ-
ten as N1 3" |A(r)], so A is a-uniform if and only if there are at most
(6 + a)N3 of them. We shall now show that A contains at least 62" N4+1
cubes of dimension d, and that equality is nearly attained if A is a-uniform
of degree d — 1 for some small a. The remarks we have just made prove
this result for d = 1. Notice that equality is also nearly attained (with high
probability) if A is a random set of cardinality 6 N. This is why we regard
higher-degree uniformity as a form of pseudorandomness.

LEMMA 3.7. Let A be a subset of Zy of cardinality 6N and let d > O.
Then A contains at least §2° N%+1 cubes of dimension d.

Proof. We know the result for d =0 or 1 so let d > 1 and assume that the
result is known for d — 1. The number of d-dimensional cubes in A is the
sum over all r of the number of (d — 1)-dimensional cubes in AN (A + r).
Write 6(r)N for the cardinality of AN (A + r). Then by induction the
number of d-dimensional cubes in A is at least ) (5(7“)2(171]\7 4 Since the

average value of §(r) is exactly 62, this is at least 52/ Nd+1 ag required. O

The next lemma is little more than the Cauchy-Schwarz inequality and
some notation. It will be convenient to use abbreviations such as x for
(z1,...,7x) and z.y for Zle ziy;. If € € {0,1}* then we shall write |e| for
Zle €;- Once again, C' is the operation of complex conjugation.

LEMMA 3.8. For every e € {0,1}" let f. be a function from Zy to D. Then

1

‘Z Z H C‘E‘fe(s—e.x)‘ < H ‘Z Z H clf.(s—n.z)|*.

vezd, 5 {01} ce{0.1}¢ wezg, 5 ne{0,1}
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Proof.

DIDIN | BRI

zezd, 5 ec{0,1}d

[ 2 (I ae-en)(3 TI chate—eo)]

wezgt 8 e€{0,1}4! t ee{o,1}dt

(XX I eaten])’
zezd! 5 ec{0,1}d1
(X[ I e

zezg, S ec{0,1}4-1

Let us write Py(e) and Qg(e) for the sequences (eq,...,€4-1,0) and
(61,...,6d,1,1). Then

SIS I ot —en)| = XS T ngls —en)

zezdt § e€{0,1}471 z€z% 5 ec{0,1}4

and similarly for the second bracket with )4, so the two parts are square
roots of expressions of the form we started with, except that the function f.
no longer depends on €¢4. Repeating this argument for the other coordinates,
we obtain the result. O

If we regard Lemma 3.8 as a modification of the Cauchy-Schwarz in-
equality, then the next lemma is the corresponding modification of Min-
kowski’s inequality.

LEMMA 3.9. Given any function f : Zn — C and any d > 2, define ||f||,
by the formula

1M1= 3> T s —ea)

z€Zg, S5 ec{0,1}4

1/2¢

Then || f + gll; < IIflly+ llgll; for any pair of functions f,g : Zy — C. In
other words, ||.||; is a norm.

Proof. If we expand ||f + g||2d, we obtain the sum
Z z H Cll(f +g)(s — ex).
zezd, s eef{0,1}¢

If we expand the product we obtain 22" terms of the form
Hee{o,l}d Clel f.(s—e.x), where each function f. is either f or g. For each
one of these terms, if we take the sum over x1,...,2x4 and s and apply
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Lemma 3.8, we have an upper estimate of || f||* ||g||}, where k and I are the
number of times that f. equals f and g respectively. From this it follows

that o

d
2d 2 ko o29—k 2d
17+ ol < 3 (%) IS Dol = 11+ Lol
k=0
which proves the lemma. O
It is now very easy to show that equality is almost attained in Lemma
3.7 for sets that are sufficiently uniform.

LEMMA 3.10. Let A be a-uniform of degree d — 1. Then A contains at
most (& + a/2)2 N4+1 cubes of dimension d.

Proof. Write A = 6 + f, where |A| = 6N and f is the balanced function
of A. Then ||All; < ||6|l; + [|fll;- It is easy to see that HAHfld is the

number of d-dimensional cubes in A and that ||6 Hid = §2' N1, Moreover,
the statement that A is a-uniform of degree d — 1 is equivalent to the

statement that || f Hgd < aN%1. Therefore, Lemma 3.9 tells us that A
contains at most (§ + a/2)2’ N4+1 cubes of dimension d. 0

REMARK. In a sense, the normed spaces just defined encapsulate all
the information we need about the arithmetical properties of the functions
we consider. In their definitions they bear some resemblance to Sobolev
spaces. Although I cannot think of any potential applications, I still feel
that it would be interesting to investigate them further.

4 Two Motivating Examples

We now know that Szemerédi’s theorem would follow from an adequate
understanding of higher-degree uniformity. A natural question to ask is
whether degree-one uniformity implies higher-degree uniformity (for which
it would be enough to show that it implied quadratic uniformity). To make
the question precise, if A has density ¢ and is a-uniform, does it follow that
A is quadratically G-uniform, for some § which, for fixed ¢, tends to zero
as « tends to zero? If so, then the same result for higher-degree uniformity
can be deduced, and Szemerédi’s theorem follows easily, by the method
of §2.

The first result of this section is a simple counterexample showing that
uniformity does not imply quadratic uniformity. Let A be the set {s € Zy :
|s?| < N/10}. If s € AN (A + k), then |s?| < N/10 and |(s — k)| < N/10
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as well, which implies that |2sk — k?| < N/5, or equivalently that s lies
inside the set (2k)~'{s : |s — k/2| < N/5}. It follows that AN (A + k) is
not uniform for any k # 0.

It is possible, but not completely straightforward, to show that A itself
is uniform. Rather than go into the details, we prove a closely related fact
which is in some ways more natural. Let f(s) = w*. We shall show that f
is a very uniform function, while A(f;k) fails badly to be uniform for any
k # 0. For the uniformity of f, notice that

_ ’Z WS
S

F)l =[] = [ w22

for every r. Therefore, | f (r)| = N'/2 for every r € Zy, so f is as uniform

as a function into the unit circle can possibly be. On the other hand,
A(f; k) (s) = w2+ 50 that

A(fik)Mr) = {

N r=2k
0 otherwise,

which shows that A(f;k) is, for k # 0, as non-uniform as possible.
More generally, if ¢ : Zy—Zy is a quadratic polynomial and f(s)=w?),
then f is highly uniform, but there is some A € Zy such that, for every k,

A B)Nr) = {N r=Ak

0 otherwise.

This suggests an attractive conjecture, which could perhaps replace the
false idea that if A is uniform then so are almost all AN (A+ k). Perhaps if
there are many values of k for which A N (A + k) fails to be uniform, then
there must be a quadratic function ¢ : Zy — Zpy such that ‘ZSGA w‘¢(5)}
is large. We shall see in the next section that such “quadratic bias” would
actually imply the existence of a long arithmetic progression P; such that
|A N Pj|/|Pj| was significantly larger than |A|/N. This would give a proof
of Szemerédi’s theorem for progressions of length four, and one can see
how the above ideas might be generalized to higher-degree polynomials
and longer arithmetic progressions.

The second example of this section shows that such conjectures are still
too optimistic. As with the first example, we shall consider functions that
are more general than characteristic functions of subsets of Zy. However,
this should be enough to convince the reader not to try to prove the con-
jectures.

Let 7 be about v/N and for 0 < a,b < /2 define ¢(ar +b) to be a® +b>.
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Now define

w?®) s = ar +b for some 0 < a,b < /2

f(s) = { .

0 otherwise .
The function f is not quadratic, but it resembles a quadratic form in
two variables (with the numbers 1 and r behaving like a basis of a two-
dimensional space).

Suppose s = ar + b and k = cr 4+ d are two numbers in Zp, where all of
a, b, a — c and b — d lie in the interval [0,7/2). Then
f(S)m _ w2ac—02+2bd—d2 — Or(ar+b) :

where ¢ depends linearly on the pair (a,b). The property that will interest
us about ¢ is that, at least when ¢ and d are not too close to /2, there
are several pairs (a,b) such that the condition on (a,b,c,d) applies, and

therefore several quadruples ((ai, bi))?zl such that

(a1,b1) + (a2, b2) = (as, bs) + (a4, bs)
and

Pr(arr + b1) + dp(asr + ba) = dr(asr + b3) + dr(asr + ba) .
Here, “several” means a number proportional to N3, which is the maximum
it could be.
Let B be the set of all s = ar + b for which a, b, ¢ and d satisfy the
conditions above. (Of course, B depends on k.) Then

3 ’ 3 wor)as
q seB
_ NZ{w¢k(8)+¢k(t)—¢k(u)—qﬁk(v) cs,tu,v €B, s+t=u+v}.

Now the set B has been chosen so that if s,¢{,u,v € B and s+t = u+ v,
then ¢r(s) + ¢r(t) = dr(u) + ¢r(v). Therefore, the right-hand side above is
N times the number of quadruples (s, ¢, u,v) € B* such that s+t = u +v.
It is not hard to check that if ¢ and d are smaller than r/4, say, then B
has cardinality proportional to N3, and therefore that the right-hand side
above is proportional to N*. Lemma 2.1 now tells us that ¢, has a large
Fourier coefficient. Thus, at the very least, we have shown that, for many
values of k, A(f; k) fails to be uniform.

If we could find a genuinely quadratic function ¢(s) = as? + bs + ¢ such

that ‘E f(s)w —o(s) ‘ was proportional to N2, then, expanding, we would

have
Z f(8)f(s — k)w™ ¢ els—k Z (s L, —2ask—bk
s,k
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proportional to N2, which would imply that the number of k for which
A(f;k)~(2ak) was proportional to N was proportional to N. A direct
calculation (left to the interested reader) shows that such a phenomenon
does not occur. That is, there is no value of A such that A(f;k)"(\k) is
large for many values of k.

There are of course many examples like the second one above. One can
define functions that resemble d-dimensional quadratic forms, and provided
that d is small the same sort of behaviour occurs. Thus, we must accept that
the ideas of this paper so far do not lead directly to a proof of Szemerédi’s
theorem, and begin to come to terms with these “multi-dimensional” exam-
ples. It is for this purpose that our major tool, an adaptation of Freiman’s
theorem, is used, as will be explained later in the paper.

Returning to the first example of this section, it should be noted that
the set A = {s € Zy : |s?| < N/10} also serves to show that a uniform
set need not have roughly the same number of arithmetic progressions of
length four as a random set. Indeed, it is not hard to show that if x, x + d
and x + 2d all lie in A, then it is a little ‘too likely’ that x 4 3d will also lie
in A, which shows that A contains ‘too many’ progressions of length four.

Until recently, I was confident that a modificiation of this example could
be constructed with too few progressions of length four. However, I have
recently changed my mind, after a conversation with Gil Kalai in which he
challenged me actually to produce such a modification. In fact, there are
convincing heuristic arguments in support of the following conjecture, even
though at first it seems very implausible.

CONJECTURE 4.1. Let A C Zx be a set of size 6N. Then, if A is «a-
uniform, the number of quadruples (x,z +d, z +2d,z +3d) in A* is at least
(6* — B)N2, where 3 tends to zero as a tends to zero.

In other words, uniform sets always contain at least the expected number
of progressions of length four.

It can be shown that quadratically uniform sets sometimes contain sig-
nificantly fewer progressions of length five than random sets of the same
cardinality. However, the example depends in an essential way on 5 being
odd, and the following extension of Conjecture 4.1 appears to be true as
well.

CONJECTURE 4.2. Let A C Zx be a set of size 6N and let k be an even
number. Then, if A is a-uniform of degree k — 1, the number of sequences
(z,7+d,...,x+ (k+1)d) belonging to A**2 is at least (6*+2 — B)N?2, where
0 tends to zero as « tends to zero.
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5 Consequences of Weyl’s Inequality

In this section we shall generalize Lemma 2.2 and Corollary 2.3 from linear
functions to general polynomials. Most of the results of the section are
well known. Since the proofs are short, we shall give many of them in
full, to keep the paper as self-contained as possible. The main exception
is Weyl’s inequality itself: there seems little point in reproducing the proof
when it is well explained in many places. Once we have generalized these
two results, we will have shown that for the proof of Szemerédi’s theorem
it is enough to prove that a set which fails to be uniform of degree d
exhibits “polynomial bias”, rather than “linear bias” as we showed in the
case d = 1. We shall not try to define the notion of bias precisely. If a set A
has balanced function f and there is a polynomial ¢ : Zy — Zy of degree
d such that Y, f (s)w*‘ﬁ(s)‘ is large, then A exhibits polynomial bias in
the required sense. However, the second example in the previous section
showed that this is too much to ask for, so a precise definition would have
to be somewhat weaker.

First, we give some simple estimates for certain Fourier coefficients. We
shall write [—M, M) for the set {—M,—(M —1),...,M —1}.
LEMMA 5.1. Let I C Zy be the interval [—M,M). Then |I(r)| <
min{2M, N/2|r|}.

Proof. This is a simple direct calculation. The upper bound of 2M is trivial.
To obtain the bound of N/2|r|, note that for # in the range [—m, 7| one has
11— e > 200/ .

Applying this estimate with 6 = 27r/N gives

M-1 —rM rM
A w —w 2 N
fol=| 3 o= < <
s=—M
as was wanted. o

Given an integer r € Zy, we shall use the notation |r| to stand for
the modulus of the unique representative of r that lies in the interval
[-N/2,N/2) (i.e., the distance from r to zero).

LEMMA 5.2. Let A be a subset of Zy of cardinality t, let M be an even
integer and suppose that AN [-M,M) = (. Then there exists r with
0 < |r| < N®2M~2 such that |A(r)| > tM/2N.

Proof. Let I = [-M/2,M/2). Then An (I —1I) = (. It follows that
(A, I % I) = 0, which is the same as saying that )  A(s)I x I(s) = 0.
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By identities (1) and (2) of §2 (transforms of convolutions and Parseval’s
identity) it follows that Y A(r)|I(r)|> = 0. Since I(0) = M and A(0) =t¢,

it follows that
S TIAMI(r))? = tM?.
0

By Lemma 5.1, we know, for each r, that [I(r)| < min{M, N/2|r|}.
follows that

D_AMICP < | max L AOIS IO+ 30 N

r#£0 r |r|>N2M—2

< MN A 3/OEN2(N2M—2)~!
0<|T|r§]%§M_2| (r)] + (3/4)tN=( )

= MN A 3/4)tM?.
0<|T|131%§M72| (r)[ +(3/4)
Therefore, there exists r with |r| < N2M~2 and |A(r)| > M?t/AMN =
tM /4N, which proves the lemma. u]

REMARK. A more obvious approach to proving the above result would be
to use I instead of I I. That is, one would consider the sum 3>, A(r)I(r).
It turns out, however, that the estimates that one obtains are not strong
enough. The trick of using I % I instead is basically the familiar device of
replacing the Dirichlet kernel by the Féjer kernel.

The next lemma is a special case of Weyl’s inequality. (To obtain the
inequality in its full generality, replace s*¥ below by an arbitrary monic
polynomial of degree k. The proof is unaffected.) We shall make a fairly
standard deduction from it, so it seems appropriate to use standard nota-
tion as well. Thus, e(z) means exp(2miz).

LEMMA 5.3. Let a and q be integers with (a,q) = 1. Let a be a real
number such that ’oz — a/q} < q72. Then, for all € > 0,
t

Z e(as®)

s=1

< Cetlﬂ(q’l 4ty qtfk)l/Qkfl .

P 2
Moreover, if t > 2% , then the above inequality is valid with ¢ = 1/k2k+1
and C, = 1000. O

The above estimate for C, is important because we wish to use the
inequality to obtain explicit bounds. Unfortunately, I have not managed
to find in the literature any presentation of Weyl’s inequality that bothers
to estimate C.. If one follows the proof given by Vaughan [V] and keeps
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track of everything that is swallowed up by the ¢¢, one can replace the C¢t*
in the right-hand side of the inequality by
500(2t)8k/2k_1 log logt(log t)1/2k_1 )
It is from this that we deduced the final part of the lemma. Note that,
although C¢ became an absolute constant, we paid for it with the assump-
tion that ¢t was sufficiently large. Since we are stating this estimate rather
than giving a detailed proof, the reader may be reassured to know that for
what follows it would not matter if ¢ was required to be far larger — quadru-
ply exponential in k, say. Moreover, Weyl’s inequality does not give the
best known estimate for the exponential sum in question. It is used here
because its proof is reasonably simple, which makes checking the estimate
above relatively straightforward.
The next lemma is very standard, and is due to Dirichlet.

LEMMA 5.4. Let o be a real number. For every integer u > 1 there exist
integers a and q with (a,q) =1, 1 < ¢ < u and |a — a/q} < 1/qu. a)

The next lemma is also due to Weyl. Since it is again hard to find in
the literature in the quantitative form we need, we give a complete proof.

932k2

LEMMA 5.5. Let k > 2, let t > 2 , let N >t and and let a € Zy. Then
5 k
there exists p < t such that |pFa| < 4= 1/k2M A

Proof. Let A = {a,2a,3%a,...,t*a}. By Lemma 5.2, if the result is false
then there exists r such that 0 < |r| < t1/k2" and |A(r)] > %tl_l/kzkﬂ.
Setting a« = —ar/N, we have

A(r) = Z w = Zw""sk“ = Z e(as”).

t

u€A s=1 s=1
Lemma 5.4 gives us integers b and ¢ with (b,q) = 1, 1 < ¢ < t and
‘a — b/q‘ < 1/qt. By Lemma 5.3 we know that

|A(r)] < 100061 F1/R25 7 (71 gl g gl Ry /2
By the lower bound for |A(r)|, we may deduce that
2000t1/k2k(q—1 e ql—k)1/2’“*1 >1

which implies, after a small calculation (using the assumption that ¢ >

22321@-2)7 that ¢ < 941/2k
We may now argue directly. We know that |a—b/ q} < 1/qt. Multiplying
both sides by (rq)*N/r we find that

| — a(rq)® — b(rg) "' N| < (|Irlg)* "N/t <t7VAN,
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so we can set p = rq (contradicting the initial assumption that the result
was false). O

COROLLARY 5.6. Let ¢ : Zy — ZnN be any polynomial of degree k, let

K = (k! )22(k+1)2 and let r be an integer exceeding 224%2. Then for every
m > r'=VEK the set {0,1,2,...,r — 1} can be partitioned into arithmetic
progressions Pi, ..., Py, such that the diameter of ¢(P;) is at most r VKN
for every j and the lengths of any two P; differ by at most 1.

Proof. The case k = 1 follows immediately from Lemma 2.2. Given k > 1,
let us write ¢(z) = ax® 4 11(x), in such a way that ¢; is a polynomial
of degree k — 1. By Lemma 5.5 we can find p < r'/2 such that |ap¥| <

r=1/k2"2 N Then for any s we have

oz + sp) = a(x + sp)* + 1 (z + sp)

= s"(ap") + o (z,p) ,
where 5 is, for any fixed x, a polynomial of degree at most k — 1 in p.
For any u, the diameter of the set {s*(ap*) : 0 < s < u} is at most
uk|apk| < ukp— /K252 Therefore, for any u < r1/4 we can partition the

set {0,1,...,7 — 1} into arithmetic progressions of the form

Q; = {xj,a:j +p,..,x+ (uy — 1)p},
such that, for every j, u — 1 < u; < u and there exists a polynomial ¢; of
degree at most k£ — 1 such that, for any subset P C Q;,

diam(¢(P)) < uFr~/%""' N 4 diam(¢;(P)).
Let us choose u = 1"1/]‘322k+2, with the result that u*r—1/k2"" = p—1/k2442,

It is easy to check that u > 9210(-1% Therefore, by induction, if v < u!/~,
where L = ((k—1)!)22** then every @Q; can be partitioned into arithmetic
progressions Pj; of length v — 1 or v in such a way that diam(¢;(Pj;)) <
u~YEN for every t. It is not hard to check that this, with our choice of u
above, gives us the inductive hypothesis for k. m
COROLLARY 5.7. Let ¢ : Zn — Zn be a polynomial of degree k, let K =
(k)22*+D? ot a0 and let 7 be an integer exceeding max{2240k2, (47 /) K},
Then, for any m > r'~'/X there is a partition of the set {0,1,...,7 — 1}
into arithmetic progressions P, ..., Py, such that the sizes of the P; differ
by at most one, and if f : Zx — D is any function such that

r—1
> fls)w
5=0

= ar,
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then

Z’ Z f(s ’ (a/2)r

j=1 sePp;
Proof. By Corollary 5.6 we can choose P, ..., Py, such that diam(¢(P;)) <
Nr—1/K for every j. By the second lower bound for r, this is at most
aN/4r. Exactly as in the proof of Corollary 2.3, this implies the result. o

COROLLARY 5.8. Let A C Zy be a set of cardinality 6 N with balanced
function f. Suppose that we can find disjoint arithmetic progressions
P, ..., Py such that A C |J; P;, and polynomials ¢1,...,¢n of degree
at most k such that

> alN .

)R

1=1 seP;

Suppose also that |P;| < 2|P;| for all i,j. Then there is an arithmetic
progression Q of cardinality at least (N/M)Y¥X /8 such that |[AN Q| >

(6 +/8)|Q].

Proof. We know that no P; has cardinality more than 2N/M. By Corollary
5.7, if m < C(2N/M)'~'/%_ each P; can be partitioned into arithmetic
progressions F;1, ..., P, such that

SIS 56| = 3] 3 stope

Jj=1 seP;; seh;

Summing over ¢, we find that

S 5] 5 an

=1 j:1 SGPij
Since A is contained in the union of the P;; we also know that

S )=

i=1 j=1 seP;;
Let Fj; = Zsep f(s) and let J be the set of (4, j) such that F;; > 0. Then
the inequalities above imply that Z ey Fij > aN/4, so we can find Pj;
with Zser f(s) = aN/AMm. Smce |P;j| < 4N/Mm, this shows that
|AN Pl > (6 +a/16)|Py;). o
We have now finished one of the key stages in the proof. As promised in

the introduction to this section, if we want to generalize Roth’s argument,
we may now look for “polynomial bias”, rather than the “linear bias” which
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arises there, since polynomial bias implies linear bias on small subprogres-
sions.

We continue the section with three results that generalize Lemma 5.5
and Corollary 5.6 to statements dealing with several polynomials at once.
These generalizations will not be needed for progressions of length four,
but they are very important for progressions of length six or more, and the
next lemma is needed for progressions of length five (in the case k = 2).
Our methods of proof are extremely crude, and it is quite likely that much
better bounds are known. However, we have not been able to find them and
the poor bounds here do not greatly affect the estimate we shall eventually
obtain for Szemerédi’s theorem.

LEMMA 5.9. Let ¢1,...,¢, be polynomials from Zy to Zy of degree at

most k, let K = (k1)22-+1)* and let r be an integer exceeding 92! Kt
Then for every m > r'=1/2K% the set {0,1,2,...,r — 1} can be partitioned
into arithmetic progressions P, ..., Py, such that the diameter of ¢;(P;) is
at most YK N for every i and every j, and the lengths of any two P;
differ by at most 1.

Proof. First we prove by induction that for every p < ¢ we can partition
the set {0,1,...,r — 1} into arithmetic progressions Pi,..., P, of size at
least r1/5” such that diam ¢;(P;) is at most 7—/5" N for every i < p and
J < m. When p = 1 this follows immediately from Corollary 5.6. If we
know it for p — 1, let Q1,...,Q; be the arithmetic progressions obtained.

_ 2
The size of each Q; is at least /K" > 920" , so by Corollary 5.6 each Q;

can be partitioned into further arithmetic progressions P; of cardinality at

(Tl/Kp—l)l/K — pl/K?

least , such that, for every j, the diameter of ¢q(FP;)

is at most (r~V/ETTYU/KN = p—1/K?

the statement for p.

N. This is clearly enough to give us

In particular, we have the statement when p = ¢g. To obtain the lemma,
notice that if k2 < m, then an arithmetic progression of length m can be
partitioned into subprogressions each of which has length k£ or k£ + 1. m

We are now going to prove a similar result for multilinear functions,
which in this context means functions of the form

w(xy, ..., zK) = Z CAHJ:j.

AC[k] jeA

Define a boz in Z?V of common difference d to be a product P=Q1X...xXQy,
where each Q; is an arithmetic progression in Zy (even when Zpy is
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embedded into Z) of common difference d. The width of P is defined to be

min |Q;].

k - 2
LEMMA 5.10. Let k > 2, let K = k2253 Jot m > 2K* 2! Jet P be
a box in Zﬂ“\, of width at least m and let i be a k-linear function from P
to Zy. Then P can be partitioned into boxes Py, ..., Py, such that each P;

_ok _ok
has width at least m¥ * and the diameter of u(P;) is at most 2m =K “N
for every j.

Proof. As noted above, i can be written as a sum of terms of the form
calljea ;. Take any total ordering on the subsets of [k] which extends the
partial ordering by inclusion, and define the height of 1 to be the largest
position in this ordering of a set A such that the coefficient cy4 is non-zero.
We shall prove the result by induction on the height. The precise inductive
hypothesis is that if p has height at most p, then any box @ of width
t> 2K10232]€2+1 can be partitioned into boxes Q); of width at least t57" such
that for every j the diameter of 1(Q;) is at most (1 + 2 *p)t= X" N.

First, if the height is zero or one, then p is constant and the result
is trivial. Now let @) be a box of width ¢t and common difference dy, let
i Q — Zy be a k-linear function of height p and suppose that the result
is true for all multilinear functions of height less than p. Let A be the ptt
set in the ordering on the subsets of [k], and let ¢4 be the corresponding
coeflicient of pu.

By Lemma 5.5, we can find r < t1/2, such that, setting d = rdy, we
have the inequality |cqdl?l| < t= VR N Now, for any (x1,...,2K) € Q
we can define a function v by

I/(bl,...,bk) = u(a:l +dbi, ...,k —i—dbk)
and write it in the form
v(by,....bp) = > pdP T b;.
BClk] jeB
It is not hard to see that, because u has height p, so does v, and also that
¢y = ca, whatever the choice of (z1,...,zy). Therefore, we can write

v(by, ... bp) = cad T bj+ v/ (b1, .. bx),
jEA
where v/ has height at most p — 1. If max{by,...,b;} < ml/k*25%  then
our estimate for c4d implies that {cAd|A| HjeA bj| < t=1/k2M2 Ny
Now we are almost finished. Since r < ¢1/2, there is no problem in parti-
tioning @ into boxes of common difference d and width ¢/ R22EFS _4l/K 1y
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each such box, we have shown that u can be written as a sum v1 +v5 of mul-
tilinear functions such that v is bounded above in size by +=1/k2"° N and )
has height at most p—1 (with the functions v; and v» depending on the box).
By induction, each such box can be further partitioned into boxes of width
at least t'/%” such that o has diameter at most (14 (p — 1)27%)t= K" N,
Since

VRN p (127 p - )TN < (L 27 Ry KN
we have proved the inductive hypothesis for p and hence the whole lemma. o

It is now not hard to deduce a multiple version of the above lemma.

COROLLARY 5.11. Let k > 2, let K = k*253, let P be a box in ZX, of

k 2
width at least m > 2K° 2" and let M1, - .-, g be k-linear functions

from P to Zy. Then P can be partitioned into boxes Pi,..., Py, such
ok
that each P; has width at least m™ > and the diameter of wi(Pj) is at
_ok
most 2m~ 5N for every i and j.

Proof. We can apply Lemma 5.10 ¢ times, obtaining a sequence of finer
and finer partitions into boxes, such that for each refinement another of
the p; satisfies the conclusion of that lemma. The width of the boxes at
the final stage of this process is at least the number obtained by raising m
K _qu' The worst estimate for the
—K2a

to the power K2 q times, which is m

diameter comes at the last refinement, and gives 2m o

To end this section, we now give four simple lemmas, all of which are
closely related to results that have already appeared in this paper (such as
Lemma 2.3, Lemma 2.4 and Corollary 2.5). It will be convenient to have
them stated explicitly.

LEMMA 5.12. Let Q C Zn be a mod-N arithmetic progression of size m.
Then Q can be partitioned into 4m'/? proper arithmetic progressions.

Proof. Let Q = {a,a+d,...,a+(m—1)d}. By the pigeonhole principle we
can find distinct integers I; and Iy lying in the interval [0,m!/?] such that
ll1d — lod| < m~'/2N and hence [ lying in the interval (0,m'/2) such that
ld] < m~'/2N. We can partition @ into [ mod-N arithmetic progressions
Ry, ..., Ry each of which has common difference ld and length at least ml/2.
Each R; can be partitioned into mod-N arithmetic progressions S; of com-
mon difference d and length between m!/2 and m. Of these there can be
at most 2m!/2. Finally, cach S; can be split into at most two parts, each
of which is a proper arithmetic progression. O
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LEMMA 5.13. Let Q1,...,Qu be mod-N arithmetic progressions that form
a partition of Zy. There is a refinement of this partition consisting of at
most 4 NM proper arithmetic progressions.

