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Request for Columns!
I invite any reader who has knowledge of some area to contact me and

arrange to write a column about open problems in that area. That area can
be (1) broad or narrow or anywhere inbetween, and (2) really important or
really unimportant or anywhere inbetween.

A Known Problem in Ramsey Theory:
Ramsey Multiplicity

by William Gasarch

1 Introduction

In this column we state a class of open problems that are well known in
Ramsey Theory but probably not to my non-Ramsey readers. Nothing I
present is original.

The problem is as follows: Let G be a graph. Fill in the blank: For every
2-coloring of the edges of Kn (the complete graph on n vertices) there exist
BLANK monochromatic copies of G. The key words to Google are Ramsey
Multiplicity.

In Section 2 we state a motivating question. In Section 3 we look at
Kn such that you always get 2 monochromatic copies of K3. In Section 4
we show that, for all 2-colorings of the edges of Kn there exist n3

24
− O(n2)

monochromatic K3’s. Our upper bound is precise and matches the lower
bound; however we do not prove this. In Section 5 we state some of what is
known. In Section 6 we state a class of open problems.

2 A Motivating Question

We abbreviate monochromatic by mono throughout.
Recall the first theorem one usually hears in Ramsey Theory:

For all 2-colorings of the edges of K6 there is a mono triangle.
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From this we obtain a trivial theorem:

For all 2-colorings of the edges of K12 there are 2 mono triangles.

How big does n have to be such that any 2-coloring of Kn has 2 mono
triangles? The answer is in the next section and may surprise you.

3 Two Monochromatic K3

Theorem 3.1 For all 2-colorings of edges of K6 there are 2 mono triangles.

Proof: Let COL be a 2-coloring of the edges of K6. Let R, B, M , be
the sets of RED, BLUE, and MIXED (having both RED and BLUE edges)
triangles, respectively. Clearly

|R|+ |B|+ |M | =
(

6

3

)
= 20.

We show that |M | ≤ 18, so |R|+ |B| ≥ 2.
Let T be a mixed triangle. It looks like this:

v1

v2 v3

Note that there will be two vertices that have both a RED and a BLUE
edge coming out of them.

• (v2, v1) is red, (v2, v3) is blue. View this as (v2, {v1, v3}).

• (v3, v1) is red, (v3, v2) is blue. View this as (v3, {v1, v2}).

Def 3.2 A Zan is an element (v, {u,w}) ∈ V ×
(
V
2

)
such that v /∈ {u,w}

and COL(v, u) 6= COL(v, w). ZAN is the set of all Zans.

Map ZAN to M by mapping (v, {u,w}) to triangle (v, u, w). This map-
ping is exactly 2-to-1: every element of M has two Zans mapping to it. The
Zans that map to
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v1

v2 v3

are (v2, {v1, v3}) and (v3, {v1, v2}).
Since there is a 2-to-1 map from ZAN to M , |M | = |ZAN|/2. Now we

want to bound |ZAN|. Look at how much each vertex can contribute to ZAN.
Note that each vertex has degree 5.
Cases:

1. v has degR(v) = 5 and degB(v) = 0: v contributes 0.

2. v has degR(v) = 4 and degB(v) = 1: v contributes 4.

3. v has degR(v) = 3 and degB(v) = 2: v contributes 6. Max.

There are 6 vertices, each contribute ≤ 6, |M | ≤ |ZAN|/2 ≤ 6×6/2 = 18

|R|+ |B| = 20− |M | ≥ 2

4 Many Mono Triangles

The following theorem was first proven by Goodman [5]; however, we give an
easier proof given by Schwenk [9], as presented by Dorwart and Finkbeiner [2].

Theorem 4.1

1. Assume n ≡ 1 (mod 4). For all 2-colorings of the edges of Kn there
are at least n3

24
− n2

4
+ 5n

24
mono triangles.

2. Assume n ≡ 3 (mod 4). For all 2-colorings of the edges of Kn there
are at least n3

24
− n2

4
+ 5n

24
+ 1

2
mono triangles.

