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1 This Issues Column!

This issue’s Open Problem Column is by Virginia Vassilevska Williams. It is titled: Some Open Problems
in Fine-Grained Complexity.

2 Request for Columns!

I invite any reader who has knowledge of some area to contact me and arrange to write a column about open
problems in that area. That area can be (1) broad or narrow or anywhere inbetween, and (2) really important
or really unimportant or anywhere inbetween.
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3 Introduction

Fine-grained complexity studies problems that are “hard” in the following sense. Consider a computational
problem for which existing techniques easily give an algorithm running in a(n) time for inputs of size n, for
some a. The algorithm is often brute-force, and despite decades of research, no O(a(n)1−ε) time algorithm
for constant ε > 0 has been developed.

There are many diverse examples of such problems. Here are two: CNF-SAT on n variables and m
clauses can be solved via exhaustive search in O(2nmn) time, and no 2(1−ε)npoly(m,n) time algorithm for
constant ε > 0 is known. The Longest Common Subsequence (LCS) problem on strings of length n has a
classicalO(n2) time algorithm, and noO(n2−ε) time algorithm for ε > 0 is known. Let’s call these running
times the “textbook running times”. (Note that this is not well-defined but for many fundamental problems
such as SAT or LCS, it is natural. The textbook runtime is the runtime of the algorithm a bright student in
an algorithms class would come up with.)

Fine-grained complexity aims to answer questions such as:
(1) Why is a particular problem A hard in the sense described above?
(2) Suppose we have two hard problems A and B, with textbook runtimes a(n) and b(n). Are they hard

for the same reason? Are we lacking some magical technique that will both solve A inO(a(n)1−ε) time and
B in O(b(n)1−ε) time for some ε > 0?

The approach of fine-grained complexity is similar to that of NP-hardness: we address these problems
via reductions. A fine-grained reduction from problem A with textbook runtime a(n) to a problem B with
textbook runtime b(n), aims to show that if we can get a much faster than b(n) time algorithm for B, then
we can also get a much faster than a(n) algorithm for A. The formal definition (see [22, 23]) is as follows:

Definition 3.1 (Fine-grained reduction). Assume that A and B are computational problems and a(n) and
b(n) are time-constructible. Then we say A (a, b)-reduces to B, A ≤a,b B, if for every ε > 0, there exists
δ > 0, and an algorithm solving A that runs in time O(a(n)1−δ) on inputs of size n, making q calls to an
oracle for B with query lengths n1, . . . , nq, where

q∑
i=1

(b(ni))
1−ε ≤ a(n)1−δ.

If A ≤a,b B and B ≤b,a A, we say that A and B are fine-grained equivalent, A ≡a,b B.

Unlike in NP-hardness, where P 6=NP is the single hardness assumption, fine-grained complexity has
(so far) used hardness hypotheses for several key problems. The main ones are: CNF-SAT, the Orthogonal
Vectors Problem (OV), 3-SUM and All-Pairs Shortest Paths (APSP). Together, the hardness hypotheses for
these problems explain the “natural” running times for a large variety of problems. (See [23].)
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Computational model. Since we care about the actual running times of algorithms (as opposed to merely
whether they are polynomial), we need to fix the computational model we are working with. Let us assume
the Word-RAM model with O(log n) bit words, for inputs of size n.

SETH and k-OV. The first hypothesis, formulated by Impagliazzo, Paturi and Zane [12, 13] concerns the
CNF-SAT problem:

Hypothesis 1 (Strong Exponential Time Hypothesis (SETH)). For every ε > 0 there exists an integer k ≥ 3
such that CNF-SAT on formulas with clause size at most k (the so called k-SAT problem) and n variables
cannot be solved in O(2(1−ε)n) time even by a randomized algorithm.

An equivalent formulation is that there is no O(2(1−ε)n) time algorithm for CNF-SAT on n variables
and O(n) clauses, for any ε > 0.

Notice that SETH is a much stronger assumption than P 6=NP: it not only assumes that CNF-SAT
requires superpolynomial time, but that it actually requires essentially the time to brute-force over the so-
lution space, and that this is also true of formulas with a very small number of clauses. Nevertheless, this
assumption is completely consistent with our current knowledge of the world.

A very useful problem to start reductions from is k-OV, a variant of set-disjointness defined below..
Williams [25] reduced CNF-SAT to k-OV and showed that SETH implies a potentially more believable
hardness hypothesis for k-OV.