Proof. Let @); have cardinality m;. By Lemma 18.1, one can partition @;
1/2

into at most 4m,;’” proper arithmetic progressions. Since mi+...+mp=N,

the Cauchy-Schwarz inequality tells us that 4(m1/2+ —|—m1/2)<4\/ MN. o
LEMMA 5.14. Let ¢ : Zy — Zn be a polynomial of degree k and let
K = (k!)22k2. Let f : Zn — [—1,1] and let Q1,...,Qn be arithmetic
progressions such that

3|5 s 3 0
i=1 s€Q;
There is a refinement of Q1,...,Qp consisting of arithmetic progressions

Ri,..., Ry such that L < CMYENI-VE and

Z]Z 1(9)| > (/2N

j=1 s€R;

Proof. Let m; be the cardinality of Q; and let «; be defined by the equation
> )| = ailQil.
S€Q;

Our assumption is that Z -1 aleZ\ aN. By Corollary 5.7, each @; can

be partitioned into at most Cmi /K subprogressions (1, ..., Qi such
that

()| > (cs/2)Qil.
Jj=1 SEQZJ
S0, summing over i, we have the inequality

] (a/2)N

i=1 j=1 s€Qyj

The number of sets we have used is at most C' ZZ m 1 YK Gince Zf\il m;

= N, this is at most CMY/ENI=VE 1y Holder’s mequality. m

LEMMA 5.15. Let f : Zy — [—1,1], suppose that )  f(s) = 0 and let
Py, ..., Py be sets partitioning Zy such that

%)Zf(s)} > aN

j=1 seP;



498 W.T. GOWERS GAFA
Then there exists j such that Zser f(s) > a|P;j|/4 and |Pj| > aN/4M.

Proof. For each j let a; = maX{O, Zser f(s)} The hypotheses about the
function f imply that Zj‘il a;j > aN/2. However,

Z{aj taj < alQj]/4} < aN/4
and

Z{aj :|Qj] < aN/4m} < aN/4

(as a; < |Qj|) so there must be other values of j contributing to Z;‘il aj.
This proves the lemma. O

6 Somewhat Additive Functions

We saw in §4 that it is possible for a set A to have small Fourier coefficients,
but for AN (A+ k) to have at least one non-trivial large Fourier coefficient
for every k. Moreover, the obvious conjecture concerning such sets, that
they correlate with some function of the kind wi®) where ¢ is a quadratic
polynomial, is false. The aim of the next three sections is to show that such
a set A must nevertheless exhibit quadratic bias of some sort. We will then
be able to use the results of the last section to find linear bias, which will
complete the proof for progressions of length four. The generalization to
longer progressions will use similar ideas, but involves one extra important
difficulty.

Notice that what we are trying to prove is very natural. If we replace
A by a function on Zy of the form f(s) = w?®), where ¢ : Zy — Zy,
then we are trying to prove that if, for many k, the function ¢g(s) =
#(s) — ¢(s — k) has some sort of linearity property, resulting in a large
Fourier coefficient for the difference function A(f; k) = w?®)=¢6=k) then ¢
itself must in some way be quadratic. Many arguments in additive number
theory (in particular Weyl’s inequality) use the fact that taking difference
functions reduces the degree of, and hence simplifies, a polynomial. We
are trying to do something like the reverse process, “integrating” rather
than “differentiating” and showing that the degree goes up by one. This is
another sense in which we are engaged in an inverse problem.

This section contains a simple but crucial observation, which greatly
restricts the possibilities for the Fourier coefficients of AN (A + k) that are
large. Let A be a set which is not quadratically a-uniform and let f be the
balanced function of A. Then there are at least aN values of k such that
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we can find r for which

> Fs)f(s =R

> alN .

Letting B be the set of k for which such an r exists, we can find a function
¢ : B — Zy such that

> ‘Z F(8)f(s — k)w oW

keB s
We shall show that the function ¢ has a weak-seeming property which we
shall call y-additivity, for a certain constant v > 0 to be defined later.
Using a variant of Freiman’s theorem proved in the next section, we shall
show that this property gives surprisingly precise information about ¢.

2
> aSN3 .

ProposiTION 6.1. Let a > 0, let f : Zy — D, let B C Zy and let
¢ : B — Zpy be a function such that

SIAGF R (6(R))[* = an®.

keB
Then there are at least a* N3 quadruples (a,b, c,d) € B* such that a +b =
c+d and ¢(a) + ¢(b) = ¢(c) + ¢(d).

Proof. Expanding the left-hand side of the inequality we are assuming gives
us the inequality

DD FE s =R FOf(t—k)w ?BED > aN?.
keB s,t
If we now introduce the variable u = s — t we can rewrite this as

DD F) (s = k) (s —u)f(s — k —u)w ?F > aN?.

keB s,u
Since |f(z)| < 1 for every z, it follows that
ZZ’Zmﬂs —k— u)wiﬂk)“ > aN3,
u s keB
which implies that
Tle 2
ZZ‘Zf(s_k)f(S—k—u)w_¢(k)u 20&2N4,

s keB

For each u and x let f,(z) = f(—z)f(—z —u) and let g,(z) = B(z)w?®®)®,
The above inequality can be rewritten

ZZ‘Z fulk = S)gu—(lf))2 > a?N*.
u s k
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By Lemma 2.1, we can rewrite it again as
ZZ‘fu ’ |Gu(r ‘2 a®N°.

Since 32, |f(r)|* < N 4, the Cauchy-Schwarz inequality now implies that

1/2
> (X lamlt) = et
u ™
Applying the Cauchy-Schwarz inequality again, we can deduce that

S laur)l = 3wt > 0t
u,r u,r keB
Expanding the left-hand side of this inequality we find that
Z Z u((b )+o(b) ¢(c)—¢(d))w—r(a+b—c—d) > ot N5

u,r a,b,c,de€B

But now the left-hand side is exactly N? times the number of quadruples
(a,b,c,d) € B* for which a+b = c+d and ¢(a) + ¢(b) = ¢(c) + ¢(d). This
proves the proposition. o

If G is an Abelian group and a,b,c,d are elements of G such that
a+ b= c+d, we shall say that (a,b,c,d) is an additive quadruple. Given
a subset B C Zy and a function ¢ : B — Zy, let us say that a quadruple
(a,b,c,d) € B is ¢-additive if it is additive and in addition ¢(a) + ¢(b) =
d(c) +¢(d). Let us say also that ¢ is y-additive if there are at least YN3 ¢-
additive quadruples. It is an easy exercise to show that if v = 1 then B must
be the whole of Zy and ¢ : Zn — Zy must be of the form ¢(x) = Az + p,
i.e., linear. Notice that the property of v-additivity appeared, undefined,
in §4 during the discussion of the function ¢. Let us now give a simple
but useful reformulation of the concept of v-additivity.

LEMMA 6.2. Let v > 0, let B C Zn, let ¢ : B — ZxN be a ~v-additive
function and let I' C Z2 be the graph of ¢. Then I' contains at least YN
additive quadruples (1n the group Z3%;). a)

As we have just remarked, a 1-additive function must be a linear. We
finish this section with an important (and, in the light of the second ex-
ample of §4, natural) example of a y-additive function which cannot be
approximated by a linear function even though ~ is reasonably large. Let
T1,...,Tq4 € Zy and 71,...,rq € N be such that all the numbers 2?:1 a;x;
with 0 < a; < r; are distinct. Let y1,...,yq € Zn be arbitrary, and define

d d
¢ ( Z ai%‘) = Z aiyY; .
i=1 i=1
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Let ¢(s) be arbitrary for the other values of s. Then a simple calculation
shows that the number of additive quadruples is at least (2/3)%5...73. If
r1...74 = BN, then ¢ is (2/3)933-additive.

The function ¢ resembles a linear map between vector spaces, and the
number d can be thought of as the dimension of the domain of the ¢. In the
next two sections we shall show that all y-additive functions have, at least
in part, something like the above form, with d not too large and r1...71q4
an appreciable fraction of N (both depending, of course, on ).

7 Variations on a Theorem of Freiman

Let A be a subset of Z of cardinality m. It is easy to see that A+ A = {z+y :
x,y € A} has cardinality between 2m — 1 and m(m + 1)/2. Suppose that
|A+ A| < C'm for some constant C. What information does this give about
the set A? This problem is called an inverse problem of additive number
theory, since it involves deducing the structure of A from the behaviour
of A+ A — in contrast to a direct problem where properties of A give
information about A + A.

It is clear that A + A will be small when A is a subset of an arithmetic
progression of length not much greater than m. After a moment’s thought,
one realises that there are other examples. For instance, one can take a
“progression of progressions” such as {aM +b:0 < a < h,0 < b < k}
where M > k and hk = m. This example can then be generalized to a
large subset of a “d-dimensional” arithmetic progression, provided that d
is reasonably small. A beautiful and famous result of Freiman asserts that
these simple examples exhaust all possibilities. A precise statement of the
theorem is as follows.

Theorem 7.1.. Let C be a constant. There exist constants dy and K
depending only on C' such that whenever A is a subset of Z with |A| =m
and |A 4+ A| < Cm, there exist d < dy, an integer xy and positive integers
Z1,...,2q and ki, ... kg such that kiks ... kg < Km and

d
AcC {x0+2aimi:0<ai < k; (i: 1,2,...,d)}.
i=1
The same is true if |A — A| < Cm.

It is an easy exercise to deduce from Theorem 7.1 the same result for
subsets of Z"™, where xg, x1, ..., x4 are now points in Z". We shall in fact be
interested in the case n = 2, since we shall be applying Freiman’s theorem
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to a graph coming from Proposition 6.1 and Lemma 6.2.

The number k1ks . .. kg is called the size of the d-dimensional arithmetic
progression. Note that this is not necessarily the same as the cardinality
of the set since there may be numbers (or more generally points of ZP)
which can be written in more than one way as zg+ Z?Zl a;x;. When every
such representation is unique, we shall call the set a proper d-dimensional
arithmetic progression. (This terminology is all standard.)

Freiman’s original proof of Theorem 7.1 was long and very difficult to
understand. Although a simplified version of his argument now exists [Bi],
an extremely important breakthrough came a few years ago with a new
and much easier proof by Ruzsa, which also provided a reasonable bound.
This improved bound is very important for the purposes of our bound for
Szemerédi’s theorem. Full details of Ruzsa’s proof can be found in [Rul,2,3]
or in a book by Nathanson [N], which also contains all necessary background
material.

We shall in fact need a modification of Freiman’s theorem, in which
the hypothesis and the conclusion are weakened. In its qualitative form,
the modification is a result of Balog and Szemerédi. However, they use
Szemerédi’s uniformity lemma, which for us is too expensive. Our argument
will avoid the use of the uniformity lemma and thereby produce a much
better bound than the bound of Balog and Szemerédi. It will be convenient
(though not essential) to consider the version of Freiman’s theorem where
A — A, rather than A 4+ A is assumed to be small. Our weaker hypothesis
concerns another parameter associated with a set A, which has several
descriptions, and which appeared at the end of the previous section in
connection with the graph of the function ¢. It is

1A= AllE=3"|An(A+ k)| = [{(a.bc,d) € A*:a—b=c—d}|.
kEZ
(Freiman calls this invariant M’ in his book [F2 p.41].) It is a straightfor-
ward exercise to show that
|A* A5 <m?+2(1% + -+ + (m — 1)?)

with equality if and only if A is an arithmetic progression of length m. The
Balog-Szemerédi theorem is the following result.

Theorem 7.2. Let A be a subset of ZP of cardinality m and suppose that
| A * A||3 > com®. Then there are constants ¢, K and dy depending only on
co and an arithmetic progression P of dimension d < dy and size at most
Km such that |AN P| > cm.
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This result states that if || A * AH% is, to within a constant, as big as
possible, then A has a proportional subset satisfying the conclusion of
Freiman’s theorem. Notice that, qualitatively at least, the conclusion of
Theorem 7.2 cannot be strengthened, since if A has a proportional sub-
set B with ||Bx B|3 large, then |[Ax Al is large whatever A \ B is.
To see that the new hypothesis is weaker, notice that if |[A — A| < Cm,
then A N (A + k) is empty except for at most C'm values of k, while
Srez AN (A+ k)| = m? It follows from the Cauchy-Schwarz inequal-
ity that Y,z AN (A+K)|? >m3/C.

The most obvious approach to deducing Theorem 7.2 from Theorem 7.1
is to show that a set satisfying the hypothesis of Theorem 7.2 has a large
subset satisfying the hypothesis of Theorem 7.1. This is exactly what Balog
and Szemerédi did and we shall do as well.

ProPOSITION 7.3. Let A be a subset of Z" of cardinality m such that
| A = A||§ > com3. Then there are constants ¢ and C' depending only on cq
and a subset A” C A of cardinality at least cm such that |A” — A"| < C'm.
Moreover, ¢ and C' can be taken as 2_200(1)2 and 23806 24 respectively.

We shall need the following lemma for the proof.

LEMMA 7.4. Let V be a set of size m, let 6 > 0 and let A4,..., A, be
subsets of V' such that Y, Y7 [Az 0 Ay > 62mn?. Then there is a
subset K C [n] of cardinality at least 2~1/28°n such that for at least 90%
of the pairs (z,y) € K? the intersection A, N A, has cardinality at least
62m/2. In particular, the result holds if |A;| > ém for every .

Proof. For every j <mlet Bj ={i:j € A;} and let E; = B]z. Choose five
numbers ji,...,J5 < m at random (uniformly and independently), and let
X = E;, N---N E;,. The probability p,, that a given pair (z,y) € [n]?
belongs to Ej, is m™!|4, N A4,|, so the probability that it belongs to X
is pgy. By our assumption we have that Z:,y:l Dy = 6%n?, which implies
(by Holder’s inequality) that >0 _, Py, = 6'%2. In other words, the
expected size of X is at least §'0n2.

Let Y be the set of pairs (z,y) € X such that |4, N Ay| < §*°m/2, or
equivalently p,, < 62 /2. Because of the bound on Dy, the probability that
(x,y) €Y is at most (62/2)?, so the expected size of Y is at most 6902 /32.

It follows that the expectation of | X|—16]Y] is at least §1902/2. Hence,
there exist ji,...,J5 such that |X| > 16|Y| and |X| > 6'%n2/2. Tt follows
that the set K = Bj N ---N By, satisfies the conclusion of the lemma. ©
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Proof of Proposition 7.3. The function f(z) = A x A(x) (from Z" to Z) is
non-negative and satisfies || f||,, < m, ||f||§ > com® and || f||; = m?. This
implies that f(z) > cym/2 for at least cym/2 values of x, since otherwise
we could write f = g + h with ¢ and h disjointly supported, g supported
on fewer than com/2 points and ||h|lec < com/2, which would tell us that
1115 < Nlglls + 1l 1Bl < (com/2)m® + (com/2).m* = com®.
Let us call a value of x for which f(x) > com/2 a popular difference and let
us define a graph G with vertex set A by joining a to b if b — a (and hence
a —b) is a popular difference. The average degree in G is at least cim/4,
so there must be at least cAm/8 vertices of degree at least c2m/8. Let
6 =c/8, let ai,...,a, be vertices of degree at least c2m/8, with n > ém,
and let Aq,..., A, be the neighbourhoods of the vertices ai,...,a,. By
Lemma 7.4 we can find a subset A" C {a1,...,a,} of cardinality at least
85n/+/2 such that at least 90% of the intersections A; N A; with aj,a; € A’
are of size at least §2m/2. Set a = §%/4/2 so that |4'] = am.

Now define a graph H with vertex set A’, joining a; to a; if and only
if |4; N Aj| > 6°m/2. The average degree of the vertices in H is at least
(9/10)| 4’|, so at least |A’|/2 vertices have degree at least 4|A’|/5. Define
A" to be the set of all such vertices.

We claim now that A” has a small difference set. To see this, consider
any two elements a;,a; € A”. Since the degrees of a; and a; are at least
(4/5)|A’| in H, there are at least (3/5)|A’| points ar € A’ joined to both
a; and aj. For every such k we have |4; N Ag| and |A; N Ag| both of size
at least 62m/2. If b € A; N Ay, then both a; — b and a; — b are popular
differences. It follows that there are at least cng /4 ways of writing a; — ay,
as (p—q) — (r—s), where p,q,r,s € A,p—qg=a;,—band r — s =a — b.
Summing over all b € A;N Ay, we find that there are at least 62c2m3/8 ways
of writing a; — ar as (p—q) — (r — s) with p,q,r, s € A. The same is true of
aj — a. Finally, summing over all k such that ay is joined in H to both a;
and aj, we find that there are at least (3/5)|A’[6%cim®/64 > aécimT /120
ways of writing a; — a; in the form (p —q) — (r — s) — ((t —u) — (v — w))
with p,q,...,w € A.

Since there are at most m® elements in A%, the number of differences
of elements of A” is at most 120m/aé*ci < 23¥m/c3*. Note also that
the cardinality of A” is at least (1/2)am > ¢;?>m/22°. The proposition is
proved. O

It is possible to apply Theorem 7.2 as it stands in order to prove Sze-
merédi’s theorem for progressions of length four (and quite possibly in
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general). Instead, we shall combine Proposition 7.3 with a weaker version
of Freiman’s theorem that gives less information about the structure of a
set A with small difference set. There are three advantages in doing this.
The first is that with our weaker version we can get a much better bound.
The second is that using the weaker version is cleaner, particularly when
we come to the general case. The third is that the weaker version is easier
to prove than Freiman’s theorem itself, as it avoids certain arguments from
the geometry of numbers.

We shall not be concerned in this paper with arbitrary sets A such
that |A — A| < C|A|, but rather with graphs of functions from subsets
of Zn to Zpy. We now prove a result for such functions. An important
concept introduced by Freiman is that of a Freiman homomorphism (as
it is now called). Let A and B be two subsets of Abelian groups. A
function ¢ : A — B is a Freiman homomorphism of order k if, whenever
a1, ...,09; € A and

a1+ Qg = g o+ ag

we have also

Plar) + -+ + dplar) = ¢lags1) + - + dlazk) -

Equivalently, ¢ induces a well-defined function from kA to kB, where kA
denotes the sum of k copies of the set A. When k = 2 one speaks simply of
a Freiman homomorphism. Note that a Freiman homomorphism of order
2k also induces a well-defined function from kA — kA to kB — kB. If ¢
has an inverse which is also a Freiman homomorphism of order k, then ¢ is
said to be a Freiman isomorphism of order k. The next lemma shows that
a function ¢ : B C Zy — Zy for which the graph has a small difference
set can be restricted to a large subset of B on which it is a Freiman homo-
morphism of order k. This lemma plays the role in our proof that Theorem
2 of [Rul] did in Ruzsa’s proof, and the proof is in a very similar spirit.
Indeed, the whole scheme of our proof in the rest of this section is based
on his ideas.

LEMMA 7.5. Let B C Zy and let ¢ : B — Zy be a function with graph T'.
Suppose that |I' —=T'| < C|T'|. Then there is a subset B’ C B of size at least
| B|/8kC** such that the restriction of ¢ to C' is a Freiman homomorphism
of order k.

Proof. First, a theorem of Ruzsa [Ru2] (deduced from a result of Pliinnecke
[P] for which Ruzsa discovered a simpler proof) implies that |[4kI" — 4kT"| <
C*|T|. If for some x we could find more than C** distinct values of 3 such
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that (z,y) € 2kT" — 2k, then for every (z,w) € 2kI" — 2kT" there would be
more than C* distinct values of u such that (z — x,u) € 4kI" — 4kI". But
the number of z such that (z,w) € 2kI' — 2kT" for some w is certainly at
least |I'|, so this would contradict the upper bound for |[4kI" — 4kT'|.

Therefore, there are in particular at most C** distinct values of y such
that (0,y)e2kl' —2kL. If (z,y), (z,y') € kT'—kT then (0,y—y') € 2kT'—2kT".
Hence, there is a set K of size at most C** such that, writing K, for the
set {y : (z,y) € kI' — kI'}, we have K, — K, C K for every x.

Now let 0 < M < N/2 be even. For every w € Zpy, there are exactly
2M non-zero values of d such that

we{—-Md,~(M-1)d,...,-2d,-d}u{d,2d,...,Md},
since the equation ad = w has a unique solution whenever a # 0. Therefore,
the number of values of d for which K N {dy : —M <y < M} # {0} is at
most 2M C4,

Let d be such that if we define P to be {dy : —M < y < M} then
KNP ={0}. Let P\ ={dy : —M/2 <y < M/2}, let L < M/2k and let
Q ={dy:0<y < L}. Define 'y to be the set {(z,y) €T :y € a+ Q}.

We claim that I'; is the graph of a homomorphism of order k. If not,

then we can find (21, 41), ..., (o, yor) and (21, 9)), ..., (2hy, vhs) € Tq such
that

Tyt T Tpyr — =Ty =2 A 2 =X — e — Ty,
but

Yito Y=Yk = =Y EY Y = Yo~ — Yo

and hence x,y,y’ such that y # ¢/ and (z,vy), (z,y') € kI'y — k['y. However,
kI', — kI', is the set of all points of the form

(T1+ T = Tpp1 — -~ Tok, Y1+ Yk — Ykl — 0 — Y2k)
such that (x;,y;) € T and y; € a + @ for every i. This is a subset of
{(z,y) € kI’ — kT’ : y € P'} = {(x,y) : y € K, N P'}. Tt follows that
(K; — K;) N (P" — P’) is non-empty and hence that K N P is non-empty,
which is a contradiction.

Therefore, as long as 2MC* < N — 1, we can find a value of d such
that I'y is the graph of a homomorphism for every a. The average size of
', is (L + 1)|T'|/N, so if we choose M to be at least N/4C* and L to be
at least (M /2k) — 1, as we may, then we can find a such that the size of T,
is at least |T'|/8kC?*. o

Let us now collect what we have done so far into a single result, spe-
cialized to the case k = 8.
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COROLLARY 7.6. Let By C Zy have cardinality alN, and let ¢ : By — Zy
have v(aN)? additive quadruples. Then there is a subset B C By of car-
dinality at least 27188241640 N such that the restriction of ¢ to B is a
homomorphism of order 8.

Proof. By Proposition 7.3 we can find a subset By C By of cardinality at
least 2729412 N such that, letting I" be the graph of ¢ restricted to By, we
have [T —T| < 2°%y735|T|. Let C = 284736, By Lemma 7.5 we can restrict
¢ to a subset B C Bj of cardinality at least |By|/64C32 > 271882411644 )y
such that it becomes a homomorphism of order 8. m

The next lemma is a variant of an argument of Bogolyubov [B]. The
original argument was used by Ruzsa in his proof of Freiman’s theorem.
Given a subset K C Zy and 6 > 0, let us define the Bohr neighbourhood
B(K,6) to be the set of all d € Zy such that |sd| < §N for every s € K. An
elementary fact about Bohr neighbourhoods is contained in the next lemma,
which is another well-known application of Dirichlet’s “box” principle.

LEMMA 7.7. Let K be a subset of Zx and let § > 0. Then the cardinality
of the Bohr neighbourhood B(K,¢) is at least (§/2)/XIN. In particular, if
6 > (N/2)~ YKl then B(K,$§) contains a non-zero element.

Proof. Let the elements of K be rq,...,rg, and let ¢ be the mapping from
Zn to Z% defined by ¢ : x +— (riz,...,rkz). Let m = [671] and for
I<j<mletl; ={x €Zy:(j—1)N/m < x < jN/m}. There are
exactly mF possible products of k of the intervals I;, so one of them, @
say, must contain ¢(z) for at least m™*N values of € Zy. Let C be
the set of x such that ¢(x) € Q. Then it is easy to see that C' — C C B.
Clearly also |C' — C| > |C]. The lemma now follows from the observation
that m—1 > 6/2. !

Another wuseful remark about Bohr neighbourhoods 1is that
B(K,61) + B(K,63) C B(K,6 + 62). Further facts about them will be
proved in §10.

LEMMA 7.8. Let A C Zn be a set of size aN and let ¢ : A — Zy be a
Freiman homomorphism of order 8. Let K = {r € Zy : |A(r)| > a®/?>N/4}.
Then K has cardinality at most 16a~2, and there is a homomorphism
¢ : B(K,«/32m) — Zn such that ¢(z) —(y) = Y(x—y) whenever x,y € A
and v —y € B(K, a/32r).

Proof. Let g be the function A+ A+ Ax A. Then g(r) = |A(r)|* and
g(r) = N7V JA(r)[*w™ for every r € Zy. Let A = a%2/4 so that
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K = {r:|A(r)| > AN}. Since ||A||> = aN?, we have \>2N?|K| < aN? and
hence |K| < a2 = 16a~2 as stated. We also know that

STIAMF < XN A(r)]? < aX’N*.
r¢ K r¢ K
Therefore, if we define h(x) to be N~! ZTGK‘A(T)|4WTI, we find that
lg(z) — h(z)| < aX?>N? for every .
Now choose d such that |rd| < aN/327 for every r € K. Then, for
every ,

h(z +d) = h(z)] = N_I)Z JA(r) [ (@D — o)
reK
< NS At - 1]
rekK
< 27(a/32m)a N3 = aA*N?3 |

where for the last inequality we used the fact that ) . APt <
(aN)2S |A(r)]? = o®N*. Tt follows that, under the same condition on d,
we have

lg(z +d) — g(z)| < 3a\?N3
for every z.

Since g(0) = N1 A(0)|* = a*N3 = 4aX2N3, it follows that g(d) > 0
for every d € B = B(K,«a/32m), so B C 2A — 2A. Now ¢ induces a
homomorphism )y (of order 2) on 24 — 2A, which therefore restricts to a
homomorphism ¢ on B. If x,y € A with x —y = d € B, then ¢(d) =
o(z) + ¢(z) — o(x) — d(y) = ¢(z) — B(y). 0

REMARK. Notice that the same result holds, with an almost identical
proof, if ¢ maps A into a general Abelian group G rather than Zy.

Given that ¢ was already a homomorphism of order 8 in the statement
of Lemma 7.8, the reader may be excused for wondering what has been
gained in the conclusion. The answer is that B = B(K, «/327) has so much
structure, in particular containing many long arithmetic progressions, that
much more can be said about homomorphisms defined on B than about
homomorphisms on arbitrary sets. The next corollary illustrates this.

COROLLARY 7.9. Let A and K be as in Lemma 7.8 and let m be a positive
integer. For every d € B(K,a/32mm) there exists ¢ such that ¢(x) —p(y) =
c(x — y) whenever x — y belongs to the set {jd : —m < j < m}.
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Proof. This follows from Lemma 7.8 together with the observations that
{jd: —m < j < m} C B(K,«a/32m), that the restriction of any homomor-
phism to {jd : —m < j < m} is linear and that ¢ (0) = 0. O

We now give a useful definition which arises naturally out of the state-
ment of Lemma 7.8. Let A, B C Zy and let ¢ : A — Zx. We shall say that
¢ is a B-homomorphism if there is a homomorphism v : B — Zy such that,
whenever z,y € A and x —y = z with z € B, we have ¢(x) — ¢(y) = ¥(2).
In other words, ¢ induces a homomorphism on (A — A) N B.

The last two results of this section are once again simply a putting
together of earlier results.

COROLLARY 7.10.. Let N be sufficiently large, let By C Zy have cardinal-
ity aN and let ¢ : By — Zy have v(aN)? additive quadruples. Then there
exist a mod-N arithmetic progression P of length at least N 270232802

a subset H C P of cardinality at least 271849411640 | P| and constants
A\, i € Zn such that ¢(s) = As+ p for every s € H.

Proof. Corollary 7.6 says that there is a subset B C By of cardinality
at least BN, where 3 = 271882411644 guch that the restriction of ¢ to
B is a Freiman homomorphism of order 8. To this pair (B,¢$) we ap-
ply Corollary 7.9. Let K be the set of size at most 163~2 coming from
Corollary 7.8. By Lemma 7.7, the Bohr neighbourhood B(K, 3/32mm)
has a non-zero element if 3/32rm > (N/2)~7°/16.  Assume that m is
chosen so that this inequality is satisfied and let d be a non-zero ele-
ment of B(K,[(3/32mm). Let Py be the mod-N arithmetic progression
(d,2d,...,md). By an easy averaging argument, there exists k € Zy such
that |(Po + k) N B| > pm. Choose such a k and let P = Py + k and
H = PnNB. Since x —y € {jd: —m < j < m} whenever z,y € P, Corol-
lary 7.9 gives us a constant ¢ € Zy such that ¢(z) — ¢(y) = c(z — y) for
every =,y € H. It remains only to check that if NV is sufficiently large then
there exists an integer m > N2 7o guch that 3/32m > (N/2)~F*/16,
This is a calculation left to the reader, but we state here for later reference
that N can be taken to be (2 ta )27 ** a2 0

The final result will be used when ¢ = 1 in the proofs of Lemmas 13.7
and 13.9 and for general q in the proof of Lemma 16.3. Unlike our previous
results, it applies to subsets of arithmetic progressions rather than subsets
of Z N-

COROLLARY 7.11. Let R be an arithmetic progression in Z, for 1 < i < q let
A; C R be a set of cardinality at least «|R| and for each i let ¢; : A; — Zn
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be a homomorphism of order 8. As long as m < ]R|2_14°‘2q_1 it is possible to
partition R into arithmetic progressions S, ...,Sns, all of size m or m + 1
and all with the same common difference, such that the restriction of any

¢; to any A; N S; is linear.

Proof. Let R = {a,a+h,...,a+(l—1)h}. We can embed R 8-isomorphically
into Z, for a prime p < 16 using the map ¢ : a+ jh — j. Let A, = 1 A; and
let ¢} = ¢~ 1. (In other words, let us regard each A; as a subset of Z,.)
We know that |A}| > ap/16 for every i. We shall now apply Lemma 7.8,
with o replaced by a/16, to A, C Z, and ¢}, which maps A} to Zy (see the
remark following Lemma 7.8).

