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1 Introduction

Henceforth we use Can instead of Canonical
We prove a general theorem from which one can obtain (1) the infinite 2-

ary Can Ramsey Theorem, (2) the finite 2-ary Can Ramsey Theorem, and (3)
the large 2-ary Can Ramsey Theorem. Everything in this paper was already
known; however (1) to our knowledge, the statement and proof of the large
Can Ramsey Theorem never been written down, and (2) our bounds on the
large Can Ramsey Number may be new.

Let LCRa(k) be the large a-ary Can Ramsey number and LRa(k) be
the large a-ary hypergraph Ramsey number. Our proof bounds LCR2(k) in
terms of LR3(

k3

2
) (we will define this later). We discuss why it is unlikely to

obtain a bound on LCR2(k) in terims of LR2(f(k)) for reasonable f .
We sketch a general theorem from which one can obtain (1) the infinite

a-ary Can Ramsey Theorem, (2) the finite a-ary Can Ramsey Theorem, and
(3) the large a-ary Can Ramsey Theorem.

Our proof bounds LCRa(k) in terms of LR2a−1(FILLINLATER) (we
will define this later). We discuss why our reasons to think one cannot bound
LCR2(k) in terms of LR2(f(k)) do not extend. Hence it is plausible that
LCRa(k) can be bounded by CR2a−2(f(k)) for some reasonable f .

2 Conventions, Definitions, Notation

Convention 2.1 We will often state a theorem for all A ⊆ N. We are
thinking N or [n] or {k, . . . , n}.

Def 2.2 Let A be any subset of N. Let COL :
(
A
2

)
→ N. In the cases below

x1 < y1 and x2 < y2.

1. H is COL-homog if

(∀x1, y1, x2, y2 ∈ H)[COL(x1, y1) = COL(x2, y2)]

(All the elements of
(
H
2

)
are colored the same.)
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2. H is COL-min homog if

(∀x1, y1, x2, y2 ∈ H)[COL(x1, y1) = COL(x2, y2) iff x1 = x2]

(The color of a pair x, y depends exactly on min{x, y}.)

3. H is COL-max homog if

(∀x1, y1, x2, y2 ∈ H)[COL(x1, y1) = COL(x2, y2) iff y1 = y2]

(The color of a pair x, y depends exactly on max{x, y}.)

4. H is COL-rainbow if

(∀x1, y1, x2, y2 ∈ H)[COL(x1, y1) = COL(x2, y2) iff (x1 = x2∧y1 = y2)]

(All the elements of
(
H
2

)
are colored differently.)

5. H is COL-cool if H is either COL-homog, COL-min-homog, COL-
max-homog or COL-rainbow.

We may drop the prefix of COL when the coloring is understood.

Def 2.3 Let A ⊆ N.

1. A is large if |A| > min(A).

2. Let f : N → N be a monotone increasing function. A is f -large if
|A| > f(min(A)).

We state three 2-ary Can Ramsey Theorems. Henceforth we will use the
phrase Can Ramsey.

Theorem 2.4

1. (Infinite Can Ramsey) For every coloring COL :
(
N
2

)
→ N there exists

an infinite H that is cool.

2. (Finite Can Ramsey) For every k there exists n such that for every
coloring COL :

(
[n]
2

)
→ N there exists an H, |H| ≥ k, that is cool. We

denote this n by CR2(k).

3. (Large Can Ramsey) For every k there exists n such that for every
coloring COL :

({k,...,n}
2

)
→ N there exists an H, H large, that is cool.

We denote this n by LCR2(k).
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3 Needed Lemmas

We state four Ramsey Theorems in one lemma. First we need a definition.

Def 3.1 Let A be any subset of N. Let a, c ∈ N. Let COL :
(
A
a

)
→ [c]. A

set H ⊆ A is homogeneous if COL restricted to
(
H
a

)
is constant (so all the

hyperedges of H are the same color). Henceforth we refer to homogeneous
as homog.

Lemma 3.2

1. (a-ary infinite Ramsey) For every a, c ∈ N, for every coloring COL :
(
N
a

)
→

[c] there exists an infinite homog H.

2. (a-ary finite Ramsey) For every a, c ∈ N, for every k there exists n such
that for every coloring COL :

(
[n]
a

)
→ [c] there exists an H, |H| ≥ k,

that is homog. We denote this n by Ra(k, c).

3. (a-ary Large Ramsey) For every a, c ∈ N, for every k there exists n
such that for every coloring COL :

({k,...,n}
a

)
→ [c] there exists an H, H

large, that is homog. We denote this n by LRa(k, c).