The k-Orthogonal Vectors (k-OV) problem for constant k ≥ 2 is as follows: Let d = ω(log n); given k
sets A1, . . . , Ak ⊆ {0, 1}d with |Ai| = n for all i, determine whether there exist a1 ∈ A1, . . . , ak ∈ Ak so
that a1 · . . . · ak = 0 where a1 · . . . · ak :=

∑d
i=1

∏k
j=1 aj [i]. The 2-OV problem is also known as just OV.

Hypothesis 2 (k-OV Hypothesis). No randomized algorithm can solve k-OV on instances of size n in
nk−εpoly(d) time for constant ε > 0.

Williams’ result shows that if SETH is true, then the k-OV hypothesis is also true for all integers k ≥ 2.
There is no reduction in the other direction, so that the k-OV hypothesis might hold even if SETH fails.

3-SUM. Starting with the work of Gajentaan and Overmars [9], a hardness hypothesis concerning the 3-
SUM problem defined below became very popular in computational geometry, as it implied tight hardness
results for many geometry problems.

The 3-SUM Problem is: given a set S of n integers, determine whether there are a, b, c ∈ S with
a+ b+ c = 0.

Hypothesis 3 (3-SUM Hypothesis). 3-SUM on n integers in {−n4, . . . , n4} cannot be solved in O(n2−ε)
time for any ε > 0 by a randomized algorithm.

APSP. A classical graph problem is APSP: given a graph with weights on its edges, determine for every
pair of vertices, the shortest path distance between them. A popular hypothesis asserts that the classical
cubic time algorithms for APSP are essentially optimal.

Hypothesis 4 (APSP Hypothesis). No randomized algorithm can solve APSP in O(n3−ε) time for ε > 0 on
n node graphs with edge weights in {−nc, . . . , nc} and no negative cycles for large enough c.
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4 Open Problems

The most tantalizing open problems in fine-grained complexity concern the main hypotheses: how believ-
able are they, what are the relationships between them, can we replace them with better hypotheses?

Problem 1. How fast can we actually solve k-SAT? The fastest known algorithms have running times of
the form 2n−cn/kpoly(n), for various constants c (see e.g., [11, 14, 16, 15, 20, 21]). Can we improve these
algorithms? For instance, can we solve k-SAT in O(2n−cn(log k)/k) time for some c? Notably, the known
hard instances [17] for the PPSZ [15] algorithm only say that PPSZ does not run faster thanO(2n−cn(log k)/k)
time, so that PPSZ itself might give such a runtime. Alternatively, does anything interesting follow from
assuming that the best runtime for k-SAT is 2n−cn/k−o(n)?

Problem 2. How fast can we solve 3-SUM? For APSP and k-OV, significant (though still no(1)) im-
provements over the textbook runtime are possible. APSP has an n3/ exp(

√
log n) time algorithm [26], and

k-OV on vectors of dimension d can be solved in nk−1/Θ(log(d/ logn)) time [2, 7].
Thus both APSP and k-OV of dimension up to exp(

√
log(n)) have an improvement of exp(

√
log(n))

over their textbook runtimes; this subsumes all polylogarithmic improvements, for example. Meanwhile,
the fastest known algorithms for 3-SUM, up to poly log log n factors, run in O(n2/ log2 n) time [3, 6].

Can one achieve an improvement for 3-SUM, similar to the ones for APSP and k-OV? Or, can we show
that some bizarre consequence follows from such an improved algorithm? More modestly, is 3-SUM in,

say, O(n2/ log3 n) time?

It seems that the current techniques that worked for APSP and OV, are not sufficient to give improve-
ments for 3-SUM. Nevertheless, my guess is that O(n2/ log2 n) cannot be the best running time, and that
further improvements should be possible.

Problem 3. Can we refute NSETH? Carmosino et al. [5] formulated a nondeterministic version of SETH
as follows:

Hypothesis 5. (NSETH) For every ε > 0 there is a k, so that k-TAUT is not in NTIME[2(1−ε)n], where
k-TAUT is the language of k-DNFs that are tautologies.

In other words, NSETH asserts that there is no substantially sub-2n time nondeterministic algorithm for
CNF-UNSAT. NSETH sounds to me ridiculously unbelievable – somehow with all the power of nondeter-
minism we are still unable to improve upon the brute-force algorithm.