Let L = {1}U{r € Z, : |AL(r)| > a*/?p/256 for some i}. By Lemma 7.8
we know that |L| < 2'2a72¢+1 and that for each i there is a homomorphism
Y + B(L,a/512w) — Zn such that ¢}(z) — ¢i(y) = ¢ (z — y) whenever
r —y € B(L,a/5127). By Lemma 7.7, B(L,a/512rm?) contains a non-
zero element d. Because 1 € L, we know that |d| < ap/5127m?, which
implies that Z, can be partitioned into (genuine) arithmetic progressions
each of which has common difference d and length at least m?. We can
then partition these progressions into further subprogressions of length m or
m+1. As in the proof of Corollary 7.9, for each i there exists ¢; such that if
S is one of these subprogressions and x,y € S, then ¢}(z)—¢.(y) = ci(z—y).
The corollary follows on using ¢ ™! to transfer us back to R, A; and ¢;. ©

8 Progressions of Length Four

We have now shown that if AN (A + k)~ (¢(k)) is large for many values
of k then ¢ resembles a linear function. If ¢ s linear, then the rest of the
argument is simple. Indeed, suppose that ¢(k) = 2ck for every k, for some
constant ¢ € Zy. Then inequality (6.1) becomes

Z Z A(s)A(s — k)A(s —u)A(s — k — uw)w™2F > o3 N3,
k su

Using the identity
2ku=s*—(s—k)*—(s—u)?+ (s —k—u)?,
we can deduce that
Z Z A(a)A(b)A(C)A(d)wfr(afbchrd)wfc(aQfb2762+d2) > a3N4,
r a,b.c,d

or in other words that
4

E‘Z A(s)w_“Qw_TS > a®N?.
T S
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By the implication of (iii) from (iv) in Lemma 2.2, this tells us that for
some value of r we have the lower bound

‘Z A(S)w—cs2w—’f‘8 > a3/2N,
s

or in other words that A exhibits quadratic bias of a particularly strong
kind. The aim of this section is to give a similar argument that shows
the existence of quadratic bias under the weaker assumption that ¢ has a
reasonably large linear part, such as is guaranteed by Corollary 7.10.

Let us remind ourselves why this is needed. We are examining sets
A C Zy that fail to be quadratically c-uniform. Let A be such a set and
let f be the balanced function of A. Then there is a subset B C Zy of cardi-
nality at least aN, and a function ¢ : B — Zy such that |A(f; k) (¢(k))| =
aN for every k € B. By Proposition 6.1 we know that B contains at least
a'?N3 additive quadruples for the function ¢. Corollary 7.10 then implies
that ¢ can be restricted to a large arithmetic progression P where it often
agrees with a linear function s — as + b. This provides the motivation for
the next proposition.

PrOPOSITION 8.1. Let A C Zy have balanced function f. Let P be an

arithmetic progression (in Zy) of cardinality T'. Suppose that there exist
A and p such that Y .. p |A(f; k) (Ak + p)|> > BN?T. Then there exist
quadratic polynomials 1y, 1, ...,1¥n_1 such that

Z\ S fEw )| = BNT/VE.
s z€P+s
Proof. Expanding the assumption we are given, we obtain the inequality
D> FEF(s = B0 f(t = k)w MHIE0 > gN2T.
keP s,
Substituting u = s — ¢, we deduce that
S OD FE) (s = k) f(s —u)f(s — k —u)w” MFFW > BN2T
keP s,u

Let P = {x +d,z + 2d,...,z + Td}. Then we can rewrite the above
inequality as

T
ZZf(5)f(sfxfid)f(sfu)f(sfxfidfu)wf()‘x+>‘id+“)“ > BN?T. (%)

i=1 s,u
Since there are exactly T ways of writing u = y + jd with y € Zy and
1 <5 < T, we can rewrite the left-hand side above as
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T T
SIS F) (s~ id) (5~ y — )
y j=1

s =1

fls—x—id—y — jd)w MeHAdtn)(y+id)

Let us define v(s,y) by the equation

T T
DO f(s—w—id) f(s—y—jd) f (s—w—id—y—jd)w™ *TrtAD )
i=1 j=1

= (s, y)T*.
Since |f(s)] < 1, (%) tells us that the average value of y(s,y) is at least 3.
In general, suppose we have real functions fi, fo and f3 such that

T T
DN i) f2h) fali 4 §)w eiHbI—2e)

i=1 j=1

> cT?.

Since QCij = C((z +7)? — %2 — j2), we can rewrite this as

szl —(aH—cz f2() (bj+cj?) f3(l-|—]) c(i+j)? > T2
=1 j=1
and then replace the left-hand side by

T T 2T

ZZZZﬁ W @) fo (7w~ O fy (k)R R

r =1 j=1 k=1

If we now set g (r) = Zf1() (ai+62)0y i, g (r) = zf2< o 6+e)

and g3(r) = Y2, fs( ) ~F*,=k then we have
> 91 ga(r)s(r)

which implies, by the Cauchy-Schwarz inequality, that ||g1 ]| |92l [lg3lls =
¢T?N. Since ||g2|l3 < NT and ||g3]|3 < 2NT (by identity (3) of §2), this
tells us that |g1(r)| = ¢T'/v/2 for some r. In particular, there exists a
quadratic polynomial 1) such that ’Z _ f1(0) ¢(Z)| > cT/V2.

Let us apply this general fact to the functlons fi(i) = f(x — s — id),
fo(4) = f(s—y—jd) and f3(k) = f(s —x —y—kd). It gives us a quadratic
polynomial 15, such that

> ¢T’N,

T
Fls — @ — id)w 0O > (s, y)T/V2.
=1
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Let v(s) be the average of v(s,y), and choose 5 to be one of the 1, , in
such a way that

T
Z fls —z —id)w™ D] > 4(s)T/V2.
i=1

If we now sum over s, we have the required statement (after a small change
to the definition of the 1)y). O

Theorem 8.2. There is an absolute constant C' with the following property.
Let A be a subset of Zy with cardinality SN. If N > expexp((1/6)°), then
A contains an arithmetic progression of length four.

Proof. Our assumption certainly implies that N > 32k26~*. Suppose
now that the result is false. Then Corollary 3.6 implies that A is not a-
quadratically uniform, where o = (§/2)%. By Lemma 3.1 (in particular
the implication of (i) from (v)) there is a set B C Zy of cardinality at least
aN/2 together with a function ¢ : B — Zy, such that |A(f; k) (o(k))| =
aN/2 for every k € B. In particular,
> AR @) > (a/2)°N°.
keB
Hence, by Proposition 6.1, B contains at least («/2)'2 N3 ¢-additive quadru-
ples.
By Corollary 7.10, we can find a mod-N arithmetic progression P of
size at least N2 "™ and constants A, it € Zy such that
Z \A(f; k')/\()\k + M)}2 > 2—16000a15000’P|N2_
keP
Therefore, by Proposition 8.1, we have quadratic polynomials g, ¥1,...,¢0n_1

such that
2| 3 s

s  z€P+s
where 3 = 21600015000
By a simple averaging argument we can find a partition of Zy into mod-
N arithmetic progressions P, ..., Py of length |P| or |P| + 1 and also a

> BN|P|/V2

sequence 1, ...,y (after renaming) of quadratic polynomials such that
M
S| e 2 2.
j=1 ZEPJ'

(Each P; is either a translate of P or a translate of P extended by one point.
Because of the small extensions we have changed v/2 to 2.) By Lemma 5.13
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we can refine this partition and produce a partition into genuine arithmetic
progressions Q1,...,Qr, which automatically satisfy an inequality of the
form

M

Z‘ Z F(Rw @ | > BN/2.

j=1 2€Q;
Once again, we have renamed the functions ;. Lemma 5.13 allows us to
take [ < N1-27 700000 Next, Lemma 5.14 gives us a further refinement
of @Q1,...,Q into arithmetic progressions Ry, ..., Ry such that

S| 9] = v

i=1 s€R;

and H is at most N1—27 7700 Finally, Lemma 5.15 gives us an arith-

metic progression R of cardinality at least SN 27500020 quch that
Y scrf(s) = B|R|/16. This implies that the cardinality of AN R is at
least |R|(§ + 2716004415000) * Recalling that o = (§/2)%4, we find that the
density of A has gone up from 6 in Zy to at least 6(1 + (6/2)%%9909) inside
the arithmetic progression R.

We now iterate this argument. The iteration can be performed at most
(6/2)71000000 times, and at each step the value of N is raised to a power
which exceeds (6/2)2090090 Tt is not hard to check that N will always
remain sufficiently large for the argument to work, as long as the initial
value of N is at least exp exp(§~¢), where C' can be taken to be 2000000. ©

An alternative formulation of the condition on N and ¢ is that ¢ should
be at least (loglog N)~¢ for some absolute constant ¢ > 0. We have the
following immediate corollary.

COROLLARY 8.3. There is an absolute constant ¢ > 0 with the following
property. If the set {1,2,...,N} is coloured with at most (loglog N)¢
colours, then there is a monochromatic arithmetic progression of length
four. o

9 Obtaining Approximate Homomorphisms

The results of this section and the next can be combined to give an alterna-
tive proof of Corollary 7.9. The approach is longer, and the bound worse,
but it does not make use of Pliinnecke’s inequality, so the comparison is
less unfavourable than it seems. Our reason for giving it is that later in
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the paper we shall come across functions that are almost Freiman homo-
morphisms, but not quite, and we have not found a quick way of turning
them into genuine homomorphisms without losing important information
about their Fourier coefficients. Instead, therefore, we have been forced
to examine these approximate homomorphisms and produce a version of
Corollary 7.9 for them directly. It is quite possible that there is an ar-
gument for obtaining genuine homomorphisms in the later contexts. This
would result in a significant simplification of the paper.

The later applications all need results that are more complicated than
those proved in this section (see §12 and §15). Therefore, this section is
another one which is not strictly necessary. However, the reader may find
it useful to see the method of proof at work in a simpler case. Recall that
we showed in Corollary 7.6 that if B C Zy and ¢ : B — Zy is a somewhat
additive function, then ¢ has a restriction to a large subset of B which is
an isomorphism of order eight. In this section we shall give an alternative
approach which yields what we shall call an approximate isomorphism.
Because the isomorphism is approximate rather than exact, it is harder to
apply Bogolyubov-type techniques to it, and that will be the task of the
next section.

Let B C Zy. We shall call a function ¢ : B — Zy a y-homomorphism
of order k if, of the sequences (x1,...,x9) € B2k such that

Tyt -+ T = T + 00+ Do
the proportion that also satisfy
P(x1) + -+ (wp) = (Thy1) + - + d(w2k)

is at least . If ~y is close to 1, then we shall say that ¢ is an approzimate
homomorphism of order k.

LEMMA 9.1. Let aq,...,a, be non-negative real numbers. Then
n n 6/7 n 1/7
Za§<<zag> <Zagﬁ> |
i=1 i=1 i=1
Proof. The result follows from Hoélder’s inequality if one writes at =

a;2/7a36/7 and takes p="7/6, ¢ =T. -

LEMMA 9.2. Let B C Zy and let ¢ : B — Zy be y-additive. Then there

are at least Y' N5 sequences a1, ..., a1 such that
ar+---+ag=ag+---+ap

and

P(ar) + -+ dlas) = ¢ag) + -+ + ¢(ase) -
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Proof. Given u € Zy, define f,(a) to be w*?(® if ¢ € B, and zero otherwise.

Then 3, |fu(@)|* = |B| < N, 50 3, | ful(r)]> < N®.
Next, we look at fourth powers. We have

S 1Al = 3|3t

which is exactly N? times the number of additive quadruples (a1, az, as, a4),
and thus, by hypothesis, at least yN°.

Finally, we look at sixteenth powers. A similar argument shows that
> | fu(r)|'® counts N? times the number of sequences (ay, ..., aig) such
that

9

ai+---+ag=ag+---+aie

and
¢(ar) + -+ + dlas) = d(ag) + - - - + ¢(ae) -

Lemma 9.1 implies that
Z |fu ()6 > (yN°. N—18/7)7 — ~ATNIT,

Hence, the number of sequences with the desired properties is, as stated,

at least 47 N5, O
LEMMA 9.3. Letn > 0, let B C Zy be a set of size N and let ¢ : B — Zy
be a function with at least a® N'® sequences a1, ..., a1 such that
ay+---+ag=ag+---+a (1)
and
¢(ar) + -+ + dlag) = dlag) + -+ + d(azg) - (2)
Then, as long as N is sufficiently large (in terms of «, 3 and n), there is a
subset B' C B with at least (an/4)%" 3Y¥N'5 sequences (a4, . . .,a1g) satis-

fying condition (1), such that the proportion of them that satisfy condition
(2) as well is at least 1 — 7. In other words, B’ is reasonably large and the
restriction of ¢ to B’ is a (1 — n)-homomorphism of order eight.

Proof. The basic idea is that if we let M be a suitable fraction of N and
P be the interval [-M, M] C Zy, and if we choose r and s randomly,
then the set of all x € A such that rz + s¢(z) belongs to P tends to have a
larger proportion of sequences satisfying condition (2) than A itself. This is
because the events that we choose a; for i = 1,2, ..., 16 are better correlated
if (a1,...,a16) satisfies condition (2) than if it does not. Repeating the
process, one can make the proportion as close as one likes to 1. Note that
this is a natural approach to try, given the proof of Lemma 7.5.
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The calculations are, however, enormously simplified if one uses Riesz
products (that is, products of the form 27% Hf::l(l + cos#;)) and a small
modification of the above idea. Choose ry,...,7g, S1,...,S; uniformly and
independently at random from Zp. Once the choice is fixed, let a point
x € B go into B’ with probability

k
27T (1+ cos Z (rix + sid(x)))
i=1

and let these probabilities be independent.
It must be stressed that this independence occurs only after we have

conditioned on the choice of r1,...,7g, s1,..., 5. The whole point of the
proof is that in total there is a dependence which favours sequences satisfy-
ing condition (2). To see that this is true, let aq, ..., a1 be sixteen points

in Zy. The probability that they are all chosen is

k16
N2 N 2 RT3+ cos & (ria; + sip(ay)))

T1yeeesTh S15eeeySk i=17=1

which equals

16 F
N—2ko—16k ( Z H (1 + cos 37 (ra; + s¢(ay))) > ’

rs j=1

which we shall rewrite as

16 k
N—2k2—16k‘ <2—16 Z H(l + 1 + wraj+s¢(aj) + w—(T‘a]"‘rS(ﬁ(aj)))) .

s j=1

The product over j is a sum of 416 terms, each of which is of the form

16

H w€i(raits(a3)) — yr 2 eia+s 2 € dlas)

j=1
where €1, ..., €16 all belong to the set {—1,0,1}. Such a term contributes
zero to the sum over r and s, unless Zjl-il €ja; = Z}il ejo(aj) = 0, in
which case it contributes N2.

Let us now consider sequences (ai,...,a1s) € Z}\? satisfying condition
(1). The set of such sequences is a fifteen-dimensional subspace of the
vector space Z¥. Given (e1,...,€e16) € {—1,0,1}15 the set of sequences
(ai,...,a16) in this subspace satisfying the additional condition that eja; +
-+« + €16a16 = 0 is a fourteen-dimensional subspace of Z}\? and hence has
cardinality N4, except if (ey,. .., €16) is a multiple of (1,...,1,—1,...,—1)
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(eight 1s followed by eight —1s). Let us call a sequence (ay,...,a1s) satis-
fying condition (1) degenerate if it also satisfies a genuinely distinct linear
condition with coefficients in {—1, 0, 1}, and otherwise non-degenerate. The
number of degenerate sequences is clearly at most 316N, Let us call a
non-degenerate sequence good if it satisfies condition (2) and bad other-
wise. (It is part of the definition of non-degeneracy that both good and
bad sequences satisfy condition (1).)

Our arguments above show that a bad sequence is chosen with prob-
ability 2716% since the only terms that contribute are the 2'6 terms with
€; = 0 for every j. A good sequence, on the other hand, is chosen with
probability 27 16% (2_16(216+2))k = 2716k (1 1-2715)% because there are two
further terms making a contribution, namely those with ¢; = -+ = e¢g =
—€9g = --- = —€156 = 1. Let X and Y be the numbers of good and bad
sequences chosen. Then the expected value of X is, from our hypothesis,
at least (14 2719)k2716kq315 N15 and the expected value of Y is at most
216k 315 N'15 - Using the fact that 227" < 142715 we can deduce that if
227"k > 9/am, then

nEX — EY > n(2/an)2 16kq315 N15 _ 9=16k 515 \j15 _ 9=16k 515 \15
Now 227"k > (2/am) if and only if 271% < (an/2)2”. Let k be an integer
such that 1o Lo

2(an/4)* <271 < (an/2)
If N is large enough that (an/4)2° 8N > 316 then the values for the
above expectations and the upper estimate for the number of degenerate
configurations imply that there exists a set B’ such that nX > Y and
X > (om/4)219ﬁ15]\715, as was claimed. 0

Lemmas 9.2 and 9.3 combined show that a somewhat additive function
can be restricted to an approximate homomorphism of order eight.

COROLLARY 9.4. Let B C Zy have size BN, let ¢ : B — Zy be v33-
additive and let n > 0. There is a subset B’ C B containing at least
(776677/4)219ﬁ15N15 sequences (a1, . ..,a1) with a;+- - -+ag = ag+- - -+azg,
such that the restriction of ¢ to B’ is a (1—n)-homomorphism of order eight.

Proof. Lemma 9.2 allows us to take a=(v3%)"371°=173% in Lemma 9.3. ©

10 Properties of Approximate Homomorphisms

Let A C Zy be a set of size aN and let ¢ : A — Zy be a (1 — ¢€)-
homomorphism. Since A contains at least a*N3 additive quadruples, it
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also contains at least (1 — €)a*N?3 ¢-additive quadruples. Corollary 7.6
allows us to pass to a large subset A’ of A such that the restriction of ¢
to A’ is a Freiman homomorphism of order 8. Lemma 7.8 then provides
a large Bohr neighbourhood B such that the restriction of ¢ to A’ is a
B-homomorphism.

Later in the paper approximate homomorphisms will arise in a context
where we wish to restrict them to exact B-homomorphisms, but are unable
to use the above argument. This may seem surprising, as the argument
is perfectly valid: the reason it is inadequate is that the Bohr neighbour-
hood B that it gives is defined in terms of the set A’, so by using it we
lose information about the large Fourier coefficients of A. This will matter
later, because then we shall have a collection of sets A;, and approximate
homomorphisms ¢ indexed by a set H C Z’f\,. The large Fourier coeffi-
cients associated with each set Ay will be related, and we shall exploit this.
Therefore, in this section our aim is to obtain a theorem similar to Lemma
7.8, but the Bohr neighbourhood will be defined in terms of the Fourier
coefficients of the original set A rather than those of the subset A’.

This seems to make the proof harder, although it is based on similar
ideas, and in particular uses Bogolyubov’s method. Most of the proofs in
this section are simple averaging arguments. However, there are so many of
them that when put together they are not particularly simple. It is likely
that there is a shorter proof of the main result, but we have been unable
to find one.

To complicate matters further, it is necessary to consider objects that
are slightly more general than functions from Zy to Zy, to allow for mul-
tisets that occur naturally in later sections. By a multifunction from Zy to
Zy, we shall mean a function from a set X to Zy, together with a partition
X = UreZN X,. Equivalently, it is simply a pair of functions from X to
Zn, and indeed it will be useful to write r(z) for the function that takes
x € X to the unique r such that z € X,. We shall call a set X together
with such a partition (or function) a domain, and if ¢ : X — Zy, we shall
call X the domain of ¢.

Given a domain X = (X, ), we shall define X — X to be the set X x X
together with the function (z,y) — r(y)—r(z), or equivalently the partition
X x X =, Ya, where Yy is the set of pairs (z,y) such that € X, and
y € X,4q for some r. More generally, by kX — IX we mean the set X**!
with the function

(@1, Tpqt) o (@) + oo (@) = (@) — o = T (@) -
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A function ¢ : X — Zy will be called a (1 — n)-homomorphism of order k
if, out of the 2k-tuples (z1,...,2o;) € X2* such that

r(z1) + - (@) = r(@esr) + - +r(zo),
the proportion such that

P(1) + -+ + d(wr) = d(wp41) + -+ + Aw2w)
is at least 1 — 7. Note that this definition is not vacuous when k = 1.

We shall define an additive quadruple to be a quadruple (a,b,c,d) € X*
such that r(a) — r(b) = r(c) — r(d) and we shall say that it is ¢-additive if
in addition ¢(a) — ¢(b) = ¢(c) — ¢(d). Then a (1 — n)-homomorphism of
order two is a function ¢ such that the proportion of additive quadruples
that are ¢-additive is at least 1 — 7, just as when X = Zy.

We shall now investigate the extent to which these more general ap-
proximate homomorphisms resemble exact ones. The arguments are more
complicated than one might expect, and the reason for the complication is
the existence of examples of the following kind. Let A and B be subsets of
Zn,with A ={a,a+r,...,a+(M—1)r} and B = {b,b+s,...,b+(M—1)s},
where M = aN for some small o« > 0. If there are no small linear rela-
tions between r and s (i.e., pairs u,v of small elements of Zy such that
ru+ sv = 0) then the intersection of A and B will have cardinality roughly
a?N. Moreover, almost all the additive quadruples in AU B will lie entirely
in A or entirely in B. (These facts are easy to check.) Hence, if we define a
function ¢ to be linear on A and also linear, but with a different gradient,
on B\ A, then ¢ will be a (1 —7)-homomorphism for some small 7 (depend-
ing on «). In fact, ¢ will even be a (1 — n)-homomorphism of high order
(for a larger 1, but still small). Most of the effort of this section is devoted
to showing how to “pick out” A or B in an example such as the above, in
order to obtain a well-defined and well-behaved difference function for the
restriction of ¢.

Let X = J, X, be a domain, let B be a set and let L be a non-negative
real number. We shall say that X is (B, L)-invariant if, given any r € Zy
and any d € B, the sizes of X, 4 and X, differ by at most L. If L is small
(compared, for example, with the average size of the X, ) we shall say that
X is almost B-invariant.

We shall now prove several lemmas under the same set of hypotheses.
To save repetition later, we state the hypotheses once and for all here.
Let X = (X,r) be a domain such that X has cardinality «a M N and X,
has cardinality at most M for every r. Let ¢ > 0 be a parameter to be
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chosen later and let B C Zpy be some set such that B = —B and X is
(B,oM)-invariant. Let ¢ : X — Zy be a (1 — n)-homomorphism.

For every (x,y) € X? let us define q(z,y) to be the number of pairs
(z,w) € X2 such that r(w) —r(z) = r(y) —r(x). Let b(x,y) be the number
of pairs (u,v) € X? such that 7(u) — r(z) = r(v) — r(y) € B. One can also

write these as
Q(l'a y) = Z ’Xr(x)+d||Xr(y)+d|
d

and
b(CE, y) = Z ‘Xr(a:)+d‘|Xr(y)+d| :
deB
We shall also let e(z,y) be the number of pairs (u, v) such that r(u)—r(xz) =
r(v) —r(y) € B and ¢(u) — ¢(x) # ¢(v) — d(y).

In words, ¢(x,y) is the number of additive quadruples starting with
(z,y), b(z,y) is the number of such quadruples (z,y,z,w) such that
(r(z),r(w)) is (r(z),r(y)) translated by some d € B and e(x,y) (the error)
is the number of those special additive quadruples that fail to be ¢-additive.
Finally, let e(x,y) be the proportionate error, i.e., e(x,y)/b(z,y).

Our first lemma collects together some simple facts about the function q.

LEMMA 10.1. ¢(z,y) < aM?N for every z,v, ZyeX q(z,y) < a®?M3N? for
every x and ), yex q(z,y) = o* MAN3,

Proof. For the first estimate we wish to count the number of pairs (z,w)
such that (x,y, z,w) is an additive quadruple. There are at most |X| =
aM N ways of choosing z. Once z is chosen, r(w) is determined so there
are at most M choices for w. The second estimate follows immediately.
As for the third, notice that the left-hand side is equal to
Yoot |1 X || X || X[ Xu|. By §2 identity (6) applied to the function
f(s) = | X,|, this is at least N~!|X|*, which is the estimate claimed. O

One can think of the numbers ¢(z,y) as defining a weighted graph,
where the weight of the edge (z,y) measures the popularity of the difference
r(y) — r(x) in X. Roughly speaking, our aim will be to show that ¢ is
well behaved on “components” of this weighted graph — that is, highly
connected subsets which are not highly connected to the rest of the graph.
In the example discussed earlier of two “unrelated” arithmetic progressions
A and B, the components can be taken as A and B\ A, since ¢(z,y) tends
to be large if  and y both belong to A or both belong to B, and small
otherwise. The pairs (x,y) that contribute a significant error e(x,y) tend
to be those for which x and y belong to different sets, and therefore for
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which the weight ¢(z,y) is small. Our next lemma shows that this is true
in general. That is, most of the error occurs, if at all, on edges with small
weight.

LEMMA 10.2. If o < na?, then Yweyex €@ y)a(z,y) <1503, v a(z,y).

Proof. Let X’ C X be the union of all X, of size at least 5na’®M. We
begin by estimating 3, v/ €(x,y)q(z,y). Let z € X, and y € X, and let
X, UX; C X'. Then b(z,y) = > 4ep | Xr+al|Xst+al- Let L = na®M. Since
X is (B, L)-invariant, we can deduce from this expression for b(x,y) that
|B|(|Xr‘ - L) (|Xs| - L) < b(a:,y) < |B|(|Xr| + L) (|Xs| + L) .

Furthermore, if u and v are such that r(u) —r = r(v) — s € B, the (B, L)-
invariance also implies that

[BI(1X | - 2L) (1] - 2L) < b(u,v) < |BI(1X, | +2L) (|X, ] +2L) .
Since both |X,| and |X;| are at least 5na?M = 5L, the above estimates
imply that b(u,v)/b(x,y) < 4.

Now let S be the set of all sextuples (z, ¥, z, w,u,v) € X% with z,y € X’
satisfying the following conditions:

r(w) —r(z) = r(y) —r(z) (1)
r(u) —r(z) =r(v) —r(y) € B (2)
r(w) —r(z) =r(v) —r(u) (3)
d(u) = ¢(x) # d(v) — d(y) . (4)
Of course, (1) and (2) imply (3), and (2) and (3) imply (1).) Then
S byt = D by el yel,y) = Y el y)ale,y) .

(z,y,2,w,u,0)€S zyeX’ zyeX’

Condition (4) implies that either ¢(x)—@(y) # ¢(z) —d(w) or Pp(u) —p(v) #
#(2) — ¢(w). Therefore, we can write S = E U F, where

E= {(x7y727w7u7v) €S5: ¢(x) - ¢(y) 7é ¢(Z) - (;5(11))}
and

F= {(CE,y,Z,’U),’U,,’U) €S5: ¢(u) - (;5(’[)) 7é ¢(z) - ¢(w)} .
We now estimate the sum over S by splitting it into £ and F.

For any fixed quadruple (z,y, z, w) satisfying condition (1), the number
of pairs (u,v) such that (x,y,z,w,u,v) satisfies condition (2) is exactly
b(x,y). Tt follows that > {b(z,y)"! : (z,v, 2, w,u,v) € E} is at most the
number of additive quadruples (z,y, z,w) with z,y € X’ that fail to be
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¢-additive, which is by hypothesis at most n times the total number of
additive quadruples. That is,

Z{b(m,y)_l Sz, y, 2z, wyu,0) € E} <n Z q(x,y).

z,yeX

Since B = —B, for every quadruple (z,w,u,v) satisfying condition (3)
the number of pairs (x,y) satisfying condition (2) is b(u,v). For each such
pair, we have shown that b(u,v) < 4b(x,y), so the sum of b(x,y)~! over
all of them is less than 4. Therefore, > {b(z,y)~! : (2,9, z,w,u,v) € F} is
less than 4 times the number of additive quadruples (z,w, u,v) that fail to

be ¢-additive. So this time we have

Z {b(a:,y)fl Dz, y, 2z, w,u,0) € F} < 4n Z q(x,y).

z,yeX
Putting the two estimates together, we find that

> e ygla,y) <5 ) alx,y).

z,yeX’ z,yeX

We must also count the additive quadruples (x,y, z, w) such that either
x ¢ X' or y ¢ X', which means that either [X, )| or |X,(,| is less than
5na?M. There are easily seen to be at most 2(5na* M N)(aMN)(aMN)M
= 10na*M*N* of them. Since there are at least o* M*N? additive quadru-
ples, this number is at most 107 Z:p,yEX q(z,y). This estimate, together
with the earlier one, proves the lemma. o

We are aiming to find a large subset of X where the error e(z,y) is
almost always small. The above lemma suggests that we can achieve this
by choosing a subset of a “component” of the weighted graph given by q.
Roughly speaking, we do this by picking a random point = € X and taking
the set of all y in a neighbourhood of x (in an appropriate weighted sense).
Such a set will be a union of sets | X,|. For technical reasons it will be very
convenient to have all the X, that we choose of approximately the same
size, and to have other properties of a similar kind. These properties will
be obtained by somewhat messy averaging arguments.

To make these ideas more precise, let us define some more functions
and prove another lemma. For every z € X, let R(7) = [X,(y)|, let Q(z) =

> yex d(x,y) and let E(x) =3 v e(x,y)q(z,y).