3. Assume n ≡ 0 (mod 2). For all 2-colorings of the edges of Kn there
are at least n3

24
− n2

4
+ n

3
mono triangles
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Proof:
A porism to the proof of Theorem 3.1 is that

|R|+ |B| =
(
n

3

)
− |ZAN|/2.

Hence we will upper bound |ZAN|.
Case 1: n ≡ 1 (mod 2). The degree of each vertex is n − 1 ≡ 0 (mod 2).
To maximize |ZAN| we would, at each vertex, color half of the edges RED
and half BLUE. So each vertex contributes (n−1

2
)2, and there are n vertices,

so we have |ZAN| ≤ (n−1)2n
4

. Since |ZAN|/2 = M ∈ N we have

|ZAN|/2 ≤
⌊

(n− 1)2n

8

⌋
hence

|R|+ |B| ≥ n(n− 1)(n− 2)

6
−
⌊

(n− 1)2n

8

⌋
Case 1a: n ≡ 1 (mod 4) so (n− 1)2 ≡ 0 (mod 16). Hence:⌊

(n− 1)2n

8

⌋
=

(n− 1)2n

8
.

Hence

|R|+ |B| ≥ n(n− 1)(n− 2)

6
− (n− 1)2n

8
=

n3

24
− n2

4
+

5n

24

Case 1b: n ≡ 3 (mod 4). One can easily show that⌊
(n− 1)2n

8

⌋
=

(n− 1)2n− 4

8
.

Hence

|R|+ |B| ≥ n(n− 1)(n− 2)

6
− (n− 1)2n− 4

8
=

n3

24
− n2

4
+

5n

24
+

1

2

Case 2: n ≡ 0 (mod 2). The degree of each vertex is n − 1 ≡ 1 (mod 2).
To maximize |ZAN| we would, at each vertex, color n−2

2
of the edges RED
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and color n
2

of the edges BLUE. So each vertex contributes n(n−2)
4

, and there

are n vertices, so we have |ZAN| ≤ n2(n−2)
4

. Since |ZAN|/2 = M ∈ N we have

|ZAN|/2 ≤
⌊
n2(n− 2)

8

⌋
.

Since n ≡ 0 (mod 2), n2(n − 2) ≡ 0 (mod 8), so the bound on |ZAN|/2 is
always in N. Hence we do not need the floor. Hence

|ZAN|/2 ≤ n2(n− 2)

8

|R|+ |B| ≥ n(n− 1)(n− 2)

6
− n2(n− 2)

8
=

n3

24
− n2

4
+

n

3
.

Note 4.2 The bounds given in Theorem 4.1 are tight. This was proven by
Goodman [5] and Savvy [8]. They view the problem differently. They asked
given that you want t triangles, how big must n be?

5 What is Already Known

Def 5.1 R(k) is the least number n such that any 2-coloring of the edges of
Kn has a mono Kk. By Ramsey’s theorem for graphs, for all k, R(k) exists.
It is known that R(3) = 6 and R(4) = 18; however, all that is known about
R(5) is 43 ≤ R(5) ≤ 48. It is a standard result that R(k) ≤ 4k−c log k for
some constant c.

1. Stanislaw Radziszowski and Konrad Piwakowski [6] proved the follow-
ing: All 2-colorings of K18 have 9 mono K4’s. This is tight. This was
proven with the help of a computer.

2. Erdős [3] proved the following:

Theorem 5.2 Let k ∈ N. Let R = R(k). Let N be large, so large that
R � N . Let COL be a 2-coloring of the edges of KN . Then there are
≥ Nk

4(1+o(1))k2
mono Kk’s.
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We give the proof because we can.

Proof: Let A1, . . . , A(N
R) be a list of all the R-subsets of [N ].

Note that by the definition of R and the Ai’s, every Ai has a mono Kk.
We can’t just say there are

(
N
R

)
mono Kk’s since it may be that two

Ai’s produce the same mono Kk.