Partial progress towards refuting NSETH was achieved by Williams [28]: One can define versions
of SETH for AM and MA-protocols, and Williams refuted these, providing very efficient AM and MA-
protocols for CNF-UNSAT. Nevertheless, the approach crucially uses randomness, and with the current
state of SAT algorithms, NSETH might still be true. Can we refute it?

Problem 4. Relate the key hard problems to each other. Carmosino et al [5] showed that under NSETH,
there can be no deterministic fine-grained reduction from OV to 3-SUM or APSP. These results do not rule
out randomized reductions (AMSETH and MASETH are false, and NSETH might also be false).

Is there a (randomized) fine-grained reduction from OV to 3-SUM or APSP?
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There is a problem, Exact Triangle, that 3-SUM and APSP both reduce to. In Exact Triangle, one is
given a complete n-node graph with integer edge weights in {−nC , . . . , nC} for some constant C, and one
is asked, do there exist three nodes a, b, c so that w(a, b) + w(b, c) + w(c, a) = 0?

Vassilevska W. and Williams [24] showed that if Exact Triangle is in O(n3−ε) time for ε > 0, then
APSP is in O(n3−ε′) time for ε′ > 0 and 3-SUM is in O(n2−ε′) time for ε′ > 0. Thus a potentially simpler
question is: Is there an (n2, n3) (randomized) fine-grained reduction from OV to Exact Triangle?

Finally, NSETH does not rule out reductions from APSP and 3-SUM to OV (or between APSP and
3-SUM). Is there an (n3, n2) fine-grained reduction from APSP to OV, or an (n2, n2) reduction from 3-SUM
to OV? My guess: most likely yes.

There is another problem that seems hard, and can also be reduced in a fine-grained way to both APSP
and 3-SUM. This is the (min,+)-Convolution problem: Given two arrays A and B of length n and integers
in {−nc, . . . , nc} for some c, compute an array C so that C[k] = miniA[i] +B[k − i].

There is no known O(n2−ε) time algorithm for ε > 0 for (min,+)-Convolution, and the brute-force
running time is O(n2). Techniques from [4] and [24] show that if (min,+)-Convolution requires n2−o(1)

time, then APSP requires n3−o(1) time, and 3-SUM requires n2−o(1) time (see e.g. [8]). Thus, one can base
the hardness of both APSP and 3-SUM on (min,+)-Convolution.

Can one (n2, n2) reduce (min,+)-Convolution to OV as well?

We want to point out that the following simpler looking Negative Convolution Pair problem is (n2, n2)-
equivalent to (min,+)-Convolution, using techniques from [22]: Given three n-length arrays A,B,C of
integers in {−nc, . . . , nc} for large enough constant c, are there some i, k so that A[i] +B[k − i] < C[k]?

Can Negative Convolution Pair be (n2, n2) reduced to OV?

Problem 5. Does k-OV get easier as k grows? We know that CNF-SAT can be reduced to k-OV for
every k, and that SETH implies that k-OV should require nk−o(1) time for each k. It is also not hard to see
that k-OV can be (nk, nk−1) reduced to (k − 1)-OV for every k ≥ 3, so that 2-OV is in a sense the hardest
k-OV problem. Two questions emerge:

Can one (nk, nk+1)-reduce k-OV to (k + 1)-OV?

If this can be done for all k, then all k-OV problems would be fine-grained equivalent. However, we
don’t have such a result for any k. Perhaps, for instance, 2-OV and 3-OV are not equivalent? My feeling is
that 2-OV actually does require n2−o(1) time, but I wouldn’t be too astonished if say 100-OV has an O(n99)
time algorithm (and hence SETH is false). We are quite far from proving such a statement of course.

On the other hand, suppose that we assume that for every constant k ≥ 2, k-OV requires nk−o(1) time.
Can we prove that SETH holds from this? In other words, is SETH equivalent to the AND of all k-OV
Hypotheses?

Problem 6. Hitting Set vs 3-SUM. Perhaps it is difficult (or even impossible) to reduce OV to 3-SUM or
APSP. As a first step then, one can consider the potentially easier Hitting Set problem.

In Hitting Set one is given two n-sets of vectors A,B ⊆ {0, 1}d and is asked, does there exist an a ∈ A
such that for all b ∈ B, a · b 6= 0?