LeEMMA 10.3. There exists *+ € X such that R(z) > o?M/2, Q(x) >
a®M3N?/4 and E(x) < 60nQ(x).
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Proof. Lemma 10.1 tells us that >, v Q(z) = o*M*N? and that Q(z) <
a?M3N? for every z. Let X’ be the set of z € X such that R(z) > o?M/2.
Clearly, | X \ X'| < a2M N/2, so

> Qz) = o' M*N*— (o’ MN/2)(a®M?N?) = o*M'N?/2 2 1 >~ Q(x).
ze X! zeX

Let us now choose # € X' uniformly at random. The expected value
of Q(x) is at least |X| 1a*M*N3/2 = a3M3N?/2. By Lemma 10.2 the
expectation of E(x) is at most 157 times the expectation of Q(x) over X,
which is at most 30 times the expectation of Q(x) over X'. It follows that
the expectation of Q(z) — (1/60n)E(x) over X' is at least a>M>3N?/4, so
we can find x € X’ such that Q(z) > a3>M3N?/4 and E(z) < 60nQ(z).
This proves the lemma. m

Let us now fix an x satisfying the conclusion of Lemma 10.3 and write
q(y) for q(z,y), e(y) for e(z,y) and S for Q(z).
LEMMA 10.4. If r(2) — r(y) € B, then |q(z) — q(y)| < caM?N.

Proof. Let r(z) —r(y) =d € B. Then
ay)= D XX

t—s=r(y)—r(x)

a2)= Y Xl Xewdl.
t—s=r(y)—r(x)
From the (B, o M)-invariance of X we deduce that
laz) —awl < D Xl|1Xeral = 1Xl]
t—s=r(y)—r(z)
<oM > |X,| = caM®N,

and

as stated. o

For the next lemma, we use the notation W +d to stand for all elements
x € X such that there exists w € W with r(z) = r(w) + d.

LEMMA 10.5. There exists a subset W C X with the following properties.

(i) W is a union of sets of the form X,.
(ii) The function q varies by a factor of at most two on W.
(iii) For at least (1—5n"/2)|W| of the pointsy € W we have e(y) < 300n/2.
(iv) W has cardinality at least p*>a> M N/16.
(v) The function R varies by a factor of at most two on W, and is always
at least a®M/16.
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(vi) (W N (W +d)| > (1—n)|W]| for every d € B.
Proof. By Lemmas 10.1 and 10.3 we know that ¢(y) < aM?N for ev-
ery y, that S = Zyex qly) > a*M3N?/4 and that ZyeX e(y)q(y) <
60m>_,cx a(y) = 60nS. Let X’ be the set of all y € X such that R(y) >
o?M/8 and let " =3,y q(y). Then
> qly) < (@®MN/8)(aM?N) = o> M*N?/8,
yeX\ X’
from which it follows that S" > S/2.

We now choose A and p independently and uniformly from the interval
[—p, 1+ p] and make the following definitions.

={y: (A= p)aM>N < q(y) < (A + p)aM>N}
N{y: (u—p)M < R(y) < (u+p)M};
Vap =1{y: (A= p)aM?N < q(y) < (A\— p+0)aM’N}
N{y: (A +p—0)aM>N < q(y) < (A + p)aM>N}
N{y: (u—p)M < R(y) < (u—p+o)M}
N{y:(p+p—0)M < R(y) < (p+p)M}.

We also set Sy, = ZyGX’ﬂWA q(y) and E), = Z%WA e(v)q(y). We
shall now use an averaging argument to find A\ and p such that S SR
large, while E) ,,, and also the sizes of W) , and V), ,,, are small.

To do this, we simply calculate or estimate the expectations of all the
quantities concerned. Since any fixed y € X has a probability of (1 JrZp) of

TZP) Sl which
5S. We also find that the expectation of E) ,, is

belonging to W) ,, we ﬁnd that the expectation of Sy ,, is (

we know is at least T+20)2

1+2 )
at most (1+2 ) 60nS and the expected size of W), , is (W) aMN. The
probability of any given y € X belonging to V) , is at most (1 +2/)) which
implies that the expected size of V) , is at most (1 +2p)on N.
By linearity of expectation, we may deduce that
E( o~ Exu _ SIWiul _ P2S|V)\,u| ) > p* > P2_S
’ 7201 12aMN  120(1 4 2p)aM N (1+2p)? 4

Therefore there exist A and p such that Sy, > p*S/4, Ey, < 72005 4,
(W, < 12aMNS, /S and V)| < 120p72(1 + 2p)aM NSy ,,/S. Our
aim is now to prove that W = W, , has the desired properties.

Property (i) follows immediately from the definition of W) ,. To prove
(ii), notice that the average value of q(y) over W) ,, is at Sy ,,/|W) .|, which
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is at least S/12aMN > o?M?N/64. It follows that A + p > «/48, and
hence that A — p > (A + p)/2 (as p < «/192).

The upper estimate for Ey, tells us that > .y e(y)g(y) <
720m Zyew q(y). Since the function ¢ varies over W by a factor of at
most two, we obtain (iii), since otherwise we would have > ;- e(y)q(y) >
1500n|W | minyew q(w), a contradiction.

Since Sy, = p*S/4 > p*a®M3N?/16 and q(y) < aM?N for every
y € X, the cardinality of W must be at least p?a?MN/16, which is
property (iv).

Because S, is non-zero, there exists y € W such that R(y) > o?M/8,
from which it follows that i + p > a?/8 and therefore, as p < a?/32, that
pw—p=(u+p)/2and p—p > a?/16. This gives us (v).

Let us now set V = V) , and choose y € W\ V. If d € B then by the
(B, oM )-invariance of X and our lower bound for y, we have | X, (,)_4| >
| Xy — oM = (. — p)M > 0. Choosing any z € X,(,)_4, we then know
that |q(2) — q(y)| < caM?N, by Lemma 10.4, from which it follows that
(A —p)aM?N < q(z) < (A + p)aM?N. The (B,oM)-invariance of X also
gives us that |R(z) — R(y)| < oM, and from this it follows that (u—p)M <
R(z) < (u+ p)M. We have therefore shown that if y € W\ V, d € B and
z € X, (y)—a, then z € W. Moreover, such a z exists, soy € W + d.

All this shows that W\ V C WnN (W +d). We have shown that the car-
dinality of W is at least p?a®M N/16, while the cardinality of V is at most
120p72(14+2p)aM N Sy ,/S, which is certainly at most 240p 2> M N. Since
o < npta/384, we find that |V| < n|W| and therefore obtain property (vi). o

Before we state the next lemma, it will be very useful to introduce the
following shorthand notation. Given any finite set U and any proposition
P(u) involving the elements u of U, we shall say that for (1—e)-almost every
u € U, P(u) if the set {u € U : P(u)} has cardinality at least (1 — ¢)|U|.
We shall further abbreviate this by writing ((1 —€) a.e. u € U) P(u).

LEMMA 10.6. If 0 < npa?/16 then there exist a subset B’ of B of cardi-
nality at least (1 — 101'/5)|B| and a function ¢ : B' — Zy such that, for
every d € B,

((1—10n") ae. weW) ((1-10n"%) ae. 26X, (w)1a) 6(2)—d(w)=t(d).
Proof. Let us define W’ to be the set of all w € W N (W — d) such that
e(w) < 3001*® We know from Lemma 10.5 (iii) and (vi) (and the fact that
B = —B) that W’ has cardinality at least (1 — 6n'/%)|WW|.

Given d € B and w € W', let us say that d is good for w if for
(1 — 3512/5)-almost every pair (y, z) € X (2)+d X X (w) 4 We have ¢(y)—o(z)
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= ¢(2)—¢(w). Notice that [X,(z)1al = |Xp@m)|/2 by Lemma 10.3 and
(B, oM )-invariance, and |X,.(y) 14| = | Xy(w)|/2 by Lemma 10.5 (iv). There-
fore, the number of d € B that fail to be good for (z,w) is at most 35n%/°|B|,
because otherwise we would have
> 12250"/%| B min | X X
e(r,w) 5™ /°| Bl min | X, (o).l X () +al

= 306774/5 Z ’Xr(x)erHXT(w)er’
deB

= 306n*°b(z, w),
which would imply that e(w) > 3061*/°, contradicting the assumption that
we W'
So far we have shown that
(Vw e W)((1 - 35n*) ae. d € B) dis good for w. (%)
It follows that
(1— In'/®)ae. d e B)((1- At ae. w e W') dis good for w,

since otherwise there would be at least 361%/° pairs (d, w) € B x W' such
that d is not good for w, which contradicts (x).

Let B’ be the set of all d € B such that d is good for (1 — 65'/%)-
almost every w € W’'. We have shown that B’ has cardinality at least
(1 —9n'/5)|BY, as is required in the statement of the lemma. We turn now
to the definition of the function 1.

If d is good for w, then another simple averaging argument shows that

(1- 6n'/%)a.e. y e Xr(x)er) (1- 6n'/%) ae. z € XT(de)

o(y) — ¢(x) = ¢(2) — d(w) .
Let Y,.(;)4q be the set of such y, and for each y € Y,.(;)14, let Z, be the set
of 2 € X, ()44 such that ¢(y) — ¢(x) = ¢(2) — d(w). Since 1 — 6n'/> > 1/2,
any two of the sets Z, overlap. It is also clear that ¢ is constant on any
set Zy. Therefore, it is constant on Y;.(;);q as well, taking a value a, say.
This argument also implies that we can find a set Y,.() 49 C Xy (w)4q Of size
at least (1 — 6n'/ 5)\Xr(w)+d| on which ¢ is constant, since we may choose
Y, (w)+d = Zy for some y € Y, (;)14. Let this constant value be b. Then
a—¢(x) =b— ¢(w), and this common value we shall call ¢)(d). Because ¢
is constant on Y,.(,)44 which has size at least half that of X, ()14, the value
of ¥(d) is well-defined (i.e., does not depend on w).

We have shown that, if d is good for w, then ¢(z) — ¢p(w) = b — ¢p(w) =
Y(d) whenever z belongs to a set Y(,)4q of cardinality at least
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(1-— 6771/5)\Xr(w)+d|. Therefore, for every d € B,
((1—4n'/P) ae. weW’) (1-60"%) ace. W' E€X,(y1a) G(w)—d(w) = p(d).

This, together with the fact that [WW’| > (1 — 61'/°)|W|, proves the lemma.
(Of course, we have proved a slightly better result, but it is convenient to
set all the errors equal to the worst one of 101'/%.) a]

Later, the following small modification of Lemma 10.6 will be useful.

LEMMA 10.7. Let ) : B' — Zy be the function constructed in Lemma 10.6
and let § = 10n/®. Then for (1 — 6'/2)-almost every w € W,

(1—0"%ae. de B') (1-0)ae v € X,(yra) W) — d(w)=(d).

Proof. This is another simple averaging argument. Let us write P(w, d) for
the statement

(1=0)ae w' € Xy(1a) o) —(w) =1p(d).
Lemma 10.6 states that

(Vde B)((1—6)ae. weW) P(w,d). (%)
If what we wish to prove is false, then there are at least 8|W||B’| pairs
(w,d) € W x B’ such that not P(w,d). This contradicts (x). O

Our next main task will be to prove that v is a homomorphism on B'.
Before we do this, we prove a technical lemma which will allow us to con-
dense what would otherwise be a very tedious argument. Roughly speaking,
it tells us that we can “shift” statements by some d € B, introducing only
a small error.

LEMMA 10.8. Let d € B, let 6 > 0 and let P be a property of elements of
W such that P(w) for (1 —0)a.e. w € W. Then

((1- 0% —n)ae. we w) ((1- 20"/?) ae. w' € Xo(wyra) P').

Proof. Let A be the set of pairs (w,w’) € W2 such that r(w') — r(w) = d
and not P(w’). Because P(w') for (1 —0)a.e. w € W, the cardinality of A
is at most O|W| max,ew R(w).

Now Lemma 10.5 (vi) and the symmetry of B imply that at most n|W|
elements of W fail to belong to W N (W — d). Therefore, if the lemma is
false, then there are more than 6'/2|W| elements w € W N (W — d) such
that not P(w’) for at least 291/2|X,,(w)+d| elements of X, (,);4. Therefore,
the cardinality of A is greater than 20|W|min,cw R(w). By Lemma 10.5
(v), this is a contradiction, so the lemma is proved. o
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LEMMA 10.9. Let 6 = 100"/ and assume that 60'/? < 1. Then the function
Y : B' — Zy constructed in Lemma 10.6 is a Freiman homomorphism.

Proof. Suppose that dy,ds,ds,dy € B’ are such that di + do = d3 + dy.
Lemma 10.6 tells us that

(1-0)a.e. weW) ((1-0)ae. weX, (y+a,) O(W)—d(w)=v(d1) (1)
and

(1-0)a.e. weW)((1-0)ae. w'€X,(y)4a,) S(W)—P(w)=1(d2). (2)
Applying Lemma 10.8 to (2), with d = dj, we deduce that for

((1- 20'/%)ae. w e W) ((1- 20'/%)ae. w' € X (w)tdr)
(1—=0)ae w" € X, (w)td,)
we have
$(w") = p(w') = 1p(da) . 3)

Noting that 7(w') + dz is the same as 7(w) + di + d2 when w' € X, ()44,
we can deduce from (1) and (3) that for

(1— 30Y/%)ae. w e W) ((1— 30'2)a.e. w' € X (w)4dr)
((1 — 9) a.e. ’U)N S XT(w)+d1+d2)

we have

$(w') = p(w) =1p(d1) and G(w") — p(w') =P(dy). (4)

Because 1 — 30'/2 > 0, it follows from (4) that in particular

(1- 30'%)ae. w e W)((1—0)ae w" € X, (uw)rd+ds)

5
P(w") — p(w) = P(dr) +1(dz) - )

An identical argument shows that
((1- 30'/?)ae. w e W) (1-6)ae v’ e X (w)+ds+ds) (©)

p(w") — p(w) = P(ds) +(da) .
Since 1 — 602 > 0 and di 4+ do = d3 + dy, (5) and (6) imply that
¥(dy) + ¥ (d2) = ¥(d3) + 1(ds), as required. O
We shall now specialize to the case where B is a Bohr neighbourhood.

(For the definition and elementary facts, see §7.) First, we need some more
easy results about such sets.

LEMMA 10.10. Let K be a set of size k, let B=B(K,6) and let de B(K, ().
Then |BN (B +d)| = (1 — 2M167%kQ)|B.
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Proof. If x € B\ (B + d), then for some r € K we must have
(6 —¢)N < |rd| < 6N,
as otherwise x would belong to B(K,6 — (), which would imply that

x —d € B. Tt follows that the cardinality of B\ (B + d) is at most 2k(N.
Since B has cardinality at least (§/2)* N, the result follows. O

COROLLARY 10.11. Let K be a set of size k, let B = B(K, ), let B' C B
be a set of size at least (7/8)|B|, let ¢ = 2= +98kk and let C = B(K, ().
Then C C B’ — B’ and any homomorphism 1 from B’ to Zy induces a
homomorphism 1 from C to Zy.

Proof. If d € C, then |BN (B +d)| > (7/8)|B|, by Lemma 10.10 and our
choice of ¢. This implies that |B’ N (B’ + d)| > (5/8)|B| and in particular
that d € B’ — B'.

It follows that 1) induces a function ¢; on C'. The content of the corol-
lary is that ¢ is itself a homomorphism. To prove this, let di,d2, ds,dy € C
with dy + do = d3 + d4. By what we have just proved, we know that
BN (B+d;) and (B +di) N (B + dy + dz2) both have cardinality at least
(7/8)|B|. Therefore, BN (B + d1) N (B + dy + dz) has cardinality at least
(3/4)| B|. We also know that BN (B + d3) has cardinality at least (7/8)|B|,
so BN(B+di)N(B+di +dy) N (B+ds) has cardinality at least (5/8)|B|.
This implies that B’ N (B’ + dy) N (B' + di + d2) N (B’ + d3) has cardi-
nality at least (1/8)|B|. It follows that we can find x € B’ such that
x—dy, x —d3 and x —dy — dy = x — d3 — d4 all belong to B’. Hence,
P1(dr) + 1(d2) = ¥1(d3) + ¢1(ds) as was needed. O

Armed with these facts about Bohr neighbourhoods, let us return to
the set W, now with the assumption that B = B(K,¢) is a Bohr neigh-
bourhood. Let W7 be the set of all w € W such that

(1—0"%ae. de B)((1-0)ae. 2 € Xpwyra) ¢(2) — d(w) =b(d).
If 1/2 < 1/8 (as we shall assume), then Lemma 10.7 implies that W, has
cardinality at least 7|TV|/8.

LEMMA 10.12. Assume that #'/2 < 1/8. Let B = B(K,6) and let B' and
1 be given by Lemma 10.6. Let C and v, be as in Corollary 10.11 and let
wy, wy € W1 with r(wy) —r(wz) = ¢ € C. Then ¢p(wr) — p(wa) = P1(c).

Proof. By the definition of W) and the assumption that /2 < 1/8, we
have the statements

(7/8 ae.d € B')((1 —0)ac. 2 € Xpuy)ra) ¢(2) — d(wr) =(d) (1)
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and
(7/8 ae. de B')((1 —0)ae. z € X,(yy)1a) ¢(2) — d(wa) =(d). (2)
Because r(w1) —r(w2) € C, we know from the proof of Corollary 10.11 that
|B' N (B' = r(wy) + r(ws))| = (5/8)|B']. (3)
(2) and (3) imply that
(1/2 ae. de B') (1 —0) ae. z € Xgiruy)) )
¢(2) = p(w2) = Y(d +r(wi) —r(wz)).

From (1) and (4) it follows that for 3/8-almost every d € B, for (1 — 0)-
almost every z € X, ()14 we have both

¢(2) — p(wr) = ¢(d) and ¢(2) — ¢(w2) = P(d + r(w1) — r(ws)) .
In particular, there exist d and z such that both equations hold, which
implies that

P(w2) — p(wr) = P(d + r(w1) — r(wa)) — ¥(d) = Y(d + ¢) —p(c) = P(c).

We are now in a position to prove a new version of Lemma 7.7 in which
the hypotheses are weaker. Before stating it, let us consider the constraints
on the various parameters that have been introduced in this section. First
of all, the strongest condition that we have placed on 7 is that 81/2 < 1 /6,
where 6 = 10n'/5 (see Lemma 10.9). It can be checked that this condition is
satisfied when 7 = 2743, We set p = min{a/192,a?/32} and o = np*a/384.
If o < 1/6, then p = /32 and all the results of the section are satisfied
(for our chosen value of ) if o = 272",

Theorem 10.13. Letn = 243 and let X = XoU---UXy_1 be the domain
of a (1 — n)-homomorphism ¢ of order eight. Suppose that | X;| < M for
each i and that |X| = aMN. Let g(s) be the size of X, for every s, let A =
27-37011/2 and define K to be {r € Zy : |§(r)| = AM}. Then |K| < 2™a~10.
Let k = 2™a719 Jet e = o *\*/7 and let ¢ = 27195k 18k 2~ (k+4) ki,
If C = B(K,(), then there is a homomorphism i, : C' — Zy together with
a subset Y C X of size at least o®|X|/1000 such that, whenever y,z € Y
and r(y) —r(z) € C, we have ¢(y) — ¢(z) = ¢1(r(y) — r(2)).

Proof. Let B = B(K,¢) and let L = a>M*N3. We know that [2X —2X| =
(aMN)* and that |(2X —2X)s| < a>M*N3 = L for every s. Now we shall
show that 2X — 2X is (B, oL)-invariant.

If we write h(s) = |(2X — 2X),]|, then h(r) = [§(r)|*. We know also
that |§(r)| < aMN for every r. Since ||§]|* = N||g||* < aM?N?, we find
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that |K| < A 2a = 2™a 710 as in the proof of Lemma 7.7. We also have
the obvious inequality

S 1ar)I* < XRIN? g < aN AN,

r¢ K

Now h(s) = N=' S h(r)w"™
h(s) —h(t) = N~" Z 9(r)|* (" = w™)

— N~ 12’9 ’4 rt 7‘ +N lz‘g ’4 rt rs t)—l).

rekK r¢ K
From the inequality above, the sum over r ¢ K is at most 2a\? M4 N3 (after
the multiplication by N~!). As for the other part, if we make the additional
assumption that s —t € B, then \w”(s*t) — 1| < 2me for each r € K, so
the sum is at most N~ 127e| K)|(aM N)* < 27ed 205 MAN3 = 20 2 M4 N3.
The (B, oL)-invariance of 2X — 2X follows.

We know that ¢ induces a (1 — n)-homomorphism ¢” (of order two)
on 2X — 2X. Therefore, we can find a set W of cardinality at least
pa’LN/16 = o’ M*N*/512 with the properties claimed in Lemma 10.5.
Corollary 10.11, Lemma 10.12 and the definition in between then give us
a set Wy of cardinality at least o’ M*N*/1000 = a3|2X — 2X|/1000 and
a homomorphism ; : W17 — Zy such that, whenever wy,ws € W; and
r(wi) —r(wz) € C, we have ¢ (w1) — ¢ (w2) = th1 (w1 — w2).

Now choose (2,3, 74) € X3 uniformly at random. The expected num-
ber of y € X such that (y, 2,23, 74) € W is at least o3| X|/1000, so let us
fix (9, x3,x4) such that the set Y of all y such that (y,z2,x3,24) € W has
cardinality at least o3| X|/1000. If y,z € Y and r(y) — r(z) = ¢ € C, then
r(y, xe, 3, x4) — 1(2, T2, 23,24) = C, SO

¢(y) - ¢(z) = ¢//(yax2ax3vx4) - ¢Il(27x27x37x4) = l/f(y - Z) :

This proves the theorem. O

COROLLARY 10.14. Let K be as in Theorem 10.13, let Y be the set ob-
tained there and let m be a positive integer. For every d € B(K,(/m)
there exists ¢ such that ¢(x) — ¢(y) = c(r(x) —r(y)) whenever x,y € Y and
r(x) — r(y) belongs to the set {jd: —m < j < m}.

Proof. As with Corollary 7.8 this follows from the observations that {jd :
—m < j < m} C B(K,(), that the restriction of any homomorphism to
{jd : —m < j < m} is linear and that ¢;(0) = 0. O
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11 The Problem of Longer Progressions

This section is a brief introduction to the rest of the paper and the dif-
ficulties that must be overcome before the proof can be extended from
progressions of length four to progressions of arbitrary length. As with
the other known proofs of Szemerédi’s theorem, the new difficulties that
arise with progressions of length greater than four are considerable. In our
case, it is because we must extend Freiman’s theorem (or, to be more ac-
curate, our weaker version of Freiman’s theorem) from “linear” functions
to “multilinear” ones.

To see this, consider the case of progressions of length five. The main
result of §3 suggests that we should go up a degree, and look at sets that
fail to be uniform of degree three, or, as we shall say, cubically uniform.
(Sets such as {z € Zy : |z3| < N/10000} show that this is necessary as well
as sufficient.) If A is such a set and f is the balanced function of A, then
A(f;k,l) has a large Fourier coefficient for many values of k,I. In other
words, we can find a large subset B C Z%\, and a function ¢ : B — Zy such
that A(f;k,[) has a large Fourier coefficient at ¢(k,l). By the main result
of §6, for some reasonably large v > 0 the function ¢ is y-additive in both
variables, and this is true for the restriction of ¢ to any large subset of B.
That is, for many = we can fix z and ¢(z,y) will be somewhat additive
in y, and vice versa.

The object of the next few sections will be to look at such “somewhat
bi-additive” functions, and show that there is a large subset C' C B such
that the restriction of ¢ to C' resembles a multidimensional bilinear func-
tion, rather as a somewhat additive function has a restriction resembling
a multidimensional linear one. This involves showing that the multidimen-
sional linearity of ¢ in x somehow “interacts” with the multidimensional
linearity in y, which turns out to be harder than one might think, as we
shall now explain.

First, it is important that the additivity property should hold for re-
strictions of ¢. For example, let A be an arbitrary function from Zy to Zy,
and define

oz, ):{)\(w)y 0<z<y<N
zAy) 0<y<zxz<N.

There are certainly many additive quadruples in each variable, but if A does
not have special additivity properties, then the quadruples with z fixed do
not mix with those with y fixed and there is nothing more to say about ¢,
and in particular no restriction of ¢ that looks bilinear.
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Let us informally call a function quasilinear if it resembles a low-dimen-
sional linear function (see, for example, the function defined at the end
of §6). A more serious complication arises even if we know for every x that
¢(x,y) is quasilinear in y for every x and vice versa. It is tempting to
suppose that one might be able to find a large subset B’ C B, and numbers
TO, L1y oy Ty TyvesTds YOsYly«--»Ydy S1s--.,5q and (Cij)g{jzo such that
the restriction of ¢ to B’ was of the form

d d d
¢<$0 + Z a;Ti, Yo + Z bjyj> = Z cijaibj
i=1 i=1 4,j=0
for 0 <a; <r; and 0 < y; < s5.

However, this would imply that one could find a small “common basis”
for all the functions y — ¢(z,y) (and similarly the other way round) and
a simple example shows that such a statement is too strong. Indeed, let ¥
be a non-trivial (i.e., non-linear) quasilinear function from Zy to Zy. (For
definiteness one could let 1(z) = z (mod m) for some m near v/N.) Define
¢(x,y) to be ¥(ry). The natural bases for the functions y — 1(zy) are all
completely different, and there is no small basis that can be used for all (or
even a large proportion) of them. We shall not prove this here.

However, just as what we really used when proving Szemerédi’s theorem
for progressions of length four was Corollary 7.10, which told us that the
function ¢ had a small (but not too small) linear restriction, the statement
we actually need for progressions of length five is that one can find reason-
ably long arithmetic progressions (we obtain a power of N) P and @ with
the same common difference and a bilinear function ¢ : P X Q — Zy such
that 1) agrees with ¢ for a significant proportion of the points (z,y) € PxQ.
If we wish to prove Szemerédi’s theorem for progressions of length k, we
need the obvious generalization of this to (k — 3)-linear functions. In prov-
ing these statements, we shall obtain some insight into the form of a typical
“quasimultilinear” function, but we avoid having to describe them precisely.
It would be interesting to obtain a precise description, so this is an area
where there is still work to be done.

It seems, then, that there is something objective about the problem
which makes the difficulty increase sharply as the size of the desired pro-
gression goes from two to three to four to five, and then remain roughly
constant from that point onwards. Three is the first non-trivial case, four
involves quadratic functions rather than just linear ones and five involves
bilinearity in the large Fourier coefficients rather than just linearity, but
that is the last time that some parameter, which one has hardly noticed
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because it equals one, suddenly and annoyingly changes to two.

12 Strengthening a Bihomomorphism

Although the proof of Szemerédi’s theorem for progressions of length five
is not significantly easier than it is for the result in general, the notation is
cleaner and one or two complications can be avoided. Therefore, we shall
treat this case separately. Let us take a non-cubically uniform function
f:Zyn — D and begin the longish process of finding bilinear behaviour in
any function ¢ for which A(f;k,1)"(¢(k,1)) is often large.

In order to motivate some of the lemmas that follow, let us consider
what the natural two-variable analogue of a Freiman homomorphism ought
to be. That is, given a subset A C Z?V, we ask what property of a func-
tion ¢ : A — Zy relates to that of being a homomorphism in the way that
bilinearity relates to linearity. In the last section, we discussed an anal-
ogous problem for quasilinear functions rather than homomorphisms, and
saw that it was not easy to give a satisfactory definition. Giving a good
definition of a “bihomomorphism” is not all that easy either.

The most obvious definition is that ¢(z,y) should be a homomorphism
in y for any fixed x, and vice versa. This property can indeed be shown
to hold for the functions ¢ that will concern us. However, to see that it is
natural to ask for more, consider the set A = A; U Ay, where A; is the set
of all (z,y) such that 0 < x < N/2 and 0 < y < N/2, while Ay is the set of
all (z,y) such that N/2 <z < N and N/2 < y < N. Define a function ¢
by letting ¢(z,y) be zy if (x,y) € A1 and 2zy if (z,y) € Ay. This function
has the following undesirable property. Suppose we define a new function
1) by setting

¢($, d) = QZ)(Z‘? Y+ d) - QZ)(‘T’ y)
whenever y can be found such that both (x,y) and (z,y + d) belong to
A. This is a well-defined function and for fixed x it is an isomorphism
in d. However, it can be checked very easily that for fixed d it is not an
isomorphism in z. This suggests that a stronger property will probably be
useful, and the suggestion turns out to be correct.

To simplify the discussion, let us introduce some terminology. A wvertical
parallelogram is a quadruple of points in Z3; of the form ((z,y), (z,y + h),
(x +w,y), (x +w,y + h)). We shall call w and h respectively the width
and height of the parallelogram. If P is the above parallelogram, then we
shall denote these by w(P) and h(P). If ¢ is a function from A C Z3; to
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Zy and all the points of P lie in A, then we set

¢(P) = d(z,y) — ¢,y + h) — ¢z + w,y) + d(x +w,y + h).
Ideally, we would like to find, given suitable conditions on ¢, a large set
such that, for any vertical parallelogram P lying in the set, ¢(P) depends
only on the width and height of P. This may be possible, and has the
potential to simplify this paper considerably, but we have not managed to
find an argument for or against it. Instead, we shall obtain a set where
¢(P) is nearly independent of everything except for the width and height.

