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This Issue’s Column! This issue’s Open Problem Column is by William Gasarch, Emily Kaplitz,
and Erik Metz. It is on the mod behaviour of the sequence

a1 = 1
(∀n ≥ 2)[an = an−1 + abn/2c].

Request for Columns! I invite any reader who has knowledge of some area to contact me and
arrange to write a column about open problems in that area. That area can be (1) broad or narrow
or anywhere inbetween, and (2) really important or really unimportant or anywhere inbetween.

How Does an = an−1 + abn/2c Behave Mod M?
By William Gasarch1 and Emily Kaplitz2 and Erik Metz3

1 The Sequence

In the book Sequences and Mathematical Induction in Mathematical Olympiad Competitions [?],
on page 7, is the following problem:

The sequence an is defined by
a1 = 1
(∀n ≥ 2)[an = an−1 + abn/2c].
Prove that there are infinitely many terms of the sequence that are divided by 7.

We will henceforth refer to the sequence an defined above as the sequence.
We give their proof and then make some observations and conjectures.

Theorem 1.1 (∀m ≥ 1)(∃i1 < · · · < im)[ai1 ≡ · · · ≡ aim ≡ 0 (mod 7)].

Proof:
Throughout this proof ≡ means ≡ (mod 7).
The proof is by induction on m.

Base Case m = 1: Note that a1 = 1, a2 = 2, a3 = 3, a4 = 5, a5 = 7. Hence i1 = 5 suffices.

Induction Hypothesis: (∃i1 < · · · < im−1)[ai1 ≡ · · · ≡ aim−1 ≡ 0 (mod 7)].

Induction Step: Let n = im−1. Note that
a2n = a2n−1 + an ≡ a2n−1.
a2n+1 = a2n + an ≡ a2n.
Combining these we obtain that there is an r ∈ {0, . . . , 6} such that

a2n−1 ≡ a2n ≡ a2n+1 ≡ r.
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Case 1: r = 0. Then a2n−1 ≡ 0 so we can take im = 2n− 1.

Case 2: r 6= 0. Look at the following numbers
a4n−3 ≡ a4n−3 + 0 (You will see later why we include this.)
a4n−2 = a4n−3 + a2n−1 ≡ a4n−3 + r.
a4n−1 = a4n−2 + a2n−1 ≡ a4n−3 + 2r.
a4n = a4n−1 + a2n ≡ a4n−3 + 3r.
a4n+1 = a4n + a2n ≡ a4n−3 + 4r.
a4n+2 = a4n+1 + a2n+1 ≡ a4n−3 + 5r.
a4n+3 = a4n+2 + a2n+1 ≡ a4n−3 + 6r.
Since r 6≡ 0, and 7 is prime, the numbers 0, r, 2r, 3r, 4r, 5r, 6r are equivalent to all 7 possibilities

mod 7. Hence for some i ∈ {4n− 3, . . . , 4n + 3}, ai ≡ 0. We set im to i.

2 Other Mods and Empirical Evidence

We leave it to the reader to adapt the proof of Theorem ?? to show the following:

Theorem 2.1 Let r ∈ {2, 3, 5, 7}. (∀m ≥ 1)(∃i1 < · · · < im)[ai1 ≡ · · · ≡ aim ≡ 0 (mod r)].

The question arises:
Find all r such that

(∀m ≥ 1)(∃i1 < · · · < im)[ai1 ≡ · · · ≡ aim ≡ 0 (mod r)].

We wrote a program to generate the first million elements of the sequence an (mod r) for all
r = 2 to 100. The empirical evidence strongly suggests the following conjecture:

Conjecture 2.2

1. Let r 6≡ 0 (mod 4). Then

(∀m ≥ 1)(∃i1 < · · · < im)[ai1 ≡ · · · ≡ aim ≡ 0 (mod r)].

2. Let r ≡ 0 (mod 4). Then

(∀m ≥ 1)(am 6≡ 0 (mod r)].

The second part should not be called a conjecture since we prove it in the next section.
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3 r ≡ 0 (mod 4) =⇒ (∀m ≥ 1)[am 6≡ 0 (mod r)]

In this section we will prove that, for all m, am 6≡ 0 (mod 4). A trivial corollary is

r ≡ 0 (mod 4) =⇒ (∀m ≥ 1)[am 6≡ 0 (mod r)].

The first few terms of the sequence mod 4 are

a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12
1 2 3 1 3 2 1 2 3 2 1 3

This pattern indicates three things:

• If n is odd then an ≡ 1, 3 (mod 4).

• If you remove the 2’s from the sequence you get 1, 3, 1, 3, 1, 3

• an 6≡ 0 (mod 4).

We prove all three.

Theorem 3.1 All ≡ are mod 4.

1. (∀n ≥ 1)[If n is odd then an ≡ 1, 3 (mod 4)]

2. a1 6≡ 0 and a2 6≡ 0. (We separate these two cases since Part 2 only covers n ≥ 3.)

3. (∀n ≥ 3)

(a) If an ≡ 1 then either an−1 ≡ 3 or an−1 ≡ 2 and an−2 ≡ 3.