The negation of Hitting Set asks whether ∀a ∈ A, ∃b ∈ B such that a · b = 0. In other words, (the
negation of) Hitting Set is obtained from OV via a quantifier swap - from ∃∃ to ∀∃. It is known (e.g. [1, 2])
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that Hitting Set can be (n2, n2)-reduced to OV, but a reduction in the reverse direction is not known. It is
thus possible that Hitting Set is truly easier than OV.

Can we reduce Hitting Set to 3-SUM or APSP?

Problem 7. Algorithms for Balanced QBF? When studying the Graph Diameter and Radius problems,
Abboud et al. [1] noted that Diameter and Radius only differ in their quantifiers ∃∃ vs ∀∃. A fine-grained
lower bound based on OV was known for Diameter ([18]). To obtain a similar lower bound for Radius, one
needs the Hitting Set problem which, as mentioned earlier, is obtained from the OV problem by the same
quantifier swap as going from Diameter to Radius.

Similar quantifier swaps define various variants of k-OV, many of which, similarly to k-OV, are not
known to be solvable faster than nk−o(1) time. A typical quantified k-OV problem is of the form Q1a1 ∈
A1Q2a2 ∈ A2 . . . Qkak ∈ Ak : a1 · a2 · . . . · ak = 0, where the input is A1, . . . , Ak ⊆ {0, 1}d with
|Aj | = n,∀j, and Qj ∈ {∃, ∀},∀j.

Such quantified problems are studied by Gao et al. [10] (see also Williams [27]) in the context of first-
order properties on sparse structures. While k-OV is known to be the hardest problem among the variants
with k quantifiers (follows from [2]), it is unclear whether the rest of the quantified variants are equivalent
to k-OV or potentially easier. Each quantified OV problem can explain the hardness of a variety of problems
with a similar quantifier structure, and thus these variants are all of interest.

The hardness of k-OV is often justified via SETH. A natural question is whether a similar SAT-based
hypothesis is believable for the rest of the quantified variants. To this end, let us defined a Balanced Quan-
tified Boolean Formula as follows. Let x1, . . . , xn be given Boolean variables, and let F (x1, . . . , xn) be a
CNF formula. Then

Q1x1, . . . , xn/kQ2x1+n/k, . . . x2n/k . . . Qk(x1+(k−1)n/k, . . . , xn)F (x1, . . . , xn)

is a balanced QBF where Q1, . . . , Qk ∈ {∃,∀}, Qk = ∃ and the Qi alternate. In other words, this is just a
quantified CNF in which every one of the k quantifier blocks have n/k variables.

Are there constants k ≥ 1 and ε > 0 for which there is an 2(1−ε)npoly(m) time algorithm to determine
whether a balanced QBF with k quantifiers, n variables and m clauses is satisfiable?

Clearly, if the balance condition is removed, one can easily reduce CNF-SAT to QBF (for CNFs), and
SETH implies that QBF with any constant number of quantifiers requires 2n−o(n) time. However, when the
quantifier blocks are balanced, no such fine-grained reduction from CNF-SAT is known. Perhaps the prob-
lem gets easier as the number of quantifiers increase? Santhanam and Williams [19] gave several counterin-
tuitive algorithms for the case when the blocks are not balanced: for instance, QBF on circuits of size s and
k quantifier blocks can be solved in time 2n−Ω(k)poly(s) by a zero-error randomized algorithm, and quan-
tified CNFs on n variables, k quantifier blocks and size poly(n) can be solved in time 2n−n

1/(k+1)
poly(n)

also by a zero-error randomized algorithm. Could similar techniques be used to show that when the blocks
are balanced, much better improvements are possible? My guess is that balanced QBF does get easier as the
number of quantifiers k grows, and there might actually be an O(1.99n) time algorithm for some k, though
who knows.

6



References

[1] Amir Abboud, Virginia Vassilevska Williams, and Joshua R. Wang. Approximation and fixed param-
eter subquadratic algorithms for radius and diameter in sparse graphs. In Proceedings of the Twenty-
Seventh Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2016, Arlington, VA, USA,
January 10-12, 2016, pages 377–391, 2016.

[2] Amir Abboud, Richard Ryan Williams, and Huacheng Yu. More applications of the polynomial
method to algorithm design. In Proceedings of the Twenty-Sixth Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA 2015, San Diego, CA, USA, January 4-6, 2015, pages 218–230, 2015.
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