Our first main task will be to find many pairs P;, P, of vertical parallel-
ograms of the same width and height, such that ¢(P;) = ¢(P2). For this,
we shall need a slight generalization of Proposition 6.1, proved in exactly
the same way.

ProposiTiON 12.1. For each k € Zn, let A\, > 0. Let f1,...,f, be
functions from Zy to D and let ¢1,...,¢, be functions from Zy to Zy

such that
ZAkH IA(fi: k)N i(k))? = aNZPFL.

Call a quadruple (a, b,c, d) € ZN simultaneously additive if a —b =c—d
and ¢;(a) — ¢;(b) = ¢i(c) — ¢i(d) for every i < p. Then the sum of AgApAcAg
over all simultaneously additive quadruples (a, b, c,d) is at least a* N3.

Proof. Expanding the given inequality yields that

ZM > Hfz )51 — R Filto) fi(bi— k)o@t > o N20H

815--+38p t1,..05tp i=1

Substltutlng u; = s; — t; then gives

Z)\k Z Z H fz 37, fz Si k)fl(sl — uZ)fz(Sz k= ul)(/‘)*¢>%(l~<:)uZ

S1yeesSp UlyeensUp =1

2p+1
> NPT

Since | fi(x)| < 1 for every x and i, this implies that

Z Z ‘EAka@ (5i — k) f(si — k — uy)w %R

-+3Sp UL,.--,Up

2p+1
2()4Np+

and hence by the Cauchy-Schwarz inequality, that

> Z ‘ZAkal (si —k)f —k—ui)w_¢i(k)"i2>

81;--+38p UL;-

a?N?Pt2
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Let us introduce a new variable s and write v; = s — s;. Then, multiplying
both sides by N (in different ways) we obtain

S 5 S [T st saty s

S Uly...,Up V1,...,Up

We now apply Lemma 2.1 to the functions

auv Hfz V3 fz( _k_ui)
and »
k) = M\ Hw¢i(k)u
=1
which tells us that

ZZ’auv ‘ ’buv( )’220‘2N2p+4-

By the Cauchy—Schwarz inequality it follows that
(DY laua) (30D bualr) ) = o N+,
uv T uv T

Now > |y (r)|* is, for every u,v, at most N* (e.g. by §2 (6)) so
D 2o | (r)|* < N?P+4. Since by (1) = Y M [T02; w®®u=k which
does not depend on v = (vy,...,v), it follows that

3 Z\Dknwm gl

UL,yeeyUp T

> ot NP

But the left-hand side above is easily seen to be NPt times the sum of
AaApAcAg over all simultaneously additive quadruples (a, b, ¢, d). The result
is proved. O

We shall now apply the above result to find many good pairs of parallel-
ograms. Note that the number of pairs (P;, P2) of vertical parallelograms
with the same width and height is N®.

LEMMA 12.2. Let v,n > 0, let f : Zny — D and let B C Zy be a set of
cardinality SN? such that |A(f; k, 1) (¢(k,1))| = yN for every (k,l) € B.
Then there are at least 3'54*N® pairs (Py, P») of vertical parallelograms
such that P; and P, have the same width and height and such that ¢(P;) =

P(P2).

Proof. The average size of a vertical cross-section of B (that is, a set of
the form B, = {y € Zn : (z,y) € B}) is SN. Hence, by Lemma 6.1
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and Holder’s inequality, the average number of additive quadruples in a
vertical cross-section of B is at least (872)*N3. We shall call a pair of
points ((x,y), (z,y + h)) a vertical edge of height h. Given such a pair,
define ¢((z,y), (z,y + h)) to be the number of 4 € Zy such that

d)(l‘a Y+ h) - d)(l‘a y) = d)(l‘ay/ + h) - (b(l‘,y/) s
where equality is deemed not to hold unless ¢ is defined at all four points.
Letting ¢ = (8v%)*, we have that the average value of g(e) over all vertical
edges e is at least (V.

For each h, let ((h) be the average of g(e) over vertical edges e of
height h. We can find y such that, setting A, = N~'q((z,y), (z,y + h)),
we have >~ Ay > ((h)N. Since A, is zero unless both (z,y) and (z,y + h)
lie in B, this tells us that

S A|Afs 2,y + W) NS,y + )F[ASf 2 9) (@, )| = (W N

Hence, by Proposition 12.1, the sum of A ApA:Ag over all quadruples
(a,b,c,d) such that a — b = ¢ —d, ¢(a,y) — ¢(b,y) — ¢(c,y) + ¢(d,y) and
¢(a,y +h) = ¢(b,y +h) — d(c,y + h) + ¢(d,y + h) is at least (¢(h)y*)'N?.
Each such quadruple gives rise to a set of N*A\  \pAcAg pairs of parallelo-
grams with the desired properties, and all these sets are disjoint. Summing
over all h and using the fact that the average value of ((h) is ¢, we obtain
from Holder’s inequality that the total number of pairs of parallelograms
with the given properties is at least (*y'®N®, which proves the result. o

We shall in fact need many arrangements of eight parallelograms
(P1,...,Pg), all of the same height, such that

w(Py) —w(Py) — w(P3) + w(Py) = w(Ps) —w(FPs) — w(Pr) + w(Fy)
and

O(P1) — ¢(P2) — ¢(P3) — ¢(Pa) = ¢(P5) — ¢(FPs) — ¢(Pr) + ¢(Fs) -
(It is not particularly natural to divide the resulting 32 points into paral-
lelograms — we do this merely to provide a link to the discussion so far.) It
turns out that this follows automatically from Lemma 12.2. First we need
a result similar to Lemma 9.2.

LEMMA 12.3. Let B C Z?V and let ¢ : B — Zy. Suppose that there
are ON® pairs of parallelograms (Py, P,) in B such that h(P)) = h(Ps),
w(Py) = w(P,) and ¢(P1) = ¢(P»). Then there are at least 0" N3? sequences
(:L‘l, ey X165 Y15 - - -5 Y16, h) such that

Ty +---+xg =29+ -+ T16
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and

(w1, y1) + - + dn(zs,Ys) = dn(T9,y9) + - + dn(T16, Y16) 5
where ¢p,(z,y) stands for ¢(x,y + h) — ¢(x,y).
Proof. Given u € Zy, define g,(z,y) to be w*@¥) if (z,y) € B, and zero

otherwise. Let fyn(z) =3, gu(z,y + h)gu(z,y). Adopting the convention
that w raised to an undefined power is 7€ro, we can write

fun( Z WS y+h)—d(x,y))

Clearly, | fyn(x)|<N for every u, h, z, from which it follows that > _ | fu.n(2)|?
< N3 for every u, h and therefore that Y, . |fur(r)|? < N° for every h.
Next, we look at fourth powers. We have

Z |fu:h(r)’ Z Zw oz, y+h)—o(z,y))—rz

u,r x,y

which works out as N2 times the number of octuples (®1,22,23,24,Y1,Y2,Y3,Y4)
such that x1 — x9 = 23 — x4 (so that the sum over r is N rather than zero)
and
¢h('r1a yl) - ¢h($27 3/2) = ¢h($3, y3) - ¢h('r4a y4)7

where we take the equality to be false unless both sides are defined. In
other words, 32 | fun(r)|* is N2 times the number of parallelogram pairs
of height h with the same width and same value of ¢.

Finally, we look at sixteenth powers. It is not hard to check that
D our | fun(r)|'® counts N? times the number of sequences (z1,...,%16,
Y1, .7. . ,ylﬁ) such that

1+ - +x8g =29+ -+ 2T16
and
On(x1,y1) + - + On(ws, ys) = o9, yo) + -+ + dnlw16, Y16) -

From our assumption and the above arguments, we know that
S wrn [ fun(M)? < N and 3o,y [fun(r)* = 0N, It follows from Lem-
ma 9.1 that >, ., | fun(r)[*6 = (ON1O/N36/T)T = g7 N34, Hence, the num-
ber of sequences with the desired properties is at least 87 N32, as stated. o

Next, we combine Lemmas 12.2 and 12.3 in the obvious way.

LEMMA 12.4. Let B,v > 0, let f : Zy — D, let B C Z?\] be a set of
cardinality BN? and let ¢ : B — Zy. Suppose that |A(f;k, 1) (o(k,1))| =
N for every (k,l) € B. Then there are at least 3124336 N32 sequences
(x1,...,216,Y1,-- -, Y16, h) such that

Ty +---+xg =29+ -+ T16
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and

On(w1,91) + - + Inl@s, ys) = dn(w9,yo) + - - + dn(x16, Y16) -
Proof. Lemma 12.2 allows us to take # = 3648 in Lemma 12.3. O

Let us define a d-arrangement of height h to be a sequence of points
((x1,91), (z1, 91+ 1), (22,92), (T2, 2 +h), - ., (24, Y2d), (T2d, Y2a +h)) such
that x1 + -+ xg = 2441 + - + x24. Given a set B C Z?V and a function
¢ : B — Zy we shall say that ¢ respects such a d-arrangement if

Sn(x1,y1) + -+ On(2q, Ya) = On(Tag1Yar1) + -+ + On(w2d, Y2a) -

Of course, for this to happen, all the points of the d-arrangement must lie
in the set B, so that ¢ is defined where it needs to be. Our interest will
be principally in 8-arrangements.

Lemma 12.4 gives us, under certain hypotheses on B and ¢, a large
collection of 8-arrangements in the set B that are respected by ¢. Indeed,
since the total number of 8-arrangements cannot possibly exceed 3'°N32
if |B| = BN?, it shows that the proportion of 8-arrangements respected
by ¢ is greater than zero (and independent of N). In the rest of this
section, we shall show how to choose a large subset B’ C B such that
¢ respects almost all of the 8-arrangements in B’. As in §9, when we
restricted to an approximate homomorphism of order eight, this is done
by a random selection with suitable dependences, with Riesz products to
define the probabilities.

LEMMA 12.5. Letn > 0, let B C Z%V be a set of size BN? and let ¢ :
B — Zy be a function that respects at least a3 N3? S-arrangements.
If N is sufficiently large (depending on (3 and 1) then there is a subset
B’ C B containing at least (an/ 4)236 B N32 8-arrangements, such that the
proportion of 8-arrangements respected by ¢ is at least 1 — 7).

Proof. Choose r1,...,7k, S1,...,8k, t1,...,tx € Zy uniformly and inde-
pendently at random from Zpy. Having made the choice, let each point
(z,y) € B be in B’ with probability

k
p(z,y) =27F H(1 + cos 22 (ryy + sizy + tid(2,y))) ,

i=1
and let these choices be independent. Note once again that this indepen-
dence exists only after we condition on the choice of rq,...,7g, s1,..., Sk,
t1,...,tp: it is very important that in total there is a dependence. Now

consider a sequence of points (ai,b1),. .., (asz,b32). The probability that



Vol. 11, 2001 A NEW PROOF OF SZEMEREDI'S THEOREM 541

they are all chosen is
k32
]\773]c Z Z Z 2732kHH(1+COS Zﬁ(ribj—i—siajbj —l—tid)(aj,bj)))
T1yeesTh S1ye0e3Sk E1yeenyti i=1j5=1

which equals

N —3ko—82k (Z 032 13—2[ (1+1+wrbj+sajbj+t¢(aj,bj)+w—(rbj+sajbj+t¢(aj,bj))))k.
8.t j=1
When the product over j is expanded, each term is of the form
W €bits Y ejagbj+ty e é(az,bs) ,

where €1, . .., €33 belong to the set {—1,0,1}. Each such term, when summed
over 7, s and t, gives zero, unless

32 32 32

Zéjbj = Ze]ajbj = Zejqﬁ(aj, bj) = 0,

j=1 j=1 j=1

in which case it gives N3.

Now let us suppose that our sequence of points (a;,b;) forms an 8-
arrangement. Then we can write ag;—1 = ag9; = x; and bg;—1 = by; — h = y;
for some (:Bl, ey 165 Y1y - - - ,y16,h) such that z1+---+xg =29+ -+ x16.
If ¢ =1 and e # —1 and the corresponding term does not make a zero
contribution, then €1b1 + €gbo is either y; or 2y, + h and this must be zero.
The number of choices of (z1,...,z16,y1,.-.,Y16, h) for which this is true
and x1+---+xg = g+ - -+x16 is at most N3! in each case. Repeating this
argument for each €g;_1 shows that the number of 8-arrangements making
a non-zero contribution to a term where we do not have egj_1 + €z; = 0 for
every i is at most 32/N31,

If €21 + €25 = 0 for every j, then

32

Z ejajbj = h(@(l?l + €40+ -+ 6323316) .

j=1
The number of 8-arrangements of height 0 is obviously at most N3!. Let
(€2,€4,...,€32) be a sequence which is not a multiple of the sequence
(1,...,1,—1,...,—1) (where 1 and —1 each occur eight times). The num-

ber of 8-arrangements such that esxr; + eqx9 + -+ - + €30116 = 0 is at most
N3 because we are imposing two independent linear conditions on the se-
quence (z1,...,216,Y1,-- -, Y16, k) (in the vector space Z33). Hence, with
the exception of at most (33 + 36)N3! of them, an 8-arrangement makes
a non-zero contribution to the sum only for sequences €1, ..., €33 such that
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€2j—1 + €25 = 0 for every j, and e = €4 = -+ = €16 = —€18 = -+ = —€32.
Moreover, the contribution will be zero unless Z;’il €jd(aj,b;) = 0. (This
last statement follows from considering the sum over t.)

Our argument has shown that, ignoring at most (65 + 316)N3! degen-
erate cases, given an 8-arrangement in B, the probability that it lies in B’
is 2732k (2_32(232 + 2))k if ¢ respects the 8-arrangement, but only 2732 if
it does not. Hence, our hypotheses imply that the expected number X of
8-arrangements respected by ¢ is at least 2732F (142731 a3 N32, and the
expected number Y of bad but non-degenerate 8-arrangements is at most
2732k 315 N2 Using the fact that 927 < 1+ 273! we can deduce that if
227"k > 2/an, then

GEX — EY > an(2/an)2~32k 315 N'32 _ 9=32k 315 \j32 _ =32k 515 \r32
Now 2277k > (2/an) if and only if 273%F < (an/2)236. Let k be an integer
such that " s

2(an/9)*" < 270 < (an/2)*
If N is large enough that (an/4)236515N > 65+ 36, then the values for the
above expectations and the upper estimate for the number of degenerate
8-arrangements imply that there exists a set B’ such that X > Y and
X > (an/4)236615]\732, as was claimed. o

If we combine Lemmas 12.4 and 12.5 we obtain the main result of this
section.

LEMMA 12.6. Let B,v,m > 0. Let f : Zy — D, let B C Z?V be
a set of cardinality at least BN? and let ¢ : B — Zy be such that
IA(f;k, D)No(k, 1)) = N for every gk,l) € B. Then there is a subset
B’ C B containing at least 22" ﬁ24372 517236 N3? 8-arrangements, such that
the proportion of them respected by ¢ is at least 1 — 7).

Proof By Lemma 12.4 there are at least 5'12~336 N32 8-arrangements re-
spected by ¢. This allows us to take a = 74336 in Lemma 12.5. It is
not hard to check that (ﬁ97733677/4)236ﬁ15 > 27273220 2O NB2 o the
lemma, is proved. O

13 Finding a Bilinear Piece

We shall now use the results of the previous two sections to prove that if
A C Zy is a set with balanced function f, B is a large subset of A and
¢ : B — Zy has the property that A(f;z,y)"(¢(z,y)) is large for every
(z,y) € B, then ¢ exhibits a small (but not too small) amount of bilinearity,
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in the following sense: there are arithmetic progressions P, Q) C Zy of size
a power of N and with the same common difference, and a large subset C
of BN (P x @) such that the restriction of ¢ to C' is bilinear. This is the
key to extending our proof from progressions of length four to progressions
of length five.

What we prove in this section is sufficient for finding progressions of
length five, but not as strong as the corresponding case of the inductive
hypothesis we shall need when generalizing the argument. Then it becomes
necessary to show that almost all of the graph of ¢ is contained in a small
number of bilinear pieces, which is not a huge extra difficulty but it makes
the argument look more complicated. Another way in which the argument
of this section is slightly simpler than the argument for the general case (in
§16) is that we can use Lemma 7.10 to allow us to assume that ¢(z,y) is
a homomorphism of order 8 in y for every fixed xz and vice versa (see the
proof of Theorem 13.10 for this).

The next lemma is another generalization of Proposition 6.1 with an
almost identical proof. To recover the earlier proposition for the function
f:Zy — D, apply this coming lemma to the function g(z,y) = f(z + y).

LEmMMA 13.1. Let f: Z?V — D be a function into the closed unit disc. For
any h, define
fn(@) =Y @y +h)f(z,y).
Yy

Let B C Zy and let 0 : B — Zpy be a function such that
2 2
D | fulo(r)]” = aN®.
heB
Then there are at least a* N3 quadruples (a,b, c,d) € B* such that a +b =
c¢+d and o(a) + o(b) = o(c) + o(d).

Proof. Expanding what the hypothesis says, we find that

S @) = 35 ful@) fal@ )=o)

heB heB z,x’
= Z Z fh(l‘ + U)fh(l’)w_ug(h)
heB z,u
=SS Sy W@y @y T ) (g
heB z,u y,y’

is at least aN®. Tt follows that
> Z] S fa+uy +h)flzy+hw W] > aN®

z,u y,y' heEB
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which implies that
2
SN et w4 TR > e,
zu y,y' heB

For each triple t = (u, z,w), let a;(h) = f(x +u,w+ h) f(z, h) and by(h) =
B(h)w""™) | Then we may rewrite the above inequality as

S ath + i)
t Yy h

As in the proof of Proposition 12.1, we may apply Lemma 2.1 and the
Cauchy-Schwarz inequality to deduce that

(E S al) (S ) > atvi.

Since Y, |as(r)|* < N* for every ¢ and by (r) = Snep Wi MWTTh for every ¢
and r, we then find that

N2 Z Z’ Z Quoh)=rh

r heB

> a?NS .

4
2(14]\77.

But the left-hand side is exactly N? times the number of quadruples
(a,b,c,d) that we wish to find. O

In fact, we shall need the above lemma only in the special case of 01-
valued functions. The next corollary is a restatement of the lemma in the
language of §10.

COROLLARY 13.2. Let A C Z3%,. For any h € Zy, define a domain
Xp = XpoUXp1U---UXpno1 by letting Xy, be the set of all pairs
((z,y), (x,y+h)), for which both (x,y) and (z,y+h) belong to A. Let fy,(z)
be the cardinality of X}, ;. Let B C Zy and let o : B — Zy be any function
such that ), p |/n(o(h))|? = aN®. Then there are at least a*N® quadru-
ples (a,b,c,d) € B* such that a +b = c+d and o(a) + o(b) = o(c) + o(d).

Proof. This follows immediately from Lemma 13.1 applied to the charac-
teristic function of A. a]

COROLLARY 13.3. Let A C Z3,, and for h € Zy let X;, and f), be as
in Corollary 13.2. Let 8 > 0. Then there exist Freiman homomorphisms
o1,...,04 of order eight, defined on subsets Bi,...,B, of Zy, and a set
G C Zy of cardinality at least (1 — )N, such that whenever h € G and
|fn(r)| = ON? there exists i < q such that r = o;(h). The sets B; have
cardinality at least 271882910477\ and ¢ < 21882¢—10479
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Proof. Suppose that B C Zpy is a set of size N and that o : B — Zy is
a function with the property that |fx(o(h))| = 0N? for every h € B. Then
Y oheB |fn(o(h))|? = 63N®. Hence, by Corollary 13.2, B contains at least
62 N3 o-additive quadruples. It follows from Corollary 7.6 (with o = 6 and
v = 6?) that there is a subset C' of B of cardinality at least 271882910477 )y
such that the restriction of ¢ to C is a Freiman homomorphism of order
eight.

Now let Ty be the set of all pairs (h,r) such that |fy,(r)] > ON2. If
the projection of I' to the h-axis has size less than 6N, then we are done.
Otherwise, we can choose B and o satisfying the hypotheses of the previous
paragraph and hence can find By C B of cardinality at least 271882910477 )y
such that the restriction of o to B; is a homomorphism of order eight. Let
o1 be this restriction and let I'y =T'\ {(h,01(h)) : h € By }.

If the projection of I'y to the h-axis has cardinality less than N, we
are done. Otherwise, the above argument can be repeated. Continue
the repetitions until it is no longer possible and we are then done. Now
Db |fa(r)]? = N> s fn(s)? which is clearly at most N°, so I'g has car-
dinality at most #~2N. It follows that g < 218820710479 a5 stated. o

We shall now prove several lemmas under the same set of hypotheses, so
it is convenient to state the hypotheses first and not keep repeating them.
Let A be a subset of Z3; of cardinality « N2 and let ¢ : A — Zy be a function
with the following two properties. First, ¢(z,y) is, for every fixed z, a
homomorphism of order 8 in y and for every fixed y a homomorphism of
order 8 in x. Second, the proportion of all 8-arrangements in A respected
by ¢ is at least 1 — 7, where n = 2744, (This second property states that
A satisfies the conclusion of Lemma 12.6.) For each h € Zy, let us write
C(h) for the number of 8-arrangements in A of height h and G(h) for the
number of these 8-arrangements respected by ¢. The domains X} and the
functions f; are as defined in Corollary 13.2.

LEMMA 13.4. Let > 0, §; = 271882910477 o _ 91882910479 1 1y —
| (6, /647)N?/164|  Then there exist an arithmetic progression P of length
mo € {m — 1,m} and a subset H C P such that

> {C(h):he HGR) = (1-29)C(h)} = o N*"mg/8,

and there exist constants ai,...,aq and by, ..., by such that, whenever h €
H and r € Zy have the property that |f(r)| = 0N, we have r = a;h + b;
for some 1 < q.
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Proof. Let G be the set and o1, . . ., 04 the Freiman homomorphisms of order
8 given by Corollary 13.3. For each ¢ < ¢ the homomorphism o; is defined
on a set B; of size at least 81N, so by Corollary 7.9 there exist a set K; of
size at most 160, 2 and some ¢; € Zy such that if m is a positive integer,
d belongs to the Bohr neighbourhood B(Kj,6,/32mm) and x,y € B; with
x —y = jd for some j with [j| < m, then o;(z) — 0;(y) = ci(x — y).

By Lemma 7.7 and the definition of m we can find a non-zero d belonging
to the Bohr neighbourhood

q
() B(K;,61/32wm) = B (U Ki 6 /327rm> .
i=1
Let dy be such a value of d, and partition Zy into arithmetic progressions
P, ..., Py such that each P; has common difference dy and the lengths of
the P; are all equal to m—1 or m. By the way dy was chosen, the restriction
of any o; to any P; (or more correctly to B; N Pj) is linear.
Our arithmetic progression P will be one of the progressions P;, chosen
by an averaging argument. By our second assumption on ¢, we know that

Y G =(1-n)Y O,
h h

which implies that

ST {C(h): Gh) > (1-2m)C(h)} = 1S C(h).
h
This estimate says that at least half of the 8-arrangements in A have a
height h for which the function ¢ is a (1 — 2n)-homomorphism of order
8. We also know that 3. C(h) < ON32. Since the total number of
8-arrangements in A is Y, C(h) > a3?N32, we can deduce that

Y {Ch):heG,Gh) = (1-2mCh)} =1 Ch).
h

By averaging and the above estimate, we can choose some j such that
> {C(h): G(h) = (1 —2n)C(h),h € NG} = o® N (m —1)/4
> o®2N3mg /8.
Let us set P = P; and H = P;NG. We know that each o;, when restricted

to P, is linear. Therefore, we can find the constants ai,...,a, and by,...,b,
required by the lemma. O

This fact, that the set of large Fourier coefficients for each fh “varies lin-
early” in h, is the key to the whole argument. Our version of Bogolyubov’s
argument in §10 tells us that 2X; — 2X), is approximately d-invariant if



Vol. 11, 2001 A NEW PROOF OF SZEMEREDI'S THEOREM 547

(aih + b;)d is small for 1 < ¢ < g. Our next aim is to find a further parti-
tion of P into arithmetic progressions in each of which we can choose the
same value of d with this property. The linearity of a;h + b; allows us to
do so. It is to show this that we shall need the multiple recurrence result,
Lemma 5.9.

LEMMA 13.5. There exists an arithmetic progression () C P of size m1 >
12 1 /911
m(l)/2 q/2 and common difference d, such that |(a;h+b;)d| < my V2R N for

every i < q. Moreover, Q can be chosen so that there are at least a*>m1 /20
values of h € QN H for which C(h) > o2N3'/16 and G(h) > (1—2n)C(h).

Proof. For each i, let 7; be the quadratic polynomial a;h?/4 + b;h/2. The
result is very simple if mgy < 2212(1’ as then the only restriction on m; is that
it should be at least 1. Otherwise, my satisfies the lower bound on r required
in Lemma 5.9 when k = 2 (and therefore K = 2!1). That lemma therefore
tells us that P can be partitioned into arithmetic progressions @1, ...,Q

/212

of sizes differing by one and at least m[l) " such that, for every i and j, the

_ 11
diameter of 7;(Q;) is at most m,, V2NN By averaging, we can find one of
12
these progressions, which we shall call @', such that |Q'| = m; > cmé/ 2

and
Y {Ch):heQnHGM) > (1-29)C(h)} = a®*N¥my /8.

Let the common difference of Q' be d. Choose any h € Q' which is not an
end point. Then 7;(h + d) — 7;(h — d) = (a;h + b;)d, so the estimate on the
diameter of 7;(Q’) implies that |(a;h + b;)d| < mal/Qlqu for every i. Now
let Q be Q' without the two end points.

By another averaging argument, there are at least a®?m;/16 values of
h € Q' N H such that C(h) > a®?N31/16 and G(h) > (1 — 2n)C(h). This
certainly implies the slightly worse estimate for Q). O

It is vital for our later purposes that the common difference d of Q
should be the same as the d for which the numbers (a;h +b;)d are all small.
It was to achieve this that we needed to use quadratic recurrence and not
just linear recurrence.

Let us define I to be the set of all h € QNH such that C(h) > >N /16
and G(h) > (1 — 2n)C(h). Notice that if h € I then ¢ is a (1 — 2n)-
homomorphism of order 8 on the domain Xj. Lemma 13.5 asserts that
I has cardinality at least o?m;/20. For the next lemma, recall that a
typical element of the domain X}, which was defined in the statement of
Corollary 13.2, is a pair v = ((x,y), (z,y + h)) and that r(v) is defined to
be x.
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LEMMA 13.6. Let k = 2114320 ¢ = 27228k45T6k and ¢ = 22*°0=2"" | Then
there is an arithmetic progression R C Zy of size mg > ({/2)]\71/213[1 and
common difference d such that for every h € I there is a subset Y, C X of
size at least 27260128 N2 such that the restriction of ¢y, to {v € Y}, : r(v) €
R} is linear. Moreover, R can be chosen such that

Z {{v eYy:r(v) e R}‘ > 2726a128m2N]I| > 27310160 my N .
hel
Proof. We know that |Xj | < N for every r. The lower bound on C'(h)
for each h € I implies that |Xz| = > | Xp,| = o3?N?/16. We are about
to apply Corollary 10.14, which uses the hypotheses of Theorem 10.13,
to the domain X};. We may do so if we replace « in the statements of
Theorem 10.13 and Corollary 10.14 by «32/16. (Note that  was defined
in this section to be 2%, so for h € I the (1 — 2n)-homomorphism ¢y, is
a (1 — n)-homomorphism in the sense of Theorem 10.13.) This allows us
to take A = 279170 k = 211447320 and ¢ = 27228k4576k  Corollary 10.14
then states that if Kj, = {r € Zy : |fn(r)| = AN}, then there exists a set
Y, C X}, of cardinality at least (®?/16)3|X}|/1000 > 2726012 N2 with the
following property: for every positive integer m and every d in the Bohr
neighbourhood B(K}, (/m), there exists ¢;, € Zy such that ¢ (v)—¢p(w) =
cp(r(v) —r(w)) whenever v,w € Yy, and r(v) —r(w) € {jd: —m < j < m}.
Now, Lemmas 13.4 and 13.5 combined, with 0 set equal to A, tell us
that the common difference d of the arithmetic progression () satisfies the
property that |rd| < mgl/Qqu whenever |f,(r)| > N, where ¢ may be
taken to be the number in the statement of this lemma. In other words, we

are told that this d belongs to all the Bohr neighbourhoods B(K},(/m),

1011
provided that the inequality m,, /2 < ¢/m holds, where my is as given in

the statement of Lemma 13.4. It is not hard to check that m = (¢/2)N1/2"™
satisfies the inequality. (In fact, we could replace 13 by 12, but it is conve-
nient later for mgo to be significantly less than m;.)

Since m < NVY2, we can partition Zy into arithmetic progressions
Ry,...,Rr of common difference d and lengths m or m 4+ 1. For every
R; and for every h € I the restriction of ¢, to {v € Y}, : r(v) € R;} is
linear. Since [V3,| > 2720128 N? for every h € I, we know that Y, Y| =
27260128 N2||. An averaging argument therefore gives us one of the R;,
which we shall call R, such that

Z {veY,:r(v) e R} > 272608 [ImyN > 273100 my N
hel
where mo equals either m or m + 1. This proves the lemma. a]
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LEMMA 13.7. There exist y € Zy, an arithmetic progression S C R of size
ms =m2 " and a set B C S x (I +y) of size at least 2260128 mg|I| >
27310 mg3 such that, for every h € I, the restriction of ¢(x,y + h) to

B is linear in x.