(b) If an ≡ 3 then either an−1 ≡ 1 or an−1 ≡ 2 and an−2 ≡ 1.

(c) an 6≡ 0.

Proof: The following equations will be used throughout and are easily verified.
EQ1: a2m−1 = a2m−2 + am−1
EQ2: a2m = a2m−1 + am
EQ3: a2m+1 = a2m + am
EQ4: a2m+1 = a2m−1 + 2am.

1) We prove this by induction by a triple induction on n.
Base Case n = 1. a1 = 1 ≡ 1.

IH For all 1 ≤ n′ < n, if n′ is odd then an′ ≡ 1, 3.

IS If n is even there is nothing to prove, so we take n to be odd. Let n = 2m + 1. By the IH,
a2m−1 ≡ 1, 3. By EQ4 a2m+1 = a2m−1 + 2am, hence since a2m−1 ≡ 1, 3 we have a2m+1 ≡ 1, 3.

2) This is obvious.

3) We prove this by induction on n. We will assume the theorem for all 3 ≤ n′ ≤ n− 1 and n even,
and prove it for n and n + 1.
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Base Case The theorem starts at n = 3. From the table of ai’s before this theorem one can see
that the theorem holds for n = 3, 4, 5, 6, 7. So the proof below needs to work for n ≥ 8. You will
see at the proof of 3a why we needed to start at n = 8.

IH For all n′, 3 ≤ n′ ≤ n−1, all three parts of the theorem holds. Note that 3 < n−1 since n ≥ 8.

IS Let n = 2m and n ≥ 8. Note that m ≥ 4. We prove 3a for a2m. The proof for 3b is similar.

3a) By Part 1, a2m−1 6≡ 0, hence a2m−1 ≡ 1, 3. We will do the a2m−1 ≡ 1 case and leave the
a2m−1 ≡ 3 case to the reader. We have cases based on am. By the IH (Part 3c), am ≡ 1, 2, 3. (Need
that m ≥ 1 to use IH, and we have m ≥ 4.)

Case 1 am ≡ 1.

EQ2: a2m = a2m−1 + am ≡ 1 + 1 ≡ 2.

EQ3: a2m+1 = a2m + am ≡ 2 + 1 ≡ 3.

Case 2 am ≡ 2.

EQ2: a2m = a2m−1 + am ≡ 1 + 2 ≡ 3.

EQ3: a2m+1 = a2m + am ≡ 3 + 2 ≡ 1.

Case 3 am ≡ 3. We show this case cannot occur. Since am ≡ 3, by the IH, either (1) am−1 ≡ 1
or (2) am−1 ≡ 2 and am−2 ≡ 1. (Need m ≥ 3 to use the IH, and we have m ≥ 4.)

Case 3.1 am−1 ≡ 1.

EQ1: a2m−1 = a2m−2 + am−1
1 ≡ a2m−2 + 1

a2m−2 ≡ 0 which contradicts the IH.

(Need 2m− 2 ≥ 3 to use the IH, and we have m ≥ 4.)
Case 3.2 am−1 ≡ 2 and am−2 ≡ 1.
We recap and extend what we know.
We are assuming a2m−1 ≡ 1.
From EQ1,

a2m−1 = a2m−2 + am−1.

Putting in a2m−1 ≡ 1 and am−1 ≡ 2, we get

a2m−2 ≡ 3.

From the recurrence, we have

a2m−2 = a2m−3 + am−1.

Putting in a2m−2 ≡ 3 and am−1 ≡ 2, we have
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3 ≡ a2m−3 + 2,

so

a2m−3 ≡ 1.

From the recurrence, we have

a2m−3 = a2m−4 + am−2.

Putting in a2m−3 ≡ 1 and am−2 ≡ 1, we get

1 = a2m−4 + 1,

so

a2m−4 ≡ 0.

This contradicts the IH. (Need 2m− 4 ≥ 3 to use the IH, and we have m ≥ 4. Note that m ≥ 3
would not have sufficed.)

3b) The proof is similar to that of Part 3a.

3c) We prove this in the reverse order: we first show an+1 6≡ 0 and then that an 6≡ 0.
an+1: Since n is even, n + 1 is odd. By Part 1 an+1 ≡ 1, 3, hence an+1 6≡ 0.
an: Since an+1 ≡ 1, 3, by Part 3b (not the IH, but what I just proved in the IS), an ≡ 1, 2, 3, so

an 6≡ 0.

4 Conclusion

We restate the part of our conjecture that is still unproven:

Conjecture 4.1 Let r 6≡ 0 (mod 4). Then

(∀m ≥ 1)(∃i1 < · · · < im)[ai1 ≡ · · · ≡ aim ≡ 0 (mod r)].

The following questions can also be considered

1. Let r 6≡ 0 (mod 4). Let 0 ≤ i ≤ r − 1. What is the density of

{an : an ≡ i (mod r)}.

2. Let A,B,C ∈ Z and r ≥ 2. What is the behaviour of

a1 = A.

an = Ban−1 + Cabn/2c (mod r).
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