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1 This Issues Column!

Luca Trevisan passed away on June 19, 2024 at the age of 52, of cancer. He worked on
randomness, approximation, and many other topics in theory. My last column consisted of
open problems by Lance Fortnow, Oded Goldreich, Johan H̊astad, Salil Vadhan, and David
P. Williamson that Luca was interested in. This column is also about a problem that Luca
was interested in.

The column is on Constructive Lower Bounds on Ramsey numbers and is by Rishi
Cherukuri and William Gasarch. Extractors played a large part in that work, and one of
Luca’s biggest contributions was his papers on extractors.

Request for Columns! I invite any reader who has knowledge of some area to contact
me and arrange to write a column about open problems in that area. That area can be (1)
broad or narrow or anywhere inbetween, and (2) really important or really unimportant or
anywhere inbetween.
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2 Introduction

Convention 2.1 Throughout this paper if G = (V,E) is a graph then n = |V | and m = |E|.

3 Ramsey Numbers

We review the basic concepts of Ramsey Theory.

Definition 3.1 Let A ⊆ N. Let a, n ∈ N.

1. [n] is the set {1, . . . , n}.

2.
(
A
a

)
is the set of all a-sized subsets of A.

3.
(

[n]
2

)
is the set of all pairs of elements of {1, . . . , n}.

4. Let COL:
(

[n]
2

)
→ [2]. Then H is a homogenous set if COL restricted to

(
H
2

)
is constant.

The following is known as Ramsey’s Theorem (for graphs).

Theorem 3.2 For all k, there exists n, such that for all COL:
(

[n]
2

)
→ [2], there exists a

homogenous set of size k.

Definition 3.3 R(k) is the least n such that, for all COL:
(

[n]
2

)
→ [2], there exists a

monochromatic clique of size k. Note that such an R(k) exists by Theorem 3.2
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Upper Bounds

Result Comment Ref
R(k) ≤ 22k−1 Standard Proof Folklore

R(k) ≤ (1 + o(1))4k−1/
√
πk Elementary [11]

R(k) ≤ 4s/s(c log k)/(log log k) Difficult [10]
R(k) ≤ (4− ε)k Difficult [6]

Lower Bounds

Definition 3.4 A constructive lower bound on R(k) is an algorithm that will, given k,
produce a 2-coloring of

(
[n]
2

)
in time p(n) for some polynomial in n.

There were initially some rather poor lower bounds on R(k) that were polynomial in k.
These proofs were constructive. Then Erdős [12] used the probabilistic method to obtain
exponential, though nonconstructive, lower bounds on R(k). That last sentence is true but
not quite right: the probabilistic method was invented by Erdős in that paper for the purpose
of getting lower bounds on R(k).

Since then there has been improvements to both the nonconstructive lower bound, and
the constructive lower bounds. We give two charts of the progress: one for nonconstructive
lower bounds, one for constructive lower bounds. The rest of the paper will elaborate on the
chart, say what Luca Trevisan’s contribution to this field is, and pose open questions.

The charts uses the following abbreviations.

• Elt means an elementary proof that could be taught to interested high school students.

• LLL means that the proof used the Lovasz Local Lemma.

Non-Constructive Lower Bounds

Result Comments Paper

R(k) ≥ (1 + o(1))k2k/2/
√

2e Elt [12]

R(k) ≥ (1 + o(1))k2k/2
√

2/e LLL [23]

Constructive Lower Bounds
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Result Comments Paper
R(k) ≥ (k − 1)2 Elt Folklore
R(k) ≥ Ω(k2.3...) Elt [1]
R(k) ≥ Ω(k3) Elt [20]

R(k) ≥ 2Ω(log2(k)/ log log k) Set Systems [13]

R(k) ≥ 2Ω(log2(k)/ log log k) Info. Theory & Lin. Alg. [2]

R(k) ≥ 2Ω(log2(k)/ log log k) Representing OR [15]

R(k) ≥ 2Ω(log2(k)/ log log k) Representing OR [14]
R(k) ≥ Better than [13] Extractors [17]
R(k) ≥ Better than [13] Extractors [18]

R(k) ≥ 2Ω(kδ)(δ < 1) Extractors [19]

The results above motivates the following open questions.

1. Is there a constant α > 1
2

such that R(k) ≥ Ω(2αk). This has been open for a long
time.

2. Narrow the gap between the highest lower bound and the lowest upper bound.

3. Obtain better constructive proofs of the lower bound on R(k) with the hope that they
one day match the nonconstructive proof.

The bulk of this paper will be to elaborate on the table of constructive lower bounds on
R(k).

4 A Survey of Const. Lower Bounds on R(k)

4.1 Nagy’s Construction: R(k) ≥ Ω(k3)

Definition 4.1 A set system is a set of subsets of
(

[n]
a

)
for some n, a.

Nagy [20] showed the following. The proof is elementary.

Theorem 4.2 R(k) ≥ Ω(k3).