Proof. Choose y € Zpx uniformly at random. The expected number of
pairs z,h such that x € R, h € I and ((z,y),(z,y + h)) € Y} is at
least 2726a!128my|I|, so let us fix a value of y such that there are at least
this many. The number of z € R such that (z,y) € A is then at least
272601281m5. One of our main assumptions is that ¢ is a homomorphism of
order 8 for each fixed y. Hence, by Corollary 7.11, applied to the single set
{r € R: (z,y) € A} we can find a partition of R into arithmetic progres-
sions St,...,Sy all of length at least m%—“‘a%ﬁ such that the restriction
of x — ¢(y,x) to any S; is linear (where defined). By averaging, we can
choose some S;, which we shall call S, such that the number of pairs x, h
with z € S, h € I and ((z,y), (x,y + h)) € Y}, is at least 2720a!28mg| 1],
where ms is the size of S.

Let B C S x (I +y) be the set of all points (z,y + h) such that h € T
and ((z,y), (x,y+h)) € Y. We have shown that B has cardinality at least
27260128 ms 1| > 2731a1%%m m3 and found constants ¢ and ¢;, (h € ), such
that, for any z1,20 € S and any h € I,

¢(xlay) - ¢($2,y) = C(Il - 332)
and
o(z1,y +h) — ¢(z1,y) — (22,9 + h) + ¢(x2,y) = cp(w1 — 22) .
It follows that, for every h € I,
¢('T17y + h) - (b(l’g,y + h) = (Ch - C)(l‘l - $2) )

which tells us that the restrictions of ¢ to the rows of B are all linear. ©

We have now effectively reduced the dimension of our problem by one,
as the next two lemmas will demonstrate. For each h € H, let a(h) and

c¢(h) be the unique constants such that ¢(x,y+ h) = a(h) + c(h)z for every
x with (z,y + h) € B.

LEMMA 13.8. Assume that mg > 28%a~*6. Then there is a subset J C I
such that the map h +— (a(h),c(h)) is a homomorphism of order 8 on J
and the set C' of (x,y + h) € B such that h € J has cardinality at least
27840416 m3.

Proof. We know that B has size at least 273'a'®mimz =
2731010, m3|S||Q + y|. We also know (from our main assumption) that
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¢(x,y + h) is a homomorphism of order 8 in h for every fixed x. Suppose
that x1, x9 and h(1),...,h(16) are such that (x;,y + h(j)) € B for every
i,j. Because ¢(x,y + h) is a homomorphism of order 8 in h, easy linear
algebra shows that

ap(1) T+ Ap®) = ap(9) T+ An(16)
and

Ch(l) R Ch(g) = Ch(g) +---+ Ch(16) .

For any pair (z1,72) € S? let J(z1,72) be the set of all h € I such
that (z1,y + h) and (x2,y + h) are in B, and let C'(x1,x2) be the set of all
(x,y + h) € B such that h € J(z1,x2). We shall choose J to be one of the
J(x1,x2) and for that we need the corresponding set C(z1,x2) to be large,
which (needless to say) we do by averaging.

Notice first that lem |C(x1, z2)| counts all quadruples (z1, z2,x3,h) €
S3 x I such that (z;,y + h) € B for i = 1,2,3. Therefore, letting D;, =
{z € S: (z,y+ h) € B}, we can write this sum as >, ., [Ds[>. Since
>her |Dn| = |BJ, this is at least |I|7%[B|*, which our earlier estimates
tell us is at least 27830 %m m3. The contribution to the sum from sets
C(x1,x2) such that £1 = x9 is certainly no more than mlmg, which, by our
assumed lower bound for mg, is at most half the total. Therefore, there
exist x1 # 2 such that C'(x1,x2) has cardinality at least 278406 ms.

We have shown that the map h +— (ap, cp) is a homomorphism of order
8 from J = J(x1,32) to Z%, so we may set J = J(x1,x2) and the lemma is
proved. O

At this point let us recall that the arithmetic progression S is a subset

of R, which has the same common difference d as (). Moreover, we fixed our
numbers so that R would be considerably smaller than ). It follows that
S is a subset of a translate of Q) and, writing d; for the common difference
of S, that d; is a multiple of d. Recall also that the cardinalities of S and
() are mg and m respectively and that J is a subset of Q).
LEMMA 13.9. There exists an arithmetic progression U C ) of common
difference do, which is a multiple of d1, and size my > m§_182°‘832 such that
the set D of all (x,y + h) € C such that h € U N J has cardinality at
least 2784 aMOmgmy = 2784a16|S||U + y| and the restriction of ¢ to D is
bilinear.

Proof. Let us partition @ into maximal subprogressions 11, ..., Ts of com-
mon difference dy. By the remarks immediately preceding the statement
of this lemma, each T; has cardinality at least m3. By averaging, we can
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choose T' = T} such that the set of all (x,y + h) € C with h € JNT has
cardinality at least 273 a*%mg3|T|. Applying Corollary 7.11 to the homo-
morphism h +— (a(h), c(h)) restricted to JNT, with « replaced by 2-84a*16,
we obtain a partition of T" into arithmetic progressions Uy, ..., Uy of size
at least |T|2""°@™ such that the restriction of the map h — (a(h), c(h)) to
any U; is linear. By averaging again we may choose U = U; of cardinality
my such that the set D defined in the statement has the required size. Then
because the coefficients a(h) and c(h) vary linearly in h when h € U N J,
the restriction of ¢ to D is bilinear. a)

COROLLARY 13.10. There exist arithmetic progressions V' and W with the
same common difference and same cardinality ms > mi/ 2 1, and a subset
E CV x W of size at least 2786a*16|V||W|, such that the restriction of ¢
to E is bilinear.

Proof. We already have a comparable statement for S x (U + y). The
common difference of S is d; and the common difference of U + y is ds,
which is a multiple of d;. All we do now is apply one further averaging
argument to pass to subprogressions of the same size and same common
difference.

Since U is a subset of a translate of .S, a maximal subprogression of S
with common difference dsy has cardinality at least m4—1. It is therefore not
hard to show that S'x (U+y) can be partitioned into sets of the form V x W,
where V and W are arithmetic progressions with common difference do and
size m or m + 1, where m > m}l/ 1. By an averaging argument we can
choose one of these sets V x W such that D N (V x W) > 2-84a40|V||W/].
The slightly worse bound in the lemma comes from the fact that we may
wish to remove end-points from V and W to make them the same size. ©

Let us now show that we can achieve the hypotheses that we have been
assuming in the last few lemmas.

LEMMA 13.11. Let f : Zn — D be a function which fails to be cubically
a-uniform. Then there exists a set A C Z3; of size at least (co/ 22 N2 and
a function ¢ : A — Zy such that, for every fixed x, ¢(x,y) is a Freiman
homomorphism of order 8 in y, for every fixed y it is a homomorphism of

order 8 in x, the proportion of all 8-arrangements in A respected by ¢ is at
least 1 — 27" and |A(f; k, 1) (¢(k,1))| = aN/2 for every (k1) € A.

Proof. By Lemma 3.1 (the easy implication of (ii) from (vi)) there is a
set Ag C Z?V of size at least aN?/2 and a function ¢ : Ay — Zy such
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that |A(f; k, 1) (é(k,1))| = aN/2 for every (k,1) € Ag. For each k, let
Ap i be the cross-section {l : (k,l) € Ap}, let |[Agi| = o N and define
¢+ Aok — Zn by ¢x(l) = ¢(k,1).

Fixing k and applying Proposition 6.1 to the functions A(f;k) : Zn —
D and ¢y : Ag — Zn, we find that there are at least c»zi]\f"3 ¢r-additive
quadruples in Ag . Applying Corollary 7.6 with By = Ao, ¢ = ¢ and
a = 7 = i, we obtain a subset Ay C Aoy of size at least 2*188204,}:165N
such that the restriction of ¢y to A j is a Freiman homomorphism of order
8. Since the average of oy, is at least /2, the union of the sets A; is a
set Aj of cardinality (N2, where ¢ > 271882(q/2)1165 = 2-3047,1165  The
restriction of ¢(k, 1) to A is a homomorphism of order 8 in [ for any fixed k.

Repeating this argument for the second variable, we can pass to a further
subset Ay C A; of cardinality at least 27307¢1165 N2 > (¢,/2)2* N2 such
that the restriction of ¢ to As is a homomorphism of order 8 in each variable
separately. Let 8 = (o/2)%”.

We now apply Lemma 12.6 with B = As, v = o/2 and = 2744, This
yields a set A with at least

_937 43 45 36
) 2 ,62 ’72 772 N32 > (Oé/2) N32
8-arrangements, such that the proportion respected by ¢ is at least 1 —2744.

Since the cardinality of such a set must be at least (a/2)2"° N2, the lemma
is proved. O

266

We are now ready for the main result of this section.

Theorem 13.12. Let f be a function from Zy to the closed unit disc.
If f is not cubically a-uniform then there exist arithmetic progressions P

2™

and Q of size at least N1/ U and with the same common difference,
a subset B C P x Q of size at least (/2)2"|P||Q| and a bilinear function
¢: PxQ — Zy, such that A(f;k,1)"(é(k,1)) > aN/2 for every (k,l) € B.

Proof. By Lemma 13.11 we can find a set A C Z3; of size at least (a/2)2° N2
and a function ¢ : A — Zy such that, for every fixed z, ¢(z,y) is a Freiman
homomorphism of order 8 in y, for every fixed y it is a homomorphism of
order 8 in z, the proportion of all 8-arrangements in A respected by ¢ is at
least 1 — 274 and |A(f; k, )" (¢(k,1))| = aN/2 for every (k,1) € A. Apart
from the last condition, these are the hypotheses stated just before Lemma
13.4, except that o has been replaced by (a/2)2". The results numbered
13.4 to 13.10 all hold under this set of hypotheses, so the theorem follows
from Corollary 13.10 and a back-of-envelope estimate for ms when « is
replaced by (a/2)%". o
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Notice the relationship between the above theorem and Freiman’s the-
orem. The hypotheses are somewhat different, but all we have used is that
there are many 8-arrangements respected by ¢, which is a fairly natural
generalization of the hypotheses of the Balog-Szemerédi theorem to graphs
of functions in two variables. The conclusion of the theorem is in some
ways much weaker, since we find only a very small set with good structure.
On the other hand, the structure obtained is stronger, as we have gone
up from linearity to bilinearity. It is very likely that a development of the
argument above could be used to give a complete description of functions
o : Z?V — Zn that respect many 8-arrangements. This would deserve to
be called a bilinear Freiman (or Balog-Szemerédi) theorem. Theorem 13.12
one could perhaps call a weak bilinear Freiman theorem.

The next three sections will generalize the above theorem from non-
cubically uniform functions to functions that fail to be uniform of degree k,
producing an appropriate (k — 1)-linear piece. The generalization is long,
but does not involve any significant new ideas. The reader who wishes to
follow a proof of Szemerédi’s theorem for progressions of length five can go
straight to §17.

14 Obtaining Many Respected Arrangements

This section and the next consist of relatively routine generalizations of the
results of §12 to functions of k variables. The reason we are presenting them
separately is that the argument for two variables is notationally simpler and
therefore easier to understand, while containing all the essential ideas.

We begin with a result which, in both its statement and its proof, is
very similar to Proposition 12.1, but which seems to be hard to unify with
that result. Recall that if f : Z3, — C, then fy,(y) is defined as > f(x +

h,y) f(z,y).

PROPOSITION 14.1. For each h € Zy let A\, > 0. Let f&, ..., f® bpe
functions from Z?V to the closed unit disc D and let o1, ...,0, be functions
from Zy to Zy such that
P
2]l
h

=1

J@}(Li)(ai(h))‘2 > a N4+

Then the sum of A\gA\pA:A\g over all quadruples (a, b, c,d) such that a +b =
c+d and o;(a) + 04(b) = 0i(c) + 0:(d) for every i is at least a* N3.
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Proof. In the argument to follow, we shall often abbreviate (x1,...,z,) by
x, and similarly for other sequences of length p. The left-hand side of the
inequality we are assuming is, when written out in full,

Z)\h > Hf (i + Ty yi) FO (i, i) fO (w; + h, 24)

z,w,yY,z i=1

Substituting u; = y; — z;, this becomes

th > Hf (i + hy 20+ i) fO (4, 2 + i) fO (wi + h, 2)

z,w,u,z i=1

Since this exceeds aN*+! and | (z,y)| < 1 for every i,z,y we may
deduce that

3 ‘thl‘[ﬂ (i + by 23+ 1) [ wi + by 2w 70| > N+

T, w,u,z

and hence, by the Cauchy-Schwarz inequality, that

Z ‘Z)‘h H f $z +h,z + Uz)f(l (wz +h, Zz) uloz(h)‘ = QAN

Tw,u,2  h

We now mtroduce a variable s and write z; = s —i—aci and w; = s+ wi. From
the above, we can deduce that

Z Z ‘ZAthz) S—f—l‘ + h, Zz"‘uz)f(i)(s"f'w;—l—h,Zi)w_uigi(h) 2

sz wu,z

2 Ardp+3
> @? NPT

Applying Lemma 2.1 and the Cauchy-Schwarz inequality in the usual way
(see for example the proof of Proposition 12. 1) we deduce that

¥ 3 [Safleon

rozwu,z
Since the left-hand side above is N*P*! times the sum of A ApAcAg over all
quadruples (a, b, ¢, d) such that a+b = c+d and o;(a)+0;(b) = gi(c)+0i(d)
for every i, the result is proved. O

> QNP+

In the next section, we shall need to deal with functions defined on
sets B C Z’f\, which will be k-dimensional generalizations of the somewhat
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additive functions that appeared in §6. They arise in two different ways, but
in both cases they have a property which we shall call the product property.
To define this, suppose that B is a subset of Zﬁ“v and that ¢ : B — Zy.
Given any j < k and any y € Z%;, define B(y, j) to be the set of all z € B
such that z; = y; whenever ¢ # j. This is the one-dimensional cross-section
of B that goes through y in the j-direction. Now define C(y, j) to be the set
of all x € Zy such that (y1,...,yj—1,%,Yj+1,-..,Yk) € B(y, ), and define
a function ¢, ; : C(y,j) — Zn by

Qby’j(x) = ¢(yly e YT, Y41, - - ayk) .

This is the restriction of ¢ to B(y,j), but for convenience regarded as a
function defined on a subset of Zy. Let us define a j-restriction of ¢ to
be any function of the form ¢, ; for some y € Zﬁ“\,. We shall say that ¢
has the product property with parameter v if, whenever j < k, ¢1,...,1,
are j-restrictions of ¢, F is a subset of Zy on which all the v; are defined
and 0 : E — R4, the sum of 0(a)8(b)0(c)0(d) over all additive quadruples
(a,b,¢,d) that are ¢;-additive for every i is at least v N1 (3", 0(1‘))4.

LEMMA 14.2. Let f : Zy — D, let B C Z’fv and let ¢ : B — Zn be
such that |A(f;r1,...,15)~(6(r1, ..., 7%))| = YN for every (ry,...,1%) € B.
Then ¢ has the product property with parameter ~y.

Proof. Let yi1,...,y, be elements of Zﬂ“v_l and let E be the set of all r €
Zpn such that (y;,r) € B for every i. Then if we are given a function
0:E — Ry, we can set 0(k) = 0 for k ¢ E and apply Proposition 12.1 to
the functions f; = A(f;y;). Since A(fi;r) = A(f; (yi,7)) these functions
satisfy the hypothesis of Lemma 12.1 with o = 42 3", (k)N ! and o;(r) =
&(yi,r). The conclusion of the lemma then gives us exactly what we want,
at least for k-restrictions. By symmetry, the result is true for the other
j-restrictions as well, and ¢ has the product property with parameter y. o

The second case in which we wish to deduce the product property is
similar to the first, but we shall use Proposition 14.1 instead of Proposition
12.1. Given a function f : Z?VH — C and h = (hy,...,hg) € Z%;, define a
function fp, : Zy — C by

) =Y TI @ +eahy,. .. o+ exhr,y),
zeZk, ec{0,1}F

where once again C' stands for complex conjugation and |e] = Y ¢;. For
example when k£ = 1 we have fj,(y) = >, f(x+h,y)f(x,y), as before. (We
have taken Cl€+% rather than the simpler Cl¢ in the definition merely to
make it consistent with the earlier one.)
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LEMMA 14.3. Let f: ZlfVH — D, let B C Zﬂ“\, and let ¢ : B — Zx be such

that |fz(¢)(z))| > yN¥*1 for every z € B. Then ¢ has the product property
with parameter .

Proof. For any y = (y1,...,Yk—1) € Z?V_l we can define a function g, :
Z?V — D by the formula

gy(a, b) = Z H C‘E|+k71f<’u,1 + €Y1y, Uk—1 + €Ek—1Yk—1, Q, b) .
uezkt e€{0,1}k~1
It is then easy to check that for any h € Zy we have (gy)n = fiy,h)-

The proof is now more or less the same as that of Lemma 14.2. Let
Y1, .. .,Yp be elements of Z?V_l (note that y; is now a vector rather than a
coefficient of y) and let E be the set of all h € Zx such that (y;,h) € B
for every i. Given a function 6 : E — Ry, set 8(k) = 0 for k ¢ E and
this time apply Proposition 14.1 to the functions ¢(? = N_(k_l)gyi. We
certainly have ¢ : Z%V — D. Since g}(f) = N_(k_l)fyhh, we find that
f},(ll) (r) = N_(k_l)fyhh(r), which is at least YN? if h € E and r = ¢(y;, h).
Therefore, the functions ¢(¥ satisfy the hypothesis of Proposition 14.1 with
a =73, 0k)N~! and o;(h) = ¢(yi,h). The conclusion of the lemma
then gives us exactly what we want for k-restrictions. Once again the result
for j-restrictions follows by symmetry. u]

Now we shall define, in two stages, an appropriate generalization of a
parallelogram. Let B be a subset of Zﬂ“v. By a cube in B with sidelengths

(h1,...,hy) we shall mean a function « from {0,1}* to B of the form
K (61,...,€k) — (7“1 +e1hi, ..., Tk +6khk)-
We shall sometimes denote this cube [rq,...,7%;h1, ..., hg]. For k > 2 it

will later be convenient to think of Z?VH as a product Z?V X Zy. Given
a subset B C Zlf\,ﬂ, we shall mean by a cross-section of B a set of the
form B, = {(r1,..., 7%, Tk+1) € B : 1p41 = r}. A cube in B, will sim-
ply mean a function from {0,1}* to B, of the form e ~— (x(e),r), where
K is a cube in ZK;. We shall sometimes denote this cube by (k,7). Two
cubes (not necessarily in the same cross-section) will be called congru-
ent if they have the same sidelengths (hi,...,h;). By a parallelepiped
in B we shall mean an ordered pair of congruent cubes, both lying in
cross-sections of B. A parallelepiped pair will mean an ordered quadruple
((ml,rl), (K2,72), (/€3,T3),(/€4,T’4)), where k1, k9, K3, k4 are congruent and
(r1,7m9,73,74) is an additive quadruple.

In order to prove facts about parallelepiped pairs, it will be convenient
to make two further definitions. If B C Z’fv, then by a configuration in
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B we shall mean, roughly speaking, a product Q1 X --- X Qi of additive
quadruples. This is not quite an accurate description as additive quadruples
are defined as ordered sets. The order matters here as well, and a precise
definition is that a configuration in B is a function X : {0,1}¥ x {0,1}* — B
of the form
A (e,n) = (r1+ e1g1 +mbha,r2 + eaga + noha, T+ engr + mehy) -

We shall sometimes denote this configuration by [ri,...,7%; 91, .-, Gk;
hi,..., hg.

If we choose j and fix every ¢; and 7; for ¢ # j, then we define a
restriction of A which gives an additive quadruple in the j-direction. If
¢ is a function from B to Zy such that all the 4! additive quadruples
that arise in this way are ¢-additive, then we shall say that ¢ respects the
configuration .

Given B C Zk,, a function ¢ : B — Zy and a cube & in B, we define

o(r)= Y (=1)16(x(e)).

e€{0,1}*

(Here, as elsewhere, |e| denotes Zle €;.) Just to illustrate this definition,
we note that

qﬁ[x,y;a,b] = ¢($+a7y+b) - ¢($+aay) - ¢(x7y+b) +¢(x7y)'
Define a cube pair in B to be an ordered pair (k1,k2) of congruent cubes.
(The difference between this and a parallelepiped is that the cubes are
full-dimensional.) We shall say that ¢ respects this pair if ¢(k1) = ¢(k2).

LEMMA 14.4. Let B C Z?V be a set of size BN, let ¢ : B — Zy and
suppose that ¢ has the product property with parameter y. Then ¢ respects
at least 64k'y2k'4k N3k configurations in B.

Proof. When k = 1, a configuration is an additive quadruple and ¢ respects
it if and only if it is ¢-additive. Therefore, Proposition 6.1 gives us the
result.

Now suppose that k& > 1 and that the result is true for £ — 1. Let
B C Z?V be a set of cardinality 3N* and for each 7 let B, be the cross-
section {(z1,...,2x) € B : o = r}. Write 3(r)N*¥~! for the cardinality
of B,.

By our inductive hypothesis, B, contains at least 3(r)4" y2(k=1-4""N3(k-1)
configurations respected by ¢. By Jensen’s inequality, the average of this
quantity over r is at least ﬂ4k_1fy2(k_1)'4k_lN3(k_1). Therefore, if a random
configuration A is chosen in Z?{l, then the average number of values of r for
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which ¢ respects the configuration (\,r) (by which we mean the function
from {0,1}*~! to B, defined by e — (A(e),r)) is at least 84" 42k=D4""" 7,
Let E(X) be the set of such r and let n(A\)N be the size of E()\).

We now fix A and apply the product property to the 4! functions
x — ¢(A(e1,€2),x), which are all defined on the set £ = E()\). Taking 6
to be identically 1, we obtain from the product property that there are at
least 734" n(A\)*N? quadruples a + b = ¢+ d such that for every (ey, €2) €
{0,131 x {0, 1}*~! we have

QZ)(A(el? 62)7 CL) + ¢()‘(61a 62)a b) = QZS()\(El, 62)a C) + QZ)(A(ED 62)’ d) .
But, by the definition of E, each such quadruple gives us a configura-
tion in B which is respected by ¢. Since the average of n(\) is at least

54’@—1 ,yz(k—1).4k_1, Jensen’s inequality implies that the number of configu-

rations in B that are respected by ¢ is at least 78'4k7164k72(k*1)'4kN3k =

3" 424" N3k which proves the result. o

COROLLARY 14.5. Let B C Z& be a set of size BN, let ¢ : B — Zy
and suppose that ¢ has the product property with parameter ~v. Then ¢
respects at least ﬁ4k72k'4kN3k cube pairs in B.

Proof. Let A = [r1,...,7%;91,---,9k; h1,...,hg] be a configuration in B
which is respected by ¢. We shall show that the cube pair
([re - ooresha, o bl [ro 4+ g1, ke + grs b - ha)

is also respected by ¢. Since distinct configurations give distinct cube pairs
in this way, we will have proved the corollary. For every j between 0 and &
let us define x; to be the cube

[Tl +g17"'7rj +gj77aj+1a"'7rk;hla"'7hk] .
Because ¢ respects the configuration A, we know that for all choices of 7;
for j # i, the additive quadruple

(ri+g1+mha,...,rj—1 +gj—1 + 01,75 + €95 + njhj,riv1 +njphiia,
T+ MehE)

where ¢; and n; take the values 0 or 1, is ¢-additive. This implies that

¢(kj—1) = ¢(k;), and the argument works for every j between 1 and k.

Therefore, ¢(ko) = ¢(ki), which is the required result. a)

COROLLARY 14.6. Let B C Zlfvﬂ be a set of size BN**1 let ¢ : B — Zn
and suppose that ¢ has the product property with parameter v. Then ¢
respects at least 54k+17k'4k+1N5k+3 parallelepiped pairs in B.
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Proof. The proof of this result is similar to that of Lemma 14.4. For each
r € Zy let B(r)N* be the size of the cross-section B, of B. By Corollary
14.5, ¢ respects at least ﬁ(r)4k72k'4k]\73k cube pairs in B,. The average of
this number over r is at least ﬁ4k72k'4kN 3k Therefore, if we choose r at
random and choose a cube k in Z]fv at random, the expected number of
cubes k' in Zﬁ‘v for which ((/{,T), (K, 7‘)) is a cube pair in B, respected by
¢ is at least ﬂ4k72k'4ka.

Now let x be some fixed cube in Z%; and for each r let 6(r) be the
number of cubes £’ in Z& for which ((k,r),(x’,7)) is a cube pair in B,
respected by ¢. Let 6 be the average of the §(r). By the product property,
the sum of (a)0(b)0(c)6(d) over all additive quadruples (a, b, ¢, d) such that

p(k(€), a) + p(r(e), b) = d(k(e), ¢) + P(k(e), d)
for every e € {0,1}* is at least §*+82" N4+3  But this sum counts the
number of parallelepiped pairs ((/1;, ri))?zl in B such that, for each i, (k;,7;)
lies in B,, and (k},7;) is congruent to it. It is certainly a lower bound for the
number of parallelepiped pairs such that each of the four cubes is congruent
to k.

If we now choose randomly, for every h = (hy,...,hy), some cube
k(h) with sidelengths (hi,...,hy) and apply the above argument, we shall
obtain, on average, at least (ﬂ4k72k'4k)478'2k]\f 5k+3 distinct parallelepiped
pairs, since the average of 6 (which still depends on k) is at least ﬂ4k72k'4k.
This proves the corollary (where, just for the sake of neatness, we have
stated a weaker bound). O

Let B C Z?\,'H. By a d-arrangement in B we shall mean a sequence
C1, ..., Cyq of congruent cubes, where Cj lies in the cross-section B;,, and

L+ Tg =Tdpr + T2

Thus, a parallelepiped pair is simply a 2-arrangement, and when k = 1 we
recover the definition of d-arrangement given in §12. It is also convenient to
think of a d-arrangement as a function p : {0,1}% x {1,2,...,2d} — Zk*!
of the form

piler, .. ex,J) = (Y] +erthi,... .yl + exhi, ;).
Here, r1,...,194 are as above and each of the constituent cubes of the d-
arrangement has sidelengths (hi,...,hx) but is otherwise arbitrary. It is
easy to see that the number of d-arrangements in Z?VH is N(2d+1k+2d—1
The next lemma is a generalization of Lemma 12.4 and has a very similar
proof.
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LEMMA 14.7. Let B C Z?V'H and let ¢ : B — Zy. Suppose that ¢ respects
ONOk+3 parallelepiped pairs in B. Then ¢ respects at least §7 N1Tk+15 g
arrangements in B.

Proof. Given u,x € Zy and h = (h1,...,hg) € ZK, let fun(z) be
Do w"?(5:%) wwhere the sum is over all configurations x in Z%; with side-
lengths (h1,...,hs), and we interpret w"?"*) as zero when ¢(k,x) is not
defined (which happens when (k,z) does not live in B,). Clearly |f, n(x)|
is at most N* for every u,z, h, which implies that > |fun(z)> < N?FH!
for every u, h, and therefore that Zumh \fu7h(r)|2 < N3k+3,

We also have
Z |fu,h(r)|4 — Z’waﬁ(,@,m)frm

Ur  R,X

4

for every h, where once again x ranges over all cubes in Z?V with sidelengths
(h1,...,hy). This is N2 times the number of parallelepiped pairs respected
by ¢ for which the sidelengths of the cubes are (hq, ..., hg). It follows from
our assumptions that
D 1 fun(r)[t = ONF
u,r,h
Similarly, >, . | fun(r)]'0 is N2 times the number of 8-arrangements
respected by ¢. Therefore, by Lemma 9.1, the number of 8-arrangements
is at least N —2(QNOk+5 /NOBK+3)/T\T — g7 N1Th+15 a5 claimed. o
Combining Corollary 14.6 and Lemma 14.7 we obtain the main result

of this section (which will be applied in conjunction with Lemmas 14.2
and 14.3).

LEMMA 14.8. Let B C Z5™ be a set of size BN**1, let ¢ : B — Zy
and suppose that ¢ has the product property with parameter ~v. Then ¢
respects at least 67'4k+177k'4k+1N17k+15 8-arrangements in B. O

15 Increasing the Density of Respected Arrangements

We shall now use an argument similar to those of §9 and §12 to pass to a
subset of B where ¢ respects almost all 8-arrangements. (We shall actually
prove our results for general d-arrangements and then take d to be 8 later.)
In order to do this, we shall need a brief discussion of a small number
of degenerate cases where a later argument does not work. Just for the
next lemma it will be convenient to consider sequences in {—1,1}* rather
than {0, 1}*.
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LEMMA 15.1. Let hy,...,hi be non-zero elements of Zy, and let 7 :
{—1,1}* — {~1,0,1} be a function such that the sum

Z n(e) H(Z/z‘ + €ihi)
ee{—1,1}k €A

is independent of y1, ...,y for every subset A C {1,2,...,k}. Thenn is a
multiple of the function € — []¢;.