4. (Extended a-ary Large Ramsey) Let f be a monotone increasing func-
tion. For every a, c ∈ N, for every k there exists n such that for every
coloring COL :

({k,...,n}
a

)
→ [c] there exists an H, H f -large, that is

homog. We denote this n by LRa(f(k), c).

We will have lemmas that will have as corollaries both Infinite and Finite
Can Ramsey Theorems. Hence we need the following conventions.

Convention 3.3 If X ⊆ N and r ∈ Q then

|X|r =

{
∞ if |X| is infinite

|X|r if |X| is finite
(1)

We use the same convention for other functions such as (2|X|)r or |X| − 1,
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4 Infinite, Finite, and Large 2-ary Can Ram-

sey

In this section we use the infinite, finite, and large 3-ary Hypergraph Ramsey
Theorem to get infinite, finite, and large 2-ary Can Ramsey Theorem. This
proof is a tweek of the proof of 2-ary Can Ramsey from Lefmann and Rödl [2].

Def 4.1 Let A be any subset of N. Let COL :
(
A
2

)
→ N. Let c ∈ N.

1. If v ∈ A then degc(v) is the number of edges colored c that have v as
an endpoint.

2. A set M ⊆ A is maximal rainbow if (1) M is rainbow, (2) if v /∈ M
then M ∪ {v} is not rainbow.

Lemma 4.2 Let A ⊆ N. Let COL be a coloring of
(
A
2

)
. Assume that for

all v ∈ A, and all colors c, degc(v) ≤ 1. If M is a maximal rainbow set then
|M | ≥ (2|A|)1/3.

Proof:
Let M be a maximal rainbow set. This means that,

(∀y ∈ A−M)[M ∪ {y} is not a rainbow set].

Let y ∈ A−M . Why is y /∈M? One of the following must occur:

1. There exists u, u1, u2 ∈M such that u1 6= u2 and COL(y, u) = COL(u1, u2).
(It is possible for u = u1 or u = u2.)

2. There exists u1 6= u2 ∈ M such that COL(y, u1) = COL(y, u2). This
cannot happen since then y has some color degree ≥ 2.

We map A −M to M ×
(
M
2

)
by mapping y ∈ A −M to (u, {u1, u2}) as

indicated in item 1 above. This map is injective since if y1 and y2 both map
to (u, {u1, u2}) then COL(y1, u) = COL(y2, u).

This map has domain of size |A| − |M | and co-domain of size |M |
(|M |

2

)
.

Hence

|A−M | ≤ |M |
(
|M |

2

)
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1. If A is infinite and M is finite then the above inequality is a contradic-
tion. Hence if A is infinite then M is infinite.

2. If A is finite then

|A−M | ≤ |M |
(
|M |

2

)
= |M |2(|M |−1)/2 =

|M |3 − |M |2

2
≤ |M

3

2
−|M |

|A| ≤ |M |
3

2
.

|M | ≥ (2|A|)1/3.

Theorem 4.3 Let A be any subset of N. Let COL :
(
A
2

)
→ N. There exists

COL′ :
(
A
3

)
→ [5] such that if H is a COL′-homog set of size at least 5 then

one of the following holds:

• H is COL-homog, COL-min-homog, or COL-max-homog.

• Every maximal COL-rainbow subset of H has size ≥ (2|H|)1/3.

Proof: We are given COL :
(
A
2

)
→ N. We use COL to define COL′ :

(
A
3

)
→

[5]. As we define COL′ we will say what happens if the COL′-homog set H
is of the color indicated.

In the cases below x1 < x2 < x3.

1. If COL(x1, x2) = COL(x1, x3) = COL(x2, x3) then COL′(x1, x2, x3) =
1.

Assume H is colored 1. By renumbering we assume that H = {1, 2, 3, . . . , }
(possibly finite). We show that H is homog by showing that element
of
(
H
2

)
is colored COL(1, 2).

Let (c, d) ∈
(
H
2

)
with c ≤ d.

(a) If c = 1 then COL(c, d) = COL(1, 2) by taking x1 = 1 = c, x2 = 2,
x3 = d.
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(b) If c = 2 then COL(c, d) = COL(1, 2) by taking x1 = 1, x2 = 2 = c,
x3 = d.

(c) If c ≥ 3 then COL(1, 2) = COL(3, 4) = · · · = COL(c, c + 1) =
COL(c, d).

2. If COL(x1, x2) = COL(x1, x3) and COL(x1, x2) 6= COL(x2, x3) then
COL′(x1, x2, x3) = 2.

Assume H is colored 2. We show that H is min-homog. Let x1 < x2

y1 < y2. We can also assume x1 ≤ y1.

We need to show

COL(x1, x2) = COL(y1, y2) iff x1 = y1.

Clearly if x1 = y1 then COL(x1, x2) = COL(y1, y2).