We now produce many monochromatic Kk’s.

(a) X =
{
Ai : 1 ≤ i ≤

(
N
R

)}
(b) Y = ∅. Y will contain many mono Kk’s.

(c) If X 6= ∅ do the following (else terminate). Let i be the least
number such that Ai ∈ X. It has a mono Kk. Call it C.

i. Add C to Y (we will soon see that C is not already in Y ).

ii. Remove from X all Aj’s that have C in them. Hence we are
removing

(
N−k
R−k

)
Aj’s.

iii. Goto Step c

In every iteration X loses
(
N−k
R−k

)
Aj’s. Hence the number of mono Kk’s

that this process produces is at least

(
N
R

)(
N−k
R−k

) =
N !

R!(N −R)!
× (N −R)!(R− k)!

(N − k)!
=

N !

(N − k)!
× (R− k)!

R!
.

We need to lower bound this quantity. We use (R−k)!
R!
≥ 1

Rk ≥ 1

4k2
. The

other inequality we need will be more delicate.

N !

(N − k)!
≥ (N − k + 1)k =

Nk

(N/(N − k + 1))k

We look at the denominator

(
N

N − k + 1

)k

=

(
1+

k − 1

N − k + 1

)k

∼ e((k−1)k)/(N−k+1) ∼ 4(c(k−1)k)/(N−k+1)

for some constant c. Hence the number of mono Kk’s is at least
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Nk

4k2+(c(k−1)k/(N−k+1))
=

Nk

4k2(1+o(1))
.

3. David Conlon [1] proved the following: Fix t. For n large, for any 2-
coloring of Kn there are nt

C(1+o(1))t2
mono Kt’s where C ∼ 2.18. Note

that Conlon’s result is an improvement of Theorem 5.2.

4. Jacob Fox [4] looks at the problem for target graphs G other than Kt.

5. For more results (1) look at the bibliographies of the papers above, (2)
Google Ramsey Multiplicity, and (3) watch this cool lecture by David
Conlon:

https://www.ima.umn.edu/2014-2015/W9.8-12.14/21327

6 Open Problems

Here is a large class of open problems with the same theme as Theorem 4.1.
First we need some notation.

Notation 6.1 Let k ≥ 1.

1. Ck is the cycle graph on k vertices. Vertex i has an edge to vertices
i− 1 (mod k) and i + 1 (mod k) but no other vertices.

2. Pk is the path graph on k vertices. If i ≤ k − 1 then vertex i has an
edge to vertex i + 1.

3. Wk is the wheel graph on k vertices. It is Ck−1 with one more vertex
that has an edge to all other vertices.

4. K1,k is the star graph.

5. If G is a graph on k vertices, R(G) is the least number n such that
any 2-coloring of the edges of Kn has a mono G. By Ramsey’s theorem
for graphs, for all G, R(G) exists; however, for many graphs, R(G) is
much lower than R(k).
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6. The values of R(G) are known for G ∈ {Ck, Pk,Wk, K1,k}. See Stanis-
law Radziszowski’s survey of Small Ramsey Numbers [7].

We now state some open problems.

1. Fix k. Find the function f such that, for all 2-colorings of Kn there are
f(n) mono Kk’s. Try to make f(n) as large as possible. The k = 3 case
is solved. The k = 4 case is not solved, but it is plausible that it will
be. The k = 5 case is harder than finding R(5) and hence is unlikely
to be solved . . . ever.

2. Replace Kk in the last item with Ck, Pk, Wk, K1,k or whatever your
favorite parameterized set of graphs is. When R(G) is known there is
hope of solving this problem. If R(G) is unknown, then note that the
problem of finding f(n) is harder than finding R(G).

3. Let G be your favorite graph and L be your favorite number. Find the
least n (or at least a non-obvious k) such that every 2-coloring of the
edges of Kn yields L copies of a mono G.
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