Proof. Throughout this lemma, any sum over € will denote the sum over all €
in the set {—1,1}*. The functions € — [],. 4 € are orthogonal with respect
to the symmetric bilinear form (ny,n2) = > ni(€)n2(e). (Recall that N is
prime. This bilinear form is defined on the vector space Z}V_I’l}k and the
functions are the Walsh basis for this space.) Therefore, it is enough to
prove that ) n(e)[[;c4 € = 0 for every proper subset A C {1,2,...,k}.
This we do by induction on A (with respect to containment).

First, let A be a proper subset of {1,2,... ,k} and let j ¢ A. From the
assumption of the lemma, applied to the set AU {j}, we know that

vi (o) [[(wi + eihi) + 1y Y mle)e; [ [ (wi + eihi)
€ icA € icA

is independent of y;. Since the second part of the sum does not involve y;,

this implies that
> n(e) [ [wi +€ihs) = 0.
€ €A
Now we give the inductive argument. When A = (), we have
Z n(e) H € = z n(e) = z n(e) H(yi + €ihi)
€ icA € € €A
which is zero by the above inequality. For general A, we have

0="> n(e) [J(vi + eihs)

i€A

2277(6)2 H yz’Hth

BCAicA\B ic€B

= Z H yiHhiZW(E)HGi

BCAicA\B i€B e i€B
=Im> ne]]e
€A € €A

where the last equality follows from the inductive hypothesis. Since the h;
are non-zero, the result is proved for A. a]
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If we now make the substitution y; = y; — h; and h, = 2h;, and then
remove the dashes, we obtain the result for functions on {0,1}*, which is
what we actually want.

COROLLARY 15.2. Let hy,...,h; be non-zero elements of Zy, and let
n:{0,1}* — {—1,0,1} be a function such that the sum

> (o) [] i+ eiha)
e€{0,1}k i€A
is independent of y1, ...,y for every subset A C {1,2,...,k}. Thenn is a
multiple of the parity function 7 : € — (—1)2. o

Define a function 79 : {0,1}* x {1,2,...,2d} — {—1,1} by letting
no(e,j) be w(e) if 1 < j < dand —n(e) if d+1 < j < 2d. We shall say
that a d-arrangement p is degenerate if there is a function 7
{0,1}* x {1,2,...,2d} — {—1,0,1} which is not a multiple of 59 but which
nevertheless has the property that

Zﬁ(ﬁ,j) Hp(eaj)z =0

€, i€A
for every subset A C {1,2,...,k + 1}. (Here, p(e,5); denotes the i*" co-
ordinate of p(e,j).) We wish to show that there are very few degenerate
d-arrangements. Let us give a simple lemma first.

LEMMA 15.3. Let p : Z?\, — Zn be a multilinear function which is not

constant. Then for any a the number of solutions of u(y1,...,y) = a Is at
most N¥ — (N — 1)k < ENF-L,

Proof. The result is trivial when k = 1, so let k£ > 1 and assume the result
for k — 1. There are unique multilinear functions p1 and po such that

s Yk) = Yea (Y- Ye—1) + p2(Y1, - Yk-1) -
If we can find two different elements 7, s of Zy such that the (k — 1)-linear
restrictions u(y1,...,yx—1,7) and p(y1,...,yx—1,s) of p are both constant,
then we can solve for pu; and po and show that they are both constant
as well. Since p is non-constant, p; is not identically zero and there are
exactly N*~1 solutions of the equation.
Otherwise, with the exception of at most one 7, the function

(Y1, ... Yk—1,7) is not constant. This allows us to apply our inductive
hypothesis to conclude that the number of solutions of u(y1,...,yx) = a is
at most N¥=1 4+ (N — 1)(NF=1 — (N — 1)k=1) = N¥ — (N — 1), O

The estimate above is sharp, since it gives the exact number of solutions
of the equation y; ...y = 0.
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LEMMA 15.4. The number of degenerate d-arrangements in Z’X}H is at most
32d.2k kN (2d+1)k+2d—2

Proof. Let us fix non-zero sidelengths hq,...,h; and cross-sections ri,...,raq
and take a general d-arrangement

p: (61,... 7€k7j) — (y{ +61h1,. .. ,yi —i—ekhk,’rj)
with those sidelengths.

Suppose first that n(e, j) fails, for some j, to be a multiple of the
parity function w. Then Corollary 15.2 tells us that there exists a set
A C{l,...,k} such that > _n(e, j) [[;c4(¥i + €ihi), when considered as a
function of 1, ..., Yy, is non-constant. By Lemma 15.3, whatever the choice
of p(e,t) for t # j there are at most kN*~1 choices of (y{, . ,yi) for which
> et M(€:t) [Tiea ple, )i = 0. Therefore, the number of d-arrangements with
sidelengths  (hy,...,h;) and cross-sections ri,...,r9q such that
Y@ Ilicaplet)i = 0 for every A C {1,2,...,k} is at most
ka—lN(2d—1)k: — L N2dk—1

If on the other hand 7(e, j) is a multiple of the parity function for every 7,
then let us write n(e, j) = nj7(e) and consider the set A = {1,2,...,k+1}.
We have

k+1
Zn(e,t) H ,0(6, t)z‘ = Z 7](6, t) H p(é, t)z‘ = (—1)kh1 cee hk Z U
€t €A €t 1=1 J
If n is not a multiple of 7y, then (71,...,724) is not a multiple of the
sequence (1,...,1,—1,...,—1) (d ones followed by d minus ones). Therefore
the equation Zj n;r; places a further linear restriction on the sequence
(ri,...,7r2q), meaning that the number of choices for this sequence is at

most N29-2,

There are (strictly) fewer than 324" functions  : {0, 1}¥x{1,...,2d} —
{—1,0,1} that are not multiples of 7. For each such function, the argu-
ments we have just given show that the proportion of d-arrangements such
that >, n(€) [Lica p(e )i = 0 for every A C {1,2,...,k + 1} is at most
k/N. Finally, the proportion of d-arrangements for which at least one of
the sidelengths h; is zero is also at most k/N. The lemma is proved. m

Notice that, in the above proof, the only set A containing the element
k + 1 that we needed to consider was the set {1,2,...,k + 1} itself. Thus,
it would be possible to get away with a weaker definition of degeneracy.
We are now ready for another random selection with dependences defined
using Riesz products.
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LEMMA 15.5. Let 3,m > 0, let B C Zlfvﬂ be a set of size FN**1 and

let ¢ : B — Zx be a function respecting at least aS N17*+15 8 arrange-

ments in B. Then there is a subset B’ C B containing at least
k+4

(0477/4)22 TR 315 N1TRHI5 8 arrangements, such that the proportion of

them that are respected by ¢ is at least 1 — 7).

Proof. Let r be a positive integer to be determined later. For every set
A C {l,...,k+ 1} and every 1 < j < r choose elements t; and s4 ;
uniformly and independently at random from Zp. Having made the choices
of the t; and the sy j, let each element y € B belong to B’ with probability
p(y) given by the formula

2—Tﬁ<1+cos— ]gi) +ZSAJH%)

7=1 €A
and let these probabilities be independent (conditional on the choices for
the t; and sg4 ;).

Here, and for the rest of the proof, any sum over A ranges over all subsets
of {1,2,...,k+ 1}. Let us adopt the following similar conventions. Any
sum over € will range over {0, 1}*, any sum over h will be over {1,2,...,16}
and any sum over S or S; will be over functions from the power set of
{1,2,...,k+ 1} to Zn. The idea of the last convention is that a sum over
S or Sj is shorthand for a string of 2¥*! sums of the form s OT D say

The probability that an 8-arrangement X : {0,1}* x {1,...,16} — B
belongs to B’ is

—(2F 141y Z Z H 9 H (1—|—COS QNTF (tj¢(A(e, h))-l—ZSA,j)\(E, h)z))
A

t1,ee0str S1,...,Sr €h j=1
which equals

Ny (ZZI_P ( +Cos2§(t¢(x(e,h))+ZSAA(e,h)i)>r.
A

t S e,h
By rewrltmg 1+ cos ZZ (tp(A(e, h)) + Y 4 saA(e, h);) as

_(1 + 1+ WAEMFL g saren)i 4, —to(A(eh) =24 saMeh)i

2

we see that the product over (¢, h) is a sum of 42" terms of the form
92 ) T e (te M)+ 4 saM(eh):)

e,h
which equals
9=2MF4(r+1) 3 n(eh)d(Meh)+2 4 54 2 () [lica AMeh)i
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A term contributes to the sum over all the s4 if and only if all the sums
>en (€ 1) [T;c4 A€, h); are zero, and if A is non-degenerate, then this can
happen only when 7 is a multiple of ny. If A\ is non-degenerate, n # 0
and the term contributes to the sum over ¢, then we must have in addition
that >, no(e, h)p(A(e, h)) = 0. It is not hard to see that this is precisely
the definition of ¢ respecting the 8-arrangement A. The contribution of a
non-zero term to the sum over ¢ and the s4 is 272" 0+D N2°+1 and the
number of multiples of 7, counted with multiplicity, is 22" 2, since 0
can be produced in 92" ways, and +7g in one way each.

Therefore, if A is non-degenerate, the sum over ¢ and the sy is
2-2" 4 N2'HL i 4 does not respect A and 2*2k+4TN2k+1(1 + 2.2*2k+4) if
it does. It follows that the probability that A belongs to B’ is 9~ 2" i
¢ does not respect A and 2_2k+4r(1 + 2.2_2k+4)r if it does. Therefore, our
hypotheses imply that the expected number X of 8-arrangements respected
by ¢ is at least 2_2k+4”(1 + 2.2_2k+4)ra615]\717k+15, and the expected num-
ber Y of non-degenerate 8-arrangements not respected by ¢ is at most
2-2"r 315 N1Tk+15 Using the fact that

272k+4+1
’

142272 >
_ok+4
we can deduce that if 227 77 > 2/am, then

nEX —EY > Om(g/an)2—2’“+4rﬁl5N17k+15 _ 92" 515 N1Th+15
> 2*2k+4rﬂ15N17k+15 )

k+4 k44
But 2272 ‘v > 2/am if and only if 2" > (2/an)?’ i and only if

ok+4_q
27" < (an/2)? if and only if
2_2k+4r g (0“7/2)2216#17121%4 _ (an/2)22k+4+k+3 .
Let r be an integer such that
ktd k4
2(0”7/4)22 +k+3 < 2721@-&-47. < (an/2)22 +k+3 '

k+4
If N is large enough that (an/4)2 ™ BBN > 32"k then Lemma 15.4
and the values of the above expectations imply that a set B’ exists such
k44
that X > (an/4)2?*  TRBNITRHIS X > 2V and Y > Z, where Z is
the number of degenerate 8-arrangements. This proves the lemma. =
The final lemma of this section is a combination of the previous one

with Lemma 14.8 in the case n = 27%4, which is the value that will be used
in applications.
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LEMMA 15.6. Let 8,7 > 0. Let B C Z?V'H be a set of size BN*1 and let ¢ :
B — Zy be a function satisfying the product property with parameter ~y.

k+5
Then B has a subset B' containing at least (8v/2)%°  N7%+15 8 arrange-
ments such that the proportion of them that are respected by ¢ is at least
1—274,

Proof. By Lemma 14.8, ¢ respects at least 67'4k’y7k'4k+1]\717k+15 8-arrange-
ments, and therefore, by Lemma 15.5, B has a subset B’ containing at least

P
(2_46B7‘4k’y7k'4k+1)2 N17k+15 8_arrangements, such that the propor-
tion respected by ¢ is at least 1 — 2744, The lemma follows from a simple
numerical check. O

16 Finding a Multilinear Piece

This section is, as its title suggests, a generalization of §13. As with the
last two sections, there will be no major new ideas over and above those
needed for bilinearity (and hence progressions of length five) but it is not
quite true that there is an obvious one-to-one correspondence between the
lemmas that are needed. We begin with a simple consequence of Corollary
5.11. It is the appropriate generalization of Lemma 13.5.

LEMMA 16.1. Let k be an integer, let K = (k4 1)228** and let m >

k41 2
gKZTT AT Tt P be a box in Zlfv of width at least m, and let

{1, - ., [g be k-linear functions defined on P. Then P can be partitioned

_ok+1
into boxes Py, ..., Py of width at least m€ “ with the following prop-

erty. For every i and j and every x € P; we have the inequality |p;(z)d;| <

_K72k+1q

2m N, where d; is the common difference of the box P;.

Proof. Let d be the common difference of P and let I C Zx be an arithmetic
progression (in Z) of common difference d and size at least m. Then Q =
P x I is a box in Z&F! of gap d and width at least m. Define (k + 1)-linear
functions v; : Q@ — Zn by vi(z,y) = pi(z)y. By Corollary 5.11, we can

k41
partition () into boxes @); of width at least m& ™" 7 in such a way that

k1
the diameter of every set v;(Q;) is at most 2C1m % ““N. Let y be
the minimal element of I and define an equivalence relation on P by setting
x1 ~ x2 if (21, y) and (22, y) lie in the same box @;. The equivalence classes

_ok+
are clearly boxes of width at least m® : ? and the common difference d;
of one of these boxes P; is the common difference of the box (); containing



Vol. 11, 2001 A NEW PROOF OF SZEMEREDI'S THEOREM 567

P; x {y}. The result now follows from the observation that, given z € P;,

i(@)d;| = |vi(z,y + dj) —vi, )]

which is at most the diameter of v;(Q;). o

We are about to state a somewhat complicated inductive hypothesis
(Theorem 16.2 below) which will be used to prove the main result of this
section. First, let us extend slightly the definition of the product property
from §14. Let I' be any subset of Zé’“\, X Zy and let v > 0. We shall
say that I has the product property with parameter ~y if, for every subset
B C Z]fv and every function ¢ : B — Zy with graph contained in I" (in
other words, (z,¢(z)) € T for every € B), ¢ has the product property
with parameter v. We shall sometimes abbreviate this as the y-product
property.

Before making the next definition, let us define three similar func-

tions. We let ¢(0,~, k) = (70)22k+8, q(0,v,k) =1/c¢(0,7,k) and s(0,v,k) =

(2/97)22k+6. We shall now define I' to be (v, r)-multiply k-linear if, for
every 8 > 0 and every box P of width m, there exists a subset H C P
of cardinality at least (1 — )| P| together with a partition of P into boxes
Py, ..., Py of width at least mer™ 107k guch that for each j there are
k-linear functions p1, ..., uq defined on P;, where ¢ < q(r=10,7,k)", such
that, for every x € P; N H and every y with (z,y) € I', y = p,(x) for
some 7. Loosely speaking, this says that every box P can be partitioned
into further boxes P; such that, after a small bit of I' has been thrown
away, for every j, I' N (P; x Zy) is contained in the union of the graphs
of not too many k-linear functions. If » = 1, we shall say simply that I is
~v-multiply k-linear. If we do not wish to specify k, then we shall say that
I is (v, r)-multiply multilinear.

It is an immediate consequence of the definition that if " is a (v, 7)-
multiply multilinear set and IV C T, then I is also (v, r)-multiply multi-
linear.

The next theorem is the main inductive statement we shall need in order
to prove an appropriate generalization of Theorem 13.12 to functions that
fail to be uniform of degree k + 1. (See Corollary 16.11 below.)

Theorem 16.2. Let I' C Zﬁ“v x Zn have cardinality at most v 2N* and
satisfy the product property with parameter ~v. Then for every § > 0 there
is a subset J of Z%; of size at least (1 — §)N*, such that T N (J x Zy) is
(7,7 25(0,, k))-multiply k-linear.
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We shall split the proof of Theorem 16.2 into a number of lemmas, most
of them easy. First, we check that the induction starts.

LEMMA 16.3. Theorem 16.2 is true in the case k = 1.

Proof. Let 8 > 0. Either there is a set H of size at most §N such that
I' € H x Zy or we can find a set A of size at least N and a function
¢ : A — Zy such that (z,¢(x)) € T for every € A. In the first case we
can simply set J = Zy \ H and the result is trivial. Otherwise, we know
that ¢ has the product property with parameter v, which implies that the
number of ¢-additive quadruples is at least 7204 N3 = +80(0N)3. Corollary
7.6 now gives us a subset B C A of cardinality at least 271882~931291165 v
such that the restriction of ¢ to B is a homomorphism of order 8.

If we now remove from I" all points (z, ¢(x)) with € B, we obtain a
new set ['; to which the above argument may be applied again. Continuing,
we construct sets Bi,..., By of cardinality at least 2~ 1882,931291165 \7 and
homomorphisms ¢; : B; — Zy of order 8, such that the graph of each
¢; is contained in I', these graphs are disjoint and there is a set J C Zy
of size at least (1 — §)N such that z € J and (x,y) € T' implies that
y = ¢i(z) for some i. Moreover, the upper bound on the size of I" implies
that g < 21882, —93149—1165

Now let P be an arithmetic progression (or a one-dimensional box). By
Corollary 7.11, with a = 271882~931291165 3114 ¢ as above, we can partition
P into subprogressions Q1,...,Qu, each of size at least |P\2714°“2q71 >
| P20 quch that the restriction of each ¢; to each B; N Q; is
linear. It is not hard to check that these numbers do indeed demonstrate
that T'N (J x Zy) is (v,72s(6,7,1))-multiply linear. O

We are now ready to begin the inductive argument in earnest.

LEMMA 16.4. Suppose that Theorem 16.2 is true for k. Let 6 > 0 and
let T’ C Zlfvﬂ x 7N be a set of cardinality at most v 2N**+1 satisfying the
product property with parameter v. Then either there is a set H C Z’fvﬂ
of cardinality less than ON**1 such that T' C H x Zy, or one can find a set
B C Zlfvﬂ and a function ¢ : B — Zy with the following properties:

(i) the restriction of ¢ to any proper cross-section of B s
(v, 2s(2- +2)0, ~, k))-multiply multilinear;
k+5
(ii) B contains at least (8)2°  NY™*15 8 arrangements;
(iii) of the 8-arrangements in B, the proportion respected by ¢ is at least

1—27%,
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Proof. 1f the first alternative does not hold, then we can find a set A C
Z?VH of cardinality at least 6N**1 and a function ¢ : A — Zy such that
(x,p(xz)) € T for every x € A. Then ¢ has the y-product property. In
fact, so does the restriction of ¢ to any cross-section of A of the form
Ax, ={r € A:x; = z for every i € X}. (This follows directly from the
definition.) Let ¢ = 2=*+2)¢ let I < k and let Ax . be an I-dimensional
cross-section of A of cardinality BN!. By the inductive hypothesis, there
is a subset A'y , C Ax,. of cardinality at least (8 — ()N ! such that the
restriction of ¢ to A’X,Z is (7,772s(¢,,1))-multiply [-linear.

For any given set X C [k+1] of size k41—, there are N**1~ different
cross-sections Ay ., which partition A. Therefore, we can find a subset
A’ C A of cardinality at least (§ — ¢)N*+1 such that the restriction of ¢ to
any cross-section of A’ in direction X is (v, 7 2s(¢,7, k))-multiply I-linear.
Repeating this argument for all the 281 — 1 non-empty sets X C [k + 1],
we can find a subset A” C A of cardinality at least §N*+1/2 such that
the restriction of ¢ to any proper cross-section of A” is (v,v2s((, 7, k))-
multiply multilinear of the appropriate dimension.

As remarked just before the statement of the lemma, this property is
preserved if we pass to a subset of A”. We now do precisely that, using

ok+5
Lemma 15.6 to find a subset B of A” containing at least (f/2)%  N17Tk+15
8-arrangements, such that the proportion of them respected by ¢ is at least
1 — 274, The lemma is now proved. O

For any hi,...,hy,x, let Xp, p, (x) be the set of all cubes with side-
lengths (hi, ..., hy) in the cross-section B, of B. Let Xp,, ., be the union
of these sets. Then Xj,, _j, is a domain (in the sense of §10, under the
splitting into the sets Xp,  p,(x)). For the rest of this section, we shall
frequently abbreviate (hi,...,hg) by h, as we did in §14. If we let f be
the characteristic function of B, then it is easy to see from the definition
of the function fj, (given just before Lemma 14.3) that fj,(y) is the number
of cubes with sidelengths (hi,...,h;) = h in the cross-section By, or in
other words the cardinality of X} (y). For each h = (hy,...,ht), let C(h)
be the number of 8-arrangements in B made out of cubes with sidelengths
(hi,...,hr). Let G(h) be the number of these that are respected by ¢. Re-
call from just before Lemma 14.4 that any function ¢ : Z?VH — Zpy induces
a function (which we also call ¢) on Xj.

k+5
We shall write 6; for the number (6/2)%*  that appeared in the last
lemma. Recall that the Bohr neighbourhood B(K, () is defined to be the
set of all s € Zy such that |rs| < (N for every r € K. Given a function ¢
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defined on a domain (Z, r) and a subset B C Zy with B = — B, we shall say
that ¢ is a B-homomorphism if there is a Freiman homomorphism ¢ : B —
Zy such that ¢(x) —¢(y) = (r(z) —r(y)) whenever r(z) —r(y) € B. (This
generalizes to multifunctions the definition given just after Corollary 7.9.)
Thus, the conclusion of Theorem 10.13 is that ¢ restricted to Y is a C-
homomorphism.

LEMMA 16.5. Let (B, ¢) be a pair satisfying conditions (i), (i) and (iii)
of Lemma 16.4 and let f be the characteristic function of B. Then there
exists a set H C ZK such that 3, ;; C(h) > (01/4)N'T515 with the
following property. For every h € H there is a set Y}, C X}, of cardinality
at least 272209|X,| such that the restriction of ¢ to Y} is a B(Kj,()-
homomorphism, where

K ={r € Zy:|fu(r)] = 27%7(6:1/4)" /PN 1}
and ¢ = 275(07.k)
Proof. We continue to write n for the number 2744, Since ¢ respects a
proportion of at least 1 — 1 of the 8-arrangements of B, of which there are
at least 0y N17**15 we may deduce that

> {C(h): G(h) = (1 —2p)C(h)} = 1Y " C(h) = (61 /2)N'THH?.
Another simple averaging argument shows that
Z {C(h) : G(h) = (1-2n)C(h), C(h) = (01 /4)NFTI5Y > (6, J4) N1,
C

Let H be the set of all h € Z&; such that G(h) > (1 —2n)C(h) and C(h) >
(61/4)N'6%+15 "and note that our estimate for >°, ., C(h) implies that H
has cardinality at least 6; N* /4.

The statement that G(h) > (1 —2n)C(h) is equivalent to the statement
that the function induced by ¢ on X} is a (1 — 2n)-homomorphism of order
eight. We know that X}, (y) has cardinality at most N* for each y, and it is
not hard to show that if C(h) > (61/4) N'6*+15 then the cardinality of X},
is at least 6y N**1/4. Therefore, for every h € H we may apply Theorem
10.13 (with a = 61 /4 and g = f3) and find a subset Y}, C X}, of cardinality
at least 271603|X},| such that the restriction of ¢ to Y} is a B(Kjy,()-
homomorphism, where ( is determined (as a function of #) by the equations

Qk+5
01 = (0v/2)* |, a=01/4, kg = 2™a710 and ¢ = 27195k 18k0y Tt can
be checked that the resulting number ¢ exceeds 275(¢7F) o

From the definition of a B(Kj}, ()-homomorphism, we know in particu-
lar that, for any x € Zy and any h € H, the restriction of ¢ to Yj(z) is
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constant. Let us write ¢'(h,z) for this value, when it is defined. Corol-
lary 10.14 tells us that if d € B(K}, (/1) then the restriction of ¢'(h,.) to
any arithmetic progression with common difference d and length at most [
is linear. This fact will be used in the next lemma. We shall also adopt the
convention that if a box in Z’f\,ﬂ is written as a Cartesian product A x B,
then A and B are boxes in Zﬂ“\, and Zy respectively.

Let & = 27%7(0,/4)'1/2 and define A C ZK, x Zy to be the set of all (h,r)
such that |f,(r)] = §N*+1, that is, such that r € Kj,. Lemma 14.3 tells us
that A has the product property with parameter 6. Therefore, if Theorem
16.2 is true for k, then there is a subset J C Z&; of size at least (1—6; /8) N*
such that Ay = AN (J x Zy) is (6,67 25(61/8, 6, k))-multiply k-linear. Let
Hy = HNJ, where H is the set defined in the proof of Lemma 16.5. Since
Zhw C(h) < (01/8)N'*+15 e find that > hem, C(h) = (61 /8) N17k+15,

Before we state and prove the next lemma, let us remark that the def-
inition of the set A above is in a sense the moment where the induction
takes place. For any given h, there are at most 62 values of r such that
(h,r) € A, so A is the union of the graphs of at most §~2 functions. We
have therefore managed once again to reduce the number of variables by
one by considering a new function which tells us where some Fourier coef-
ficients related to the domain of the old function are large. The results of
the previous two sections together with the inductive hypothesis have told
us that the new function has a lot of structure; this will now be used to tell
us about the old function, which will complete the inductive step.

LEMMA 16.6. Let P = @Q x I be a box in Zlfvﬂ of width at least m, let

t = §25(01/8,6.k), let o > 0 and let | = (¢/2)met o8k /2Ky
there is a subset G C Q of size at least (1 — 0)|Q| and a partition of P into
boxes S, = T, x J, of width at least [, such that, for every u and every
h € GN Hy NT,, the function from J, to Zy defined by x +— ¢'(h,z) is
linear.

Proof. Because Aq is (8, t)-multiply k-linear, we can find a subset G C @ of
size at least (1—0)|@| and a partition of ) into subboxes Q; of width at least
m1 = m<@/t80)" such that for each Jj there are k-linear functions p1, ..., fi4
from Q; to Zy, with g < ¢(o/t,6,k)" such that A; N ((G NQj) x ZN) is
contained in the union of the graphs of the p;. This says that, for any
h e GNQj, the set K = {r € Zy : |fun(r)] = 6N*1} is a subset of
{p1, - g}

By Lemma 16.1, each (); may be partitioned into subboxes R; of width
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ok+1
at least mo = mi/ K=" 5 12 and common difference d; such that, given any
okl
h € Ry and any i, |p;(h)d| < 2my WEZ 0 ¢ (N/(l41). By the conclusion

of the last paragraph, this implies that, whenever h € G N Ry, d; belongs
to the Bohr neighbourhood B(K}j,(/(I 4+ 1)). For each t, Ry x I can be
partitioned into boxes S, = T, x J, of width [ or [ + 1. As remarked after
the statement of Lemma 16.5, the restriction of ¢'(h,.) to an arithmetic
progression with common difference d € B(K},(/(l + 1)) and length at
most [ 4 1 is linear. In other words, the function from J, to Zy defined by
x — ¢'(h,z) is linear, as stated. o

Notice that it was vital in the above lemma that A; should have good
structure and that this should give us information, via Fourier coefficients,
about the restriction of ¢ to the sets Y}, even though the definition of A
was in terms of the Xj. It was to achieve this that we worked so hard
in §10.

LEMMA 16.7. Let 6 = 272197, Then there exist elements x1,. ..,z of
Zy such that, for at least 0o N*+1 choices of (hi,...,hg,x) with h € Hy,
@' (h,x) is defined and equals

Z (—1)‘E‘¢)($1 4+ €1h1, 29 + €3ha, ..., 21 + €Lhy, I) .
ec{0,1}k
Proof. The expression given for ¢/(h,z) is valid whenever Yj(z) con-
tains the cube [21,...,2x; h1,..., hg]. Since |Hy| > (01/8)N* and |X},| >
(61/4)N**1 for every h € Hy, we find that Y, |Ya| > 272107 N2+ =
G2 N2k+1 (by the estimate for the sizes of the sets Y}, in Lemma 16.5).
Therefore, if we choose the z; randomly, the expected number of choices of
(hi,...,hg,x) with h € Hy for which the equality holds is at least §o N*+1.
The lemma follows. u]

LEMMA 16.8. Suppose that T'y,..., T, are (v, s)-multiply (k + 1)-linear
subsets of Z']“\,H X Zyn. Then Ty U---UT, is (v, rs)-multiply (k+ 1)-linear.
If ¢1,..., ¢, are (v, s)-multiply (k+ 1)-linear functions defined on a subset
B C ZkFY, then ¢y + -+ - + b, is (v, rs)-multiply (k 4 1)-linear.

Proof. Let P be a box. We can find a subset H; C P of size at least
(1—0/rs)|P| and a partition of P into boxes @ of width at least
me(r) 71070 guch that I'; restricted to any @ N H; is contained in the
union of the graphs of ¢((rs)~'6,~,k,)® multilinear functions. Now re-
peat this argument inside each @ for the set I'y and so on. At each of
the r stages of this process, the width of the boxes is raised to the power
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c((rs)~10,~,k)*, the number of new multilinear functions introduced in-
side each box is at most ¢((rs)~'0,~,k)* and 6|P|/rs points are thrown
away. Therefore, at the end of the process we have a width of at least
me(rs) 0k and rq((rs)='6,~, k)* multilinear functions for each set T;.
The result about unions follows (and in fact we have overestimated the
number of multilinear functions needed). The result for sums of functions
also follows, once we notice that there are q((rs)~16,, k)™ functions of the
form py + - - - + pr, with each p; one of the multilinear functions chosen at
the i*" stage. O

Let us now fix a choice of x1,...,x; satisfying the conclusion of
Lemma 16.7 and write ¢c(h,x) for ¢(z1 + €1hy, ...,z + ephy, x). Write
also ¢1(h,x) for the function ¢.(h,z) when ¢ = (1,1,...,1). Regard
all these functions as being defined on the set By of (h,x) that satisfy
the conclusion of Lemma 16.7, which can be rephrased as ¢i(h,z) =
¢ (h,x) — 26#1(—1)|6|¢6(h,x) and h € H;. We now show that something
like Lemma 16.6, but weaker, holds for the function ¢; as well.