Proof sketch: Let G be the complete graph on
(
k
3

)
vertices. Represent G by having each

vertex be an element of
(

[k]
3

)
. Let COL be the defined as follows

COL(A,B) =

{
1 if |A ∩B| = 1

2 if |A ∩B| 6= 1
(1)

One can show that (a) G has Θ(k3) vertices, and (b) the coloring does not have a
homogenous set of size k.
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Open Problem 4.3 The proof that Nagy’s Construction works is elementary. One could
teach it to interested high school students. All of the later constructions are either not
elementary or both. Come up with an elementary proof that R(k) ≥ Ω(n4) Or even larger
degree than that. This result would not be as strong as the later ones in this paper; however,
they would be good for education.

4.2 The Frankl-Wilson Construction

Frankl & Wilson [13] showed the following. The proof is complicated.

Theorem 4.4 There is a constant c such that R(k) ≥ 2( c log2 k
log(log(k)

).

Proof sketch: Let q be a prime such that k ∼
(
q3

q−1

)
. Let n =

(
q3

q2−1

)
. Let G be the

complete graph on n vertices.

COL(A,B) =

{
1 if |A ∩B| ≡ q − 1 (mod q)

2 if |A ∩B| 6≡ q − 1 (mod q)
(2)

One can show that (a) there is a constant c such that G has 2( c log2 k
log(log(k)

) vertices, and (b)
the coloring does not have a homogenous set of size k.

4.3 Alon’s Construction

Alon [2] reproved Theorem 4.4. His proof used information theory and linear algebra. We
need to present some background to even give a sketch of the proof.

Definition 4.5 Let G be the graph (V,E).

1. Let n ∈ N. Then Gn be the graph (V ′, E ′) where V ′ = V n and E ′ is as follows:

{(v1, . . . , vn), (u1, . . . , un) : (∀i)[ui = vi ∨ (ui, vi) ∈ E].

2. α(G) is the size of the largest independent set in G (called the ind. number of G).

3. The Shannon Capacity c(G) of G is limn→∞ α((Gn)
1
n ).

Definition 4.6 Let H be a field and r ∈ N. View H[x1, . . . , xr] as a vector space. Let Hr

be a subspace of H[x1, . . . , xr]. Let G = (V,E) be a graph.
A representation of G over Hr is a function from V to (Hr, H

r) (denote where v maps
to by (pv(x1, . . . , xr), av) (note that pv is a polynomial in r variables, and av is a vector of r
elements of H) such that
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• For all v ∈ V , pv(av) 6= 0.

• If (u, v) /∈ E then pv(au) = 0.

Alon then proves the following:

Theorem 4.7 For any graph G = (V,E) with representation Hr over a field H, c(G) ≤
dim(Hr).

Using this theorem, Alon thus found:

Definition 4.8 Let P = {p1, . . . , pg} where each pi is prime. Let s = p1p2 · · · pg − 1.
Consider an integer r > s. Define K(P, r) to be a graph (V,E) together with a g-coloring of
it, as follows:

• V =
(

[r]
s

)
.

• E =
(
V
2

)
.

• We color the edge (A,B) by the least j such that |A ∩B| 6≡ −1 (mod pj).

Theorem 4.9 Let G = (V,E) be the 0-colored subgraph of a 2-colored K(P, r). Then, c(G)
≤

|K|−|G|∑
i=0

(
r

i

)
Thus, there exists COL:

(
[n]
2

)
→ [2] which has no homogenous set of size

n∑
i=0

(
r

i

)
Alon uses this theorem to give a bound on the Ramsey numbers R(k) analogous to that

of the Frankl-Wilson construction.

Theorem 4.10 There is a constant c such that R(k) ≥ 2( c log2 k
log(log(k)

).

Proof sketch:

Let n = 2( c log2 k
log(log(k)

).
One can find a graph G on n vertices so that both G and G have a representation Hk.

By Theorem 4.7, neither G nor G have a clique. One can easily use this to get a coloring of
the edges such there is no homogenous set of size k.
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4.4 Grolmusz’s Construction

Recall that the Frankl-Wilson construction as stated here needs that q is a prime. In their
paper they need that q is a prime power. They asked if the construction could be extended
to the case where q is not a prime power. The hope was that this would lead to a better
bound.

Grolmusz’s construction (1) extends Frankl-Wilson to the case where q is any number,
but (2) does not give a better lower bound on R(k). Darn!

He needed he following concept.

Definition 4.11 Let m,n ∈ N, m,n ≥ 2.

1. Let ~x be x1, . . . , xn.

2. Zm is the integers {0, . . . ,m− 1} mod m.

3. Zm[~x] is the set of polynomials in x1, . . . , xn with coefficients in Zm. We will always
evaluate such polynomials mod m.

4. Let f(~x) be a function with input {0, 1}n. A polynomial p(~x) ∈ Zm[~x] weakly represents
f mod m if, for all ~x ∈ {0, 1}n, ~y ∈ {0, 1}n, if f(~x) 6= f(~y) then p(~x) 6= p(~y) (mod m).