If COL(x1, x2) = COL(y1, y2) then look at COL(x1, y1). Note that

COL(x1, x2) = COL(x1, y1) = COL(x1, y2).

Hence they all equal COL(y1, y2). In particular

COL(x1, y1) = COL(y1, y2).

This is only possible of x1 = y1.

3. If COL(x1, x3) = COL(x2, x3) and COL(x1, x2) 6= COL(x1, x3) then
COL′(x1, x2, x3) = 3.

Assume H is colored 3. The reader can show that H is max-homog in
a manner similar to the proof of min-homog in the last part.

4. If COL(x1, x2) = COL(x2, x3) and COL(x1, x2) 6= COL(x1, x3) then
COL′(x1, x2, x3) = 4.

We show that any if |H| ≤ 4. Assume, by way of contradiction, that
|H| ≥ 5. Renumber so that {1, 2, 3, 4, 5} ⊆ H. Then:

COL(1, 2) = COL(2, 3) = COL(3, 4) = COL(4, 5)

6



and

COL(1, 3) = COL(3, 4).

Hence COL(1, 2) = COL(1, 3), which contradicts the coloring.

5. (The reader can show that this is the only case left.) If COL′(x1, x2) 6=
COL′(x1, x3), COL′(x1, x2) 6= COL′(x2, x3) and COL′(x1, x3) 6= COL′(x2, x3)
then COL′(x1, x2, x3) = 5.

Assume H is colored 5. Clearly, for all v ∈ H and for all colors c,
degc(v) ≤ 1. By Lemma 4.2 every maximal rainbow subset of H is
≥ (2|H|)1/3.

Corollary 4.4

1. For every coloring COL :
(
N
2

)
→ N there exists an infinite H that is

cool.

2. For every k there exists n such that for every coloring COL :
(
[n]
2

)
→ N

there exists an H, |H| ≥ k, that is cool. We can take n = R3(
k3

2
, 5).

Hence CR2(k) ≤ R3(
k3

2
, 5).

3. For every k there exists n such that for every coloring COL :
({k,...,n}

2

)
→

N there exists an H, H large, that is cool. We can take n = LR3(
k3

2
, 5).

Hence LCR2(k) ≤ LR3(
k3

2
, 5).

Proof:
1) Let COL :

(
N
2

)
→ N. By Theorem 4.3 with A = N there exists a coloring

COL′ :
(
N
3

)
→ [5] such that if H is COL′-homog then one of the following

holds:

• H is COL-homog, COL-min-homog, or COL-max-homog.

• Every maximal COL-rainbow subset of H is of size ≥ (2|H|)1/3.
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By Lemma 3.2.1 there is an infinite COL′-homog set. Hence there is an
infinite cool set.

2) Let COL :
(
[R3(

k3

2
,5)]

2

)
→ N. By Theorem 4.3 with A = [R3(

k3

2
, 5)] there

exists a coloring COL′ :
(
R3(

k3

2
,5)

3

)
→ [5] such that if H is COL′-homog then

one of the following holds:

• H is COL-homog, COL-min-homog, or COL-max-homog.

• Every maximal COL-rainbow subset of H is of size ≥ (2|H|)1/3.

By Lemma 3.2.2 there is an COL′-homog set H such that |H| ≥ k3

2
. In

the first case H is a COL-homog or COL-min-homog or COL-max-homog
set of size ≥ k3

2
≥ k. In the second case H has a rainbow subset of size

≥ (2(k
3

2
)1/3 = k.

3) Let COL :
({k,...,LR3(

k3

2
,5)}

2

)
→ N. By Theorem 4.3 with A = [{k, . . . , LR3(

k3

2
, 5)}]

there exists a coloring COL′ :
({k,...,LR3(

k3

2
,5)}

4

)
→ [5] such that if H is COL′-

homog then one of the following holds:

• H is COL-homog, COL-min-homog, or COL-max-homog.

• Every maximal COL-rainbow subset of H is of size ≥ (2|H|)1/3.

By Lemma 3.2.3 there is a COL′-homog set H such that |H| ≥ min(H)3

2
.

In the first case H is a large set (since |H| ≥ min(H)3

2
≥ min(H)) that is either

COL-homog, COL-min-homog, or COL-max-homog.
In the second case we have:

• |H| ≥ min(H)3

2
.

• every maximal COL-rainbow subset of H is of size

≥ (2|H|)1/3 ≥ 2
min(H)3

2
= min(H).

By a greedy algorithm we can obtain a maximal COL-rainbow subset H ′

of H that has min(H) in it. Hence min(H ′) ≤ min(H). Note that

|H ′| ≥ min(H) = min(H ′)

hence H ′ is a large COL-rainbow set.
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5 Infinite, Finite, and Large aary Can Ram-

sey
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