LEMMA 16.9. Let t = §725(01/8,6,k), r = (28 —1)y"25(2= 29, ~, k) and
q=q(v,0/2r,k)". Let P = Q x I be any box in Z?V'H of width at least m
and let o > 0. Then there is a subset E C P of size at least (1 — 0)|P| and
a partition of P into boxes S, = T,, x J,, with the following property. Given
uw and h € T, let 1, be the function x — ¢1(h,z), where the domain is
the set of all  such that (h,z) € ByNENS,. Then for every u and h € T,
the graph of 1, j, is contained in the union of the graphs of at most q linear

functions. The width of each box S,, is at least
= (C/zcm)mc(o/wmkvc(a/2t,6,k>t/2K2’““q

Proof. Given any sequence ¢ € {0,1}* apart from (1,1,...,1),let X = {j :
€j = 0} and let B, be the cross-section of B defined as the set of all y € B
such that y; = x; for every j € X. By property (i) of Lemma 16.4, the
restriction of ¢ to the cross-section B, is (v,72s(2- (200, ~, k))-multiply
multilinear. It follows easily that ¢, itself is (v, 2s(2-*+29, v, k))-
multiply (k + 1)-linear, since ¢, is obtained from the restriction of ¢ by
introducing variables that make no difference, namely the h; with i € X.

Hence, by Lemma 16.8 and the expression for ¢; just before the state-
ment of this lemma, we can write

¢1(h7 ‘T) = ¢/(h7 x) + ¢//(h’ ‘T) )
where ¢ is (v, r)-multiply (k+1)-linear. By the definition of (v, r)-multiple
multilinearity, we can find a subset F' C P of cardinality at least (1—0/2)|P|
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and a partition of P into boxes P; of width at least m; = me((2r) "o k)
such that for every j there are (k + 1)-linear functions i1, ..., pq from P;
to Zn with the property that ¢”(h,z) = p;(h,x) for some i, whenever
(h,x) € BiNFNP;.

By Lemma 16.6, each of the boxes P; = Q)j xI; gives a subset G; C @); of
size at least (1—0/2)|Q;| and a further partition into boxes Sj, = Tjy X Jju

_ k+1
of width at least mg = ({/2Ck+1)m(1:((2t) {TSR 2K ek that for every

h € HiNG;jNTj, (recall that (h,x) € By implies that h € Hy, which was
defined just before the statement of Lemma 16.6), the restriction of ¢/(h, x)
to B1NSjy is linear in . The lemma now follows on adding ¢’ and ¢" and
taking £ to be F'N{J;(G; x I). O

We have just shown that ¢; has a property similar to multiple multi-
linearity but much weaker because it gives us linearity only in one of the
variables. However, we also have information about the restriction of ¢; to
proper cross-sections, and this enables us to show that the linear functions
in the final variable are related to each other in a multilinear way. The
details are in the next lemma.

LEMMA 16.10. The function ¢ is itself (vy,1)-multiply (k + 1)-linear.

Proof. We begin by remarking that, since ¢ is a translation of a re-
striction of ¢, property (i) of Lemma 16.4 implies that the restriction
of ¢1 to any cross-section of Bj formed by fixing the final variable x is
(7,7 252~ 29~ k))-multiply multilinear of the appropriate dimension.
Now let p > 0, let 0 = p/4 and let P = @Q x I be a box of width at
least m. Applying Lemma 16.9, we can find a subset E C P of size at least
(1 —0)|P| and a partition of P into boxes S, = T, x J,, of width at least
[ satisfying the conclusion of that lemma. Let S =T x J be one of these
boxes, and write By(h) for the set {(h,z) € BiNENS : k' = h}. Each
set Bi(h) can be partitioned into subsets C(h),...,Cq(h) such that the
restriction of ¢1 to any Cy(h) is linear. An easy averaging argument shows
that q
>SS (G : [uh)| = olJl/a} > (1 - 0)IS].
j=1hesS
Hence, there is a subset D C S of size at least (1 — ¢)|S]| such that, for
every t, Ct(h) N D is either empty or of size at least o|.J|/q.
Now let 7 = go=2 and choose z1,...,z, randomly from J. If |Cy(h)| >
o|J|/q, then the probability that C;(h) does not contain two distinct points
(h,z;) and (h, ;) is at most (1—o/q)"+7(c/q)(1 —0/q)" !, which is much
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smaller than o. If we discard every set C¢(h) which does not contain such
a distinct pair, then the expected number of points discarded is at most o
times the total number of points in the C¢(h), which is certainly at most
o|S|. Hence, we can choose x1,...,z, and find a set F' C S of size at least
(1 — 0)|S| such that for every h,t and every (h,x) € Cy(h) N D N F there
are ; and x; not the same with (h,z;) and (h,z;) both in Cy(h)N DN F
as well.

For any fixed h, ¢, there are constants A\;(h) and p;(h) such that ¢;(h, x)
= A¢(h)x 4 pe(h) for every (h,x) € Cy(h). If in addition x; # x; and (h, z;)
and (h,z;) both belong to Ci(h), then A\(h)x; + pi(h) = ¢1(h,z;) and
Ae(h)x; + pe(h) = ¢1(h, z;). These equations imply that

M(h) = (i = 25) " (61(h, ) — p2(h, 7))
which we shall denote by A;;(h), and that
pe(h) = ¢1(h, z;) — Nij(h)x;
which we shall denote by p;;(h). By Lemma 16.8 and the remark with which
we opened the proof, the functions \;; and p;; are all (7,27~ %(2~*+2) . k))-
multiply multilinear, and for every (h,z) € ByNEN DN F we can find i, j
such that gf)l(h, ZE) = )\”(h)SU + ,U,Z](h)

It is not hard to see (using Lemma 16.8 again) that A;j(h)x + p; is
a (7,477 25(2=* 429 ~, k))-multiply multilinear function of (k,z), and, by
one further application of Lemma 16.8, the union of the graphs of all these
functions, which contains the graph of ¢ restricted to BN ENDNF, is
(v, 4r2~y=25(2=* 429~ k))-multiply multilinear.

Let p = 4r2~~25(2=*+2)g ~ k). By what we have just shown, there is a
subset G C S of size at least (1 —0)|S| and a partition of S into boxes V' of
width at least 1€(-9/P:K)” such that for each one the graph of ¢ restricted
to VNENDNFNG is contained in the union of the graphs of ¢(o/p, v, k)P
multilinear functions.

To complete the proof of the lemma, it is necessary only to check that
q(o/p, v, k)P < q(p,v, k + 1) and that [¢0/P7E)" > mpelerh+l) - This is a
back-of-envelope calculation left to the reader. O

Proof of Theorem 16.2. Lemma 16.10 shows that if the result is true
for k and I' C Z?V“ X Zn has the product property with parameter ~,
then I'" has a (v,1)-multiply (k + 1)-linear subset of cardinality at least
O NF+1 > NF+1/5(0,~, k), if its projection has size at least ON**1. Now
apply this result repeatedly, removing such sets from I' until it no longer
has a projection of size at least ON*1. Since |I'| < v 2N**1 the num-
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ber of sets removed is at most 7 ~2s(6,7, k). The result now follows from
Lemma 16.8. o

COROLLARY 16.11. If f : Zy — D fails to be a-uniform of degree k + 1
2k+9
then there is a box P C Zé“v of width at least N(@/2)? and a multilin-

k+9
ear function 1 : P — Zy such that, for at least (a/2)% " |P| values of
(y17 cee ayk)? we have ‘A<f7 Yi,.-- 7yk)/\(/’b(y1a oo 7yk))‘ 2 (&/Q)N

Proof. Since f is not a-uniform of degree k 4+ 1, we find, using the
implication of (i) from (vi) in Lemma 3.1, that there is a set B C Zk;
of size at least (a/2)N* and a function ¢ : B — Zy such that
IA(f;a1,. .. ax)¢(at,...,a))| = (a/2)N for every (ai,...,ax) € B.
Lemma 14.2 then implies that ¢ has the product property with param-
eter ar/2. Next, Theorem 16.2 implies that B has a subset C of size at least
(a/4)N* such that the restriction of ¢ to C is (a/2,r)-multiply k-linear,
where r = 4o 2s(a/4, /2, k). Applying the definition of multiple multi-
linearity in the case where the box P is the whole of Z& and § = /8,
we find a set H C Zk; of size at least (1 — a/8)N* and partition of Z%,
into boxes Py, ..., Py of width at least N<(@/8m2/2K)" guch that for every
J the restriction of ¢ to C'N P; N H is contained in the graph of at most
q(o/8r, /2, k)" multilinear functions. By averaging, we can find a box P;
such that |C N P; N H| > (a/8)|P;]. By further averaging, we can find a
subset D C P; of size at least (q(a/8r, /2, k)") "1 (a/8)|P;| such that the
restriction of ¢ to D is multilinear. A straightforward calculation shows
that this implies the corollary. O

17 The Main Inductive Step

We are finally ready to generalize the argument of §8, to complete a proof
of Szemerédi’s theorem for progressions of arbitrary length. It turns out
that there is a second reason for this being harder than for progressions of
length four, but fortunately it is much less serious than the difficulties we
have dealt with in the last two sections.

To see the problem, let A be a set with balanced function f which fails
to be cubically uniform. We know then that there are many pairs (k,1)
such that A(f;k,1) has a large Fourier coefficient. The results of §9 show
that the large Fourier coefficient has regions where it depends bilinearly on
(k,1). As at the beginning of §8, let us imagine that we actually have the
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best possible situation: that is, that we can find ¢ such that
STIA(S: kD) (6ekD)|® > aN*,
k,l

so that the dependence on (k,l) of where the large Fourier coefficient ap-
pears is genuinely bilinear.

Writing out the above inequality in full and making the usual substitu-
tion, we find that

>N Ak L m)(s)w M = aNt
s kJl,m
If we now use the identity
6kim =Y (s— ek — eal — egm)?,
€1,€2,€3

where the sum is over the eight triples (€1, €2, €3) with ¢; = 0 or 1, then,
writing C' once again for the operation of complex conjugation, we can
deduce that

Z Z H O tetes (f(S — 1k — €9l — egm)w—c(s—qk—egl—eg,m)?’) > OéN4 )

s k,l,me€1,€2,€3

Unfortunately, the standard trick that we applied in §8 (and of course many
other places in the paper) of inserting a term w~r(a=b=ctd) gimply does not
have an equivalent here. (Indeed, if it did, then the whole paper would be
far simpler.) So have we gained anything at all with the above manipula-
tions? The answer is that we have, because the above inequality tells us
precisely that the function g(s) = f(s)w™" is not quadratically a-uniform.
Therefore, by the results of §8, ¢ has plenty of quadratic bias, which tells
us that there are many progressions P for which |} p f (5)w?®)| is large
for some cubic polynomial ¢ (depending on the progression). Finally, the
results of §5 can be used to find a small progression where A is denser than
it should be.

Of course, if we have only a small piece of bilinearity to work with,
the argument above has to be modified a little, but the rough form of our
inductive hypothesis, and indeed the rest of the proof, ought by now to be
clear. Our first lemma is by no means new, but we state and briefly prove
it, for the convenience of the reader.

LEMMA 17.1. Let o be any k-linear function (over Zy ) in variables x1,...,zj.
Then there are polynomials ¢. (e € {0,1}*) of degree at most k giving the

identity
Sar, .. zp) = Y (—1)lge(s —ex).

ec{0,1}+
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Proof. Tt is enough to prove the result in the case o(z1,...,2%) = 21 ... Tk.
Now s¥ — (s — 21)¥ is a polynomial in s of degree k — 1 with leading term
kzisF=1. Tt follows that s* — (s — z1)% — (s — 22)* + (s — o1 — z2)¥ is
a polynomial in s of degree k — 2 with leading term k(k — 1)z295 2.
Continuing, we find that
klxy...xp = Z (=Dl(s — e.x)F
e€{0,1}+
as we wanted. u]

We now prove a proposition which is not exactly what we need later.
Rather, it is a special case, which we give in the hope that the more general
result, which is a bit complicated, will be easier to understand.

PROPOSITION 17.2. Let f : Zny — D. Suppose that there is a k-linear
function o : Zé“v — Z such that

S lAf2) (@) = aNt,
zeZk,

Then there is a polynomial ¢ of degree at most k such that, setting g(s) =
f(s)w=?®), we have

2
Z ‘ZA(g;x)(s)‘ > aNF2,
xEZ?V S
Proof. By Lemma 17.2 we may write
Tpr10(x) = Z de(s —ex).
ec{0,1}k+1

k
We also have, for any = € Z%;,

Af ) @) = 3D Al y)(s)w 7.

Therefore,
Y MG e = X Y Y sl eapa )
xGZ?V .’EGZ?@Ll s ec{0,1}k+1

By Lemma 17.1, we can find some € such that the function g(s) = f(s)w™%<(*)
satisfies the inequality

>0 Alga)(s) = aNF,
weZﬁ,‘H S

which is equivalent to the inequality we want. a]
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We must now deal with the fact that the results of the last two sections
did not give us a k-linear function on the whole of Z’f\,, so the above propo-
sition cannot be applied directly. We shall use another very standard and
well known lemma. It is a reflection of the fact that the set of half-spaces
in R* has VC-dimension at most k, but the proof is elementary and we
very briefly sketch it. The next three lemmas are not essential to our main
argument, as their purpose is to improve the bound coming from a trivial
argument, when using the trivial bound would have a negligible effect on
our eventual estimates.

LEMMA 17.4. The number of distinct regions defined by a set of m hyper-
planes in R* is at most Zf:o (Zn), with equality when the hyperplanes are
in general position.

Proof. Apply induction on m, by considering how many new regions are cre-
ated when each new hyperplane is added to the arrangement. To calculate
this, use induction on k. The result is trivial when k = 1. O

COROLLARY 17.5. Given real numbers ai,...,qr, set « = (aq,...,qx)
and define a function f : {0,1}* — Z by f(¢) = |e.a). If r is an integer
and the «; are allowed to vary in the interval (—r,r), then the number of
distinct such functions that can result is at most 227%°.

Proof. The possible values taken by f are the integers between | —rk]| and
|rk], and the set of € such that f(e) < j is the set of € such that e.cv < j+1.
Let us estimate how many distinct such sets can be obtained as « varies.
Two real numbers o and o' give distinct sets if and only if there exists
some € such that e.a < j+ 1 and e.o/ > j + 1, that is, if and only if the
hyperplane {3 : .3 = j + 1} separates a from o’. There are 2¥ different
such hyperplanes, so the previous lemma tells us that the number of distinct
sets of the given form is at most /{:(2,: ) < 2. The function f is determined
by the 2rk sets {e : f(e) < j} with [—k%/2] < j < [k?/2], so the result
follows. O

COROLLARY 17.6. Let ag, v, ..., be real numbers, let o = (aq, ..., ax)
and define a function f : {0,1}* — Zys by f(€) = |ag+a.e] (mod M). If ag
can be arbitrary and the a; are allowed to vary in the interval (—r,r), then
the number of distinct such functions that can result is at most M.22r(k+1)*

Proof. By Corollary 17.5, the number of functions that can result if the
integer part of o is j (mod M) is at most 227"(k+1)3, since each such function
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can be thought of as j added to the restriction of a function on {0, 1}*+!
of the given form (and reduced mod M). The result follows. O

The trivial bound in Corollary 17.5 is k2k+1, which gives a bound of
M.(k + 1)2kJr2 in Corollary 17.6. As we commented above, this bound
would be enough for our main result.

Before stating the next proposition, we define a concept which is similar
to a-uniformity but designed for situations where we are given a multilinear
function on a small domain. Let f : Zy — D. Suppose that we can parti-
tion Zy into mod-N arithmetic progressions @1, ..., Qys, each of length at
most m, such that, defining Q; f(s) to be f(s) when s € @Q; and 0 otherwise,

we have
Z > D AQif;x)(s) < am* M

=1 erk+1 S

We shall then say that f is a-uniform of degree k with respect to the partition
Q1. -, Q-

Notice that if p > km, then we can find an isomorphism ~ from QZ to an
arithmetic progression of length |Q;| inside Z,, such that, defining a “copy”
g of Q;f inside Z, by setting g(v(s)) = f(s) for s € Q; and ¢(t) =0 for ¢
not in the image of v, we have

D D AQif;a) ZZAQ,

zezhit 8 yezhtt t
Hence, if
> Y AQifiz)(s) = pmFt?,
zezhtt s

we find that g is not B(m/p)k2-uniform (in Z,) of degree k.

PRroOPOSITION 17.7. Let f : Zy — D. Suppose that there is a product
P = P; x---x Py, of arithmetic progressions P; of common difference d and
odd length m < NY2, and a k-linear function o : P — Zx such that

ST A ) (o@)]? = aN?mt

zeP
Then there exist a polynomial ¢ of degree at most k41 and a partition of Zy
into mod-N arithmetic progressions Q1, ..., Qs of size at least m/3k such

that the function g(z) = f(x)w %@ is not 2-2*+1* o uniform of degree k
with respect to the partition Q1,...,Qum.

Proof. Without loss of generality d = 1. Let 2l +1 = m and let w be a real
number such that [I/k| —1 < w < [I/k] and M = N/w is an integer. For
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0 <j < M —1 define Q; to be the interval { € Zy : jw <z < (j + 1)w}.
Notice that the cardinality of Q; is always |[/k|—1or |l/k|. Let a sequence
r=(ri,...,rx) be defined by P, = {r; —l,r; —1+1,...,7;+1} and let I be
the interval {—1,—Il+1,...,l}. Then any = € P can be written uniquely as
a + r for some a € I*. Given € € {0,1}*, we shall write f. for the function
that takes s to f(s — e.r). Let us also write 7(a) for o(a + 7).

Then

Z|A(f;:c)/\ Z‘Zw*”a” HC' LF( 8—6(1—67‘))2
zeP aclk s
= Z‘Zuf”a HC" 7. S—ea)‘
aclk s

where the products are over all € in the set {0, 1}*.

If we now split each function f. up as >
becomes

iczy, Qjfe, this expression

M
Z ‘wasr(a) H Z(Q]Ck‘fe)(s B 6@)\2 '

aclk s ec{0,1}* j=1
Interchanging the product over € with the sum over j, we obtain

CIE 2w T @0t~ ca)|

aclk s e€{0,1}*

bl

where now the sum over j stands for the sum over all functions j
{0,1}* — Zjs. Let us estimate how many such functions can give rise
to a non-zero contribution to the entire expression.

This we can do using Corollary 17.5. If Q) fe(s — €.a) is non-zero,
then s — e.a € Qj() which implies that j(e)w < s —e.a < j(e)w and
therefore that j(e) is exactly the integer part of w™'s — e.(w™'a). Since
—k—1 < w ta; < k+1 for every 4, Corollary 17.5 implies that the number
of functions j for which the product over € can ever be non-zero is at most
M .22(k+1)*

Let us define functions j; and jo (from {0,1}* to Zys) to be equivalent
if they are translations of each other. Corollary 17.5 with M = 1 implies
that the number of equivalence classes is at most 2k(k+1)* et us call them
Ji,...,Jr. By the Cauchy-Schwarz inequality, we can deduce from our
calculations above that

159 91) ) SIttch | CRCRIATEEeS

r=1qelk s j€J,

2
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We can therefore find r such that, choosing some representative j of J,., we

have
L%aN?m* < Z\ZZ ‘ST“HQ] i Cf) (s — e.a)

aclk s
Applying the Cauchy—Schwarz 1nequahty again, this is at most

MZ S O T @i CM s — )

=1 qelk s
Obviously this still exceeds L™2aN 2m if we replace the sum over a € I
above by a sum over all of Z’f\,. Expanding the modulus squared and sub-
stituting in the usual way, the resulting inequality can be rewritten

M
MZ Z Zw‘p(“) H (Qj(e)HC"e‘fE)(s —e.a) > L 2aN?*mF

i=1 gzt ce{0,1}k+1

‘ 2

‘ 2

where j(€) and f. now mean j(ey,...,€;) and fe, ., respectively, and p(a)
is defined to be agt17(ai,...,ar). Applying Lemma 17.1, we obtain for
each € € {0,1}**! a polynomial ¢. of degree at most k + 1 in such a way

that
)= Y (Dol —ea)
ec{0,1}k+1

for every a € Z?VH. Using these, we can rewrite the inequality yet again,
this time as

M
MZ Z Z H (Qj(E)HC'E‘fe)(S — c.a)w %N > [ 2o N2k
i=1 qegzhtl s ec{0,1}k+1

We shall now apply Lemma 3.8 to the functions Qj(e)HC'E' fe. By the
AM-GM inequality, the lemma implies that, for every ¢, the sum

Z Z H (Qj(e)JriC'e'fe)(S—e.a)w_d’e(s_fﬂ)

a€ZkF! 8 €01}k

is bounded above by the average over n € {0, 1}*+1 of

Z Z H (Qj(n)+i0|€|fn)(s—e.a)w_¢n(5—€~a)_

aGZIf\,"'l s ec{0,1}k+1

It follows by an averaging argument that we may choose n € {0, 1}**! such
that, setting g(s) = f,(s)w™?1(5), we have

M
MY S Y I @ioeiCg)s — ea) > L2aNmt,

=1 anl]cV-!—l 5 ec{0,1}k+1
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and this may be rewritten

M
Z Z Z H (C1Qig) (s — e.a) = L™2aM2N?*m* M ,
=1 qezhtt 5 {01}k +1

or

M
Z Z ZA(Qi9§G)(8) > L 2aM 2N2m* M

) — k
7 lanN+1 s
3
> 272D 2

2(k+1)° o _uniform with respect to

This implies that the function g is not 2~
the partition Q1,...,Qum.

This is not quite the statement of the proposition. To obtain it, recall
that f,(s) = f(s —n.r). Therefore, the statement about g implies that
the function f(s)w=?7(5+77) is not 2-2(k+1)° o-umiform with respect to the
partition (Q; +7.7)",. Since ¢, (s+n.r) is still a polynomial in s of degree
at most k + 1, the proposition is proved. O

18 Putting Everything Together

We are now ready for the proof of the main theorem. Indeed all we need
to do is combine our earlier results in an obvious way. We shall divide the
argument into two parts.

Theorem 18.1. Let o < 1/2 and let A C Zn be a set which fails to

be a-uniform of degree k. There exists a partition of Zy into arithmetic
2k+10

progressions Py, ..., Py of average size at least N a? such that
M 2k+10
Z‘Zf(s)‘}oﬂ N.
Jj=1 scPh;
Proof. The result will be proved by induction on k. First, Corollary 16.11

ok+8

gives us a box P C Zk of width at least N/ 2)° and a multilin-
k8

ear function p : P — Zy such that, for at least (a/2)2°  |P| values of

(y1,--.,yk) € P, we have

IAf5 1, ) (e, - k)| = (@/2)N .

k+8

Let § = (a2/8)(a/2)%
k+8

or equal to N(@/2 . Then the hypotheses for Proposition 17.7 are sat-

isfied (with « replaced by ). We can therefore find a polynomial ¢ of

and let m be the largest odd number less than

)2
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degree at most k and a partition of Zy into mod-N arithmetic progres-
sions Q1,...,Qn of size [ or [ + 1, where [ > m/3k, such that the function
g(z) = f(z)w™ @ is not 2-2*+3)° G_uniform of degree k — 1 with respect
to the partition Q1,...,Qu.

For each i, define a (non-negative real) number G; by the equation

D AQigin)(s) = pil*

zGZ’“ s

Since the sets @; all have approximately the same size, the average value
of 3; is at least 9~ 2(k+3)*~1 B. It follows that there is a set I of cardinality
at least 272k+4° 80T such that, for every i € I, 3 > 272-+9°3. Let us
now fix some i € I.

As described in the remarks before Proposition 17.7, we may associate
with @;g an “isomorphic” function h; : Z, — C which fails to be (8;/2k)-
uniform of degree k — 1. When this is done, the mod-N arithmetic pro-
gression (Q; corresponds to an interval of integers in Z,. By our induc-
tive hypothesis, we can partition Z, into proper arithmetic progressions

2k+
R, ..., Rim, of average size at least p(Bi/ 2k)? in such a way that
+9
’ (8:/20% " p.

j=1 s€R;j

It follows that ); can be partitioned into mod-/N arithmetic progressions
ok+9

Sit, ..., Sin, of average size at least r; = (2]{:)_1]7(@'/2"3)2 such that

M;

SIS o) = i/2m® el

7=1 SESU

The mod-N progressions S;; with i € I, together with those @; for which
i ¢ I, partition Zy. From the way we chose I, the average size of a cell in

ok+9
this partition is at least r = (2k)~1p(2~ (0% g /22" By Lemma 5.13 we

can find a refinement of this partition into proper arithmetic progressions
of average size at least r1/2 /4. Let us call these progressions T1,...,Ty.
Since 3,0, |Qi| = 272+’ BN we have the inequality

L
SIS ls)| > (220407 52k 20 g
7j=1 SETj

k+9
Let v = (272(+9°3/2)2* 2-2(k+4° 3 We may now apply Lemma 5.14
to find a refinement of 17,...,7} into arithmetic progressions Uq,...,Ugy
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such that H < CLYEN1-VEK and

i) > )| =2,

h=1 se€Uy,

ok+10

All that remains is to check that H 1N > N a? and that v/2 >
k410
a?’ . These are easy exercises for the reader (easy because 227 i5 50

much bigger than 22" that estimates can be incredibly crude). m

For the statement of our main theorem we shall use the notation a T b
for a®, with the obvious convention for bracketing, so that for example
alblcstands fora 1 (b1 c).

Theorem 18.2. Let 0 < 6 < 1/2, let k be a positive integer, let N >
2727671727271 (k+9) and let A be a subset of the set {1,2,..., N}
of size at least 6N. Then A contains an arithmetic progression of length k.

Proof. Tt is not hard to check that N > 32k26~". Therefore, Corollary 3.6
implies the result when A is (6/ 2)k2k—unif0rm of degree k — 2.
Let oo = (8/2)¥2". If A is not a-uniform of degree k — 2 then by Theo-

rem 18.1 and Lemma 5.15 there is an arithmetic progression P of size at
ok+8

k+8

least N such that [ANP| > (6§4+ a2 )|P|. We may then repeat the
k

argument with the new density. After at most a2 repetitions, we find

an arithmetic progression of length k, as long as N is large enough. Since
k+8
at each repetition we are raising N to a power at least as big as o?® and

the argument works as long as N > 32k26%, a sufficient condition on the
original N is that

NT(a12121(k+8)) 1T (121271 (k+8)) > 32k%".

It is not hard to check that this condition is satisfied when N >
2127167112727 (k+9), and the theorem is proved. a)

Notice that what matters for the bounds in the above proof is the num-
ber of times the iteration is performed. The fact that at each iteration we
raise N to a very small power makes hardly any further difference.

COROLLARY 18.7. Let k be a positive integer and let N >
21217212721 (k+9). Then however the set {1,2,..., N} is coloured
with two colours, there will be a monochromatic arithmetic progression of
length k. O
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Ron Graham has conjectured in several places (see e.g. [GRS]) that
the function M (k,2) is bounded above by a tower of twos of height k.
Corollary 18.7 proves this conjecture for k > 9, and indeed gives a much
stronger bound. It looks as though more would be needed to prove it for
k =7 (for example) than merely tidying up our proof. For k < 5, the exact
values of M (k,2) are known and satisfy the conjecture.

Concluding Remarks and Acknowledgements

The arguments of this paper leave open many interesting questions. The
most obvious one is whether the multidimensional version of Szemerédi’s
theorem follows from similar arguments. There is not even a good bound
in the case of three points in a triangle. (The precise statement is that, for
sufficiently large N, every subset of [IV]? of size at least 6 N2 contains a triple
of the form {(a,b), (a+d,b), (a,b+d)}. Very recently, Jozsef Solymosi sent
me an argument that proves this using a lemma of Ruzsa and Szemerédi,
which itself uses Szemerédi’s regularity lemma. Thus, at least a tower-
type bound can be proved for this problem.) It would of course also be
extremely interesting to have quantitative versions of the results of [BL]
and [FK] mentioned in the introduction.

Some of the ideas in this proof turn out not to be new. In particu-
lar, the content of §4, that is, the relevance of exponentials in polynomi-
als as well as the fact that they are not sufficient, was discovered in an
ergodic-theoretic context, independently and earlier by Kazhdan in recent
unpublished work. In general, there seem to be very interesting connections
between the methods of this paper and a new ergodic-theoretic approach
that is not yet complete.

A more obvious connection with the ergodic methods is that the argu-
ments of §3 closely resemble the arguments used by Furstenberg for the
case of weak-mixing measure-preserving dynamical systems. His argument
is based on the fact that a system that is weak-mixing is sufficiently random
to work, while one that is not can be decomposed in a useful way. This
appears to be analogous in some way to the idea here of passing from a
non-uniform set to a denser subset.

I am very grateful to Béla Bollobas for encouraging me to continue
working on Szemerédi’s theorem when an earlier attempt at proving it
collapsed, and to Vitali Milman for making sure that I eventually finished
this paper.
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