5. ORn is the function that maps ~a ∈ {0, 1}a to the OR of the bits.

6. Let p, q be primes. Let P ∈ Zp[~x] and Q ∈ Zq[~x]. (P,Q) represents ORn if the following
occur.

(a) P (0, . . . , 0) ≡ 1 (mod p).

(b) Q(0, . . . , 0) ≡ 1 (mod q).

(c) For all ~a ∈ {0, 1}n − (0, . . . 0), P (~a) ≡ 0 (mod p) or Q(~a) ≡ 0 (mod q).

(This is not a typo. We really do have (0, . . . , 0) map to 1.)

They use results from Barrington, Beigel, and Rudich [5] on representing the Boolean
function OR with a low degree polynomial. Grolmusz’s construction is interesting; however,
it ends up obtaining the same lower bound that Frankl-Wilson did, and that Alon did.

4.5 Gopalan’s Construction and Observation

Frankl-Wilson’s proof and Alon’s proof are wildly different, yet they both give the same
constructive lower bound on R(k). Grolmusz’s construction generalizes Frankl-Wilson and
it was hoped that it would give a better constructive lower bound, but alas, it also gave the
same bound.

What is going on here?
Gopalan [14] gave a framework that encompassed the constructions of Frankl-Wilson,

Alon, and Grolmusz. He then proved the following:
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• Any construction in that framework is reducible to low-degree weak representations of
the OR function.

• Any construction that is reducible to low-degree weak representations of the OR func-
tion can give a lower bound at least as good as 2Ω(log2(k)/ log log k). He also showed that
this is the best lower bound these constructions can give using symmetric polynomial-
based representations.

Gopalan also gave his own construction which more explicitly showed the usage of low-
degree weak representations of ORn.

Open Problem 4.12 Come up with an easier proof of the constructive lower bound R(k) ≥
2Ω(log2(k)/ log log k). This will probably involve coming up with easier lower bounds of theorems
about low-degree weak representations of the ORn function.

4.6 Li’s Construction

Recall that the nonconstructive lower bound on R(k) uses the probabilistic method. Hence
it might make sense to see if psuedo-random generators could be used to get constructive
lower bounds. While this approach was certainty considered the main problem with it is
that most (all?) psuedo-random generators depended on unproven assumptions.

Extractors are algorithms that convert a weak-random source to an almost uniform
source. Luca Trevisan [24] showed a useful connection between extractors and psuedo-
random generators. This paper was very important. Most (all?) later papers on extractors
depend on it.

In a series of papers Li [17, 18, 19] Li obtained different kinds of extractors that were
useful for obtaining constructive lower bounds on R(k). We omit discussion of the extractors
(except to say that the proofs are sophisticated and difficult) and state the constructive lower
bound he obtained.

The first two papers had constructive lower bounds that beat the FW-bound; however,
are hard to state. The third paper has a lower bound that is statable.

Theorem 4.13 There exists δ such that, for all k, R(k) ≥ 2Ω(kδ).

Li did not state it this way. We say what he did state and how to obtain the result.
Li showed ∃C such that, for all N , there is a coloring of KN where there is no homogenous

set of size (logN)C .
Set k = (logN)C .
k1/C = logN
N = 2K

1/C
.

Set 1/C = δ.

Open Problem 4.14
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1. Improve Li’s lower bound to 2Ω(k).

2. Li’s paper did not state a value for δ. Find what value works for Li’s proof and try to
improve it.

3. Find an easier proof of Li’s result.

4. Find an easier proof of a lower bound that is better than the FW lower bound, though
perhaps not as good as Li’s results.

5. Find an easier proof of a lower bound that is better than the FW lower bound, though
perhaps uses a hardness assumption.

5 Other Constructive Ramsey Lower Bounds

In this paper we have focused on constructive lower bounds for R(k). There has been work
on constructive lower bounds for other types of Ramsey Numbers:

1. Chung, Cleve, & Dagum [8] found constructive lower bounds for the asymmetric Ram-
sey number R(3, k) through a clever but elementary explicit graph construction.

2. Kostochka, Pudlak, & Rodl [16] found lower bounds for the asymmetric Ramsey
numbers R(4, k), R(5, k) and R(6, k) through clever graph constructions and linear
algebra.

3. Alon & Pudlak [3] found constructive lower bounds on the asymmetric Ramsey number
R(s, t) using algebraic methods over Galois fields.

4. The following papers are on constructive lower bounds for bipartite Ramsey numbers:
Pudlak & Rodl [21], Barak, Rao, Shaltiel, Wigderson [4], Pudlak [22], Chattopadhyay
& Zuckerman [7], Cohen [9]. Each of them used extractors and psuedo-randomness in
their bounds for bipartite Ramsey numbers.

6 Open Problems

Open Problem 6.1

1. Improve the constructive lower bounds on R(k).

2. Find easier proofs for the known constructive lower bounds on R(k), or even weaker
lower bounds (e.g., Ω(k4))).

3. Improve the constructive lower bounds on R(k) by using hardness assumptions.

4. Once you do part 3 find easier proofs for those results or weaker versions of them.
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